[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004221388A - Multilayer circuit board for mounting electronic component and its manufacturing method - Google Patents

Multilayer circuit board for mounting electronic component and its manufacturing method Download PDF

Info

Publication number
JP2004221388A
JP2004221388A JP2003008078A JP2003008078A JP2004221388A JP 2004221388 A JP2004221388 A JP 2004221388A JP 2003008078 A JP2003008078 A JP 2003008078A JP 2003008078 A JP2003008078 A JP 2003008078A JP 2004221388 A JP2004221388 A JP 2004221388A
Authority
JP
Japan
Prior art keywords
hole
electronic component
mounting
via hole
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003008078A
Other languages
Japanese (ja)
Inventor
Yoshio Mizuno
嘉夫 水野
Junzo Fukuda
順三 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003008078A priority Critical patent/JP2004221388A/en
Publication of JP2004221388A publication Critical patent/JP2004221388A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer circuit board for mounting an electronic component, which has high reliability even if the electronic component is directly joined to a via hole having no connection pad, and to provide its manufacturing method. <P>SOLUTION: In the multilayer circuit board 10 for mounting the electronic component, a through hole 12 is provided in an insulator 11 as at least one uppermost layer of a plurality of the insulators 11, and an electronic component 16 is mounted outside the via hole 15 formed by charging a conductive metal 14 in the through hole 12. A tapered part 13 which has a larger internal diameter of the through hole 12 than an external diameter thereof as viewed in cross section is formed, and moreover in the outside of and a peripheral part of the outside of the via hole 15, the electronic component 16 is directly joined to the outside of the via hole 15 through a joining material 18 without having the connection pad for mounting the electronic component 16. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、最表層の絶縁基体に設けるビアホールに半導体素子や、コンデンサ等の電子部品が実装される電子部品搭載用多層基板及びその製造方法に関する。
【0002】
【従来の技術】
近年、セラミックグリーンシートや、プラスチック基板等からなる複数枚の絶縁基体を積層して形成する電子部品搭載用多層基板には、例えば、最表層の絶縁基体のビアホールの上に直接半導体素子を半田等を用いて接合させるフリップチップ方式の形態にして、電子部品搭載用多層基板の外形寸法を半導体素子と実質的に同等程度の大きさにしたものが用いられている。これにより、電子部品搭載用多層基板を組み込んだ装置全体を小さくすることができると同時に、電子部品を搭載した電子部品搭載用多層基板の配線長さを短くできるので、電気的な特性を向上させることができる。また、コンデンサ等の電子部品をビアホールの上に直接接合させて、配線長さを短くすることも行われている。
【0003】
図3(A)、(B)に示すように、従来の電子部品搭載用多層基板に用いる絶縁基体50のビアホール用の貫通孔51は、例えば、ピン52とダイス53からなる打ち抜き方式により、絶縁基体50をダイス53の上に載置し、ピン52で打ち抜いて形成している。あるいは、プラスチック基板からなる絶縁基体50の貫通孔51の場合には、ピン52に代わってドリル(図示せず)を用いた回転方式で形成することもできる。このような貫通孔51は、いずれも実質的に厚さ方向に対して垂直のストレートに形成されている。そして、セラミックからなる電子部品搭載用多層基板は、セラミックグリーンシートに形成された貫通孔51に、導体金属ペーストをスクリーン印刷等で充填してビアホール54(図4参照)を形成し、複数枚を積層した後、焼成して作製している。また、プラスチック基板からなる電子部品搭載用多層基板は、プラスチック基板に形成された貫通孔に、例えば、めっきによって貫通孔壁面に導電体を形成した後、熱硬化性の導体金属樹脂ペーストをスクリーン印刷等で充填してビアホール54を形成し、加熱して作製している。
【0004】
図4に示すように、この電子部品搭載用多層基板には、最表層の絶縁基体50の貫通孔51に導体金属が充填されたビアホール54の外部側及びその周辺部に、半導体素子や、コンデンサ等の電子部品55の電極パッド56と、半田等の接合材57を介して接合するために、導体金属を用いた接続用パッド58が形成されている。この接続用パッド58は、貫通孔51がストレートの場合に、貫通孔51に充填されている導体金属の内部にボイド等があると、熱応力や振動等によって導体金属が抜けやすくなり、実装されている電子部品55が外れる等の問題の発生を防止している。
【0005】
また、実装されている半導体素子が外れないようにするためには、最表層の絶縁基体の貫通孔に途中で水平方向に境界面を有するように段差部を設けるようにして、貫通孔の外部側の径より内部側の径を大きくし、貫通孔内に導体金属を充填して形成したビアホールに半導体素子を実装することが提案されている(例えば、特許文献1参照)。
【0006】
また、貫通孔の形成方法は、フィルム付セラミックグリーンシートのセラミックグリーンシート側へレーザー光を照射して、セラミックグリーンシートに貫通孔を形成し、更に、フィルムの途中の深さまで凹部を形成する方法が提案されている。そして、貫通孔への導体金属の形成は、凹部の途中まで導体金属を充填した後、フィルムを剥ぎ取ることで行っている。これによって、導体金属のフィルム側への残留の発生を抑えることが提案されている(例えば、特許文献2参照)。
