JP2004212038A - Air conditioning ventilation system for building - Google Patents
Air conditioning ventilation system for building Download PDFInfo
- Publication number
- JP2004212038A JP2004212038A JP2003390041A JP2003390041A JP2004212038A JP 2004212038 A JP2004212038 A JP 2004212038A JP 2003390041 A JP2003390041 A JP 2003390041A JP 2003390041 A JP2003390041 A JP 2003390041A JP 2004212038 A JP2004212038 A JP 2004212038A
- Authority
- JP
- Japan
- Prior art keywords
- air
- building
- ventilation system
- heat
- air conditioning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0046—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
- F24F5/005—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using energy from the ground by air circulation, e.g. "Canadian well"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/40—Geothermal heat-pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/54—Free-cooling systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Central Air Conditioning (AREA)
- Other Air-Conditioning Systems (AREA)
- Ventilation (AREA)
Abstract
Description
本発明は、一戸建て住宅、集合住宅、ビルなどの建物に適用することができる建物の空調ならびに換気システムに関するものであり、更に詳しくは、建物の床下に遠赤外線や育成光線の放射機能を有する多孔材料を使用すると同時に地中熱または地表熱等の地熱エネルギ−と水流熱交換器を組み合わせることによって健康で快適な温調並びに調湿と床冷暖房機能が可能な建物の空調ならびに換気システムに係わるものである。 The present invention relates to an air conditioning and ventilation system for a building that can be applied to buildings such as a detached house, an apartment house, and a building. Concerning the air-conditioning and ventilation systems of buildings capable of healthy and comfortable temperature control and humidity control and floor heating / cooling functions by using materials and at the same time combining geothermal energy such as ground heat or surface heat with a water flow heat exchanger It is.
従来より、地中熱と循環水流を併用した建物の空調システムについては特許文献1等で提案されている。
この方法は、地中に埋設した二重構造の地中パイプに戸外の空気を取り込んで地中熱と熱交換するに際して、地中パイプ中を通過する空気流に循環水流を噴霧して冷却し、さらに建物の床下に形成されたぐり石層を通して蓄熱と清浄化を同時に行って、建物の室内に空気を供給する空調システムである。
BACKGROUND ART Conventionally, an air conditioning system for a building using both ground heat and circulating water flow has been proposed in
In this method, when taking in outdoor air into a double structure underground pipe buried underground and exchanging heat with ground heat, circulating water flow is sprayed onto the air flow passing through the underground pipe and cooled. An air conditioning system that simultaneously performs heat storage and purification through a slab layer formed under the floor of a building to supply air to the interior of the building.
また特許文献1には循環水流を利用して循環空気を補助的に加温、冷却する方法が開示されており、例えば、夏季には地中パイプの途中の位置に備えたノズルから水をシャワ−状または霧状に散水落下させて空気を冷却し、底部に溜まった水は再び回収して前記ノズルに循環させる方法とか、冬季には戸外に設置した温水器で暖められた温水を前記ノズルから吹き付けて地中パイプを通過する空気を補助的に加温する方法がある。
しかしながら、地中に埋設した二重構造の地中パイプと戸外の空気との熱交換の伝達速度、あるいは循環水流と空気との伝熱能力に制約があるため、噴流ノズルの設置方法や設置条件によってはぐり石層を通過したのち室内に供給される空気は必ずしも効率よく調湿、調温されているとは言えない面がある。 However, there are restrictions on the transfer speed of heat exchange between the double-layered underground pipe buried underground and the outdoor air, or the heat transfer capacity between the circulating water flow and the air. In some cases, the air supplied to the room after passing through the bedrock layer is not necessarily controlled for humidity and temperature efficiently.
また、建物の床冷暖房に関しては、従来より熱伝導性のよい熱交換パイプを床板に切り込みを入れて装着したり或いは床板と床板の間に積層状に組み込む方法が一般的に採用されているが、床板の加工に手間がかかる。 In addition, regarding floor cooling and heating of a building, a method in which a heat exchange pipe having good heat conductivity is cut into the floor plate and mounted or a method of incorporating the heat exchange pipe between the floor plate and the floor plate in a stacked state is generally adopted. It takes time to process floorboards.
