【0001】
【発明の属する技術分野】
本発明は、積層プリント基板の構造に関し、特に積層プリント基板上に実装する電子部品の放熱を効率よく容易に行う技術に関する。
【0002】
【従来の技術】
従来の技術は、例えば、特開2000−138485のように、積層プリント基板の内部にヒートパイプを内蔵しておき、積層プリント基板上に発熱部品を実装したとき、熱を積層プリント基板表層材→積層プリント基板内装のヒートパイプ→放熱部へ伝達する構成であった。
【0003】
【特許文献1】
特開2000−138485号公報
【0004】
【発明が解決しようとする課題】
上記従来技術は、発熱部品を積層プリント基板の表層に実装し、積層プリント基板の表層材を経由して、内層のヒートパイプに熱を逃がす構造である。通常、積層プリント基板の表層に用いられる材料は、内層のヒートパイプの材料に対し、熱伝達率が非常に低い。
【0005】
したがって、積層プリント基板に実装される発熱部品の熱を効率よく効果的に放熱することができない。本発明の目的は、効率よく、効果的に、かつ容易に放熱できる積層プリント基板の放熱構造を提供することである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の積層プリント基板の放熱構造は、内層に構成された熱伝達率の高い材料の一部を、積層プリント基板の表層の一部に直接露出させ、この部分に発熱素子を実装することで、効率よく、効果的に、かつ容易に放熱できる積層プリント基板の放熱構造を提供できる。
【0007】
【発明の実施の形態】
以下、実施例を図1,図2より説明する。
【0008】
図1及び図2は積層プリント基板の放熱構造の一実施例である。
【0009】
図1は、構成を示す。図2は、図1の構成図を示す。
【0010】
積層プリント基板11は、表面にパターン配線および部品実装可能な表層シート22と、パターン配線が可能な内層シート23と、前記内層シートと同一層に構成されており、かつ前記表層シート22の一部から直接露出しており、かつ熱伝導率が高い材料で構成された構造物である熱伝導材21と、裏面にパターン配線および部品実装可能な裏層シート24から構成されており、各々のシートが充分な強度で接着されて構成されている。
【0011】
また、発熱する電子部品21は、前記積層プリント基板11の表層シート22の一部から露出している熱伝導材21に直接実装可能な構成となっている。
【0012】
例えば、特開2000−138485に見られるような従来技術においては、積層プリント基板の内層部に熱伝導率の高い材料をガラエポ等で構成された配線用シート材で挟み込む構成である。
【0013】
発熱する電子部品を配線用シート材上に実装したとき、熱は、まず、ガラエポ等で構成された配線用シート材に伝わり、次に内層に構成された熱伝導率の高い材料へ伝わり放熱される。
【0014】
しかし、通常、ガラエポ等で構成される配線用シート材の熱伝導率は内層に構成された高熱伝導率材に対し、著しく低い。
【0015】
従って、効率良く発熱する電子部品の熱を放熱することを目的として、せっかく積層プリント基板の内層に高熱伝導率材を挟み込んでも、効率良く放熱できているとは言えない。
【0016】
しかしながら、本実施例によれば、前記熱伝導材21が前記表層シート22の一部から露出しいることを特徴とし、この露出部に直接発熱する電子部品21を実装できる構成のため、効率良く発熱する電子部品21の熱を放熱することが可能である。
【0017】
次に他の実施例を図3,図4より説明する。
【0018】
図3及び図4は積層プリント基板の放熱構造の他の実施例である。
【0019】
図3は、構成を示す。図4は、図3の構成図を示す。
【0020】
前述のとおり、積層プリント基板11は、表面にパターン配線および部品実装可能な表層シート22と、パターン配線が可能な内層シート23と、前記内層シートと同一層に構成されており、かつ前記表層シート22の一部から直接露出しており、かつ熱伝導率が高い材料で構成された構造物である熱伝導材21と、裏面にパターン配線および部品実装可能な裏層シート24から構成されており、各々のシートが充分な強度で接着されて構成されている。発熱する電子部品21は、前記積層プリント基板11の表層シート22の一部から露出している熱伝導材21に直接実装可能な構成となっている。
【0021】
また、前記積層プリント基板11は、金属等で構成される筐体31に、金属等で構成されるネジ32で取り付けられる構成となっている。
【0022】
以上によれば、発熱する電子部品21で発生した熱は、熱伝導材21を伝わり、次に金属等で構成されたネジ32を伝わり、最後に、金属等で構成される筐体31に伝わる。
【0023】