【0007】
【特許文献1】
特許第3102287号公報(第1−5頁、第1図)
【特許文献2】
特開2001−148570号公報(第1−4頁、第1図)
【0008】
【発明が解決しようとする課題】
しかしながら、前述したような従来の電子部品搭載用多層基板及びその製造方法は、次のような問題がある。
(1)ストレートの貫通孔に導体金属を充填したビアホールに半導体素子等の電子部品を接合させるために、ビアホールに接続用パッドを設けるのは、接続信頼性の向上ができたり、熱応力や振動等によって導体金属が抜けやすくなるのを防止できたりする効果があるが、近年の装置の小型化に伴って電子部品搭載用多層基板にも小型化が求められており、接続用パッドを設けることが設計上困難となってきている。
(2)1枚のセラミックグリーンシートからなる絶縁基体に径の異なる貫通孔を設けるのは、貫通孔の穿孔時に段差部に部分的な極端な加重がかかり、部分的なセラミックグリーンシートの生密度の差によって、焼成後に電子部品搭載用多層基板に反りや、変形が発生する。
(3)フィルム付セラミックグリーンシートをレーザーで穿孔するのは、レーザーによって溶融したフィルムの滓がセラミックグリーンシートに付着して品質や、歩留の低下となっている。特に、フィルムには、貫通孔が形成されないので、溶融したフィルムの滓がセラミックグリーンシートの貫通孔周縁部に付着しやすい。
本発明は、かかる事情に鑑みてなされたものであって、接続用パッドを有さないビアホールに電子部品を直接接合しても接続信頼性が高い電子部品搭載用多層基板及びその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記目的に沿う本発明に係る電子部品搭載用多層基板は、複数枚の絶縁基体の少なくとも一方の最表層となる絶縁基体に貫通孔を備え、貫通孔に導体金属が充填されて形成されるビアホールの外部側に電子部品が実装される電子部品搭載用多層基板において、貫通孔の壁面に、貫通孔の外部側の径よりも内部側の径のほうが大きい断面視してテーパ部が形成されており、しかも、ビアホールの外部側及び外部側周辺部には、電子部品を実装するための接続用パッドを有さないで電子部品がビアホールの外部側に接合材を介して直接接合される。これにより、貫通孔に充填された導体金属は、貫通孔に形成されたテーパ部によって貫通孔から抜けやすくなるのを防止することができるので、半導体素子や、コンデンサ等の電子部品をビアホールに直接接合しても接続信頼性を向上することができる。
【0010】
ここで、電子部品搭載用多層基板は、テーパ部が貫通孔の垂直方向に対するテーパ角度として1.8°以上に形成されているのがよい。これにより、テーパ部が貫通孔の垂直方向に対するテーパ角度が1.8°以上であれば、導体金属が抜け出す方向に抵抗する効果が十分に発揮できるので、確実に接続信頼性を向上させることができる。なお、テーパ角度が1.8°を下まわると、ビアホールが垂直に近くなりすぎて、導体金属が抜け出す方向に抵抗する力が小さくなって導体金属が貫通孔から抜けやすくなる。
【0011】
前記目的に沿う本発明に係る電子部品搭載用多層基板の製造方法は、複数枚の絶縁基体の少なくとも一方の最表層となる絶縁基体に貫通孔を設け、貫通孔に導体金属を充填して形成するビアホールの外部側に電子部品を実装する電子部品搭載用多層基板の製造方法において、絶縁基体の一方の主面にレーザー光を照射し、レーザー光が当接する側の貫通孔の径を大きく、レーザー光が抜ける側の貫通孔の径を小さく穿孔して貫通孔の側壁にテーパ部を形成する工程と、貫通孔内に導体金属を充填して、ビアホールを形成する工程と、ビアホールの小径側が少なくとも一方の最表層の絶縁基体の外部側になるように複数の絶縁基体を積層する工程を有する。これにより、レーザーによって1枚の絶縁基体の中にテーパ部を形成できるので、例えば、絶縁基体がセラミックグリーンシートの場合であっても、シート内で生密度の差がないので、反りや変形が発生しない電子部品搭載用多層基板にすることができる。また、絶縁基体がセラミックグリーンシートの場合であっても、フィルム付セラミックグリーンシートを用いる必要がないので、セラミックグリーンシートにフィルムの滓を付着させるような問題は発生しない。
【0012】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
ここに、図1は本発明の一実施の形態に係る電子部品搭載用多層基板の説明図、図2(A)〜(C)はそれぞれ同電子部品搭載用多層基板の製造方法の説明図である。
【0013】
図1に示すように、本発明の一実施の形態に係る電子部品搭載用多層基板10は、例えば、アルミナや低温焼成セラミック等からなるセラミックグリーンシートの複数枚の絶縁基体11を多層に積層し、焼成して形成されている。また、電子部品搭載用多層基板10は、プラスチック基板からなる絶縁基体11の複数枚をプリプレグ等で多層に積層して形成することもできる。この複数枚の絶縁基体11の少なくとも一方の最表面となる絶縁基体11には、貫通孔12が設けられており、この貫通孔12の壁面に、貫通孔12の外部側の径Aと、内部側の径Bとの関係がA<Bとなる断面視してテーパ部13が形成されている。この貫通孔12には、例えば、絶縁基体11がアルミナの場合には、タングステンや、モリブデン等の高融点金属からなる導体金属14を、絶縁基体11が低温焼成セラミックの場合には、銀や、銀合金や、あるいは銅等の低融点金属からなる導体金属14を、また、絶縁基体11がプラスチック基板からなる場合には、熱硬化性の銀や、銅等の金属ペーストからなる導体金属14を充填して、ビアホール15が形成されている。
【0014】
一般的な電子部品搭載用多層基板は、例えば、半導体素子をフリップチップ方式でビアホールに実装する時に、ビアホールの外部側、及び外部側周辺部の絶縁基体の表面に半導体素子接続用パッドを有している。しかしながら、本発明の一実施の形態に係る電子部品搭載用多層基板10のビアホール15の外部側、及び外部側周辺部の絶縁基体11の表面には、半導体素子や、コンデンサ等の電子部品16を接続するための接続用パッドを有していない。これにより、電子部品搭載用多層基板10は、設計の高密度化に対応することができるので、外形寸法の小型化に対応することができる。この電子部品搭載用多層基板10のビアホール15の外部側には、電子部品15が電子部品15に設けられている電極パッド17と、半田等の接合材18を介して直接接合される。
【0015】
この電子部品搭載用多層基板10のビアホール15を形成するための貫通孔12は、貫通孔の垂直方向に対する角度αのテーパ角度が1.8°以上であるのがよい。テーパ角度が1.8°以上であることで、電子部品搭載用多層基板10に熱応力や、振動等の機械的応力等の発生があったとしても、電子部品15が接合される側の外部側の径Aと、反対側の内部側の径Bとの関係がA<Bのテーパ部であるので、導体金属14が貫通孔12から抜け落ちる方向に抵抗が作用し、抜け落ちを防止することができる。
【0016】
次いで、図2(A)〜(C)を参照しながら、本発明の一実施の形態に係る電子部品搭載用多層基板10の製造方法を説明する。
図2(A)に示すように、複数枚のセラミックグリーンシートや、プラスチック基板等からなる少なくとも一方の最表層となる絶縁基体11の一方の主面に、YAGレーザーや、炭酸ガスレーザー等からなるレーザー加工機を用いて、レーザー光を照射してレーザー光が当接する側の貫通孔12の径Bが大きく、レーザー光が抜ける側の貫通孔12の径Aが小さくなるようにして絶縁基体11の側壁にテーパ部13を有する貫通孔12を形成する。
【0017】