本発明はかかる問題点に鑑みてなされたもので、建物の室内に供給する空気を効率よく調湿、温調できると同時に床冷暖房機能を合わせ持つ健康で快適な空調システム或いは換気システムを提供せんとするものである。 The present invention has been made in view of such problems, and does not provide a healthy and comfortable air-conditioning system or ventilation system that can efficiently control the humidity and temperature of air supplied to the interior of a building and also has a floor cooling and heating function. It is assumed that.
上記課題は下記(1)〜(5)の手段によって解決できる。
すなわち、
(1)ファンで吸引した空気を建物の床下に設けた多孔性の蓄熱層の中を通して調温、空気浄化、調湿し、該空気を室内に循環させて建物の空調と換気と床冷暖房を行う建物の空調換気システムにおいて、該蓄熱層に遠赤外線放射機能を有する多孔材料を使用すると同時に、該ファンと蓄熱層の間に水冷あるいは温水で温調された熱交換器を配置して該空気を冷却あるいは加温することを特徴とする建物の空調換気システム。
(2) 上記遠赤外線放射機能を有する多孔材料がゼオライト、ぺタライト、トリマリン、木櫛粘土、酸化鉄、酸化チタン、溶岩,アルミナ、ジルコニア、チタニア、コ−ジライト、スポジューメン、チタン酸アルミニウム、石英、炭化珪素、炭化珪素、珪石、ガラス、セラミック炭であることを特徴とする請求項1に記載の建物の空調換気システム。
(3) 上記ファンで吸引する空気を建物の内外に埋設した地下パイプ二重管の中に通して予め温調、除湿してなることを特徴とする上記(1) あるいは(2)に記載の建物の空調換気システム。
(4) 上記熱交換器を冷却、加温する水が、地下水、水道水、太陽熱温水、ボイラ−給湯水である上記(1)〜(3)に記載の建物の空調換気システム。
(5) 上記熱交換器は独立した別々の入口と出口を持ち、各入口、出口から種類の異なる水流を同時に或いは別々に通水できる構造である上記(1)〜(4)のいずれかに記載の建物の空調換気システム。
The above problem can be solved by the following means (1) to (5).
That is,
(1) The air sucked by the fan is passed through a porous heat storage layer provided under the floor of the building to control the temperature, purify the air, and adjust the humidity.The air is circulated indoors to control the air conditioning, ventilation, and floor cooling and heating of the building. In a building air-conditioning and ventilation system, a porous material having a far-infrared radiation function is used for the heat storage layer, and a heat exchanger controlled by water cooling or hot water is disposed between the fan and the heat storage layer to form the air. Air-conditioning ventilation system for buildings, characterized by cooling or heating.
(2) The porous material having the far-infrared radiation function is zeolite, petalite, trimarin, wood comb clay, iron oxide, titanium oxide, lava, alumina, zirconia, titania, cordierite, spodumene, aluminum titanate, quartz, The building air-conditioning ventilation system according to
(3) The method according to the above (1) or (2), wherein the air sucked by the fan is passed through a double-walled underground pipe buried inside and outside the building to control the temperature and dehumidify in advance. Building air conditioning ventilation system.
(4) The air conditioning and ventilation system for a building according to (1) to (3), wherein the water for cooling and heating the heat exchanger is groundwater, tap water, solar hot water, or boiler hot water.
(5) The heat exchanger has independent independent inlets and outlets, and each of the inlets and outlets has a structure capable of simultaneously or separately flowing different types of water flows from any of the above (1) to (4). The described building air conditioning ventilation system.
本発明の空調ならびに換気システムは、遠赤外線放射機能を持つ多孔材料を建物の床下の堆積層に装填し、地中熱或いは地表熱と自然エネルギーを熱媒体にした水流熱交換機を組合わせることによって四季を通じてその温度を12〜28℃、湿度を40〜80%に温調、調湿かつ床冷暖房できる特徴があり、健康的でかつ快適な、家庭の省エネに多大の貢献をなすものである。 The air-conditioning and ventilation system of the present invention is obtained by loading a porous material having a function of radiating far-infrared radiation into a sedimentary layer under a floor of a building, and combining a geothermal heat or a surface heat and a water flow heat exchanger using natural energy as a heat medium. It is characterized by its ability to control the temperature to 12-28 ° C. and the humidity to 40-80% throughout the four seasons, to regulate the humidity and to cool and heat the floor, making a great contribution to healthy and comfortable home energy saving.
