JP2004216367A - Treatment agent for nitric acid phase and nitrous acid phase nitrogen-containing compound, and treatment method for soil or water using the same - Google Patents
Treatment agent for nitric acid phase and nitrous acid phase nitrogen-containing compound, and treatment method for soil or water using the same Download PDFInfo
- Publication number
- JP2004216367A JP2004216367A JP2003423721A JP2003423721A JP2004216367A JP 2004216367 A JP2004216367 A JP 2004216367A JP 2003423721 A JP2003423721 A JP 2003423721A JP 2003423721 A JP2003423721 A JP 2003423721A JP 2004216367 A JP2004216367 A JP 2004216367A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- oxide
- material according
- soil
- acid phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processing Of Solid Wastes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
本発明は、有害な硝酸態及び亜硝酸態窒素含有化合物を、低コストで効率良く処理できる処理材に関する。 The present invention relates to a treatment material that can efficiently treat harmful nitrate- and nitrite-containing compounds at low cost.
硝酸態及び亜硝酸態窒素含有化合物は発ガン性を有するものもあることから、近年、水質汚染物質として排出が厳しく規制されるようになり、化学工業や肥料工業ではその対応が求められている。また、農業においては、肥料中に含まれる有機窒素化合物が、施肥された土壌中で生物分解や酸化分解により、硝酸態及び亜硝酸態窒素含有化合物を生成し、地下水や農業排水を汚染するばかりでなく、酸性土壌の原因となり、農作物の育成を阻害する等、同様に深刻な問題となっている。 Since some nitrate- and nitrite-containing compounds have carcinogenic properties, their emission has been strictly regulated as a water pollutant in recent years, and the chemical industry and the fertilizer industry have been required to respond. . Also, in agriculture, organic nitrogen compounds contained in fertilizers generate nitrate and nitrite nitrogen-containing compounds by biodegradation and oxidative decomposition in fertilized soil, and contaminate groundwater and agricultural wastewater. Instead, it causes acidic soil, hinders the growth of crops, and is another serious problem.
排水中の硝酸態及び亜硝酸態窒素含有化合物を処理する方法としては、水素還元する方法や、イオン交換法、逆浸透法、電析法、バクテリアを用いた生物分解法(例えば非特許文献1参照)等が知られている。また、酸化チタンや酸化鉄等の金属化合物と白金、パラジウム、ニッケル等の貴金属触媒とを含む固体触媒を用い、還元剤の存在下、廃水を液相に保持しながら120〜370℃の温度かつ該廃水が液相を保持する圧力下で廃水中の硝酸態窒素を処理する方法も知られている(例えば特許文献1参照)。土壌中の硝酸態及び亜硝酸態窒素含有化合物を処理する場合は、汚染された土壌に直接還元剤を投入する所謂原位置浄化法が適用されており、土壌に投入する還元剤として金属鉄や硫化物が用いられいる。 Methods for treating nitrate- and nitrite-containing compounds in wastewater include hydrogen reduction, ion exchange, reverse osmosis, electrodeposition, and biodegradation using bacteria (for example, Non-Patent Document 1). Etc.) are known. Further, using a solid catalyst containing a metal compound such as titanium oxide or iron oxide and a noble metal catalyst such as platinum, palladium or nickel, in the presence of a reducing agent, while maintaining wastewater in a liquid phase, at a temperature of 120 to 370 ° C. There is also known a method of treating nitrate nitrogen in wastewater under a pressure at which the wastewater maintains a liquid phase (for example, see Patent Document 1). When treating nitrate- and nitrite-nitrogen-containing compounds in soil, a so-called in situ purification method in which a reducing agent is directly injected into contaminated soil is applied. Sulfides are used.
しかし、水素還元法は貴金属を触媒に用いるので高コストであり、イオン交換法、逆浸透法、電析法は水中の無機イオン類まで除去してしまうので水質が変化してしまい、生物分解法は高コストで生態系への影響を無視できない。特許文献1記載の方法は、水素還元法と同様に高価な貴金属触媒を用い、更には高温・高圧下で処理するので、大掛かりな装置を必要とする。原位置浄化方法においては、還元剤として用いる金属鉄には、地下水が赤く着色する赤水と呼ばれる現象を引き起こすという問題があり、硫化物は有害な硫化水素を発生させる原因となる。 However, the hydrogen reduction method is expensive because a noble metal is used as a catalyst, and the ion exchange method, reverse osmosis method, and electrodeposition method remove even inorganic ions in the water, so that the water quality changes, and the biodegradation method Is expensive and ecological impact cannot be ignored. The method described in Patent Literature 1 uses an expensive noble metal catalyst similarly to the hydrogen reduction method, and furthermore, the treatment is performed under high temperature and high pressure, so that a large-scale apparatus is required. In the in-situ purification method, metallic iron used as a reducing agent has a problem of causing a phenomenon called red water in which groundwater is colored red, and sulfides cause harmful generation of hydrogen sulfide.