次に、図2(B)に示すように、絶縁基体11の貫通孔12内にスクリーン印刷等を用いて、例えば、絶縁基体11がアルミナ等の高温焼成セラミックの場合には、タングステンや、モリブデン等の高融点金属からなる金属導体ペーストを充填して、ビアホール15を形成する。また、例えば、絶縁基体11が低温焼成セラミックの場合には、銀や、銀合金や、銅等の低融点金属からなる導体金属ペーストを充填して、ビアホール15を形成する。更に、例えば、絶縁基体11がプラスチック基板の場合には、銀や、銅等からなる導体金属ペーストを充填して、ビアホール15を形成する。なお、絶縁基体11が高温焼成セラミックや、低温焼成セラミックの場合には、ビアホール15を形成した後、絶縁基体11の表面に必要に応じて配線パターン19(図2(C)参照)を形成する。また、絶縁基体11がプラスチック基板の場合には、めっきや、エッチング等で配線パターン19を形成した後に、ビアホール15を形成する。
【0018】
次に、ビアホール15の小径側が少なくとも一方の最表層の絶縁基体11の外部側になるように複数枚の絶縁基材11を、例えば、絶縁基体11がセラミックの場合には、重ね合わせ、温度と圧力をかけてプレスして積層する。また、絶縁基体11がプラスチック基板の場合には、間にプリプレグ等を介在させて温度と圧力をかけてプレスして積層する。なお、絶縁基体がセラミックの場合には、積層した後、焼成して半導体素子搭載用多層基板10を作製する。
【0019】
【実施例】
本発明者は、絶縁基体に低温焼成セラミックからなる厚みが0.4mm(1枚の厚みが0.2mmのものを2枚重ね)のセラミックグリーンシートを用い、これに炭酸ガスレーザー加工機で、小さい側の径Aがφ0.25mm、テーパ角度が1.8°、3.9°、及び6.3°となる貫通孔を形成し、貫通孔内に銀からなる導体金属を充填してビアホールを形成し、焼成して実施例のサンプル1、2、3を作製した。併せて、炭酸ガスレーザー加工機を用いたテーパ角度3.9°の貫通孔を上下面を逆とするテーパ率−3.3°の貫通孔と、従来のプレス加工機を用いた実質的にストレートからなるテーパ角度が0.7°の貫通孔のそれぞれ比較例のサンプル4、5を作製した。なお、上記サンプル1〜5は、貫通孔の小さい側の径Aと、大きい側の径の比であるA/Bからなるテーパ率が、それぞれ95%、90%、85%、110%、98%であった。また、レーザー加工機によるテーパ角度の選定は、絶縁基体の材料、アスペスト比(孔径と絶縁基体の厚みの比)、及び加工機の条件で決定される。上記のようにして作製された実施例、及び比較例のサンプルは、ビアホールに金属ワイヤーを半田付けして、貫通孔に対して垂直方向に引っ張ってその強度を測定した。その測定結果を表1に示す。
【0020】
【表1】

Figure 2004221388
【0021】
ビアホールの引っ張り強度は、実施例のテーパ角度が1.8°以上のサンプル1、2、3の場合には、13.83N程度より大きい強度を有し、比較例のテーパ角度が1.8°を下まわるサンプル4、5の場合には、10.59N程度より小さい強度を有している。ビアホールは、実施例のテーパ角度1.8°以上において十分な引っ張り強度が得られることが確認できた。
【0022】
【発明の効果】
請求項1及びこれに従属する請求項2記載の電子部品搭載用多層基板は、貫通孔の壁面に、貫通孔の外部側の径よりも内部側の径のほうが大きい断面視してテーパ部が形成されており、しかも、ビアホールの外部側及び外部側周辺部には、電子部品を実装するための接続用パッドを有さないで電子部品がビアホールの外部側に接合材を介して直接接合されるので、導体金属は、貫通孔から抜けにくくなり、半導体素子や、コンデンサ等の電子部品をビアホールに直接接合しても接続信頼性を向上することができる。
【0023】
特に、請求項2記載の電子部品搭載用多層基板は、テーパ部が貫通孔の垂直方向に対するテーパ角度として1.8°以上に形成されているので、導体金属が抜け出す方向に抵抗する効果が十分に発揮でき、確実に接続信頼性を向上させることができる。なお、テーパ角度が1.8°を下まわると、導体金属が貫通孔から抜けやすくなるのを防止する効果が小さくなる。
【0024】
請求項3記載の電子部品搭載用多層基板の製造方法は、絶縁基体の一方の主面にレーザー光を照射し、レーザー光が当接する側の貫通孔の径を大きく、レーザー光が抜ける側の貫通孔の径を小さく穿孔して貫通孔の側壁にテーパ部を形成する工程と、貫通孔内に導体金属を充填して、ビアホールを形成する工程と、ビアホールの小径側が少なくとも一方の最表層の絶縁基体の外部側になるように複数の絶縁基体を積層する工程を有するので、レーザーによって1枚の絶縁基体の中にテーパ部を形成でき反りや変形が発生しない電子部品搭載用多層基板にすることができる。また、絶縁基体にフィルム付を用いる必要がないので、絶縁基体にフィルムの滓を付着させるような問題を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る電子部品搭載用多層基板の説明図である。
【図2】(A)〜(C)はそれぞれ同電子部品搭載用多層基板の製造方法の説明図である。
【図3】(A)、(B)はそれぞれ従来の電子部品搭載用多層基板の貫通孔の形成方法の説明図である。
【図4】従来の電子部品搭載用多層基板に電子部品を接合する説明図である。
【符号の説明】
10:電子部品搭載用多層基板、11:絶縁基体、12:貫通孔、13:テーパ部、14:導体金属、15:ビアホール、16:電子部品、17:電極パッド、18:接合材、19:配線パターン[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multilayer board for mounting electronic components, in which electronic components such as semiconductor elements and capacitors are mounted in via holes provided in an outermost insulating substrate, and a method of manufacturing the same.
[0002]
[Prior art]
In recent years, a multilayer substrate for mounting electronic components formed by laminating a plurality of insulating substrates made of ceramic green sheets or plastic substrates, for example, includes a semiconductor element directly on a via hole of the outermost insulating substrate, such as soldering. In this case, a multi-layer substrate for mounting electronic components whose outer dimensions are substantially equal to those of a semiconductor element is used. This makes it possible to reduce the size of the entire device incorporating the electronic component mounting multilayer substrate, and at the same time, to shorten the wiring length of the electronic component mounting multilayer substrate mounting the electronic components, thereby improving the electrical characteristics. be able to. Also, electronic parts such as capacitors are directly joined to the via holes to shorten the wiring length.
[0003]