本発明の構造とその作用機能を図面で説明する。
図1,2は本発明の全体構造と作用機能を説明する図である。
図1は、地中熱と熱交換機を併用した場合の空調システムを説明する図である。
図2は、地表熱と熱交換機による換気システムを説明する図である。
The structure of the present invention and its function will be described with reference to the drawings.
1 and 2 are diagrams for explaining the overall structure and operation and function of the present invention.
FIG. 1 is a diagram for explaining an air conditioning system in the case of using both underground heat and a heat exchanger.
FIG. 2 is a diagram illustrating a ventilation system using surface heat and a heat exchanger.
先ず、地中熱と熱交換機を併用した場合の空調システムについて作用機能を説明する。
本発明においては、四季を通じて地中パイプを埋設することによって概ね一定の地中温度(15〜20℃)の地中熱を利用することが出来る。
First, the operation and function of the air conditioning system in which the underground heat and the heat exchanger are used together will be described.
In the present invention, by burying underground pipes throughout the four seasons, it is possible to utilize underground heat having a substantially constant underground temperature (15 to 20 ° C.).
図1において、高温多湿の空気が吸気口1から外気導入パイプ2を通して、建物の床下に設置したファンユニット3によって吸入される。
外気導入パイプ2は、図1に示すように二重管構造であり、先端が封止された外管の中に内管が差し込まれた構造で、内管の先端は開放されており、外管と内管の間には適当な隙間が存在する状態で地中に垂直に埋め込まれている。
空気流は外管の穴から外管と内管の隙間に入り、隙間を下降して下端の封止部に衝突して方向を変えて内管を上昇する構造になっている。内管の上部は吸気配管によってファンユニット3に接続されている。
In FIG. 1, hot and humid air is sucked from an
The outside air introduction pipe 2 has a double-pipe structure as shown in FIG. 1 and has a structure in which an inner pipe is inserted into an outer pipe whose tip is sealed, and the tip of the inner pipe is open. It is buried vertically in the ground with an appropriate gap between the pipe and the inner pipe.
The air flow enters the gap between the outer tube and the inner tube through the hole of the outer tube, descends the gap, collides with the sealing portion at the lower end, changes the direction, and rises the inner tube. The upper part of the inner pipe is connected to the fan unit 3 by an intake pipe.
外管表面は四季を通じて地中熱温度(15〜20℃)に保持されており、通過空気は地中熱によって熱交換される。
例えば、夏季の場合には、外気温度30〜35℃の空気が26〜28℃前後に冷却され、パイプ内面では空気中の水分が結露して第1段目の除湿が行われる。パイプの底部に溜まった結露水はポンプで吸い上げて屋外に排出する。
また冬季の場合では、外気温度5〜10℃の空気が12〜16℃前後に乾燥され、パイプ内面ではパイプ通過時に空気中の水分が蒸発して加湿される。
The surface of the outer tube is maintained at a geothermal temperature (15 to 20 ° C.) throughout the four seasons, and the passing air undergoes heat exchange by geothermal heat.
For example, in summer, air at an outside air temperature of 30 to 35 ° C. is cooled to about 26 to 28 ° C., and moisture in the air is condensed on the inner surface of the pipe to perform the first stage dehumidification. Condensed water collected at the bottom of the pipe is pumped up and discharged outside.
In winter, air having an outside air temperature of 5 to 10 ° C. is dried to about 12 to 16 ° C., and moisture in the air evaporates and humidifies inside the pipe when passing through the pipe.
これら湿分を多く含む空気を効率よく冷却・除湿するためには、予め埋設すべき地下パイプの設置本数を増やすか或いは埋設地下パイプを長くすれば解決されるが、コスト高になって経済的でない。 Efficient cooling and dehumidification of air containing a lot of moisture can be solved by increasing the number of underground pipes to be buried in advance or increasing the length of buried underground pipes. Not.
パイプ内面での冷却と乾燥の伝熱効率をよくするためには、外管内面の表面積を大きくすることは極めて有効な手段である。たとえば内面にフィンを取付けたりあるいはパイプの長さ方向で波板形状に加工する等の方法が有効である。 In order to improve the heat transfer efficiency of cooling and drying on the inner surface of the pipe, it is extremely effective to increase the surface area of the inner surface of the outer tube. For example, a method of attaching fins to the inner surface or processing the pipe into a corrugated shape in the length direction of the pipe is effective.
