[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004214510A - Nonvolatile semiconductor memory and its manufacturing method - Google Patents

Nonvolatile semiconductor memory and its manufacturing method Download PDF

Info

Publication number
JP2004214510A
JP2004214510A JP2003001488A JP2003001488A JP2004214510A JP 2004214510 A JP2004214510 A JP 2004214510A JP 2003001488 A JP2003001488 A JP 2003001488A JP 2003001488 A JP2003001488 A JP 2003001488A JP 2004214510 A JP2004214510 A JP 2004214510A
Authority
JP
Japan
Prior art keywords
element isolation
semiconductor memory
polycrystalline silicon
substrate
nonvolatile semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003001488A
Other languages
Japanese (ja)
Inventor
Shigeru Kinoshita
繁 木下
Hiroaki Hazama
博顕 間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003001488A priority Critical patent/JP2004214510A/en
Priority to US10/748,134 priority patent/US7038268B2/en
Publication of JP2004214510A publication Critical patent/JP2004214510A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonvolatile semiconductor memory which can improve device reliability by suppressing fluctuation of a threshold voltage due to capacitance coupling by reducing capacitance across-floating electrodes. <P>SOLUTION: The nonvolatile semiconductor memory which can be written and erased electrically comprises a silicon substrate 1, a plurality of element isolating parts 101 which are arranged to protrude from the silicon substrate 1 at a predetermined interval, floating electrodes 102 arranged between the element isolating parts 101, and a control electrode 104 laminated on the element isolating parts 101 and floating electrodes 102. The mutual interval between adjoining floating electrodes 102 is formed so as to be broader on the side away from the silicon substrate 1 than on the silicon substrate 1 side. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、不揮発性半導体記憶装置及びその製造方法に関し、特に浮遊電極間容量を低減でき、デバイス信頼性を向上させることができるものに関する。
【0002】
【従来の技術】
従来から記憶用LSI等に不揮発性半導体記憶装置が用いられている。図5及び図6は不揮発性半導体記憶装置の製造工程を示す断面図である。不揮発性半導体記憶装置の製造工程には、素子分離形成工程及び浮遊電極形成工程が含まれている。
【0003】
図5の(a),(b)は、素子分離部を形成するための素子分離形成工程を示す断面図である。最初に、シリコン基板1上に、第1のシリコン酸化膜2、第1の多結晶シリコン膜3、シリコン窒化膜4、第2のシリコン酸化膜5を堆積する。そして、光蝕刻法によりフォトレジスト(不図示)を所望のパターンに加工し、このフォトレジストをマスクにしてRIE(reactive ion etching)法によりシリコン窒化膜4及び第2のシリコン酸化膜5をエッチング加工する。
【0004】
次に、Oプラズマ中にシリコン基板1をさらし、フォトレジストを除去する。そして、第2のシリコン酸化膜5をマスクにして多結晶シリコン膜3、第1のシリコン酸化膜2、シリコン基板1をエッチング加工し、図5の(a)に示すように、シリコン基板1中に溝1aを形成する。
【0005】
次に、O雰囲気で加熱し、数nmの第3のシリコン酸化膜6を形成し、その後シリコン基板1中の溝1aにHDP(high density plasma)−CVD(chemical vapor deposition)法により第4のシリコン酸化膜7を堆積する。そして、CMP(chemical mechanical polish)法により第4のシリコン酸化膜7を平坦化し、窒素雰囲気中で加熱する。次に、NHF溶液に浸した後、図5の(b)に示すようにリン酸処理により第4のシリコン窒化膜4を除去する。ここまでがSTI(素子分離)を形成する素子分離工程である。
【0006】
次に、浮遊電極形成工程を行う。図6の(a)に示すように、減圧CVD法によりリンが添加された第2の多結晶シリコン膜8及び第5のシリコン酸化膜9を堆積し、光蝕刻法によりフォトレジストRを所望のパターンに加工する。このフォトレジストRをマスク材としてRIE法により第5のシリコン酸化膜9をエッチング加工する。そして、Oプラズマ中にシリコン基板1をさらし、フォトレジストRを除去する。
【0007】
次に、図6の(b)に示すように、減圧CVD法により第6のシリコン酸化膜10を堆積する。この第6のシリコン酸化膜10をマスク材として第5のシリコン酸化膜9及び第6のシリコン酸化膜10をエッチング加工する。次に第5のシリコン酸化膜9及び第6のシリコン酸化膜10をマスク材として図6の(c)に示すように、第2の多結晶シリコン8をRIE法によりエッチング加工する。
【0008】
次に、フッ酸系のエッチング液により第5のシリコン酸化膜9及び第6のシリコン酸化膜10を剥離する。次に薄いNHF溶液に浸した後、ONO膜(SiO−SiN−SiO膜)11を減圧CVD法により堆積し、酸化雰囲気で熱処理を施す。次に、図6の(d)に示すように絶縁層となる第3の多結晶シリコン膜12を減圧CVD法により堆積する。
【0009】
なお、メモリセルアレイの断面に関し、隣接する浮遊電極間の幅が基板側より基板から離間した側が広くなっているものがある(例えば、特許文献1参照)。但し、このような構造・形状がとられた理由については特に説明はない。
【0010】
【特許文献1】
特開2001−160618号公報(図3B及び段落番号0026,0027)
【0011】
【発明が解決しようとする課題】
