[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004218015A - Heat resistant alloy having excellent high temperature corrosion resistance - Google Patents

Heat resistant alloy having excellent high temperature corrosion resistance Download PDF

Info

Publication number
JP2004218015A
JP2004218015A JP2003007785A JP2003007785A JP2004218015A JP 2004218015 A JP2004218015 A JP 2004218015A JP 2003007785 A JP2003007785 A JP 2003007785A JP 2003007785 A JP2003007785 A JP 2003007785A JP 2004218015 A JP2004218015 A JP 2004218015A
Authority
JP
Japan
Prior art keywords
corrosion resistance
resistant alloy
high temperature
heat resistant
temperature corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003007785A
Other languages
Japanese (ja)
Other versions
JP4067975B2 (en
Inventor
Nobuyuki Sakamoto
伸之 坂本
Masayuki Teraoka
雅之 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2003007785A priority Critical patent/JP4067975B2/en
Publication of JP2004218015A publication Critical patent/JP2004218015A/en
Application granted granted Critical
Publication of JP4067975B2 publication Critical patent/JP4067975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve the high temperature corrosion resistance of a Cr-Ni-Fe based alloy particularly in a high temperature strong corrosive environment, e.g., of a waste incineration furnace comprising gas such as HCl and SO<SB>2</SB>and dust such as sulfate and chloride. <P>SOLUTION: The heat resistant alloy comprises, by weight, 0.05 to 0.7% C, 0.5 to 5% Si, ≤4% Mn, 20 to 40% Cr, 20 to 45% Ni, 1 to 4% Al and 0.01 to 1.5% Zr, and the balance Fe with inevitable impurities. If required, at least one kind of metals selected from 1 to 15% Mo, 1 to 15% W and ≤0.5% rare earth elements can be incorporated therein. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、ごみ焼却装置に用いられるボイラー、配管、火格子など、高温での耐食性が要求されるごみ焼却装置用部材の材料として好適な耐熱合金に関する。
【0002】
【従来の技術】
近年のごみ廃棄物には多種多様な物質が含まれているため、ごみ焼却炉のごみ焼却過程では、HClやSOのような腐食性の強いガスが発生し、その燃焼生成物には、NaSOの如き硫酸塩、NaClやKClの如き塩化物など、腐食性の強いダストが含まれる。
このため、従来、これらの腐食環境に曝されるボイラー等の材料として、耐高温腐食性にすぐれる各種Ni基合金(例えば、特許文献1、2及び3を参照)が知られている。
【0003】
また、上記のような高温腐食環境下で使用される合金として、Ni基合金の他に、Si、Cr、Fe、Niの含有量の適正化により耐食性の改善を図ったCr−Ni−Fe系合金が知られている(例えば、特許文献4を参照)。
【0004】
【特許文献1】
特開平10−183282号公報(特許請求の範囲)
【特許文献2】
特開2002−129266号公報(特許請求の範囲)
【特許文献3】
特開2002−129267号公報(特許請求の範囲)
【特許文献4】
特開平10−183305号公報(特許請求の範囲、段落0010)
【0005】
【発明が解決しようとする課題】
しかしながら、Ni基合金のようにNiを多量に含有すると、高温での耐食性や強度には優れるものの、被削性等の機械加工性が良好でないという問題があった。このため、製品化するための機械加工コストが非常に高いものになっている。また、材料コスト自体も著しく高くなる。
Cr−Ni−Fe系合金の場合、機械加工性については問題ないが、高温での耐食性が十分でなかった。例えば、前述のCr−Ni−Fe系合金では、約500℃以上の高温で長時間使用したとき、耐食性が劣化する問題があった。これは、Cr23炭化物の生成と成長が著しくなり、粒界腐食が起こると考えられる。
【0006】
本発明の目的は、高温での耐食性、特に、ごみ焼却炉のように、HClやSOなどのガス、硫酸塩や塩化物などのダストを含む強腐食環境において、すぐれた耐食性を発揮するCr−Ni−Fe系合金を提供することである。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明の耐熱合金は、重量%にて、C:0.05〜0.7%、Si:0.5〜5%、Mn:4%以下、Cr:20〜40%、Ni:20〜45%、Al:1〜4%、Zr:0.01〜1.5%、残部Fe及び不可避の不純物からなり、必要に応じて、Mo:1〜15%、W:1〜15%、希土類元素:0.5%以下のうち、少なくとも1種をさらに含有することができる。
【0008】
【作用】
本発明の耐熱合金は、主に、AlとZrの複合含有効果により、高温での腐食環境下、特に、HClやSOなどのガス、硫酸塩や塩化物などのダストの如き強い腐食環境下において、すぐれた耐食性を発揮するものである。