しかしながら梅雨期における空気は特に高温多湿であり、地中熱によって冷却・除湿されたとはいっても必ずしも充分ではなく、未だ多くの湿分が含まれているため不快な状態のままである。 However, the air during the rainy season is particularly hot and humid, and even though it has been cooled and dehumidified by geothermal heat, it is not always sufficient, and it still remains unpleasant because it contains a lot of moisture.
本発明では、これら湿分を多く含む空気を効率よく冷却・除湿するため、夏季にはファンユニット3の排出側に冷たい地下水を通水して冷却する水流熱交換機4を設置し、この水流熱交換機に湿分を多く含む空気を接触させて熱交換することによって空気を再度冷却・除湿する。
地下水の温度は四季を通じて地中熱温度(15〜20℃)と同じであり、この地下水を熱交換機に通すことによって上述した地下パイプの設置本数を増やすか或いは埋設地下パイプを長くことと同等の効果を得ることが出来る。
In the present invention, in order to efficiently cool and dehumidify the air containing a large amount of moisture, a flow heat exchanger 4 for cooling by passing cold ground water through the discharge side of the fan unit 3 in summer is installed. The air containing much moisture is brought into contact with the exchanger to exchange heat, thereby cooling and dehumidifying the air again.
The temperature of groundwater is the same as the underground heat temperature (15 to 20 ° C) throughout the four seasons, and this groundwater is passed through a heat exchanger to increase the number of underground pipes described above or to lengthen the buried underground pipes. The effect can be obtained.
水流熱交換機4に循環させる液体の熱媒体には、上述したように、夏季には地下水が最
も好ましく、冬季には、暖かい地下水や太陽熱温水器の温水或いはボイラ−で加温した温水などを通水しても良い。これらは必要に応じて適宜組合せて使用しても良い。たとえば地下水で予め調温するフィンプレ−トとボイラー温水で加温するフィンプレ−トを別々に設置して循環空気を熱交換するようにしても良い。
As described above, the heat medium of the liquid circulated through the water-jet heat exchanger 4 is most preferably groundwater in summer, and in winter, warm groundwater, hot water from a solar water heater or hot water heated by a boiler is used. May be water. These may be used in combination as needed. For example, a fin plate previously heated with ground water and a fin plate heated with boiler hot water may be separately installed to exchange heat with circulating air.
図3、図4に水流熱交換器の構造図を示す。
図3は1種類の熱媒体水を通水する場合の構造図であり、図4は2種類の熱媒体水を通水する場合の構造図である。
FIG. 3 and FIG. 4 show structural diagrams of the water flow heat exchanger.
FIG. 3 is a structural diagram in the case of passing one type of heat medium water, and FIG. 4 is a structural diagram in the case of passing two types of heat medium water.
図3において、地下水は図3(b)に示される冷水入口から銅管パイプに通水されて冷水出口から排出される。一方、空気は図3(a)の手前側のフィンプレ−トから奥に向かって通風し、熱交換される構造になっている。
また、水冷時に熱交換によって冷却・徐湿された空気中の凝縮水は熱交換器下部の凝縮水出口よりドレンパイプを通して系外に排出される。
In FIG. 3, groundwater is passed through a copper pipe from the cold water inlet shown in FIG. 3 (b) and discharged from the cold water outlet. On the other hand, the air flows from the fin plate on the near side in FIG.
The condensed water in the air cooled and gradually humidified by heat exchange during water cooling is discharged out of the system through a drain pipe from a condensed water outlet below the heat exchanger.
図4は、2種類の熱媒体水を通水する場合の構造図である。2種類の熱媒体水を併用する場合は、それぞれ別々の冷水入口から通水し、別々の冷水出口から排出する構造にすればよい。また、図3の熱交換機を直列に連結しても何ら問題ない。 FIG. 4 is a structural view when two types of heat medium water are passed. When two types of heat medium water are used in combination, the structure may be such that water is passed through separate cold water inlets and discharged from separate cold water outlets. There is no problem even if the heat exchangers of FIG. 3 are connected in series.
水流熱交換機4で再度冷却・徐湿された空気は、複数の穴のあいた吸気パイプ5を通して遠赤外線熱放射機能を有する多孔材料の充填層に吹き出すようになっている。 The air that has been cooled and gradually humidified again by the water-jet heat exchanger 4 blows out through a suction pipe 5 having a plurality of holes to a packed layer of a porous material having a far-infrared heat radiation function.