上述した不揮発性半導体記憶装置の製造方法であると次のような問題があった。すなわち、浮遊電極形成工程において、浮遊電極の分離加工は素子分離領域上で行われる必要がある。このため、分離溝の幅は素子分離領域の幅とPEP(Photo Etching Process)の合わせズレ量に制約され、浮遊電極間隔を十分広く取ることができなかった。浮遊電極間隔が狭いと、浮遊電極間の容量カップリングによりしきい値電圧の変動が起こり、デバイス信頼性に深刻な影響を与える。
【0012】
図7〜図9は、しきい値電圧の変動の原理を示す説明図である。すなわち、図7の(a)〜(c)に示すように、不揮発性半導体記憶装置は、FNトンネル電流により浮遊電極FGに電荷を注入することで記憶を行っている。このとき、2値のNAND回路である場合には、図7の(b)に示すように、電荷が「0」又は「1」に対応するため、Vthが離れている。一方、例えば4値のNAND回路である場合には、図7の(c)に示すように、電荷が「01」,「00」,「10」,「11」となり、Vthが近接することとなる。
【0013】
このため、図8の(a),(b)に示すように、浮遊電極に次々に書込みが行われ、電荷を保持している場合に、隣接した浮遊電極間で浮遊電極間容量が大きくなると、隣の浮遊電極の電荷の影響を受けて電位の変動が起こることがあり得る。
【0014】
これは図8の(c)に示すように、浮遊電極間容量が大きくなると、例えば「10」を示す閾値電圧分布M1が、閾値電圧分布M2にシフトし、隣接する「00」を示す閾値電圧分布との間隔がm1からm2に狭まり、デバイスの信頼性を劣化させる要因となる。
【0015】
図9は浮遊電極相互の干渉に伴う電位シフトΔVfgを示す説明図である。すなわち、浮遊電極間容量は、隣接する浮遊電極間容量Cfgx,Cfgxy,Cfgyと、各部材との容量Ctun,Conoにより式(1)に基づいて算出される。
【0016】
すなわち、
ΔVfg={(ΔV1+ΔV2)Cfgx+ΔV4Cfgy+(ΔV3+ΔV5)Cfgxy}/(Ctun+Cono+2Cfgx+2Cfgy+4Cfgxy)…(1)
そこで本発明は、浮遊電極間容量を低減することで、容量カップリングによるしきい値電圧の変動を抑制し、デバイス信頼性を向上させることができる不揮発性半導体記憶装置及びその製造方法を提供することを目的としている。
【0017】
【課題を解決するための手段】
上記課題を解決し目的を達成するために、本発明の不揮発性半導体記憶装置及びその製造方法は次のように構成されている。
【0018】
(1)電気的に書き込み及び消去可能な不揮発性半導体記憶装置において、基板と、この基板から突出するとともに、所定間隔で配設された複数の素子分離部と、これら素子分離部間に配置された浮遊電極と、上記素子分離部及び上記浮遊電極の上に積層された絶縁層とを備え、隣接する浮遊電極相互の間隔は、上記基板側よりも上記基板より離間した側で広くなるように形成されていることを特徴とする。
【0019】
(2)上記(1)に記載された不揮発性半導体記憶装置であって、上記間隔は、複数の段部で形成されていることを特徴とする。
【0020】
(3)上記(2)に記載された不揮発性半導体記憶装置であって、上記段部のうち最も基板側の段部の厚さを除く各段部の厚さの合計が全段部の厚さの合計に対し1/3以上であること特徴とする。
【0021】
(4)上記(2)に記載された不揮発性半導体記憶装置であって、上記浮遊電極の断面についての上記絶縁層側の外周長さの合計は、上記浮遊電極の断面についての厚さ方向と幅方向との合計に対し90%以上であることを特徴とする。
【0022】
(5)上記(1)に記載された不揮発性半導体記憶装置であって、上記素子分離部の上記基板から離間した側の面には凹部が形成され、この凹部内に上記絶縁層が形成されていることを特徴とする。
【0023】
(6)上記(5)に記載された不揮発性半導体記憶装置であって、上記凹部は、開口部から底部にかけて深さ方向に直交する面の面積が狭くなることを特徴とする。
【0024】
(7)基板上にこの基板から突出する素子分離部を形成する素子分離部形成工程と、上記基板及び上記素子分離部の上に多結晶シリコン層を形成する多結晶シリコン層形成工程と、上記多結晶シリコン層の上に第1のマスク材を形成する第1マスク材形成工程と、上記素子分離部の上面の領域内において、上記多結晶シリコン層の厚さの少なくとも1/3以上の深さまで上記多結晶シリコン層をエッチングする第1エッチング工程と、上記多結晶シリコン層の上に第2のマスク材を形成する第2マスク材形成工程と、上記第1エッチング工程によってエッチングされた領域内において、上記素子分離部まで上記多結晶シリコン層をエッチングする第2エッチング工程と、上記素子分離部及び上記多結晶シリコン層の上に絶縁層を形成する絶縁層形成工程とを備えていることを特徴とする。
【0025】
【発明の実施の形態】
図1の(a)は本発明の第1の実施の形態に係る不揮発性半導体記憶装置100を示す断面図、図1の(b)は一般的な不揮発性半導体記憶装置を示す断面図である。
【0026】
不揮発性半導体記憶装置100は、シリコン基板1と、このシリコン基板1に積層された第1のシリコン酸化膜2と、シリコン基板1に所定間隔で突設された素子分離部101と、これら素子分離部101間に設けられた浮遊電極102と、素子分離部101と浮遊電極102の上に設けられた境界層103と、この境界層103の上に積層された制御電極104とを備えている。
【0027】
なお、素子分離部101は第4のシリコン酸化膜7、浮遊電極102は第1の多結晶シリコン3と第2の多結晶シリコン8、境界層103はONO膜21、制御電極104は第3の多結晶シリコン膜22から形成されている。
【0028】
境界層103は、素子分離部101上で2段の段状に形成されており、厚さ方向に直交する幅方向の長さが、シリコン基板1側で短く、シリコン基板1から離間した側で長く形成されている。なお、境界層103の各部の寸法は図1の(a)に示すように形成されている。したがって、境界層103に接する浮遊電極102の外周長さLは、
L=2(a1+a2)+(b1+2b2) …(2)
で示され、図1の(b)における深さ方向の長さaと幅方向の長さbとの合計にほぼ相当している。
【0029】
このような不揮発性半導体記憶装置100は、図2の(a)〜(e)に示す浮遊電極形成工程により製造される。なお、浮遊電極形成工程の前工程である素子分離形成工程は図5で示したものと同一であるので説明は省略する。
【0030】
図2の(a)に示すように、減圧CVD法によりリンが添加された第2の多結晶シリコン膜8を厚さTとなるまで、第5のシリコン酸化膜9を所定の厚さまで堆積し、光蝕刻法によりフォトレジストRを所望のパターンに加工する。このフォトレジストRをマスク材としてRIE法により第5のシリコン酸化膜9をエッチング加工する。
【0031】
さらに、図2の(b)に示すように、RIE法により第2の多結晶シリコン8の掘り込み深さDとなるまで掘り込み、第2の多結晶シリコン8が抜け切る前にRIE法によるエッチング加工を止める。このとき第2の多結晶シリコン8の掘り込み深さDは、加工前の多結晶シリコン8の厚さTの1/3以上とする。この理由については後述する。
【0032】
次に、Oプラズマ中にシリコン基板1をさらし、フォトレジストRを除去する。そして、図2の(c)に示すように、減圧CVD法により第6のシリコン酸化膜10を堆積する。この第6のシリコン酸化膜10をマスク材として第5のシリコン酸化膜9及び第6のシリコン酸化膜10をエッチング加工する。次に第5のシリコン酸化膜9及び第6のシリコン酸化膜10をマスク材として図2の(d)に示すように第2の多結晶シリコン8をRIE法によりエッチング加工する。このとき、第2の多結晶シリコン8は先ほど抜け切らずに残しておいた部分が加工される。このときのマスクの開口幅は、第2の多結晶シリコンを途中まで掘り込んだときより狭く、第2の多結晶シリコン8の加工形状は、階段形状になる。
【0033】
次に、フッ酸系のエッチング液により第5のシリコン酸化膜9及び第6のシリコン酸化膜10を剥離する。次に薄いNHF溶液に浸した後、ONO膜21を減圧CVD法により堆積し酸化雰囲気で熱処理を施す。次に、図2の(e)に示すように第3の多結晶シリコン膜22を減圧CVD法により堆積する。