すなわち、約500℃以上の高温に曝すと、Alが雰囲気の酸素と結びついて緻密なAl酸化物を母材表面に形成し、これが強い腐食環境に対する保護被膜となって、長時間の使用においてすぐれた耐食性を発揮する。Zrは、Al酸化物被膜を強化する作用を有すると共に、Zr炭化物の析出によって、Cを固定化させ、粒界におけるCr23炭化物の生成と成長を阻止するため、粒界腐食が低減する。
【0009】
【発明の効果】
本発明の耐熱合金は、高温での耐食性にすぐれるから、ごみ焼却装置に用いられるボイラー、配管、火格子などの材料として好適である。
【0010】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
本発明の耐熱合金は、重量%にて、C:0.05〜0.7%、Si:0.5〜5%、Mn:4%以下、Cr:20〜40%、Ni:20〜45%、Al:1〜4%、Zr:0.01〜1.5%、残部Fe及び不可避の不純物からなる。
本発明の耐熱合金は、必要に応じて、Mo:1〜15%、W:1〜15%、希土類元素:0.5%以下のうち、少なくとも1種をさらに含有することができる。
各元素の効果及び合金元素組成を限定した理由について次に説明する。
【0011】
【成分限定理由の説明】
C:0.05〜0.7%
Cは、高温クリープ強度の向上に寄与するから、少なくとも0.05%以上含有させる。しかし、含有量が多くなると、Cr23炭化物が粒界に析出し、耐食性が損なわれるため、上限は0.7%に規定する。なお、0.2〜0.6%が望ましい。
【0012】
Si:0.5〜5%
Siは、酸素と結びついて母材の表面にSiOの保護被膜を形成し、耐食性に寄与する。このため、0.5%以上含有させる。しかし、含有量があまり多くなると、高温クリープ強度や溶接性の低下を招くので、上限は5%とする。なお、1.0〜3.5%が望ましい。
【0013】
Mn:4%以下
Mnは、溶湯の脱酸を行ない、不純物元素のSをMnSとして固定し、Sの有害作用を取り除く作用を有する。また、溶接性の向上に寄与する。これらの効果を得るために含有させるた、含有量があまり多くなると、耐食性の劣化を招くので、4%を上限とする。
【0014】
Cr:20〜40%
Crは、酸素と結びついて母材の表面にCrの保護被膜を形成し、耐酸化性及び耐食性の向上に寄与する。また、Fe、Niと共にオーステナイト相を形成して高温における強度を向上させる。このため、20%以上含有させる。しかし、含有量があまり多くなると、材質の脆化を招くので上限は40%とする。
【0015】
Ni:20〜45%
Niは、オーステナイト相を安定化させ、耐酸化性及び高温強度を高める効果を有するから、20%以上含有させる。しかし、含有量があまり多くなると、被削性などの機械加工性が低下する。このため、45%を上限とする。
【0016】
Al:1〜4%
Alは、雰囲気の酸素と結びついてAlの如き緻密なAl酸化物被膜を母材表面に形成する。このAl酸化物は、HClやSOなどのガス、硫酸塩や塩化物などのダスト強い腐食環境における保護被膜となり、長時間の使用においてすぐれた耐食性を発揮する。このため、少なくとも1%以上含有させる。しかし、4%を超えて含有すると、材質の劣化が著しくなるので、4%を上限とする。なお、含有量は、1.5〜3.5%が好ましい。
【0017】
Zr:0.01〜1.5%
Zrは、Alとの親密性が強く、母材表面に形成されたAlの保護被膜を強化する作用を有する。また、Zr炭化物の析出により、Cを固定化させて、粒界におけるCr23炭化物の生成と成長を阻止する働きがあり、粒界腐食の低減に大きく寄与する。このため、0.01%以上含有させる。しかし、含有量があまり多くなると機械加工性が低下するので、上限は1.5%とする。なお、含有量は、0.05〜1.0%が好ましい。
【0018】
Mo:1〜15%
Moは、耐食性及び高温強度の向上に寄与するが、多量の添加は溶接性や機械加工性の低下を招く。このため、1〜15%の範囲で含有させるのが好ましい。
【0019】
W:1〜15%
Wも、Moと同様、耐食性及び高温強度の向上に寄与するが、多量の添加は溶接性や機械加工性の低下を招く。このため、1〜15%の範囲で含有させるのが好ましい。
【0020】
希土類元素:0.5%以下
希土類元素は、耐食性及び耐酸化性の向上に有効であるため、0.5%を上限として添加することが好ましい。なお、希土類元素とは、周期律表のLaからLuにに至る15種類のランタン系列に、YとScを加えた17種類の元素を意味するが、代表的な元素として、La、Ce、Y、Hfを挙げることができる。
【0021】
本発明の耐熱合金は、上記成分を含有し、残部はFe及び不可避の不純物である。
なお、Feは、25〜50%の範囲で含有することが好ましい。所定の高温強度と耐食性を確保するためであある。
不純物としては、合金の溶製上不可避的に含まれるP、S等の元素が挙げられる。これらはできるだけ少ない方が好ましいが、例えば、P、Sの場合、夫々、0.03%以下程度の含有は許容される。
【0022】
【実施例】
本発明の耐熱合金の高温での耐食性を評価するために、実験室用加熱炉を使用し、腐食性灰を塗布した試験片を炉内に装入し、加熱された炉内に腐食性ガスを導入して腐食試験を行なった。
【0023】
試験片の作製
高周波誘導溶解炉で種々成分の合金を溶製し、遠心鋳造にて中空鋳造品(外径138mm×内径108mm×長さ270mm)を製造した。各鋳造品に機械加工を施し、10mm×10mm×4mm(厚さ)の試験片を作製した。なお、試験片は、表面に♯500のペーパで研磨仕上げを施し、アセトンで脱脂し、重量測定した。
【0024】
合成灰の調製及び試験片への塗布
NaCl:22%(重量%、以下同じ)、KCl:15%、NaSO:38%、KSO:25%を調合し、乳鉢で細かくすりつぶし、アセトンでスラリーにした合成灰を調製した。
この合成灰を、各試験片の表面に、筆にて一様に塗布した。塗布量は40mg/cmである。
【0025】
試験装置と試験
炉内有効加熱領域が60mm(直径)×600mm(長さ)の実験室用管状炉の中に、合成灰を塗布した試験片を装入し、600℃の温度に加熱した。炉内には、窒素ガスで希釈した腐食性ガス(HCl及びSO)と、水蒸気ガス(CO、O及びNを含む)の混合ガスを導入した。100時間経過後、炉内から試験片を取り出し、溶融塩電解法により脱スケールした後、試験片表面をブラシでこすり取り、重量測定した。
試験前後の重量変化より、腐食による試験片の重量減少量を求めた。
なお、混合ガスの組成(体積%)は、O:5%、SO:50ppm、HCl:1000ppm、CO:10%、HO:20%、N:残部である。
【0026】
各試験片の合金化学成分と、腐食による重量減少量の測定結果を表1に示す。表1において、No.1〜No.9は発明例、No.10〜No.12は比較例である。
【0027】
【表1】