As shown in FIGS. 3A and 3B, a through-hole 51 for a via hole of an insulating base 50 used for a conventional multilayer substrate for mounting electronic components is insulated by a punching method including a pin 52 and a die 53, for example. The base 50 is mounted on a die 53 and formed by punching with a pin 52. Alternatively, in the case of the through hole 51 of the insulating base 50 made of a plastic substrate, the through hole 51 can be formed by a rotation method using a drill (not shown) instead of the pin 52. Each of the through holes 51 is formed in a straight line substantially perpendicular to the thickness direction. The electronic component mounting multilayer substrate made of ceramic is formed by filling a through hole 51 formed in the ceramic green sheet with a conductive metal paste by screen printing or the like to form a via hole 54 (see FIG. 4). After lamination, they are fired. In addition, a multilayer board for mounting electronic components made of a plastic substrate is formed by forming a conductor on the wall of the through-hole formed in the plastic substrate, for example, by plating, and then screen-printing a thermosetting conductive metal resin paste. The via hole 54 is formed by filling with a material and the like, and the via hole 54 is formed by heating.
[0004]
As shown in FIG. 4, a semiconductor element and a capacitor are provided on the outer side of the via hole 54 in which the through-hole 51 of the outermost insulating base 50 is filled with the conductive metal and at the periphery thereof, as shown in FIG. A connection pad 58 using a conductive metal is formed in order to join an electrode pad 56 of an electronic component 55 such as an electronic component through a joining material 57 such as solder. When the through-hole 51 is straight and the conductor metal filled in the through-hole 51 has a void or the like when the through-hole 51 is straight, the conductor metal is easily removed due to thermal stress or vibration, and is mounted. This prevents problems such as the detachment of the electronic component 55 that has come off.
[0005]
In order to prevent the mounted semiconductor element from coming off, a step is provided so as to have a boundary surface in the horizontal direction in the middle of the through hole of the insulating substrate on the outermost layer. It has been proposed that the diameter of the inner side is made larger than the diameter of the side, and a semiconductor element is mounted in a via hole formed by filling a through hole with a conductive metal (for example, see Patent Document 1).
[0006]
Further, the method of forming the through hole is a method of irradiating a laser beam to the ceramic green sheet side of the ceramic green sheet with a film to form a through hole in the ceramic green sheet, and further forming a recess to a depth halfway through the film. Has been proposed. The formation of the conductor metal in the through-hole is performed by filling the conductor metal halfway into the recess and then peeling off the film. Thus, it has been proposed to suppress the generation of the residual conductive metal on the film side (for example, see Patent Document 2).
[0007]
[Patent Document 1]
Japanese Patent No. 3102287 (pages 1-5, FIG. 1)
[Patent Document 2]
JP 2001-148570A (pages 1-4, FIG. 1)
[0008]
[Problems to be solved by the invention]
However, the conventional multilayer board for mounting electronic components and the method of manufacturing the same as described above have the following problems.