【0034】
このような不揮発性半導体記憶装置100は、次のような効果がある。すなわち、浮遊電極102と制御電極104の境界である境界層103が階段状に形成されており、浮遊電極102の下部(シリコン基板1側)での浮遊電極102相互の間隔よりも、浮遊電極102の上部(シリコン基板1から離間した側)での間隔が大きくなっている。
【0035】
このため、浮遊電極102間の静電容量を低減できるとともに、素子分離部101に対する境界層103の合せ位置を従来と同じ精度で位置決めすることができる。また、浮遊電極102の断面積を小さくすることにより、対向する浮遊電極102との間での静電容量をも低減できる。
【0036】
一方、制御電極−浮遊電極間容量を決める要素である、浮遊電極102の外周長さLは、上述したように、図1の(b)における深さ方向の長さaと幅方向の長さbとの合計にほぼ相当している。すなわち、境界層103を段状に形成することで、外周長さLを十分に確保することができることから、制御電極−浮遊電極間容量は低下せず、浮遊電極間容量のみを低減できる。なお、制御電極−浮遊電極間容量が低下すると制御電極104の書き込み電圧を高くする必要がある。書き込み電圧を高くすると、耐圧劣化の原因となる。
【0037】
境界層103の段は2段としたが3段以上であってもよく、外周長さLについては90%以上確保されていればテーパ状にしてもよい。なお、90%以上としたのは、制御電極−浮遊電極間容量の低下を10%以下に抑制し、プロセスばらつきによる制御電極−浮遊電極間容量の変動幅(10%)に比べて低くできるためである。
【0038】
次に、第2の多結晶シリコン8の掘り込み深さDを、加工前の多結晶シリコン8の厚さTの1/3以上とした理由について説明する。図3は、D/Tと浮遊電極間容量との関係をシミュレーションしたものである。ここでは、D/Tが0のときの浮遊電極間容量を1に規格化している。図3からわかるように1回目の多結晶シリコン掘り込みでD/Tが1/3以上となるように掘り込んだ場合、D/Tが0のときに比べて10.5%の浮遊電極間容量が低減する。
【0039】
浮遊電極間容量は、多結晶シリコンの膜厚やエッチングの加工等のプロセスばらつきにより±10%程度のばらつきを持つ(図3中Pの範囲)。階段加工形状でもD/Tが1/3以下の場合、浮遊電極間容量の低減効果は10%以下で容量ばらつき分より小さいので、デバイス特性の向上(しきい値電圧変動の低減)が期待できない。したがって、容量ばらつきの幅よりも大きい容量低減効果を得るためには、D/Tとして1/3以上が必要となる。
【0040】
上述したように本発明の第1の実施の形態に係る不揮発性半導体記憶装置100によれば、浮遊電極102下部での浮遊電極間隔は狭く、浮遊電極102上部での間隔を広くすることにより、境界層103の位置決め精度を従来と同等にすることができるとともに、隣接する浮遊電極102間の静電容量を低減し、浮遊電極102間の容量カップリングによるしきい値電圧変動を小さくすることができる。また、浮遊電極102の断面積を小さくできるので、対向する浮遊電極102間の静電容量を低減し、浮遊電極間の容量カップリングによるしきい値電圧変動を小さくすることができる。
【0041】
さらに、制御電極−浮遊電極間容量低下による接合の耐圧劣化を抑制しながら、浮遊電極102間の容量カップリングによるしきい値変動を小さくすることができる。
【0042】
図4の(a),(b)は本発明の第2の実施の形態に係る不揮発性半導体記憶装置の製造工程の一部を示す図である。なお、第1の実施の形態における図2の(d)までは同じ工程をとるため詳細な説明は省略する。
【0043】
図4の(a)に示すように、シリコン酸化膜9,10をマスク材として第4のシリコン酸化膜7を断面V字状に掘り込み凹部7aを形成する。ここで断面V字状とは、凹部7a開口部から底部にかけて幅方向の断面積が狭くなることを意味し、底部が平らな断面台形状であってもよい。
【0044】
次に、フッ酸系のエッチング液により第5のシリコン酸化膜9及び第6のシリコン酸化膜10を剥離する。次に薄いNHF溶液に浸した後、ONO(SiO,SiN,SiO)膜11を減圧CVD法により堆積し酸化雰囲気で熱処理を施す。次に、図4の(b)に示すように、第3の多結晶シリコン膜12を減圧CVD法により堆積する。
【0045】
このように構成された不揮発性半導体記憶装置110によれば、凹部7aに埋め込まれる制御電極104とシリコン基板1との電気的なショートを抑制することができる。この場合、凹部7aを形成しない場合に比べて浮遊電極間容量を35%低減することができる。これは、凹部7aにONO膜11を挟んで第3の多結晶シリコン膜12が埋め込まれることにより、浮遊電極間の下からの回り込み容量を低減できるからである。
【0046】
なお、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。
【0047】
【発明の効果】
本発明によれば、浮遊電極間容量を低減することで、容量カップリングによるしきい値電圧の変動を抑制し、デバイス信頼性を向上させることができる。
【図面の簡単な説明】
【図1】(a)は本発明の第1の実施の形態に係る不揮発性半導体記憶装置を示す断面図、(b)は比較例に係る不揮発性半導体記憶装置を示す断面図である。
【図2】同不揮発性半導体記憶装置の製造工程(浮遊電極形成工程)を示す断面図。
【図3】同不揮発性半導体記憶装置における加工前の多結晶シリコンの厚さTに対する第2の多結晶シリコンの掘り込み深さDの割合と浮遊電極間容量との関係を示す説明図。
【図4】本発明の第2の実施の形態に係る不揮発性半導体記憶装置を示す断面図。
【図5】一般的な不揮発性半導体記憶装置の製造工程(素子分離形成工程)を示す断面図。
【図6】従来の不揮発性半導体記憶装置の製造工程(浮遊電極形成工程)を示す断面図。
【図7】浮遊電極間の電位シフトの原理について示す説明図。
【図8】浮遊電極間の電位シフトの原理について示す説明図。
【図9】浮遊電極間の電位シフトの原理について示す説明図。
【符号の説明】
1…シリコン基板、2…第1のシリコン酸化膜、7…第4のシリコン酸化膜、8…第2の多結晶シリコン、21…ONO膜、22…第3の多結晶シリコン膜、100…不揮発性半導体記憶装置、101…素子分離部、102…浮遊電極、103…境界層、104…制御電極。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nonvolatile semiconductor memory device and a method for manufacturing the same, and more particularly to a device capable of reducing capacitance between floating electrodes and improving device reliability.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, nonvolatile semiconductor storage devices have been used for storage LSIs and the like. 5 and 6 are cross-sectional views illustrating the steps of manufacturing the nonvolatile semiconductor memory device. The manufacturing process of the non-volatile semiconductor storage device includes a device isolation forming process and a floating electrode forming process.