Figure 2004218015
【0028】
表1を参照すると、発明例であるNo.1〜No.9は、比較例No.10〜No.12と比べて重量減少量が少なく、耐食性にすぐれることを示している。
なお、発明例中、No.4〜No.9を検討すると、No.7及びNo.8に示されるように、Alの含有量が3.0%以上かつZrの含有量が0.1%以上のとき、重量減少量がさらに少なく、耐食性が極めて良好であることを示している。
No.10はAlとZrを両方とも含まず、No.11はZrを所定量含むがAlの含有量が少なく、No.12はAlを所定量含むがZrを含まない例であり、発明例と比べて重量減少量が多く、耐食性に劣る結果となっている。
【0029】
上記実施例の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。又、本発明の各部構成は上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-resistant alloy suitable as a material for a member of a refuse incinerator that requires high-temperature corrosion resistance, such as a boiler, a pipe, and a grate used in a refuse incinerator.
[0002]
[Prior art]
In recent years, garbage waste contains a wide variety of substances, and in the garbage incineration process of garbage incinerators, highly corrosive gases such as HCl and SO 2 are generated. It contains highly corrosive dusts such as sulfates such as Na 2 SO 4 and chlorides such as NaCl and KCl.
For this reason, conventionally, various Ni-based alloys having excellent high-temperature corrosion resistance (for example, see Patent Documents 1, 2, and 3) are known as materials for boilers and the like exposed to such corrosive environments.
[0003]
Further, as an alloy used in the high-temperature corrosion environment as described above, in addition to a Ni-based alloy, a Cr-Ni-Fe-based alloy in which the corrosion resistance is improved by optimizing the contents of Si, Cr, Fe, and Ni. Alloys are known (see, for example, Patent Document 4).
[0004]
[Patent Document 1]
JP-A-10-183282 (Claims)
[Patent Document 2]
JP-A-2002-129266 (Claims)
[Patent Document 3]
JP 2002-129267 A (Claims)
[Patent Document 4]
JP-A-10-183305 (Claims, paragraph 0010)
[0005]
[Problems to be solved by the invention]
However, when a large amount of Ni is contained as in a Ni-based alloy, there is a problem that the machinability such as machinability is not good although the corrosion resistance and strength at high temperatures are excellent. For this reason, the machining cost for commercialization is extremely high. Further, the material cost itself is significantly increased.
In the case of a Cr-Ni-Fe alloy, there was no problem with the machinability, but the corrosion resistance at high temperatures was not sufficient. For example, the Cr-Ni-Fe-based alloy described above has a problem that when used at a high temperature of about 500 ° C. or higher for a long time, the corrosion resistance is deteriorated. This is considered that the generation and growth of Cr 23 C 6 carbide become remarkable, and intergranular corrosion occurs.
[0006]
An object of the present invention, corrosion resistance at high temperatures, in particular, as incinerator, a gas such as HCl and SO 2, in the strong corrosive environment containing dust, such as sulfates or chlorides, exhibits excellent corrosion resistance Cr -To provide a Ni-Fe alloy.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the heat-resistant alloy of the present invention contains, by weight%, C: 0.05 to 0.7%, Si: 0.5 to 5%, Mn: 4% or less, and Cr: 20 to 40%, Ni: 20 to 45%, Al: 1 to 4%, Zr: 0.01 to 1.5%, the balance being Fe and unavoidable impurities. If necessary, Mo: 1 to 15%, W : 1 to 15%, and rare earth elements: at least 0.5% or less.
[0008]
[Action]
The heat-resistant alloy of the present invention is mainly used in a corrosive environment at a high temperature, particularly in a strong corrosive environment such as a gas such as HCl or SO 2 or a dust such as a sulfate or a chloride due to the combined effect of Al and Zr. In the above, excellent corrosion resistance is exhibited.
That is, when exposed to a high temperature of about 500 ° C. or more, Al combines with oxygen in the atmosphere to form a dense Al oxide on the surface of the base material, which serves as a protective coating against a strong corrosive environment, and is excellent in long-term use. Demonstrates corrosion resistance. Zr has an effect of strengthening the Al oxide film, and also fixes C by precipitating Zr carbide to prevent the generation and growth of Cr 23 C 6 carbide at grain boundaries, thereby reducing grain boundary corrosion. .
[0009]
【The invention's effect】