本発明者らは、これらの問題点を解決すべく鋭意研究を重ねた結果、還元剤、金属等の還元性物質と金属酸化物とを含む硝酸態及び亜硝酸態窒素含有化合物用処理材は、常圧下で使用しても硝酸態及び亜硝酸態窒素含有化合物の処理能力が著しく高くなることを見出し、本発明を完成した。 The present inventors have conducted intensive research to solve these problems, and as a result, a treating agent for a nitrate- and nitrite-nitrogen-containing compound containing a reducing agent, a reducing substance such as a metal, and a metal oxide has been developed. The present inventors have found that, even when used under normal pressure, the processing ability of a nitrate- and nitrite-containing nitrogen-containing compound is significantly increased, and the present invention has been completed.
即ち、本発明は還元性物質と金属酸化物とを含むことを特徴とする常圧下で使用するための硝酸態及び亜硝酸態窒素含有化合物用処理材である。 That is, the present invention is a treatment material for a nitrate- and nitrite-containing compound containing a reducing substance and a metal oxide for use under normal pressure.
本発明の硝酸態及び亜硝酸態窒素含有化合物処理材は、有害な硝酸態及び亜硝酸態窒素含有化合物処理材を常圧下で処理する能力が優れ、二次的な環境汚染や土壌劣化が生じ難く、しかも還元剤、金属等の還元性物質と金属酸化物という低コスト材料を用いているため、硝酸態及び亜硝酸態窒素含有化合物を含む排水や土壌の処理剤として有用である。 The nitrate- and nitrite-nitrogen-containing compound-treated material of the present invention has an excellent ability to treat harmful nitrate- and nitrite-nitrogen-containing compound-treated materials under normal pressure, and causes secondary environmental pollution and soil degradation. Since it is difficult to use and uses a low-cost material such as a reducing agent, a reducing substance such as a metal, and a metal oxide, it is useful as a treatment agent for wastewater or soil containing a nitrate- and nitrite-nitrogen-containing compound.
本発明は硝酸態及び亜硝酸態窒素含有化合物用処理材であって、還元性物質と金属酸化物とを含み常圧下で用いることを特徴とする。本発明で用いる還元性物質及び金属酸化物は、各々を単独で硝酸態及び亜硝酸態窒素含有化合物に接触させても硝酸態及び亜硝酸態窒素の処理能力は高くないが、これらを混合して用いることことにより、金属酸化物がある種の触媒的な働きをして、常圧下でも非常に優れた処理能力が発現し、硝酸態及び亜硝酸態窒素を、無害な窒素ガスまたはアンモニアにまで還元分解することができると推測される。このため、個々には反応活性の乏しい還元性物質や金属酸化物でも、これらを混合して用いることにより硝酸態及び亜硝酸態窒素含有化合物の処理能力が高く、また、還元分解反応が緩やかに進行するので、土壌の性質や水質が変化し難いのではないかと考えられる。 The present invention is a treating material for a nitrate- and nitrite-nitrogen-containing compound, characterized in that it contains a reducing substance and a metal oxide and is used under normal pressure. Although the reducing substance and the metal oxide used in the present invention do not have high treatment capacity for nitrate and nitrite nitrogen even when they are individually brought into contact with a nitrate and nitrite nitrogen-containing compound, they are mixed. By using metal oxides, metal oxides perform a certain catalytic function, exhibiting extremely excellent processing capacity even under normal pressure, and convert nitrate and nitrite nitrogen to harmless nitrogen gas or ammonia. It is presumed that it can be reductively decomposed up to. Therefore, even in the case of reducing substances and metal oxides each having a low reaction activity, by using them in combination, the processing ability of nitrate- and nitrite-nitrogen-containing compounds is high, and the reductive decomposition reaction is slow. As it progresses, soil properties and water quality are unlikely to change.
本発明において用いる還元性物質は無毒性のものであれば、特に制限は無く、公知の金属及び/又は還元剤を用いることができる。本発明の処理材を水処理に適用する場合、用いる還元性物質が固体で難水溶性の還元剤か金属であれば、分離が容易であるので好ましい。 The reducing substance used in the present invention is not particularly limited as long as it is nontoxic, and known metals and / or reducing agents can be used. When the treatment material of the present invention is applied to water treatment, it is preferable that the reducing substance to be used is a solid, poorly water-soluble reducing agent or metal, because separation is easy.