遠赤外線熱放射性の多孔材料は、床下に表面から40〜50cmの堆積厚さに積んだものである。1Fの堆積層の上面は土間コンクリ−トの基礎床或いは床面で気密されている。 The far-infrared heat-radiating porous material is piled under the floor to a deposition thickness of 40 to 50 cm from the surface. The upper surface of the 1F sedimentary layer is air-tight with the foundation floor or floor of the slab concrete.
多孔材料は空気を多く含み、熱移動が少ないので熱伝導率は小さいが、熱の放射すなわち電磁波による遠赤外線や育成光線が放射される。
物体から遠赤外線や育成光線が放射されるのは分子運動に依存する電磁波であるが、その発生する機構には冷放射と熱放射がある。
The porous material contains a large amount of air and has low heat conductivity because of little heat transfer, but emits heat, that is, far-infrared rays and growing light rays due to electromagnetic waves.
An object emits far-infrared rays and growing light rays, which are electromagnetic waves dependent on molecular motion. The mechanisms of the generation include cold radiation and heat radiation.
水流熱交換機を通して調温された空気によってこの多孔材料が加熱或いは冷却されると、肉眼には見えない遠赤外線や育成光線が放射され、さらに遠赤外線や育成光線は堆積層の上面の土間コンクリ−ト基礎床や床面に当たってエネルギ―を吸収されて高い熱エネルギ―を保有することになる。このため、床面が冷暖房機能を持つようになる。
放射率は吸収率と関係するので、表面がざらざらした粗面の方が放射率は高い。
When this porous material is heated or cooled by air conditioned through a water-jet heat exchanger, far-infrared rays and growing light rays that are invisible to the naked eye are emitted, and far-infrared rays and growing light rays are furthermore exposed to the soil clearance on the upper surface of the deposition layer. Energy is absorbed by hitting the foundation floor and floor surface, and high thermal energy is retained. For this reason, the floor has a cooling and heating function.
Since emissivity is related to absorptance, a rough surface has a higher emissivity than a rough surface .
遠赤外線放射機能を持つ多孔材料としては、ゼオライト、ぺタライト、トリマリン、木櫛粘土、酸化鉄、酸化チタン、溶岩,アルミナ、ジルコニア、チタニア、コ−ジライト、スポジューメン、チタン酸アルミニウム、石英、炭化珪素、炭化珪素、珪石、ガラス、セラミック炭などが挙げられるが、一般的な建築資材であるぐり石でも遠赤外線や育成光線放射機能を有しているので充分に使用できる。 Examples of porous materials having a far-infrared radiation function include zeolite, petalite, trimarin, wood comb clay, iron oxide, titanium oxide, lava, alumina, zirconia, titania, cordierite, spodumene, aluminum titanate, quartz, and silicon carbide. , Silicon carbide, silica, glass, ceramic charcoal, and the like, and boring stone, which is a general building material, can be used sufficiently because it has a far-infrared ray and growing light radiation function.
堆積された多孔材料の間には隙間が存在し、吹出された冷却空気はこの多孔材料の隙間の中を通過するときにも多孔材料の蓄熱効果によって保温されている。
ラジエタ−を通過した空気はこの多孔材料の蓄熱効果を受けて夏季には26〜28℃、冬季には12〜16℃の温度に保持されている。
例えば多孔材料としてグリ石を用いた場合には、グリ石の堆積層の隙間を通り過ぎた空気流は、木炭或いはセラミック炭と接触しながら床下から1階室内に送られていく。
以上のような機構で、ファンユニットで吸い込まれた外気は地中熱による第1段目の冷却と除湿、水流熱交換機による第2段目の冷却と除湿が行われ、床下に排出される空気は除湿乾燥された温調並びに調湿された空気と成る。
A gap exists between the deposited porous materials, and the blown cooling air is kept warm by the heat storage effect of the porous material even when passing through the gap between the porous materials.
The air passing through the radiator is maintained at a temperature of 26 to 28 ° C. in summer and 12 to 16 ° C. in winter due to the heat storage effect of the porous material.
For example, when gauze is used as the porous material, the airflow that has passed through the gap between the gypsum and the sedimentary layers is sent into the first floor room from under the floor while contacting the charcoal or ceramic charcoal.