Since the heat-resistant alloy of the present invention has excellent corrosion resistance at high temperatures, it is suitable as a material for boilers, pipes, grate, and the like used in refuse incinerators.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The heat-resistant alloy of the present invention is, as a percentage by weight, C: 0.05 to 0.7%, Si: 0.5 to 5%, Mn: 4% or less, Cr: 20 to 40%, Ni: 20 to 45. %, Al: 1 to 4%, Zr: 0.01 to 1.5%, the balance being Fe and unavoidable impurities.
The heat-resistant alloy of the present invention may further contain at least one of Mo: 1 to 15%, W: 1 to 15%, and rare earth element: 0.5% or less, as necessary.
The effect of each element and the reason for limiting the alloy element composition will be described below.
[0011]
[Explanation of reasons for limiting ingredients]
C: 0.05-0.7%
C contributes to the improvement of the high temperature creep strength, so is contained at least 0.05% or more. However, if the content increases, Cr 23 C 6 carbide precipitates at the grain boundaries and the corrosion resistance is impaired, so the upper limit is specified at 0.7%. In addition, 0.2-0.6% is desirable.
[0012]
Si: 0.5 to 5%
Si combines with oxygen to form a protective coating of SiO 2 on the surface of the base material, and contributes to corrosion resistance. For this reason, 0.5% or more is contained. However, when the content is too large, the high temperature creep strength and the weldability are reduced, so the upper limit is set to 5%. In addition, 1.0-3.5% is desirable.
[0013]
Mn: 4% or less Mn has a function of deoxidizing a molten metal, fixing S as an impurity element as MnS, and removing harmful effects of S. In addition, it contributes to improvement in weldability. If the content is too large to obtain these effects, the corrosion resistance deteriorates, so the upper limit is 4%.
[0014]
Cr: 20-40%
Cr forms a protective film of Cr 2 O 3 on the surface of the base material in combination with oxygen and contributes to improvement of oxidation resistance and corrosion resistance. Further, an austenitic phase is formed together with Fe and Ni to improve the strength at high temperatures. For this reason, the content is made 20% or more. However, if the content is too large, the material becomes brittle, so the upper limit is set to 40%.
[0015]
Ni: 20 to 45%
Ni has an effect of stabilizing the austenite phase and improving oxidation resistance and high-temperature strength, so that Ni is contained in an amount of 20% or more. However, when the content is too large, machinability such as machinability is reduced. Therefore, the upper limit is 45%.
[0016]
Al: 1-4%
Al forms a dense Al oxide film such as Al 2 O 3 on the surface of the base material in combination with oxygen in the atmosphere. This Al oxide becomes a protective film in a dusty corrosive environment such as a gas such as HCl or SO 2 , a sulfate or a chloride, and exhibits excellent corrosion resistance over a long period of use. For this reason, at least 1% or more is contained. However, if the content exceeds 4%, the deterioration of the material becomes remarkable, so the upper limit is 4%. In addition, 1.5-3.5% of content is preferable.
[0017]
Zr: 0.01-1.5%
Zr has strong intimacy with Al and has an effect of strengthening the Al 2 O 3 protective coating formed on the surface of the base material. In addition, the precipitation of Zr carbides has the effect of fixing C and preventing the generation and growth of Cr 23 C 6 carbides at the grain boundaries, which greatly contributes to the reduction of grain boundary corrosion. For this reason, 0.01% or more is contained. However, if the content is too large, the machinability deteriorates, so the upper limit is made 1.5%. The content is preferably 0.05 to 1.0%.
[0018]
Mo: 1 to 15%
Mo contributes to improvement of corrosion resistance and high-temperature strength, but addition of a large amount causes deterioration of weldability and machinability. For this reason, it is preferable to contain it in the range of 1 to 15%.
[0019]
W: 1 to 15%
W also contributes to the improvement of corrosion resistance and high-temperature strength similarly to Mo, but the addition of a large amount causes a decrease in weldability and machinability. For this reason, it is preferable to contain it in the range of 1 to 15%.