[0003]
5A and 5B are cross-sectional views showing an element isolation forming step for forming an element isolation portion. First, a first silicon oxide film 2, a first polycrystalline silicon film 3, a silicon nitride film 4, and a second silicon oxide film 5 are deposited on a silicon substrate 1. Then, a photoresist (not shown) is processed into a desired pattern by photo-etching, and the silicon nitride film 4 and the second silicon oxide film 5 are etched by RIE (reactive ion etching) using the photoresist as a mask. I do.
[0004]
Then, exposing the silicon substrate 1 in the O 2 plasma, the photoresist is removed. Then, the polycrystalline silicon film 3, the first silicon oxide film 2, and the silicon substrate 1 are etched using the second silicon oxide film 5 as a mask, and as shown in FIG. A groove 1a is formed in the groove.
[0005]
Next, the substrate is heated in an O 2 atmosphere to form a third silicon oxide film 6 having a thickness of several nanometers. Of silicon oxide film 7 is deposited. Then, the fourth silicon oxide film 7 is flattened by a CMP (chemical mechanical polish) method, and is heated in a nitrogen atmosphere. Next, after dipping in an NH 4 F solution, the fourth silicon nitride film 4 is removed by phosphoric acid treatment as shown in FIG. The steps up to here are the element isolation steps for forming the STI (element isolation).
[0006]
Next, a floating electrode forming step is performed. As shown in FIG. 6A, a second polycrystalline silicon film 8 and a fifth silicon oxide film 9 to which phosphorus is added are deposited by a low pressure CVD method, and a photoresist R is formed by photolithography to a desired photoresist R. Process into a pattern. Using the photoresist R as a mask, the fifth silicon oxide film 9 is etched by RIE. Then, the silicon substrate 1 is exposed to O 2 plasma, and the photoresist R is removed.
[0007]
Next, as shown in FIG. 6B, a sixth silicon oxide film 10 is deposited by a low pressure CVD method. The fifth silicon oxide film 9 and the sixth silicon oxide film 10 are etched using the sixth silicon oxide film 10 as a mask material. Next, as shown in FIG. 6C, the second polycrystalline silicon 8 is etched by RIE using the fifth silicon oxide film 9 and the sixth silicon oxide film 10 as a mask material.
[0008]
Next, the fifth silicon oxide film 9 and the sixth silicon oxide film 10 are peeled off using a hydrofluoric acid-based etchant. Next, after being immersed in a thin NHF 4 solution, an ONO film (SiO 2 —SiN—SiO 2 film) 11 is deposited by a low pressure CVD method, and a heat treatment is performed in an oxidizing atmosphere. Next, as shown in FIG. 6D, a third polycrystalline silicon film 12 serving as an insulating layer is deposited by a low pressure CVD method.
[0009]
In some cross-sections of the memory cell array, the width between adjacent floating electrodes is wider on the side away from the substrate than on the substrate side (for example, see Patent Document 1). However, there is no particular explanation as to why such a structure / shape was taken.
[0010]
[Patent Document 1]
JP 2001-160618 A (FIG. 3B and paragraph numbers 0026 and 0027)
[0011]
[Problems to be solved by the invention]
The above-described method for manufacturing a nonvolatile semiconductor memory device has the following problems. That is, in the floating electrode formation step, the floating electrode needs to be separated from the element isolation region. For this reason, the width of the isolation trench is limited by the amount of misalignment between the width of the element isolation region and PEP (Photo Etching Process), and it has not been possible to obtain a sufficiently large floating electrode interval. When the interval between the floating electrodes is small, the threshold voltage fluctuates due to capacitive coupling between the floating electrodes, which seriously affects device reliability.
[0012]
7 to 9 are explanatory diagrams showing the principle of the fluctuation of the threshold voltage. That is, as shown in FIGS. 7A to 7C, the nonvolatile semiconductor memory device stores data by injecting electric charge into the floating electrode FG by an FN tunnel current. At this time, in the case of the binary NAND circuit, as shown in FIG. 7B, the charge corresponds to “0” or “1”, and thus Vth is apart. On the other hand, in the case of a quaternary NAND circuit, for example, as shown in FIG. 7C, the charges are “01”, “00”, “10”, and “11”, and Vth is close. Become.
[0013]
For this reason, as shown in FIGS. 8A and 8B, when writing is performed on the floating electrodes one after another and charges are held, if the capacitance between the floating electrodes becomes large between the adjacent floating electrodes. In some cases, the potential may fluctuate under the influence of the charge of the adjacent floating electrode.