還元剤としては単独または2種以上の還元剤を混合して用いることができ、その性状は、液体状、固体状、ゲル状等種々のものが用いられる。具体的には、例えば、亜硫酸、亜硫酸水素、チオ硫酸、亜ジチオン酸等の金属塩、亜リン酸(H2PHO3)及びのその金属塩、次亜リン酸(HPH2O2)及びその金属塩等が挙げられる。亜硫酸、亜硫酸水素、チオ硫酸、亜ジチオン酸、亜リン酸、次亜リン酸の金属塩としては、例えばアルカリ金属塩、アルカリ土類金属塩等が挙げられるが、中でも亜硫酸ナトリウム(Na2SO3)、亜硫酸水素ナトリウム(NaHSO3)、チオ硫酸ナトリウム(Na2S2O3)、亜ジチオン酸ナトリウム(Na2S2O4)、亜リン酸ナトリウム(Na2PHO3)、次亜リン酸ナトリウム(NaPH2O2)を用いると、処理能力が高く好ましい。固体で難水溶性のものとしては、亜硫酸ナトリウム、アルカリ金属塩を除く亜リン酸の金属塩、次亜リン酸のアルカリ土類金属塩等が挙げられ、水処理へ適用する場合に好ましい。 The reducing agent can be used alone or as a mixture of two or more reducing agents, and various properties such as liquid, solid, and gel are used. Specifically, for example, metal salts such as sulfurous acid, hydrogen sulfite, thiosulfuric acid and dithionite, phosphorous acid (H 2 PHO 3 ) and its metal salts, hypophosphorous acid (HPH 2 O 2 ) and its salts Metal salts and the like. Examples of metal salts of sulfurous acid, hydrogen sulfite, thiosulfuric acid, dithionous acid, phosphorous acid, and hypophosphorous acid include, for example, alkali metal salts, alkaline earth metal salts and the like. Among them, sodium sulfite (Na 2 SO 3) ), Sodium bisulfite (NaHSO 3 ), sodium thiosulfate (Na 2 S 2 O 3 ), sodium dithionite (Na 2 S 2 O 4 ), sodium phosphite (Na 2 PHO 3 ), hypophosphorous acid Use of sodium (NaPH 2 O 2 ) is preferable because of its high processing ability. Examples of the solid and poorly water-soluble ones include sodium sulfite, metal salts of phosphorous acid excluding alkali metal salts, and alkaline earth metal salts of hypophosphorous acid, which are preferable when applied to water treatment.
金属としては、それ自体が還元剤として働くものであれば良く、例えば、鉄、アルミニウム、亜鉛、銅、マグネシウム等が挙げられ、これらは単独で用いても良く、2種以上を混合したり、合金にして用いることもできる。金属の形態は微粉末状、粒状、小片状等、特に制限されないが、微粉末状は硝酸態及び亜硝酸態窒素含有化合物との接触面積が広くなるため好ましい。 As the metal, it is sufficient that the metal itself acts as a reducing agent, and examples thereof include iron, aluminum, zinc, copper, and magnesium. These may be used alone, or two or more kinds may be mixed, It can also be used as an alloy. The form of the metal is not particularly limited, such as a fine powder, a granular form, and a small piece, but the fine powder is preferable because the contact area with the nitrate- and nitrite-containing nitrogen-containing compound is increased.