[0020]
Rare earth element: 0.5% or less Since a rare earth element is effective for improving corrosion resistance and oxidation resistance, it is preferable to add 0.5% as the upper limit. The rare earth elements mean 17 kinds of elements obtained by adding Y and Sc to 15 kinds of lanthanum series from La to Lu in the periodic table, and La, Ce, Y as typical elements. , Hf.
[0021]
The heat-resistant alloy of the present invention contains the above components, with the balance being Fe and unavoidable impurities.
Note that Fe is preferably contained in the range of 25 to 50%. This is to ensure predetermined high-temperature strength and corrosion resistance.
Examples of the impurities include elements such as P and S which are inevitably contained in the production of the alloy. These are preferably as small as possible. For example, in the case of P and S, the content of about 0.03% or less is allowable.
[0022]
【Example】
In order to evaluate the corrosion resistance of the heat-resistant alloy of the present invention at high temperatures, a laboratory heating furnace was used, a test piece coated with corrosive ash was charged into the furnace, and the corrosive gas was introduced into the heated furnace. And a corrosion test was conducted.
[0023]
Preparation of test pieces Alloys of various components were melted in a high-frequency induction melting furnace, and hollow cast articles (outer diameter 138 mm x inner diameter 108 mm x length 270 mm) were manufactured by centrifugal casting. Each casting was machined to produce a 10 mm × 10 mm × 4 mm (thickness) test piece. The surface of the test piece was polished with # 500 paper, degreased with acetone, and weighed.
[0024]
Coating NaCl to prepare and test specimens of the synthetic Ash: 22% (wt%, hereinafter the same), KCl: 15%, Na 2 SO 4: 38%, K 2 SO 4: 25% formulated, ground finely in a mortar A synthetic ash slurried with acetone was prepared.
This synthetic ash was uniformly applied to the surface of each test piece with a brush. The application amount is 40 mg / cm 2 .
[0025]
Test apparatus and test A test piece coated with synthetic ash was placed in a laboratory tubular furnace having an effective heating area of 60 mm (diameter) x 600 mm (length) in a furnace, and a temperature of 600 ° C. Heated. A mixed gas of a corrosive gas (HCl and SO 2 ) diluted with a nitrogen gas and a steam gas (including CO 2 , O 2 and N 2 ) was introduced into the furnace. After a lapse of 100 hours, the test piece was taken out of the furnace, descaled by the molten salt electrolysis method, and the test piece surface was rubbed with a brush and weighed.
From the weight change before and after the test, the weight loss of the test piece due to corrosion was determined.
The composition of the mixed gas (vol%) is, O 2: 5%, SO 2: 50ppm, HCl: 1000ppm, CO 2: 10%, H 2 O: 20%, N 2: the balance.
[0026]
Table 1 shows the alloy chemical composition of each test piece and the measurement results of the weight loss due to corrosion. In Table 1, No. 1 to No. No. 9 is an invention example; 10-No. Reference numeral 12 is a comparative example.
[0027]
[Table 1]
Figure 2004218015
[0028]
Referring to Table 1, No. 1 of the invention example. 1 to No. 9 is Comparative Example No. 9. 10-No. Compared to No. 12, the amount of weight loss was small, indicating excellent corrosion resistance.
In the invention examples, No. 4-No. Considering No. 9, No. 9 7 and No. 7 As shown in Fig. 8, when the content of Al is 3.0% or more and the content of Zr is 0.1% or more, the weight loss is further reduced, and the corrosion resistance is extremely good.
No. No. 10 does not contain both Al and Zr. No. 11 contains a predetermined amount of Zr but has a low Al content. Numeral 12 is an example containing a predetermined amount of Al but not containing Zr, which results in a larger weight loss compared with the invention example, resulting in poor corrosion resistance.
[0029]
The description of the above embodiments is intended to explain the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. Further, the configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.