[0014]
This is because, as shown in FIG. 8C, when the capacitance between floating electrodes increases, for example, the threshold voltage distribution M1 indicating “10” shifts to the threshold voltage distribution M2, and the adjacent threshold voltage indicating “00” is displayed. The interval from the distribution is reduced from m1 to m2, which is a factor of deteriorating the reliability of the device.
[0015]
FIG. 9 is an explanatory diagram showing a potential shift ΔV fg accompanying interference between floating electrodes. That is, capacitance between floating gate electrodes is adjacent floating inter-electrode capacitance C Fgx, Cf gxy, and C FGY, capacitance C tun with each member is calculated based on equation (1) by C ono.
[0016]
That is,
ΔV fg = {(ΔV1 + ΔV2 ) C fgx + ΔV4C fgy + (ΔV3 + ΔV5) Cf gxy} / (C tun + C ono + 2C fgx + 2C fgy + 4C fgxy) ... (1)
Thus, the present invention provides a nonvolatile semiconductor memory device and a method of manufacturing the same, which can reduce the threshold voltage fluctuation due to capacitance coupling by reducing the capacitance between floating electrodes and improve device reliability. It is aimed at.
[0017]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, a nonvolatile semiconductor memory device and a method of manufacturing the same according to the present invention are configured as follows.
[0018]
(1) In a non-volatile semiconductor memory device that can be electrically written and erased, a substrate, a plurality of element isolation portions protruding from the substrate and arranged at predetermined intervals, and arranged between the element isolation portions A floating electrode, and an insulating layer laminated on the element isolation portion and the floating electrode, so that an interval between adjacent floating electrodes is wider on a side apart from the substrate than on the substrate. It is characterized by being formed.
[0019]
(2) The nonvolatile semiconductor memory device according to (1), wherein the interval is formed by a plurality of steps.
[0020]
(3) The nonvolatile semiconductor memory device according to (2), wherein the total thickness of each of the steps except for the thickness of the step on the substrate side is the thickness of all steps. It is characterized in that it is 1/3 or more of the total of the total.
[0021]
(4) In the nonvolatile semiconductor memory device described in (2), the sum of the outer peripheral length on the insulating layer side with respect to the cross section of the floating electrode is equal to the thickness direction with respect to the cross section of the floating electrode. It is characterized by being 90% or more of the total in the width direction.
[0022]
(5) In the nonvolatile semiconductor memory device according to (1), a concave portion is formed on a surface of the element isolation portion on a side separated from the substrate, and the insulating layer is formed in the concave portion. It is characterized by having.
[0023]
(6) In the nonvolatile semiconductor memory device described in the above (5), an area of a surface of the concave portion orthogonal to the depth direction from the opening to the bottom is narrowed.
[0024]
(7) an element isolation portion forming step of forming an element isolation portion projecting from the substrate on the substrate, a polycrystalline silicon layer forming step of forming a polycrystalline silicon layer on the substrate and the element isolation portion, A first mask material forming step of forming a first mask material on the polycrystalline silicon layer; and a depth of at least 1 / or more of a thickness of the polycrystalline silicon layer in a region of an upper surface of the element isolation portion. A first etching step of etching the polycrystalline silicon layer, a second mask material forming step of forming a second mask material on the polycrystalline silicon layer, and a region etched by the first etching step. A second etching step of etching the polycrystalline silicon layer up to the element isolation portion, and an insulating step of forming an insulating layer on the element isolation portion and the polycrystalline silicon layer. Characterized in that it comprises a forming step.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1A is a cross-sectional view illustrating a nonvolatile semiconductor memory device 100 according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view illustrating a general nonvolatile semiconductor memory device. .
[0026]
The nonvolatile semiconductor memory device 100 includes a silicon substrate 1, a first silicon oxide film 2 laminated on the silicon substrate 1, an element isolation portion 101 projecting from the silicon substrate 1 at a predetermined interval, and The device includes a floating electrode 102 provided between the portions 101, a boundary layer 103 provided on the element isolation portion 101 and the floating electrode 102, and a control electrode 104 stacked on the boundary layer 103.
[0027]
Note that the element isolation portion 101 is the fourth silicon oxide film 7, the floating electrode 102 is the first polycrystalline silicon 3 and the second polycrystalline silicon 8, the boundary layer 103 is the ONO film 21, and the control electrode 104 is the third polycrystalline silicon 3. It is formed from a polycrystalline silicon film 22.
[0028]
The boundary layer 103 is formed in a two-step shape on the element isolation portion 101, and the length in the width direction orthogonal to the thickness direction is shorter on the silicon substrate 1 side and is shorter on the side separated from the silicon substrate 1. It is formed long. The dimensions of each part of the boundary layer 103 are formed as shown in FIG. Therefore, the outer peripheral length L of the floating electrode 102 in contact with the boundary layer 103 is
L = 2 (a1 + a2) + (b1 + 2b2) (2)
And substantially corresponds to the sum of the length a in the depth direction and the length b in the width direction in FIG.
[0029]
Such a nonvolatile semiconductor memory device 100 is manufactured by the floating electrode forming process shown in FIGS. Note that the element isolation forming step, which is a step before the floating electrode forming step, is the same as that shown in FIG.
[0030]
As shown in FIG. 2A, a second polycrystalline silicon film 8 doped with phosphorus by a low pressure CVD method is deposited to a thickness T, and a fifth silicon oxide film 9 is deposited to a predetermined thickness. Then, the photoresist R is processed into a desired pattern by a photo-etching method. Using the photoresist R as a mask, the fifth silicon oxide film 9 is etched by RIE.
[0031]
Further, as shown in FIG. 2B, the second polycrystalline silicon 8 is dug by the RIE method until the second polycrystalline silicon 8 has a dug depth D. Before the second polycrystalline silicon 8 is completely removed, the RIE method is used. Stop the etching process. At this time, the digging depth D of the second polycrystalline silicon 8 is set to be not less than 1/3 of the thickness T of the polycrystalline silicon 8 before processing. The reason will be described later.