金属酸化物としては、鉄、チタン、アルミニウム、亜鉛、マンガン等の酸化物を用いることができ、これらは単独で用いても、2種以上を混合して用いても、それらの複合酸化物を用いても良い。ここで、金属酸化物とは通常の金属酸化物の他、金属水和酸化物、金属水酸化物をも包含するものである。金属酸化物は微粉末状、粒状、小片状等、種々の形態のものを用いることができ、微粉末状のものは接触面積が大きく、反応性が高くなるため好ましい。金属酸化物として酸化鉄及び/又は酸化チタンを用いると、処理能力が高く好ましい。酸化鉄としては、一般式FeOx(1≦x≦1.5)で表される化合物であって、具体的には酸化第一鉄FeO(x=1の場合)、酸化第二鉄Fe2O3(x=1.5の場合)、マグネタイトFe3O4(x=1.33の場合)、過還元マグネタイトFeOx(1<x<1.33)、及びベルトライドFeOx(1.33<x<1.5)が挙げられる。酸化鉄には、硫酸法酸化チタンの製造工程や鉄材の酸洗浄工程で発生する鉄成分を含む廃硫酸を、中和して得られたものを用いることもできる。また、酸化チタンとしては、一般式TiOx(1≦x≦2)で表される化合物であって、具体的には一酸化チタンTiO(x=1の場合)、三酸化二チタンTi2O3(x=1.5の場合)、二酸化チタンTiO2(x=2の場合)及び非化学量論組成のチタン酸化物(1<x<1.5又は1.5<x<2)がある。 As the metal oxides, oxides such as iron, titanium, aluminum, zinc, and manganese can be used. These may be used alone or in combination of two or more, even if they are used in combination. May be used. Here, metal oxides include metal hydrated oxides and metal hydroxides in addition to ordinary metal oxides. As the metal oxide, various forms such as a fine powder, a granular form, and a small piece form can be used, and the fine powder form is preferable because the contact area is large and the reactivity is high. The use of iron oxide and / or titanium oxide as the metal oxide is preferable because of its high processing ability. The iron oxide is a compound represented by the general formula FeO x (1 ≦ x ≦ 1.5), specifically, ferrous oxide FeO (when x = 1), ferric oxide Fe 2 O 3 (when x = 1.5), magnetite Fe 3 O 4 (when x = 1.33), over-reduced magnetite FeO x (1 <x <1.33), and beltride FeO x (1. 33 <x <1.5). As the iron oxide, a product obtained by neutralizing waste sulfuric acid containing an iron component generated in a manufacturing process of a titanium oxide by a sulfuric acid method or an acid washing process of an iron material can be used. The titanium oxide is a compound represented by the general formula TiO x (1 ≦ x ≦ 2), specifically, titanium monoxide TiO (when x = 1), dititanium trioxide Ti 2 O 3 (for x = 1.5), titanium dioxide TiO 2 (for x = 2) and non-stoichiometric titanium oxide (1 <x <1.5 or 1.5 <x <2) is there.
更に、本発明では金属酸化物として、金属成分が有する正常な原子価から算出されるよりも低い比率で酸素を含むもの、所謂下級酸化物を用いると、下級金属金属酸化物の有する還元性と還元性物質の相乗効果により、処理能力が高くなるので好ましい。このようなものとして、鉄、チタン、マンガン等の下級酸化物が挙げられる。なかでもマグネタイト、過還元マグネタイト、ベルトライド、及び非化学量論組成のチタン酸化物は、処理能力により一層優れているため、好ましい下級金属酸化物である。 Furthermore, in the present invention, when a metal oxide containing oxygen at a lower ratio than that calculated from the normal valence of the metal component, that is, a so-called lower oxide is used, the reducing property of the lower metal metal oxide and This is preferable because the synergistic effect of the reducing substance increases the processing capacity. Such materials include lower oxides such as iron, titanium and manganese. Among them, magnetite, over-reduced magnetite, beltride, and titanium oxide having a non-stoichiometric composition are preferable lower metal oxides because they have more excellent processing ability.
還元性物質と金属酸化物とは単に混合するだけでも良いが、作業性を向上させるために、ベントナイト、タルク、クレー等の粘土鉱物をバインダーとして添加して粒状、ペレット状に成形しても良い。水溶性で固体の還元剤を還元性物質に用いるのであれば、水溶液を金属酸化物と混合しスラリー状にして用いることができる。また、難水溶性または不溶性で固体の還元剤や、粉末状の金属を適宜分散剤を加えたりpHを調整するなどして水に分散させ、金属酸化物を混合してスラリー状にすることもできる。その他に、本発明の効果を高める目的で、活性炭、ゼオライト等の吸着材、あるいは、本発明の効果を損ねない範囲で過酸化水素水等の酸化剤を加えることもできる。 The reducing substance and the metal oxide may be simply mixed, but in order to improve workability, a clay mineral such as bentonite, talc, clay or the like may be added as a binder, and the mixture may be formed into granules or pellets. . If a water-soluble, solid reducing agent is used as the reducing substance, the aqueous solution can be mixed with a metal oxide and used as a slurry. Also, a hardly water-soluble or insoluble solid reducing agent or a powdery metal may be dispersed in water by adding a dispersant or adjusting the pH as appropriate, and a metal oxide may be mixed to form a slurry. it can. In addition, for the purpose of enhancing the effect of the present invention, an adsorbent such as activated carbon and zeolite, or an oxidizing agent such as aqueous hydrogen peroxide can be added to the extent that the effect of the present invention is not impaired.