(1) Providing connection pads in via holes in order to join electronic components such as semiconductor elements to via holes in which conductive metal is filled into straight through holes can improve connection reliability, and can provide thermal stress and vibration. It has the effect of preventing the conductor metal from easily coming off due to such factors as the like.However, with the recent miniaturization of the device, the miniaturization of the multilayer board for mounting electronic components is also required, and it is necessary to provide connection pads. Are becoming more difficult in design.
(2) The provision of through-holes having different diameters in an insulating base made of a single ceramic green sheet is because, when the through-hole is formed, an extreme load is partially applied to the step portion, and the local density of the ceramic green sheet is partially increased. Due to the difference, after firing, the electronic component mounting multilayer substrate is warped or deformed.
(3) When a ceramic green sheet with a film is perforated by a laser, the quality of the film and the yield are reduced because the residue of the film melted by the laser adheres to the ceramic green sheet. In particular, since no through-hole is formed in the film, the molten film residue easily adheres to the peripheral portion of the through-hole of the ceramic green sheet.
The present invention has been made in view of the above circumstances, and provides a multilayer board for mounting electronic components having high connection reliability even when electronic components are directly bonded to via holes having no connection pads, and a method of manufacturing the same. The purpose is to do.
[0009]
[Means for Solving the Problems]
A multilayer board for mounting electronic components according to the present invention, which meets the above object, has a via hole formed by filling a through hole in an insulating substrate that is an outermost layer of at least one of a plurality of insulating substrates and filling the through hole with a conductive metal. In a multilayer board for mounting electronic components on which electronic components are mounted on the outside, a tapered portion is formed on the wall surface of the through hole in a cross-sectional view where the diameter of the inside of the through hole is larger than the diameter of the outside of the through hole. In addition, the electronic component is directly bonded to the outside of the via hole via a bonding material without having a connection pad for mounting the electronic component on the outer side and the outer peripheral portion of the via hole. As a result, the conductive metal filled in the through hole can be prevented from easily coming off from the through hole by the tapered portion formed in the through hole, so that electronic components such as a semiconductor element and a capacitor can be directly transferred to the via hole. Even if they are joined, the connection reliability can be improved.
[0010]
Here, in the multilayer board for mounting electronic components, the tapered portion is preferably formed to have a taper angle of 1.8 ° or more with respect to the vertical direction of the through hole. Thus, if the taper portion has a taper angle of 1.8 ° or more with respect to the vertical direction of the through hole, the effect of resisting the direction in which the conductive metal comes out can be sufficiently exhibited, and the connection reliability can be reliably improved. it can. If the taper angle is less than 1.8 °, the via hole becomes too close to vertical, and the force of resisting the direction in which the conductive metal comes out becomes small, so that the conductive metal easily comes out of the through hole.
[0011]
A method for manufacturing a multilayer board for mounting electronic components according to the present invention, which meets the above object, comprises forming a through-hole in an insulating substrate that is the outermost layer of at least one of a plurality of insulating substrates, and filling the through-hole with a conductive metal. In a method of manufacturing an electronic component mounting multilayer substrate for mounting an electronic component on the outside of a via hole, a laser beam is irradiated on one main surface of the insulating base, and the diameter of the through hole on the side where the laser beam contacts is increased. A step of forming a tapered portion on the side wall of the through-hole by drilling a small diameter of the through-hole on the side from which the laser light exits, a step of filling the through-hole with a conductive metal and forming a via hole, and a small-diameter side of the via hole. A step of laminating a plurality of insulating bases so as to be on the outer side of at least one outermost insulating base. As a result, a tapered portion can be formed in one insulating substrate by a laser. For example, even when the insulating substrate is a ceramic green sheet, there is no difference in green density in the sheet, so that warpage or deformation occurs. A multilayer board for mounting electronic components, which does not generate any, can be obtained. Further, even when the insulating substrate is a ceramic green sheet, there is no need to use a ceramic green sheet with a film, so that there is no problem of adhering film residue to the ceramic green sheet.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
FIG. 1 is an explanatory diagram of a multilayer board for mounting electronic components according to an embodiment of the present invention, and FIGS. 2A to 2C are diagrams illustrating a method of manufacturing the multilayer board for mounting electronic components. is there.
[0013]
As shown in FIG. 1, a multilayer substrate 10 for mounting an electronic component according to an embodiment of the present invention is obtained by laminating a plurality of insulating bases 11 of ceramic green sheets made of, for example, alumina or low-temperature fired ceramic. It is formed by firing. The electronic component mounting multilayer substrate 10 can also be formed by laminating a plurality of insulating substrates 11 made of a plastic substrate in multiple layers using a prepreg or the like. A through hole 12 is provided in the insulating substrate 11, which is the outermost surface of at least one of the plurality of insulating substrates 11, and a diameter A on the outer side of the through hole 12 The tapered portion 13 is formed in a cross-sectional view where the relationship with the diameter B on the side satisfies A <B. For example, when the insulating base 11 is made of alumina, the through-hole 12 is filled with a conductive metal 14 made of a high melting point metal such as tungsten or molybdenum. When the insulating base 11 is made of a plastic substrate, the conductive metal 14 made of a metal paste made of a metal paste such as silver or copper is used. The via hole 15 is formed by filling.
[0014]
A general multilayer board for mounting electronic components, for example, when mounting a semiconductor element in a via hole by a flip chip method, has a semiconductor element connection pad on the surface of the insulating base on the outer side of the via hole and on the outer peripheral part. ing. However, on the outer side of the via hole 15 of the electronic component mounting multilayer substrate 10 according to one embodiment of the present invention, and on the surface of the insulating base 11 around the outer side, an electronic component 16 such as a semiconductor element or a capacitor is provided. Does not have connection pads for connection. Thus, the electronic component mounting multilayer substrate 10 can cope with high-density design, and thus can cope with miniaturization of external dimensions. The electronic component 15 is directly bonded to an electrode pad 17 provided on the electronic component 15 via a bonding material 18 such as solder outside the via hole 15 of the electronic component mounting multilayer substrate 10.