With the above-described mechanism, the outside air sucked in by the fan unit is cooled and dehumidified in the first stage by the underground heat, and cooled and dehumidified in the second stage by the water heat exchanger, and the air discharged under the floor Is air that has been dehumidified and dried and temperature-controlled.
また堆積層の底面には地中からの湿分の上昇を防止するためのコンクリ−ト又は防湿シートが敷かれており、地中からの湿分の上昇は防止する構造になっている。 A concrete or moisture-proof sheet for preventing the rise of moisture from the ground is laid on the bottom surface of the sedimentary layer, so that the structure is such that the rise of the moisture from the ground is prevented.
なお温調並びに調湿された空気は、図1の図面に示されるように矢印の順路流れとなって住宅内を通風しながら戸外へ排気される。
グリ石堆積層→木炭・セラミック炭→1階屋内→2階床下→2階屋内→2階天井→集合管ユニット→排気ダンパ−→換気扇
The air whose temperature and humidity have been adjusted is exhausted to the outside while ventilating inside the house as shown by the arrow in FIG.
Grindstone deposit → charcoal / ceramic charcoal → 1st floor indoor → 2nd floor below → 2nd floor indoor → 2nd floor ceiling → collecting pipe unit → exhaust damper → ventilation fan
本発明においては、夏季に外気の熱い空気で室内の通風空気の温度が上昇しないように、また冬季に外気の冷たい空気で室内の通風空気の温度が低下しないように、外壁の壁は断熱性能に優れた構造にする必要がある。たとえば外断熱構造、つまり内装材の外側に断熱材を配する構造が良い。又断熱材の外側に更に外装材を配し、内装材、断熱材、外装材の間にはそれぞれ隙間を設ける構造が良い。 In the present invention, the wall of the outer wall has a heat insulating property so that the temperature of the indoor ventilation air does not rise due to the hot outside air in summer and the temperature of the indoor ventilation air does not decrease due to the cold outside air in winter. It is necessary to have an excellent structure. For example, an external heat insulating structure, that is, a structure in which a heat insulating material is arranged outside the interior material is preferable. It is preferable that an exterior material is further provided outside the heat insulating material, and a gap is provided between each of the interior material, the heat insulating material, and the exterior material.
また、空調された空気を室内に循環する場合には、床下のファンユニット並びに天井部
の集合管ユニットに組み込まれた自動制御のダンパ−を制御することによって、天井部と床下とを連結する送気管ダクトを通して循環できるようなシステムになっている。
通風循環させる空気の温度制御は、ダンパー(1)、(2)の開閉をコンピューターと連動させて作動させることによって任意に設定した温度に制御することが出来る。すなわち夏季、天井裏の温度が上昇すると、ダンパー(1)が開放され、ダンパー(2)が閉じられてファンが回転をはじめる。天井裏の熱気は外に排出され、外気が吸気口から吸い込まれ、二重パイプ、熱交換機、クリ石層の中を通って除湿、冷却された空気が室内に流れ込むこととなる。タイマ−を設定することによってエアサイクルされることも可能である。
一方設定温度以下になるとダンパー(1)が閉じられ、ダンパー(2)が開けられて屋内空気のみが循環して除湿のみが行われる事となる。又外の空気の導入によっても温度湿度を適宜自在に調整できる。
特に、室内温度と外気温度の低い方を感知してダンパ−を自動制御するシステムになっている。
冬季の場合、住宅内の空気の温度、湿度が外気よりも高くなる。ダンパー(1)を閉じ、ダンパー(2)を開いて、又吸気口は閉じて、屋内の空気をグリ石層に返してここで除湿して通風循環させると良い。
Further, when the conditioned air is circulated into the room, the fan unit under the floor and the damper of the automatic control built in the collecting pipe unit at the ceiling are controlled to connect the ceiling and the floor. The system can be circulated through the tracheal duct.
The temperature of the air to be circulated can be controlled to an arbitrarily set temperature by opening and closing the dampers (1) and (2) in conjunction with a computer. That is, in summer, when the temperature inside the ceiling rises, the damper (1) is opened, the damper (2) is closed, and the fan starts rotating. The hot air behind the ceiling is discharged outside, the outside air is sucked in through the air inlet, and the dehumidified and cooled air flows into the room through the double pipe, the heat exchanger, and the chestnut stone layer. It is also possible to air cycle by setting a timer.