還元性物質として金属を用いる場合、この金属と金属酸化物を構成する金属元素は、異種であっても同種であっても良い。特に、金属鉄と酸化鉄、金属鉄と酸化チタンを用いるのが、効果が高いので好ましく、金属鉄と酸化鉄を用いるのが更に好ましい。金属と金属酸化物との配合割合(金属:金属酸化物)は、重量比で0.001:1〜3:1の範囲が好ましい。この範囲より金属が多くても少なくても、所望の効果が得られ難い。特に、この範囲の配合割合で金属鉄と酸化鉄とを組み合わせて用いると、処理材に金属鉄が含まれているにもかかわらず、赤水の発生が抑制される。更に好ましい範囲は、0.005:1〜2:1である。 When a metal is used as the reducing substance, the metal and the metal element constituting the metal oxide may be different or the same. In particular, it is preferable to use metal iron and iron oxide, or metal iron and titanium oxide because of their high effects, and it is more preferable to use metal iron and iron oxide. The mixing ratio of the metal and the metal oxide (metal: metal oxide) is preferably in the range of 0.001: 1 to 3: 1 by weight. If the amount of metal is larger or smaller than this range, it is difficult to obtain a desired effect. In particular, when metal iron and iron oxide are used in combination in the mixing ratio in this range, the generation of red water is suppressed even though the processing material contains metal iron. A more preferred range is from 0.005: 1 to 2: 1.
還元性物質として還元剤を用いる場合、還元剤と金属酸化物との配合割合(還元剤:金属酸化物)は、重量比で0.1:1〜5:1の範囲が好ましい。この範囲より還元剤が多くても少なくても、所望の効果が得られ難い。更に好ましい範囲は、0.005:1〜2:1である。 When a reducing agent is used as the reducing substance, the mixing ratio of the reducing agent and the metal oxide (reducing agent: metal oxide) is preferably in the range of 0.1: 1 to 5: 1 by weight. If the amount of the reducing agent is larger or smaller than this range, it is difficult to obtain the desired effect. A more preferred range is from 0.005: 1 to 2: 1.
本発明で処理することのできる硝酸態窒素含有化合物としては、硝安(NH4NO3)、チリ硝石(NaNO3)、硝酸石灰(Ca(NO3)2)、硝酸カリ(KNO3)、硫硝安(NH4NO3と(NH4)2SO4との混合物)、硝安石灰(NH4NO3とCaCO3との混合物)、カルウレア(Ca(NO3)2・4CO(NH2)2)等や、それらを含む窒素肥料等の組成物が挙げられ、亜硝酸態窒素含有化合物としては、前記硝酸態窒素含有化合物の還元生成物が挙げられる。 Examples of the nitrate nitrogen-containing compound that can be treated in the present invention include ammonium nitrate (NH 4 NO 3 ), chile nitrate (NaNO 3 ), lime nitrate (Ca (NO 3 ) 2 ), potassium nitrate (KNO 3 ), ammonium nitrate (Mixture of NH 4 NO 3 and (NH 4 ) 2 SO 4 ), lime nitrate (mixture of NH 4 NO 3 and CaCO 3 ), calurea (Ca (NO 3 ) 2 .4CO (NH 2 ) 2 ) and the like And a composition such as a nitrogen fertilizer containing them, and the nitrite nitrogen-containing compound includes a reduction product of the nitrate nitrogen-containing compound.
本発明の処理材は、公知の方法により、水処理や土壌処理に用いることができる。例えば、水処理では、本発明の処理材を工業廃水、農業廃水、生活廃水等の各種排水や揚水した地下水中に投入し、攪拌して硝酸態及び亜硝酸態窒素含有化合物を処理した後、処理材を濾別しても良く、あるいは活性炭、ゼオライト等の吸着材に担持させ、これを反応塔に充填して用いることもできる。処理後の処理水は海洋、河川、湖沼、地下水等の環境中へリサイクルする。地下水の浄化の場合、例えば、土壌中に本発明の処理材を含む層を形成し、地下水がこの層を透過する際に、地下水に含まれる硝酸態及び亜硝酸態窒素含有化合物を処理する所謂透過障壁工法に適用できる。 The treatment material of the present invention can be used for water treatment and soil treatment by a known method. For example, in the water treatment, the treatment material of the present invention is put into various wastewater such as industrial wastewater, agricultural wastewater, domestic wastewater or pumped groundwater, and stirred to treat nitrate- and nitrite-containing nitrogen-containing compounds. The treated material may be separated by filtration, or may be supported on an adsorbent such as activated carbon or zeolite, and filled in a reaction tower for use. The treated water after treatment is recycled into the environment such as oceans, rivers, lakes and marshes, and groundwater. In the case of groundwater purification, for example, a so-called treatment for treating a nitrate- and nitrite-nitrogen-containing compound contained in groundwater when a layer containing the treatment material of the present invention is formed in soil and the groundwater permeates this layer. Applicable to permeation barrier method.