[0015]
The through hole 12 for forming the via hole 15 of the electronic component mounting multilayer substrate 10 preferably has a taper angle of the angle α with respect to the vertical direction of the through hole of 1.8 ° or more. When the taper angle is 1.8 ° or more, even if thermal stress or mechanical stress such as vibration is generated in the electronic component mounting multilayer substrate 10, the external component on the side to which the electronic component 15 is joined is formed. Since the relationship between the diameter A on the side and the diameter B on the other side on the opposite side is a taper portion where A <B, resistance acts in the direction in which the conductor metal 14 falls off from the through-hole 12, thereby preventing the conductor metal 14 from falling off. it can.
[0016]
Next, with reference to FIGS. 2A to 2C, a method for manufacturing the multilayer board 10 for mounting electronic components according to an embodiment of the present invention will be described.
As shown in FIG. 2A, a YAG laser, a carbon dioxide gas laser, or the like is provided on one main surface of an insulating substrate 11 which is at least one outermost layer made of a plurality of ceramic green sheets, a plastic substrate, or the like. Using a laser beam machine, the insulating substrate 11 is irradiated with a laser beam so that the diameter B of the through hole 12 on the side where the laser beam comes into contact is large and the diameter A of the through hole 12 on the side where the laser beam exits is small. A through hole 12 having a tapered portion 13 is formed on the side wall of the substrate.
[0017]
Next, as shown in FIG. 2B, by using screen printing or the like in the through holes 12 of the insulating base 11, for example, when the insulating base 11 is a high-temperature fired ceramic such as alumina, tungsten or molybdenum is used. A via hole 15 is formed by filling a metal conductor paste made of a high melting point metal such as the above. Further, for example, when the insulating base 11 is a low-temperature fired ceramic, the via hole 15 is formed by filling a conductive metal paste made of a low melting point metal such as silver, a silver alloy, or copper. Further, for example, when the insulating base 11 is a plastic substrate, a via hole 15 is formed by filling a conductive metal paste made of silver, copper, or the like. When the insulating base 11 is a high-temperature fired ceramic or a low-temperature fired ceramic, after forming the via hole 15, a wiring pattern 19 (see FIG. 2C) is formed on the surface of the insulating base 11 as necessary. . When the insulating base 11 is a plastic substrate, the via hole 15 is formed after the wiring pattern 19 is formed by plating, etching, or the like.
[0018]
Next, the plurality of insulating bases 11 are overlapped with each other so that the small diameter side of the via hole 15 is located outside the at least one outermost insulating base 11, for example, when the insulating base 11 is ceramic, Press and laminate under pressure. When the insulating substrate 11 is a plastic substrate, the insulating substrate 11 is laminated by pressing with temperature and pressure with a prepreg or the like interposed therebetween. In the case where the insulating base is a ceramic, after lamination, it is fired to produce a multilayer substrate 10 for mounting a semiconductor element.
[0019]
【Example】
The present inventor uses a ceramic green sheet having a thickness of 0.4 mm (two sheets each having a thickness of 0.2 mm) made of a low-temperature fired ceramic as an insulating base, and using a carbon dioxide laser processing machine, A through hole having a diameter A of the smaller side of φ0.25 mm and taper angles of 1.8 °, 3.9 °, and 6.3 ° is formed, and a conductive metal made of silver is filled in the through hole to form a via hole. Was formed and calcined to produce Samples 1, 2, and 3 of the examples. At the same time, a through hole with a taper angle of 3.9 ° using a carbon dioxide laser beam machine and a taper rate of −3.3 ° with the upper and lower surfaces reversed, and a substantially conventional press machine with a press machine. Samples 4 and 5 of comparative examples each having a straight through-hole having a taper angle of 0.7 ° were produced. In the above samples 1 to 5, the taper ratios of the diameter A on the smaller side of the through hole and the ratio A / B on the larger side are 95%, 90%, 85%, 110%, and 98%, respectively. %Met. The selection of the taper angle by the laser processing machine is determined by the material of the insulating substrate, the aspect ratio (the ratio of the hole diameter to the thickness of the insulating substrate), and the conditions of the processing machine. For the samples of the examples and the comparative examples manufactured as described above, a metal wire was soldered to the via hole, and the sample was pulled in a direction perpendicular to the through hole to measure the strength. Table 1 shows the measurement results.
[0020]
[Table 1]
Figure 2004221388
[0021]
As for the tensile strength of the via hole, the samples 1, 2, and 3 having a taper angle of 1.8 ° or more in the example have a strength larger than about 13.83 N, and the taper angle in the comparative example is 1.8 °. In the case of Samples 4 and 5 having a strength lower than the above, the strength is smaller than about 10.59 N. It was confirmed that the via hole had a sufficient tensile strength at the taper angle of 1.8 ° or more in the example.
[0022]
【The invention's effect】
In the multilayer board for mounting electronic components according to claim 1 and dependent on claim 2, the wall surface of the through-hole has a tapered portion in a cross-sectional view in which the diameter on the inner side is larger than the diameter on the outer side of the through-hole. In addition, the electronic component is directly bonded to the outside of the via hole via a bonding material without having a connection pad for mounting the electronic component on the outer side and the outer peripheral portion of the via hole. Therefore, the conductive metal is less likely to come out of the through hole, and the connection reliability can be improved even when an electronic component such as a semiconductor element or a capacitor is directly joined to the via hole.