[0032]
Then, exposing the silicon substrate 1 in the O 2 plasma, the photoresist is removed R. Then, as shown in FIG. 2C, a sixth silicon oxide film 10 is deposited by a low pressure CVD method. The fifth silicon oxide film 9 and the sixth silicon oxide film 10 are etched using the sixth silicon oxide film 10 as a mask material. Next, as shown in FIG. 2D, the second polycrystalline silicon 8 is etched by the RIE method using the fifth silicon oxide film 9 and the sixth silicon oxide film 10 as a mask material. At this time, the portion of the second polycrystalline silicon 8 which has been left without being cut off earlier is processed. At this time, the opening width of the mask is narrower than when the second polycrystalline silicon is dug partway, and the processed shape of the second polycrystalline silicon 8 becomes a stepped shape.
[0033]
Next, the fifth silicon oxide film 9 and the sixth silicon oxide film 10 are peeled off using a hydrofluoric acid-based etchant. Next, after being immersed in a thin NHF 4 solution, an ONO film 21 is deposited by a low pressure CVD method and subjected to a heat treatment in an oxidizing atmosphere. Next, as shown in FIG. 2E, a third polycrystalline silicon film 22 is deposited by a low pressure CVD method.
[0034]
Such a nonvolatile semiconductor memory device 100 has the following effects. That is, the boundary layer 103, which is the boundary between the floating electrode 102 and the control electrode 104, is formed in a stepped manner, and the floating electrode 102 is smaller than the interval between the floating electrodes 102 below the floating electrode 102 (on the side of the silicon substrate 1). At the upper part (on the side separated from the silicon substrate 1).
[0035]
For this reason, the capacitance between the floating electrodes 102 can be reduced, and the position where the boundary layer 103 is aligned with the element isolation portion 101 can be determined with the same accuracy as in the related art. In addition, by reducing the sectional area of the floating electrode 102, the capacitance between the floating electrode 102 and the opposing floating electrode 102 can be reduced.
[0036]
On the other hand, as described above, the outer peripheral length L of the floating electrode 102, which is an element that determines the capacitance between the control electrode and the floating electrode, is the length a in the depth direction and the length in the width direction in FIG. This is almost equivalent to the sum of b. That is, by forming the boundary layer 103 in a step shape, the outer peripheral length L can be sufficiently ensured, so that the capacitance between the control electrode and the floating electrode does not decrease, and only the capacitance between the floating electrodes can be reduced. When the capacitance between the control electrode and the floating electrode decreases, the write voltage of the control electrode 104 needs to be increased. If the write voltage is increased, it causes the breakdown voltage to deteriorate.
[0037]
Although the number of steps of the boundary layer 103 is two, the number of steps may be three or more, and the outer peripheral length L may be tapered as long as 90% or more is secured. The reason for setting it to 90% or more is that the decrease in the capacitance between the control electrode and the floating electrode can be suppressed to 10% or less, and can be made smaller than the fluctuation width (10%) of the capacitance between the control electrode and the floating electrode due to process variation. It is.
[0038]
Next, the reason why the digging depth D of the second polycrystalline silicon 8 is set to 1/3 or more of the thickness T of the polycrystalline silicon 8 before processing will be described. FIG. 3 is a simulation of the relationship between D / T and the capacitance between floating electrodes. Here, the capacitance between floating electrodes when D / T is 0 is normalized to 1. As can be seen from FIG. 3, when D / T is dug in the first polycrystalline silicon excavation so that D / T becomes 1/3 or more, 10.5% between floating electrodes is smaller than when D / T is 0. The capacity is reduced.
[0039]
The capacitance between the floating electrodes has a variation of about ± 10% due to process variations such as the thickness of the polycrystalline silicon and the etching process (range P in FIG. 3). When the D / T is 1/3 or less even in the stepped shape, the effect of reducing the capacitance between floating electrodes is 10% or less, which is smaller than the amount of the variation in capacitance. Therefore, improvement in device characteristics (reduction in threshold voltage fluctuation) cannot be expected. . Therefore, in order to obtain a capacitance reduction effect larger than the capacitance variation width, D / T needs to be 1/3 or more.
[0040]
As described above, according to the nonvolatile semiconductor memory device 100 according to the first embodiment of the present invention, the interval between the floating electrodes below the floating electrode 102 is small, and the interval above the floating electrode 102 is widened. It is possible to make the positioning accuracy of the boundary layer 103 equal to the conventional one, reduce the capacitance between the adjacent floating electrodes 102, and reduce the threshold voltage fluctuation due to the capacitance coupling between the floating electrodes 102. it can. Further, since the cross-sectional area of the floating electrode 102 can be reduced, the capacitance between the opposing floating electrodes 102 can be reduced, and the variation in threshold voltage due to capacitive coupling between the floating electrodes can be reduced.
[0041]
Further, it is possible to reduce the variation in the threshold value due to the capacitance coupling between the floating electrodes 102 while suppressing the deterioration of the breakdown voltage of the junction due to the reduction in the capacitance between the control electrode and the floating electrode.
[0042]
FIGS. 4A and 4B are views showing a part of the manufacturing process of the nonvolatile semiconductor memory device according to the second embodiment of the present invention. Note that the same steps are performed up to (d) of FIG. 2 in the first embodiment, so that detailed description is omitted.
[0043]
As shown in FIG. 4A, a fourth silicon oxide film 7 is dug into a V-shaped cross section using the silicon oxide films 9 and 10 as a mask material to form a concave portion 7a. Here, the V-shaped cross section means that the cross-sectional area in the width direction decreases from the opening of the concave portion 7a to the bottom, and may have a trapezoidal cross section with a flat bottom.
[0044]
Next, the fifth silicon oxide film 9 and the sixth silicon oxide film 10 are peeled off using a hydrofluoric acid-based etchant. Next, after being immersed in a thin NHF 4 solution, an ONO (SiO 2 , SiN, SiO 2 ) film 11 is deposited by a low pressure CVD method and subjected to a heat treatment in an oxidizing atmosphere. Next, as shown in FIG. 4B, a third polycrystalline silicon film 12 is deposited by a low pressure CVD method.
[0045]
According to the nonvolatile semiconductor memory device 110 configured as described above, it is possible to suppress an electrical short between the control electrode 104 buried in the recess 7 a and the silicon substrate 1. In this case, the capacitance between floating electrodes can be reduced by 35% as compared with the case where the concave portion 7a is not formed. This is because the wraparound capacitance between the floating electrodes from below can be reduced by embedding the third polycrystalline silicon film 12 in the recess 7a with the ONO film 11 interposed therebetween.