土壌処理では、原位置浄化方法に適用して、本発明の処理材を土壌中に投入することもできる。原位置浄化法は反応塔等の特別な施設を必要とせず、低コストで土壌を浄化できるので、好ましい。土壌に投入する方法には特に制限は無く、固体状の処理材であれば土壌を掘り起こし、処理材と土壌とを混合した後埋め戻したり、処理材をスラリー状にして土壌に注入する等、土壌の性状、地形等に応じて適宜選択できる。 In the soil treatment, the treatment material of the present invention can be introduced into soil by applying to the in-situ purification method. The in situ purification method is preferable because it does not require a special facility such as a reaction tower and can purify the soil at low cost. There is no particular limitation on the method of charging the soil, and if the processing material is a solid processing material, the soil is dug up, the processing material and the soil are mixed and backfilled, or the processing material is slurried and injected into the soil. It can be appropriately selected according to the properties of the soil, topography and the like.
以下に本発明の実施例を示すが、本発明はこれらに制限されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
実施例1〜3
還元性物質として亜硫酸水素ナトリウム、金属酸化物として平均粒子径が0.1μm程度のベルトライド(FeO1.447)粉末、平均粒子径が0.1μm程度のマグネタイト粉(FeO1.333)、平均粒子径が0.2μm程度のチタン酸化物粉(TiO1.82)を用い、これらを重量比で1対1で混合し、本発明の硝酸態及び亜硝酸態窒素含有化合物用処理材(試料A〜C)を得た。それぞれを実施例1〜3とする。
Examples 1-3
Sodium bisulfite as a reducing substance, belt oxide (FeO 1.447 ) powder having an average particle diameter of about 0.1 μm as a metal oxide, magnetite powder (FeO 1.333 ) having an average particle diameter of about 0.1 μm, average Titanium oxide powder (TiO 1.82 ) having a particle diameter of about 0.2 μm is used, and these are mixed at a weight ratio of 1 to 1 to obtain a treatment material (sample for nitrate and nitrite nitrogen-containing compounds of the present invention) A to C) were obtained. These are Examples 1 to 3, respectively.
実施例4〜10
還元性物質として平均粒子径が0.5μm程度のコロイダル金属鉄粉、金属酸化物として鉄含有廃硫酸を中和・酸化して得られた酸化鉄(平均粒子径が0.07μm程度のベルトライド(FeO1.39)粉末)を用い、これらを重量比で1対1、0.2対1、0.1対1、0.05対1、0.03対1、0.02対1、0.01対1で混合し、本発明の硝酸態及び亜硝酸態窒素含有化合物用処理材(試料D〜J)を得た。それぞれを実施例4〜10とする。
Examples 4 to 10
Colloidal metal iron powder having an average particle diameter of about 0.5 μm as a reducing substance, iron oxide obtained by neutralizing and oxidizing iron-containing waste sulfuric acid as a metal oxide (belt ride having an average particle diameter of about 0.07 μm) (FeO 1.39 ) powder), and these were mixed in a weight ratio of 1: 1, 0.2: 1, 0.1: 1, 0.05: 1, 0.03: 1, 0.02: 1, The mixture was mixed at a ratio of 0.01 to 1 to obtain a treated material for nitrate- and nitrite-containing compounds (Samples D to J) of the present invention. These are Examples 4 to 10, respectively.
比較例1〜6
実施例1〜3で用いたベルトライド粉、マグネタイト粉、チタン酸化物粉及び亜硫酸水素ナトリウム、実施例4〜10で用いたコロイダル金属鉄粉、ベルトライド粉を、各々比較例1〜6とした。(試料K〜P)
Comparative Examples 1 to 6
The beltride powder, magnetite powder, titanium oxide powder and sodium bisulfite used in Examples 1 to 3, colloidal metal iron powder and beltride powder used in Examples 4 to 10 were Comparative Examples 1 to 6, respectively. . (Samples K to P)
評価1
実施例1〜3、比較例1〜4で得られた試料(A〜C、K〜N)を10ppmの濃度の硝酸カリウム水溶液に150g/リットルとなるように添加し、バイヤル瓶に密栓し24時間振盪撹拌して処理した。処理後の水溶液に含まれる硝酸イオン濃度を、イオンクロマトグラフ法にて測定した。尚、硝酸イオンの分解反応はpHの影響を受けるため、試料によっては処理前にpHが6.5〜7.5になるように適宜調整した。例えば、実施例8については水酸化ナトリウム水溶液を用いてpHを調整した。
Evaluation 1
Samples (A to C, K to N) obtained in Examples 1 to 3 and Comparative Examples 1 to 4 were added to a 10 ppm aqueous solution of potassium nitrate at a concentration of 150 g / liter, and the mixture was sealed in a vial bottle and sealed for 24 hours. Processing was performed with shaking and stirring. The nitrate ion concentration contained in the aqueous solution after the treatment was measured by an ion chromatography method. In addition, since the decomposition reaction of nitrate ion is affected by pH, depending on the sample, the pH was adjusted appropriately to 6.5 to 7.5 before the treatment. For example, in Example 8, the pH was adjusted using an aqueous sodium hydroxide solution.