[0023]
In particular, in the electronic component mounting multilayer substrate according to the second aspect, since the tapered portion is formed at a taper angle of 1.8 ° or more with respect to the vertical direction of the through hole, the effect of resisting the direction in which the conductive metal escapes is sufficient. And connection reliability can be reliably improved. When the taper angle is less than 1.8 °, the effect of preventing the conductive metal from easily coming out of the through hole is reduced.
[0024]
According to a third aspect of the present invention, there is provided a method of manufacturing a multilayer substrate for mounting electronic components, wherein one of the main surfaces of the insulating base is irradiated with laser light, the diameter of the through hole on the side where the laser light comes into contact is increased, and Forming a tapered portion on the side wall of the through-hole by drilling a small diameter of the through-hole, filling a conductive metal in the through-hole, and forming a via hole; and forming the via hole on the small diameter side of at least one outermost layer. Since there is a step of laminating a plurality of insulating substrates so as to be on the outer side of the insulating substrate, a tapered portion can be formed in one insulating substrate by a laser so that a multilayer substrate for mounting electronic components which does not warp or deform. be able to. Further, since it is not necessary to use a film attached to the insulating base, it is possible to prevent a problem that film residue is attached to the insulating base.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a multilayer board for mounting electronic components according to an embodiment of the present invention.
FIGS. 2A to 2C are explanatory views of a method of manufacturing the electronic component mounting multilayer substrate. FIGS.
FIGS. 3A and 3B are explanatory views of a method of forming a through hole in a conventional multilayer board for mounting electronic components.
FIG. 4 is an explanatory view for bonding an electronic component to a conventional multilayer board for mounting electronic components.
[Explanation of symbols]
10: multilayer substrate for mounting electronic components, 11: insulating base, 12: through hole, 13: tapered portion, 14: conductive metal, 15: via hole, 16: electronic component, 17: electrode pad, 18: bonding material, 19: Wiring pattern

Claims (3)

複数枚の絶縁基体の少なくとも一方の最表層となる前記絶縁基体に貫通孔を備え、該貫通孔に導体金属が充填されて形成されるビアホールの外部側に電子部品が実装される電子部品搭載用多層基板において、
前記貫通孔の壁面に、該貫通孔の外部側の径よりも内部側の径のほうが大きい断面視してテーパ部が形成されており、しかも、前記ビアホールの外部側及び外部側周辺部には、前記電子部品を実装するための接続用パッドを有さないで前記電子部品が前記ビアホールの外部側に接合材を介して直接接合されることを特徴とする電子部品搭載用多層基板。
An electronic component mounting method in which a through hole is provided in the insulating substrate, which is the outermost layer of at least one of the plurality of insulating substrates, and an electronic component is mounted outside a via hole formed by filling the through hole with a conductive metal. In a multilayer board,
On the wall surface of the through-hole, a tapered portion is formed in a cross-sectional view in which the diameter on the inner side is larger than the diameter on the outer side of the through-hole. A multi-layer substrate for mounting an electronic component, wherein the electronic component is directly bonded to the outside of the via hole via a bonding material without having a connection pad for mounting the electronic component.
請求項1記載の電子部品搭載用多層基板において、前記テーパ部が前記貫通孔の垂直方向に対するテーパ角度として1.8°以上に形成されていることを特徴とする電子部品搭載用多層基板。2. The electronic component mounting multilayer board according to claim 1, wherein the tapered portion is formed to have a taper angle with respect to a vertical direction of the through hole of 1.8 ° or more. 複数枚の絶縁基体の少なくとも一方の最表層となる前記絶縁基体に貫通孔を設け、該貫通孔に導体金属を充填して形成するビアホールの外部側に電子部品を実装する電子部品搭載用多層基板の製造方法において、
前記絶縁基体の一方の主面にレーザー光を照射し、該レーザー光が当接する側の前記貫通孔の径を大きく、前記レーザー光が抜ける側の前記貫通孔の径を小さく穿孔して該貫通孔の側壁にテーパ部を形成する工程と、
前記貫通孔内に前記導体金属を充填して、前記ビアホールを形成する工程と、
前記ビアホールの小径側が少なくとも一方の最表層の前記絶縁基体の外部側になるように複数の前記絶縁基体を積層する工程を有することを特徴とする電子部品搭載用多層基板の製造方法。
A multilayer board for mounting electronic components, wherein a through-hole is provided in the insulating base, which is the outermost layer of at least one of the plurality of insulating bases, and an electronic component is mounted outside a via hole formed by filling the through-hole with a conductive metal. In the manufacturing method of
One main surface of the insulating base is irradiated with laser light, and the diameter of the through hole on the side contacted with the laser light is increased, and the diameter of the through hole on the side from which the laser light exits is reduced. Forming a tapered portion on the side wall of the hole;
Filling the conductive metal in the through hole to form the via hole;
A method of manufacturing a multilayer board for mounting electronic components, comprising a step of laminating a plurality of insulating bases so that the small diameter side of the via hole is at least one outermost layer outside the insulating base.