前記金属等で構成されたネジ32、および金属等で構成された筐体31は熱抵抗の低い材料で構成されているため、電子部品21で発生した熱を効率よく外部へ放熱することができる。本実施例においては、前記積層プリント基板11を取り付ける筐体31を金属、また、積層プリント基板11と筐体31を機械的に結合するネジ32を金属としたが、金属以外の熱抵抗が小さい材料、すなわち、熱を効率よく伝える材料を用いても同じ効果を得ることができることは言うまでもない。
【0024】
具体的な熱の流れを図5を用いて説明する。
【0025】
他の実装部品52aから52fは積層プリント基板11の表面に実装する構成となっている。また、熱経路12aから12gは発熱する電子部品21で発生した熱の流れを示す。また、金属等で構成される筐体31は、金属ブロック51の上に置かれるものとする。
【0026】
発熱する電子部品21で発生した熱は、まず、前記発熱する電子部品21が直接接触している熱伝導材21に熱経路12a,熱経路12bのように伝わる。次に、積層プリント基板11と金属等で構成される筐体31を機械的に結合する金属等で構成されるネジ32に伝わる。前記ネジ32は、積層プリント基板11の内層基板である熱伝導材21と直接接触しているので、熱経路12cのように熱が伝わる。次に、前記ネジ32は、筐体31とも機械的に結合されているため、熱経路12dのように熱が伝わる。最後に筐体31は、金属ブロック51の上におかれているため、熱経路12e,12f,12gのように熱は前記金属ブロック51に放熱される。
【0027】
積層プリント基板11を構成している他の要素である表層シート22,内層シート23,裏層シート24は、通常樹脂材料で構成されるため、熱抵抗が高く、熱は伝わりにくいため、発熱する電子部品21で発生した熱は、前記表層シート22,内層シート23,裏層シート24へはほとんど伝わらず、前述した熱経路12a,12b,12c,12d,12e,12f,12gのように伝わる。
【0028】
通常最終的に熱を伝える金属ブロック51の熱容量は非常に大きいので、発熱する電子部品21で発生した熱のほとんどが、前記金属ブロック51へ流れ込むため、前記発熱する電子部品21で発生した熱を効率よく放熱できる。
【0029】
本実施例においては、発熱する電子部品21で発生した熱を最終的に金属ブロック51に放熱するという一実施例について説明したが、最終的な放熱先は、金属だけではなく、例えば、水,空気等であっても金属ブロック51と同じように充分効率よく放熱できることは言うまでもない。
【0030】
また、最終的な放熱先を、水や空気とした場合、放熱の対象を対流させたり循環させたりすることで、より、効果的に放熱できるのは言うまでもない。
【0031】
また、熱伝導材21を積層プリント基板11の内層、すなわち、表層シート22と裏層シート24で挟み込む構成となっているため、発熱する電子部品21を実装している面の裏側においても他の電子部品52e,52f等を実装することが可能となる。したがって、実施例によれば、他の電子部品の実装性を阻害することなく、発熱する電子部品21を実装し、かつ、充分な放熱効果を得ることが可能であるといえる。
【0032】
また、積層プリント基板の放熱構造は、内層に構成された熱伝達率の高い材料の一部を、積層プリント基板の表層の一部に直接露出させ、この部分に発熱素子を実装することで、効率よく、効果的に、かつ容易に放熱できる積層プリント基板の放熱構造を提供することができる。
【0033】
【発明の効果】
本発明によれば、効率よく、効果的に、かつ容易に放熱できる積層プリント基板の放熱構造を提供することができる。
【図面の簡単な説明】
【図1】制御装置の一実施例を示す構成図である。
【図2】制御装置の構成を示す図である。
【図3】制御装置の構成を示す図である。
【図4】制御装置の構成を示す図である。
【図5】制御装置の熱伝達の様子を示す図である。
【符号の説明】
11…積層プリント基板(積層基板)、12…発熱する電子部品、12a〜
12g…熱経路、21…電子部品(熱伝導材)、22…表層シート、23…内層シート、24…裏層シート、31…筐体、51…金属ブロック。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure of a multilayer printed circuit board, and more particularly to a technique for efficiently and easily radiating electronic components mounted on the multilayer printed circuit board.