Claims (3)

重量%にて、C:0.05〜0.7%、Si:0.5〜5%、Mn:4%以下、Cr:20〜40%、Ni:20〜45%、Al:1〜4%、Zr:0.01〜1.5%を含有し、残部Fe及び不可避の不純物からなる高温耐食性にすぐれる耐熱合金。In weight%, C: 0.05 to 0.7%, Si: 0.5 to 5%, Mn: 4% or less, Cr: 20 to 40%, Ni: 20 to 45%, Al: 1 to 4 %, Zr: a heat-resistant alloy containing 0.01 to 1.5%, the balance being Fe and inevitable impurities and having excellent high-temperature corrosion resistance. Mo:1〜15%及び/又はW:1〜15%を含有している請求項1に記載の耐熱合金。The heat-resistant alloy according to claim 1, which contains Mo: 1 to 15% and / or W: 1 to 15%. 希土類元素:0.5%以下を含有している請求項1又は請求項2に記載の耐熱合金。3. The heat-resistant alloy according to claim 1, wherein the heat-resistant alloy contains 0.5% or less of rare earth element.
JP2003007785A 2003-01-16 2003-01-16 Heat resistant alloy with excellent high temperature corrosion resistance Expired - Lifetime JP4067975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007785A JP4067975B2 (en) 2003-01-16 2003-01-16 Heat resistant alloy with excellent high temperature corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007785A JP4067975B2 (en) 2003-01-16 2003-01-16 Heat resistant alloy with excellent high temperature corrosion resistance