[0046]
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.
[0047]
【The invention's effect】
According to the present invention, by reducing the capacitance between floating electrodes, fluctuations in the threshold voltage due to capacitance coupling can be suppressed, and device reliability can be improved.
[Brief description of the drawings]
FIG. 1A is a sectional view showing a nonvolatile semiconductor memory device according to a first embodiment of the present invention, and FIG. 1B is a sectional view showing a nonvolatile semiconductor memory device according to a comparative example.
FIG. 2 is a sectional view showing a manufacturing process (floating electrode forming process) of the nonvolatile semiconductor memory device.
FIG. 3 is an explanatory diagram showing a relationship between a ratio of a depth D of a second polycrystalline silicon to a thickness T of the polycrystalline silicon before processing and a capacitance between floating electrodes in the nonvolatile semiconductor memory device.
FIG. 4 is a sectional view showing a nonvolatile semiconductor memory device according to a second embodiment of the present invention.
FIG. 5 is a sectional view showing a manufacturing process (element isolation forming process) of a general nonvolatile semiconductor memory device.
FIG. 6 is a sectional view showing a manufacturing process (floating electrode forming process) of a conventional nonvolatile semiconductor memory device.
FIG. 7 is an explanatory diagram showing a principle of a potential shift between floating electrodes.
FIG. 8 is an explanatory diagram showing a principle of a potential shift between floating electrodes.
FIG. 9 is an explanatory diagram showing a principle of a potential shift between floating electrodes.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Silicon substrate, 2 ... 1st silicon oxide film, 7 ... 4th silicon oxide film, 8 ... 2nd polycrystalline silicon, 21 ... ONO film, 22 ... 3rd polycrystalline silicon film, 100 ... Non-volatile Semiconductor memory device, 101: element isolation portion, 102: floating electrode, 103: boundary layer, 104: control electrode.

Claims (7)

電気的に書き込み及び消去可能な不揮発性半導体記憶装置において、
基板と、
この基板から突出するとともに、所定間隔で配設された複数の素子分離部と、
これら素子分離部間に配置された浮遊電極と、
上記素子分離部及び上記浮遊電極の上に積層された絶縁層とを備え、
隣接する浮遊電極相互の間隔は、上記基板側よりも上記基板より離間した側で広くなるように形成されていることを特徴とする不揮発性半導体記憶装置。
In an electrically writable and erasable nonvolatile semiconductor memory device,
Board and
A plurality of element isolation portions projecting from the substrate and arranged at predetermined intervals;
A floating electrode disposed between these element isolation parts;
Comprising an insulating layer laminated on the element isolation portion and the floating electrode,
The nonvolatile semiconductor memory device according to claim 1, wherein an interval between adjacent floating electrodes is formed to be wider on a side separated from the substrate than on the substrate.
上記間隔は、複数の段部で形成されていることを特徴とする請求項1に記載の不揮発性半導体記憶装置。2. The non-volatile semiconductor storage device according to claim 1, wherein the interval is formed by a plurality of steps. 上記段部のうち最も基板側の段部の厚さを除く各段部の厚さの合計が全段部の厚さの合計に対し1/3以上であること特徴とする請求項2に記載の不揮発性半導体記憶装置。3. The total of the thickness of each of the step portions excluding the thickness of the step portion closest to the substrate is at least 1/3 of the total thickness of all the step portions. Nonvolatile semiconductor memory device. 上記浮遊電極の断面についての上記絶縁層側の外周長さの合計は、上記浮遊電極の断面についての厚さ方向と幅方向との合計に対し90%以上であることを特徴とする請求項2記載の不揮発性半導体記憶装置。3. The sum of the outer peripheral length on the insulating layer side of the section of the floating electrode is 90% or more of the sum of the thickness direction and the width direction of the section of the floating electrode. 14. The nonvolatile semiconductor memory device according to claim 1. 上記素子分離部の上記基板から離間した側の面には凹部が形成され、この凹部内に上記絶縁層が形成されていることを特徴とする請求項1に記載の不揮発性半導体記憶装置。2. The nonvolatile semiconductor memory device according to claim 1, wherein a concave portion is formed on a surface of the element isolation portion on a side separated from the substrate, and the insulating layer is formed in the concave portion. 上記凹部は、開口部から底部にかけて深さ方向に直交する面の面積が狭くなることを特徴とする請求項5記載の不揮発性半導体記憶装置。6. The non-volatile semiconductor memory device according to claim 5, wherein an area of a surface of the concave portion orthogonal to a depth direction decreases from an opening to a bottom. 基板上にこの基板から突出する素子分離部を形成する素子分離部形成工程と、
上記基板及び上記素子分離部の上に多結晶シリコン層を形成する多結晶シリコン層形成工程と、
上記多結晶シリコン層の上に第1のマスク材を形成する第1マスク材形成工程と、
上記素子分離部の上面の領域内において、上記多結晶シリコン層の厚さの少なくとも1/3以上の深さまで上記多結晶シリコン層をエッチングする第1エッチング工程と、
上記多結晶シリコン層の上に第2のマスク材を形成する第2マスク材形成工程と、
上記第1エッチング工程によってエッチングされた領域内において、上記素子分離部まで上記多結晶シリコン層をエッチングする第2エッチング工程と、
上記素子分離部及び上記多結晶シリコン層の上に絶縁層を形成する絶縁層形成工程とを備えていることを特徴とする不揮発性半導体記憶装置の製造方法。
An element isolation portion forming step of forming an element isolation portion projecting from the substrate on the substrate,
Forming a polycrystalline silicon layer on the substrate and the element isolation portion,
A first mask material forming step of forming a first mask material on the polycrystalline silicon layer;
A first etching step of etching the polycrystalline silicon layer to a depth of at least 1/3 or more of the thickness of the polycrystalline silicon layer in a region on the upper surface of the element isolation portion;
A second mask material forming step of forming a second mask material on the polycrystalline silicon layer;
A second etching step of etching the polycrystalline silicon layer up to the element isolation portion in a region etched by the first etching step;
A method for forming an insulating layer on the element isolation portion and the polycrystalline silicon layer.