[0002]
[Prior art]
A conventional technique is, for example, as described in Japanese Patent Application Laid-Open No. 2000-138485, in which a heat pipe is built in a laminated printed board, and when a heat-generating component is mounted on the laminated printed board, heat is applied to the surface layer material of the laminated printed board. The structure was such that heat pipes inside the multilayer printed circuit board were transmitted to the heat radiating section.
[0003]
[Patent Document 1]
JP 2000-138485 A
[Problems to be solved by the invention]
The above prior art has a structure in which a heat-generating component is mounted on a surface layer of a multilayer printed circuit board, and heat is released to an inner layer heat pipe via a surface material of the multilayer printed circuit board. Generally, the material used for the surface layer of the laminated printed circuit board has a very low heat transfer coefficient with respect to the material of the inner layer heat pipe.
[0005]
Therefore, the heat of the heat generating components mounted on the multilayer printed circuit board cannot be efficiently and effectively radiated. SUMMARY OF THE INVENTION An object of the present invention is to provide a heat dissipation structure for a laminated printed circuit board that can efficiently, efficiently, and easily dissipate heat.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the heat dissipation structure of the multilayer printed circuit board of the present invention directly exposes a part of the material having a high heat transfer coefficient formed in the inner layer to a part of the surface layer of the multilayer printed board, and By mounting the heat generating element on the laminated printed circuit board, it is possible to provide a heat dissipation structure of a laminated printed circuit board capable of efficiently, efficiently and easily dissipating heat.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment will be described below with reference to FIGS.
[0008]
1 and 2 show an embodiment of a heat dissipation structure of a laminated printed circuit board.
[0009]
FIG. 1 shows the configuration. FIG. 2 shows a configuration diagram of FIG.
[0010]
The laminated printed circuit board 11 is constituted by a surface sheet 22 on the surface of which pattern wiring and components can be mounted, an inner layer sheet 23 on which pattern wiring can be performed, and the same layer as the inner layer sheet, and a part of the surface layer sheet 22. A heat conductive material 21 which is a structure directly made of a material having a high thermal conductivity and is exposed to the outside, and a back layer sheet 24 on the back surface of which pattern wiring and components can be mounted. Are bonded with sufficient strength.
[0011]
The heat-generating electronic component 21 is configured to be directly mountable on the heat conductive material 21 exposed from a part of the surface sheet 22 of the laminated printed board 11.
[0012]
For example, in the prior art as disclosed in Japanese Patent Application Laid-Open No. 2000-138485, a structure in which a material having high thermal conductivity is sandwiched between wiring sheet materials made of glass epoxy or the like in an inner layer portion of a laminated printed circuit board.
[0013]
When a heat-generating electronic component is mounted on a wiring sheet material, heat is first transmitted to the wiring sheet material composed of glass epoxy, etc., and then transmitted to the inner layer material with high thermal conductivity and radiated. You.
[0014]
However, the thermal conductivity of the wiring sheet material made of glass epoxy is usually much lower than the high thermal conductivity material formed in the inner layer.
[0015]
Therefore, even if a high thermal conductivity material is interposed between inner layers of a multilayer printed circuit board for the purpose of efficiently radiating heat of an electronic component that generates heat efficiently, it cannot be said that heat is efficiently radiated.
[0016]
However, according to the present embodiment, the heat conductive material 21 is exposed from a part of the surface layer sheet 22. Since the electronic component 21 that directly generates heat can be mounted on the exposed portion, the heat conductive material 21 can be efficiently mounted. It is possible to radiate the heat of the electronic component 21 that generates heat.
[0017]
Next, another embodiment will be described with reference to FIGS.
[0018]
3 and 4 show another embodiment of the heat dissipation structure of the laminated printed circuit board.
[0019]
FIG. 3 shows the configuration. FIG. 4 shows the configuration diagram of FIG.
[0020]
As described above, the multilayer printed circuit board 11 is formed on the same layer as the surface sheet 22 on which pattern wiring and components can be mounted, the inner layer sheet 23 on which pattern wiring can be performed, and the inner layer sheet. A heat conductive material 21 which is a structure directly exposed from a part of the base material 22 and made of a material having a high heat conductivity, and a back layer sheet 24 on the back surface of which a pattern wiring and components can be mounted. Each sheet is bonded with sufficient strength. The heat-generating electronic component 21 is configured to be directly mountable on the heat conductive material 21 exposed from a part of the surface sheet 22 of the printed circuit board 11.
[0021]
Further, the laminated printed board 11 is configured to be attached to a housing 31 made of metal or the like with screws 32 made of metal or the like.