Publications (2)

Publication Number Publication Date
JP2004218015A true JP2004218015A (en) 2004-08-05
JP4067975B2 JP4067975B2 (en) 2008-03-26

Family

ID=32897779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007785A Expired - Lifetime JP4067975B2 (en) 2003-01-16 2003-01-16 Heat resistant alloy with excellent high temperature corrosion resistance

Country Status (1)

Country Link
JP (1) JP4067975B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113830A1 (en) * 2009-03-31 2010-10-07 株式会社クボタ Cast product having alumina barrier layer
CN105483492A (en) * 2015-12-08 2016-04-13 江苏华冶科技有限公司 High-temperature-resisting alloy material for radiant tube and casting process of high-temperature-resisting alloy material
EP3040432A1 (en) * 2013-08-27 2016-07-06 Hitachi Metals Mmc Superalloy, Ltd. Ni-based alloy with excellent hot forgeability, resistance to high-temperature oxidation, and resistance to high-temperature halogen-gas corrosion, and member comprising said ni-based alloy
EP3431622A4 (en) * 2016-03-15 2019-09-25 Hitachi Metals, Ltd. HEAT-RESISTANT, CORROSION-RESISTANT HIGH Cr CONTENT Ni-BASED ALLOY WITH EXCELLENT HOT FORGEABILITY
CN113684395A (en) * 2020-05-19 2021-11-23 宝武特种冶金有限公司 Nickel-based alloy resistant to high temperature molten salt corrosion and easy to process
CN115305387A (en) * 2022-08-11 2022-11-08 华能国际电力股份有限公司 Corrosion-resistant high-temperature alloy and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113830A1 (en) * 2009-03-31 2010-10-07 株式会社クボタ Cast product having alumina barrier layer
EP2415890A1 (en) * 2009-03-31 2012-02-08 Kubota Corporation Cast product having alumina barrier layer
EP2415890A4 (en) * 2009-03-31 2012-08-15 Kubota Kk Cast product having alumina barrier layer
US8431230B2 (en) 2009-03-31 2013-04-30 Kubota Corporation Cast product having alumina barrier layer
JP5451751B2 (en) * 2009-03-31 2014-03-26 株式会社クボタ Cast products having an alumina barrier layer
EP3040432A1 (en) * 2013-08-27 2016-07-06 Hitachi Metals Mmc Superalloy, Ltd. Ni-based alloy with excellent hot forgeability, resistance to high-temperature oxidation, and resistance to high-temperature halogen-gas corrosion, and member comprising said ni-based alloy
EP3040432A4 (en) * 2013-08-27 2017-03-29 Hitachi Metals Mmc Superalloy, Ltd. Ni-based alloy with excellent hot forgeability, resistance to high-temperature oxidation, and resistance to high-temperature halogen-gas corrosion, and member comprising said ni-based alloy
CN105483492A (en) * 2015-12-08 2016-04-13 江苏华冶科技有限公司 High-temperature-resisting alloy material for radiant tube and casting process of high-temperature-resisting alloy material
EP3431622A4 (en) * 2016-03-15 2019-09-25 Hitachi Metals, Ltd. HEAT-RESISTANT, CORROSION-RESISTANT HIGH Cr CONTENT Ni-BASED ALLOY WITH EXCELLENT HOT FORGEABILITY
CN113684395A (en) * 2020-05-19 2021-11-23 宝武特种冶金有限公司 Nickel-based alloy resistant to high temperature molten salt corrosion and easy to process
CN113684395B (en) * 2020-05-19 2022-10-21 宝武特种冶金有限公司 Nickel-based alloy resistant to high temperature molten salt corrosion and easy to process
CN115305387A (en) * 2022-08-11 2022-11-08 华能国际电力股份有限公司 Corrosion-resistant high-temperature alloy and preparation method thereof