評価結果を表1に示す。金属酸化物及び還元剤は各々単独で用いると、硝酸イオンの処理能力は弱い。しかし、これらを混合して得られた本発明の処理材は、常圧下でも硝酸イオンの処理能力が高いことがわかった。 Table 1 shows the evaluation results. If the metal oxide and the reducing agent are used alone, the processing ability of nitrate ions is weak. However, it has been found that the treatment material of the present invention obtained by mixing them has a high ability to treat nitrate ions even under normal pressure.
評価2
実施例4〜10、比較例5、6で得られた試料(D〜J、O、P)を硝酸イオン濃度が230ppm硝酸カリウム水溶液に100g/リットルとなるように添加した。また、浄化材を加えなかったものを、比較例7とした。これらを評価3と同様に処理して硝酸イオン濃度を測定すると同時に、アニモニウムイオン濃度も測定し、式:{アンモニムイオンの窒素換算濃度(ppm)/52(比較例7の硝酸イオンの窒素換算濃度:ppm)}×100によりアンモニアへの転換率を算出した。また、処理後の水溶液の色を、目視で判定した。
Evaluation 2
The samples (DJ, O, and P) obtained in Examples 4 to 10 and Comparative Examples 5 and 6 were added to a 230 ppm aqueous solution of potassium nitrate so as to have a nitrate ion concentration of 100 g / liter. In addition, Comparative Example 7 was obtained without adding a purifying material. These were treated in the same manner as in Evaluation 3, and the nitrate ion concentration was measured, and at the same time, the animonium ion concentration was also measured, and the equation: {Ammonium ion concentration in terms of nitrogen (ppm) / 52 (Nitrogen equivalent in Comparative Example 7 in terms of nitrogen) Concentration: ppm) The conversion rate to ammonia was calculated by Δ × 100. Further, the color of the aqueous solution after the treatment was visually determined.
評価結果を表2に示す。金属酸化物及び金属鉄を混合して得られた本発明の処理材は、常圧下でも硝酸イオンの処理能力が高く、しかも処理された硝酸イオンが効率良く無害なアンモニウムイオンに転換しているとがわかった。また、処理後も水溶液を着色しないこともわかった。 Table 2 shows the evaluation results. The treatment material of the present invention obtained by mixing the metal oxide and the metal iron has a high nitrate ion treatment capacity even under normal pressure, and the treated nitrate ions are efficiently converted to harmless ammonium ions. I understood. It was also found that the aqueous solution was not colored after the treatment.
評価3
実施例6で得られた試料Fを、硝酸態及び亜硝酸態窒素含有化合物を含む汚染水に100g/リットルとなるように添加した後、バイヤル瓶に密栓し24時間振盪撹拌して処理した。また、浄化材を加えなかったものを、比較例8とした。処理後の水溶液に含まれる硝酸イオン及び亜硝酸イオン濃度を、イオンクロマトグラフ法にて測定した。
Evaluation 3
Sample F obtained in Example 6 was added to contaminated water containing a nitrate-form and a nitrite-form nitrogen-containing compound at a concentration of 100 g / liter, and the mixture was sealed in a vial bottle and shaken and stirred for 24 hours to be treated. In addition, Comparative Example 8 was obtained without adding a purifying material. The concentrations of nitrate ions and nitrite ions contained in the aqueous solution after the treatment were measured by ion chromatography.
評価結果を表3に示す。本発明の処理材は、亜硝酸態窒素含有化合物用処理材としても有用であることがわかった。 Table 3 shows the evaluation results. It has been found that the treatment material of the present invention is also useful as a treatment material for nitrite nitrogen-containing compounds.
本発明は、有害な硝酸態及び亜硝酸態窒素含有化合物を含む地下水や土壌の浄化に有用である。
INDUSTRIAL APPLICABILITY The present invention is useful for cleaning groundwater and soil containing harmful nitrate and nitrite-containing compounds.