JP2003001488A 2003-01-07 2003-01-07 Nonvolatile semiconductor memory and its manufacturing method Pending JP2004214510A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003001488A JP2004214510A (en) 2003-01-07 2003-01-07 Nonvolatile semiconductor memory and its manufacturing method
US10/748,134 US7038268B2 (en) 2003-01-07 2003-12-31 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003001488A JP2004214510A (en) 2003-01-07 2003-01-07 Nonvolatile semiconductor memory and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004214510A true JP2004214510A (en) 2004-07-29

Family

ID=32767186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003001488A Pending JP2004214510A (en) 2003-01-07 2003-01-07 Nonvolatile semiconductor memory and its manufacturing method

Country Status (2)

Country Link
US (1) US7038268B2 (en)
JP (1) JP2004214510A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157893A (en) * 2005-12-02 2007-06-21 Toshiba Corp Non-volatile semiconductor memory and its manufacturing method
JP2007294595A (en) * 2006-04-24 2007-11-08 Toshiba Corp Nonvolatile semiconductor memory
KR100784868B1 (en) 2005-06-24 2007-12-14 삼성전자주식회사 A Semiconductor Device and Method for Forming Thereof
JPWO2006046301A1 (en) * 2004-10-29 2008-08-07 スパンション エルエルシー Semiconductor device and method of manufacturing semiconductor device
US7687860B2 (en) 2005-06-24 2010-03-30 Samsung Electronics Co., Ltd. Semiconductor device including impurity regions having different cross-sectional shapes
US7749839B2 (en) 2005-06-21 2010-07-06 Kabushiki Kaisha Toshiba Semiconductor device including a floating gate electrode having stacked structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7396720B2 (en) * 2004-07-27 2008-07-08 Micron Technology, Inc. High coupling memory cell
JP2008016777A (en) * 2006-07-10 2008-01-24 Toshiba Corp Semiconductor device, and manufacturing method thereof
US8154107B2 (en) * 2007-02-07 2012-04-10 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and a method of fabricating the device
US8338250B2 (en) * 2009-01-15 2012-12-25 Macronix International Co., Ltd. Process for fabricating memory device
US8847319B2 (en) 2012-03-09 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Dummy structure for multiple gate dielectric interface and methods
US9362272B2 (en) 2012-11-01 2016-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Lateral MOSFET

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973353A (en) * 1997-12-18 1999-10-26 Advanced Micro Devices, Inc. Methods and arrangements for forming a tapered floating gate in non-volatile memory semiconductor devices
US6153469A (en) * 1998-07-13 2000-11-28 Samsung Electronics, Co., Ltd. Method of fabricating cell of flash memory device
JP2001160618A (en) 1999-12-01 2001-06-12 Toshiba Corp Non-volatile semiconductor memory device and its manufacturing method
KR100311049B1 (en) * 1999-12-13 2001-10-12 윤종용 Nonvolatile semiconductor memory device and manufacturing method thereof
KR100355238B1 (en) * 2000-10-27 2002-10-11 삼성전자 주식회사 Method for fabricating cell of flash memory device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006046301A1 (en) * 2004-10-29 2008-08-07 スパンション エルエルシー Semiconductor device and method of manufacturing semiconductor device
JP5237554B2 (en) * 2004-10-29 2013-07-17 スパンション エルエルシー Manufacturing method of semiconductor device
US7749839B2 (en) 2005-06-21 2010-07-06 Kabushiki Kaisha Toshiba Semiconductor device including a floating gate electrode having stacked structure
KR100784868B1 (en) 2005-06-24 2007-12-14 삼성전자주식회사 A Semiconductor Device and Method for Forming Thereof
US7687860B2 (en) 2005-06-24 2010-03-30 Samsung Electronics Co., Ltd. Semiconductor device including impurity regions having different cross-sectional shapes
JP2007157893A (en) * 2005-12-02 2007-06-21 Toshiba Corp Non-volatile semiconductor memory and its manufacturing method
JP4745039B2 (en) * 2005-12-02 2011-08-10 株式会社東芝 Nonvolatile semiconductor memory device and manufacturing method thereof
JP2007294595A (en) * 2006-04-24 2007-11-08 Toshiba Corp Nonvolatile semiconductor memory
US7982259B2 (en) 2006-04-24 2011-07-19 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory
US8324679B2 (en) 2006-04-24 2012-12-04 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory
US8637915B2 (en) 2006-04-24 2014-01-28 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory

Also Published As

Publication number Publication date
US7038268B2 (en) 2006-05-02
US20040150033A1 (en) 2004-08-05

Similar Documents

Publication Publication Date Title
KR100289976B1 (en) Nonvolatile Semiconductor Memory
WO2008059768A1 (en) Semiconductor device
JP2004214510A (en) Nonvolatile semiconductor memory and its manufacturing method
JP4886801B2 (en) Manufacturing method of semiconductor device
KR100605508B1 (en) Flash memory devices having floating gates self-aligned with active regions and methods of fabricating the same
KR20050101318A (en) Floating gate isolation and method of making
KR100784081B1 (en) flash memory device and method for fabricating the same
KR100807112B1 (en) Flash memory and method for fabricating the same
JP2002141425A (en) Side wall process for improving flash memory cell performance
JP2001332637A (en) Semiconductor memory device and its manufacturing method
JPH07254652A (en) Semiconductor memory and fabrication thereof
KR100643468B1 (en) Nonvolatile memory devices having insulating spacer and manufacturing method thereof
JP4049425B2 (en) Method for manufacturing nonvolatile semiconductor memory device
US20120037974A1 (en) Semiconductor device and method of manufacturing the same
KR100602126B1 (en) Flash memory cell and method for manufacturing the same
JP2005340853A (en) Nonvolatile semiconductor memory and its manufacturing method
KR19990007264A (en) Semiconductor memory device and manufacturing method thereof
KR100871982B1 (en) Flash memory cell and method for manufacturing the same
US6787842B1 (en) Method for operating a stacked gate field effect transistor (FET) device
KR100649308B1 (en) Flash memory device and manufacturing method of self-aligned floating gate array
JPH0774274A (en) Fabrication of semiconductor device
JP3664884B2 (en) Semiconductor memory device and manufacturing method thereof
KR100641507B1 (en) Method for fabricating floating gate in a flash memory
KR100823694B1 (en) Method of forming a structure of floating gate in a non-volatile memory device
KR20070034331A (en) Flash memory device and manufacturing method thereof