Also Published As

Publication number Publication date
JP4067975B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP4067975B2 (en) Heat resistant alloy with excellent high temperature corrosion resistance
JPH11226778A (en) Build-up welding material and build-up clad material
JP4742314B2 (en) Heat-resistant cast steel, incinerator and incinerator grate
JP4999042B2 (en) Hot-corrosion resistant metal member, manufacturing method of hot-corrosion resistant metal member
JP2002249838A (en) CORROSION-RESISTANT AND HEAT-RESISTANT Ni ALLOY FOR FOSSIL FUEL COMBUSTION EQUIPMENT
JP3960832B2 (en) High corrosion resistant heat resistant cast steel
JP4127447B2 (en) Incinerator body with excellent high temperature corrosion resistance and incinerator facilities
JP3747729B2 (en) Ni-base alloy coated arc welding rod
JP4341757B2 (en) High Cr-high temperature corrosion resistant Ni-base alloy and high temperature corrosion resistant member
JP2000213721A (en) Incinerator body and incidental facility excellent in corrosion resistance
JP3300747B2 (en) Corrosion and heat resistant Ni-based alloy for waste incinerator
JPH046247A (en) Steel for waste incineration furnace boiler
JP3901293B2 (en) Incinerator with excellent corrosion resistance
JP3319317B2 (en) Heat transfer tube of waste heat boiler utilizing waste incineration exhaust gas with excellent high temperature corrosion resistance
JP4290260B2 (en) Highly corrosion resistant austenitic stainless steel for waste heat incineration plant boiler heat transfer tubes
JPH10183305A (en) High strength, corrosion resistant and heat resistant alloy
JP3332771B2 (en) Corrosion and heat resistant Ni-base casting alloy for waste incinerator
JPH09256087A (en) Heat transfer tube for waste heat boiler utilizing waste incineration exhaust gas, excellent in high temperature corrosion resistance
JP3284794B2 (en) Heat transfer tubing for waste heat boilers utilizing refuse incineration exhaust gas with excellent high temperature corrosion resistance
JPH03126842A (en) High corrosion-resistant austenitic stainless steel
JPH09263899A (en) Heat transfer tube of waste heat boiler utilizing garbage burning exhaust gas excellent in high temperature corrosion resistance
JPH046248A (en) Steel for waste incineration furnace boiler
JP4257858B2 (en) Austenitic heat-resistant alloy for clinker adhesion prevention structure
JPH09263898A (en) Heat transfer tube of waste heat boiler utilizing garbage burning exhaust gas excellent in high temperature corrosion resistance
JPH09263865A (en) Heat transfer tube for waste heat boiler utilizing waste incineration exhaust gas, excellent in high temperature corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4067975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

EXPY Cancellation because of completion of term