[0022]
According to the above, the heat generated in the heat-generating electronic component 21 is transmitted through the heat conductive material 21, then transmitted through the screw 32 made of metal or the like, and finally transmitted to the housing 31 made of metal or the like. .
[0023]
Since the screw 32 made of metal or the like and the housing 31 made of metal or the like are made of a material having low thermal resistance, heat generated in the electronic component 21 can be efficiently radiated to the outside. . In this embodiment, the casing 31 for mounting the laminated printed board 11 is made of metal, and the screw 32 for mechanically connecting the laminated printed board 11 and the casing 31 is made of metal. It goes without saying that the same effect can be obtained by using a material, that is, a material that efficiently transmits heat.
[0024]
A specific heat flow will be described with reference to FIG.
[0025]
The other mounting components 52a to 52f are configured to be mounted on the surface of the multilayer printed circuit board 11. The heat paths 12a to 12g indicate the flow of heat generated in the electronic component 21 that generates heat. The housing 31 made of metal or the like is placed on the metal block 51.
[0026]
The heat generated by the heat-generating electronic component 21 is first transmitted to the heat conductive material 21 with which the heat-generating electronic component 21 is in direct contact, as a heat path 12a and a heat path 12b. Next, the power is transmitted to a screw 32 made of metal or the like that mechanically couples the laminated printed board 11 and a housing 31 made of metal or the like. Since the screw 32 is in direct contact with the heat conductive material 21 that is the inner layer substrate of the multilayer printed circuit board 11, heat is transmitted as in the heat path 12c. Next, since the screw 32 is also mechanically connected to the housing 31, heat is transmitted as in the heat path 12d. Finally, since the housing 31 is placed on the metal block 51, heat is radiated to the metal block 51 as in the heat paths 12e, 12f, and 12g.
[0027]
The surface layer sheet 22, the inner layer sheet 23, and the back layer sheet 24, which are other elements constituting the laminated printed board 11, are usually made of a resin material, so that they have a high thermal resistance and are hard to conduct heat and generate heat. The heat generated in the electronic component 21 is hardly transmitted to the surface layer sheet 22, the inner layer sheet 23, and the back layer sheet 24, but is transmitted like the above-described heat paths 12a, 12b, 12c, 12d, 12e, 12f, and 12g.
[0028]
Usually, since the heat capacity of the metal block 51 that ultimately transmits heat is very large, most of the heat generated in the electronic component 21 that generates heat flows into the metal block 51, so that the heat generated in the electronic component 21 that generates heat is reduced. Heat can be dissipated efficiently.
[0029]
In the present embodiment, an example has been described in which heat generated by the electronic component 21 that generates heat is finally radiated to the metal block 51. However, the final radiating destination is not only metal but also water, for example. It goes without saying that heat can be released sufficiently efficiently as with the metal block 51 even with air or the like.
[0030]
Also, when the final heat radiation destination is water or air, it goes without saying that heat can be more effectively radiated by convection or circulation of the heat radiation target.
[0031]
Further, since the heat conductive material 21 is sandwiched between the inner layers of the laminated printed circuit board 11, that is, the surface sheet 22 and the back layer sheet 24, the other side of the surface on which the heat-generating electronic components 21 are mounted is also different. Electronic components 52e and 52f can be mounted. Therefore, according to the embodiment, it can be said that it is possible to mount the heat-generating electronic component 21 and obtain a sufficient heat radiation effect without impairing the mountability of other electronic components.
[0032]
In addition, the heat dissipation structure of the multilayer printed circuit board is configured such that a part of the material having a high heat transfer coefficient formed in the inner layer is directly exposed to a part of the surface layer of the multilayer printed circuit board, and a heating element is mounted on this part. It is possible to provide a heat dissipation structure for a multilayer printed circuit board that can efficiently, effectively, and easily dissipate heat.
[0033]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the heat dissipation structure of the laminated printed circuit board which can efficiently, effectively, and easily dissipate heat can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a control device.
FIG. 2 is a diagram showing a configuration of a control device.
FIG. 3 is a diagram showing a configuration of a control device.
FIG. 4 is a diagram showing a configuration of a control device.
FIG. 5 is a diagram showing a state of heat transfer of the control device.
[Explanation of symbols]
11: laminated printed circuit board (laminated substrate), 12: electronic components that generate heat, 12a-
12g: heat path, 21: electronic component (heat conductive material), 22: surface layer sheet, 23: inner layer sheet, 24: back layer sheet, 31: housing, 51: metal block.