JP2003008078A 2003-01-16 2003-01-16 Multilayer circuit board for mounting electronic component and its manufacturing method Withdrawn JP2004221388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008078A JP2004221388A (en) 2003-01-16 2003-01-16 Multilayer circuit board for mounting electronic component and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003008078A JP2004221388A (en) 2003-01-16 2003-01-16 Multilayer circuit board for mounting electronic component and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004221388A true JP2004221388A (en) 2004-08-05

Family

ID=32897986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008078A Withdrawn JP2004221388A (en) 2003-01-16 2003-01-16 Multilayer circuit board for mounting electronic component and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004221388A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051821A1 (en) * 2004-11-10 2006-05-18 Murata Manufacturing Co., Ltd. Ceramic multilayer substrate and production method therefor
JP2009010141A (en) * 2007-06-27 2009-01-15 Kyocera Corp Ceramic multilayer substrate
JP2010171275A (en) * 2009-01-23 2010-08-05 Hitachi Metals Ltd Multilayer ceramic board, electronic parts using the same, and manufacturing method of the same
JP2011210930A (en) * 2010-03-30 2011-10-20 Murata Mfg Co Ltd Flexible board, and circuit module including the same
US8222975B2 (en) 2006-08-31 2012-07-17 Panasonic Corporation Transmission line resonator, high-frequency filter using the same, high-frequency module, and radio device
WO2015170539A1 (en) * 2014-05-08 2015-11-12 株式会社村田製作所 Resin multilayer substrate and method for producing same
WO2018199017A1 (en) * 2017-04-28 2018-11-01 日東電工株式会社 Wired circuit board and imaging device
JP2018190950A (en) * 2017-04-28 2018-11-29 日東電工株式会社 Wiring circuit board and imaging apparatus
JP2019033179A (en) * 2017-08-08 2019-02-28 Tdk株式会社 Coil component

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051821A1 (en) * 2004-11-10 2006-05-18 Murata Manufacturing Co., Ltd. Ceramic multilayer substrate and production method therefor
US8222975B2 (en) 2006-08-31 2012-07-17 Panasonic Corporation Transmission line resonator, high-frequency filter using the same, high-frequency module, and radio device
JP2009010141A (en) * 2007-06-27 2009-01-15 Kyocera Corp Ceramic multilayer substrate
JP2010171275A (en) * 2009-01-23 2010-08-05 Hitachi Metals Ltd Multilayer ceramic board, electronic parts using the same, and manufacturing method of the same
JP2011210930A (en) * 2010-03-30 2011-10-20 Murata Mfg Co Ltd Flexible board, and circuit module including the same
JP2019047127A (en) * 2014-05-08 2019-03-22 株式会社村田製作所 Resin multilayer substrate
WO2015170539A1 (en) * 2014-05-08 2015-11-12 株式会社村田製作所 Resin multilayer substrate and method for producing same
JPWO2015170539A1 (en) * 2014-05-08 2017-04-20 株式会社村田製作所 Resin multilayer substrate and manufacturing method thereof
US10362672B2 (en) 2014-05-08 2019-07-23 Murata Manufacturing Co., Ltd. Resin multilayer substrate and method of manufacturing the same
JP2018190950A (en) * 2017-04-28 2018-11-29 日東電工株式会社 Wiring circuit board and imaging apparatus
WO2018199017A1 (en) * 2017-04-28 2018-11-01 日東電工株式会社 Wired circuit board and imaging device
CN110574165A (en) * 2017-04-28 2019-12-13 日东电工株式会社 Wiring circuit board and imaging device
KR20200002849A (en) * 2017-04-28 2020-01-08 닛토덴코 가부시키가이샤 Wiring circuit board, and imaging device
US11183448B2 (en) 2017-04-28 2021-11-23 Nitto Denko Corporation Wiring circuit board and imaging device
JP7105549B2 (en) 2017-04-28 2022-07-25 日東電工株式会社 WIRED CIRCUIT BOARD AND IMAGING DEVICE
CN110574165B (en) * 2017-04-28 2023-08-29 日东电工株式会社 Wired circuit board and imaging device
KR102605794B1 (en) 2017-04-28 2023-11-23 닛토덴코 가부시키가이샤 Wiring circuit board, and imaging device
JP2019033179A (en) * 2017-08-08 2019-02-28 Tdk株式会社 Coil component

Similar Documents

Publication Publication Date Title
JP5236379B2 (en) IC inspection apparatus substrate and manufacturing method thereof
JP4669392B2 (en) Metal core multilayer printed wiring board
JP2004356618A (en) Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, structure having semiconductor element, intermediate substrate, and substrate, and method for manufacturing intermediate substrate
JP4265607B2 (en) Laminated electronic component and mounting structure of laminated electronic component
JP2000100987A (en) Multilayer circuit board for semiconductor chip module and method of manufacturing the same
JP2007073866A (en) Wiring board with built-in component
JP2004221388A (en) Multilayer circuit board for mounting electronic component and its manufacturing method
JP6787692B2 (en) Wiring board
KR20120050834A (en) Method of manufacturing the package board
JP3862454B2 (en) Metal-based multilayer circuit board
JP5130666B2 (en) Component built-in wiring board
JP2007173862A (en) Structure comprising relay substrate, relay substrate with semiconductor element, substrate with relay substrate, and structure composed of semiconductor element, relay substrate, and substrate
JP2008098202A (en) Multilayer wiring circuit board, multilayer wiring circuit board structure
JP3742732B2 (en) Mounting board and mounting structure
JP2004111701A (en) Printed wiring board and its manufacturing method
JP4786914B2 (en) Composite wiring board structure
JPH10242324A (en) Electrode-built-in ceramic substrate and manufacture thereof
JP3257953B2 (en) Method for manufacturing substrate for hybrid integrated circuit
JP2006186094A (en) Reliable plastic substrate and manufacturing method thereof
JP2006310543A (en) Wiring board and its production process, wiring board with semiconductor circuit element
JP2003282795A (en) Wiring board
JP2007027341A (en) Printed wiring board and electronic-components mounting structure
JP2004356619A (en) Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure having semiconductor element, intermediate substrate and substrate
JP4711757B2 (en) Wiring board
CN111385981B (en) Diversified assembly printed circuit board and manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404