Claims (13)
A method for treating water, comprising charging the material for treating harmful substances according to claim 1 into water, decomposing nitrate- and nitrite-containing compounds in the water, and then subjecting the material to solid-liquid separation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003423721A JP2004216367A (en) | 2002-12-27 | 2003-12-19 | Treatment agent for nitric acid phase and nitrous acid phase nitrogen-containing compound, and treatment method for soil or water using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002379598 | 2002-12-27 | ||
JP2003423721A JP2004216367A (en) | 2002-12-27 | 2003-12-19 | Treatment agent for nitric acid phase and nitrous acid phase nitrogen-containing compound, and treatment method for soil or water using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004216367A true JP2004216367A (en) | 2004-08-05 |
Family
ID=32911249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003423721A Pending JP2004216367A (en) | 2002-12-27 | 2003-12-19 | Treatment agent for nitric acid phase and nitrous acid phase nitrogen-containing compound, and treatment method for soil or water using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004216367A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006263705A (en) * | 2005-02-25 | 2006-10-05 | Mitsubishi Materials Corp | Nitrate nitrogen-containing water treatment method and apparatus |
JP2008201809A (en) * | 2006-05-22 | 2008-09-04 | Ishihara Sangyo Kaisha Ltd | Organic compound decomposing material and method of treating soil or water therewith |
JP2009514669A (en) * | 2005-11-11 | 2009-04-09 | エニ、ソシエタ、ペル、アチオニ | Method of treating contaminated water with bifunctional system consisting of iron and zeolite |
JP2016029007A (en) * | 2011-02-15 | 2016-03-03 | エイティーアイ・プロパティーズ・インコーポレーテッド | Systems and methods for recovering nitric acid from pickling solutions |
-
2003
- 2003-12-19 JP JP2003423721A patent/JP2004216367A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006263705A (en) * | 2005-02-25 | 2006-10-05 | Mitsubishi Materials Corp | Nitrate nitrogen-containing water treatment method and apparatus |
JP4706828B2 (en) * | 2005-02-25 | 2011-06-22 | 三菱マテリアル株式会社 | Method and apparatus for treating nitrate-containing water |
JP2009514669A (en) * | 2005-11-11 | 2009-04-09 | エニ、ソシエタ、ペル、アチオニ | Method of treating contaminated water with bifunctional system consisting of iron and zeolite |
JP2008201809A (en) * | 2006-05-22 | 2008-09-04 | Ishihara Sangyo Kaisha Ltd | Organic compound decomposing material and method of treating soil or water therewith |
JP2016029007A (en) * | 2011-02-15 | 2016-03-03 | エイティーアイ・プロパティーズ・インコーポレーテッド | Systems and methods for recovering nitric acid from pickling solutions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tamjidi et al. | Improving the surface properties of adsorbents by surfactants and their role in the removal of toxic metals from wastewater: A review study | |
US8026404B2 (en) | Method of making harmful material remediating agent and for using the same | |
Saha et al. | A review on treatment of acid mine drainage with waste materials: A novel approach | |
JP5817718B2 (en) | Chemical substance treatment agent containing persulfate and silver complex, and chemical substance decomposition method using the same | |
Seung-Mok et al. | Application of ferrate (VI) in the treatment of industrial wastes containing metal-complexed cyanides: A green treatment | |
Silveira et al. | The photocatalytic reduction of NO3− to N2 with ilmenite (FeTiO3): Effects of groundwater matrix | |
KR20010052328A (en) | Method for treating waters, soils, sediments and/or sludges | |
RU2379136C2 (en) | Method of detoxication from organic pollutants of soil and aquatic media | |
JP2004216367A (en) | Treatment agent for nitric acid phase and nitrous acid phase nitrogen-containing compound, and treatment method for soil or water using the same | |
JP4926373B2 (en) | Method for producing organic compound decomposition material | |
JP2009254920A (en) | Heavy metal treating agent and method of making heavy metal-contaminated matter harmless | |
Ghosh et al. | In Situ Treatment of Cyanide‐Contaminated Groundwater by Iron Cyanide Precipitation | |
Venot et al. | Comparing chitin and organic substrates on the national tunnel waters in Blackhawk, Colorado for manganese removal | |
JP5144033B2 (en) | Organic compound decomposition material and method for treating soil or water using the same | |
CN108408841A (en) | Black and odorous water inorganic agent and its application method | |
JP5580704B2 (en) | Purification method of contaminated water | |
Mapukata et al. | Acid Mine Drainage Treatment and Control: Remediation Methodologies, Mineral Beneficiation and Water Reclamation Strategies | |
JP4324372B2 (en) | Organic compound decomposition material | |
JP2007296408A (en) | Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater | |
JP5513534B2 (en) | Organic compound decomposition material and method for treating soil or water using the same | |
JP4362294B2 (en) | Soil purification method | |
JP4382535B2 (en) | Soil improvement material | |
JP5520996B2 (en) | Method for producing organic compound decomposition material | |
Mallick | Improved Management of Recalcitrant Nutrient Species: Transformation and Adsorption | |
Wagholikar et al. | Eliminating cyanide species from aqueous matrices: An overview on some physical-chemical and nano-based techniques |