On the other hand, when the temperature falls below the set temperature, the damper (1) is closed, the damper (2) is opened, and only the indoor air circulates, and only the dehumidification is performed. Also, the temperature and humidity can be freely adjusted as appropriate by introducing outside air.
In particular, the system detects the lower of the room temperature and the outside air temperature and automatically controls the damper.
In winter, the temperature and humidity of the air inside the house are higher than outside air. It is advisable to close the damper (1), open the damper (2), and close the air intake, return the indoor air to the layer of grime stone and dehumidify and circulate the ventilation.
図2は、地中パイプのない場合の熱交換機のみによる換気システムを説明する図である。
高温多湿の外気空気は、吸気口1から建物の床下に設置したファンユニット3によって吸入される。
この場合、吸気口1から吸入される外気空気は床下の地表熱で部分的に熱交換され、更にファンユニット3の排出側に設置した水流熱交換機4を通る。夏季時にはこの水流熱交換機に冷たい地下水を通水して空気を冷却・徐湿し、冬季時には暖かい地下水又は暖かい太陽熱温水などを通水して空気を加温・徐湿する。
本発明においても、図1の場合と同様にファンユニットならびに集合管ユニットに内蔵された自動ダンパ−制御装置により、空気循環ならびに換気を行うことが出来るシステムになっている。
FIG. 2 is a diagram illustrating a ventilation system using only a heat exchanger when there is no underground pipe.
High-temperature, high-humidity outside air is sucked from the
In this case, the outside air taken in from the
Also in the present invention, as in the case of FIG. 1, the fan unit and the automatic damper control device incorporated in the collecting pipe unit provide a system capable of performing air circulation and ventilation.
1…吸気口
2…地下パイプ(二重管)
3…ファン
4…熱交換器
5…吸気バイプ
6…セラミック炭
1: Inlet 2: Underground pipe (double pipe)
3. Fan 4 Heat exchanger 5 Intake pipe 6 Ceramic charcoal
Claims (5)
The air conditioning and ventilation system for a building according to any one of claims 1 to 4, wherein the heat exchanger has independent and separate inlets and outlets, and has a structure in which different types of water flows can be passed through the inlets and outlets simultaneously or separately. system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003390041A JP2004212038A (en) | 2002-12-20 | 2003-11-20 | Air conditioning ventilation system for building |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002369727 | 2002-12-20 | ||
JP2003390041A JP2004212038A (en) | 2002-12-20 | 2003-11-20 | Air conditioning ventilation system for building |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004212038A true JP2004212038A (en) | 2004-07-29 |
Family
ID=32828839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003390041A Pending JP2004212038A (en) | 2002-12-20 | 2003-11-20 | Air conditioning ventilation system for building |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004212038A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007050328A (en) * | 2005-08-17 | 2007-03-01 | Land Creative:Kk | Contaminated soil purification method |
JP2009092364A (en) * | 2007-10-09 | 2009-04-30 | Locus:Kk | Energy saving ventilation system and energy saving building provided therewith |
JP2009192185A (en) * | 2008-02-18 | 2009-08-27 | Kitami Institute Of Technology | Air conditioning ventilation system |
KR100986728B1 (en) | 2008-12-18 | 2010-10-08 | 대림산업 주식회사 | Apparatus and method for air consditioning and ventilation using a heat pump and solar heat |
JP2013002217A (en) * | 2011-06-20 | 2013-01-07 | Hokkaido Research Organization | Air purification type building and air purification method of building |
JP2013113463A (en) * | 2011-11-28 | 2013-06-10 | Passiv Energie Japan Inc | Heat storage element and ventilation unit using the same |
CN103322640A (en) * | 2012-03-19 | 2013-09-25 | 北京海林节能设备股份有限公司 | Air-conditioner energy saving control method, air-conditioner energy saving control system and air-conditioner switching system of comprehensive energy-saving building |
CN103486767A (en) * | 2012-06-13 | 2014-01-01 | 浙江盾安人工环境股份有限公司 | Soil-source heat pump system for heating and humidifying phalaenopsis planting greenhouse |
RU2533355C2 (en) * | 2012-12-06 | 2014-11-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) | Regenerative system for regulation of inlet air parameters |
KR101504261B1 (en) | 2012-07-06 | 2015-03-19 | 주식회사 경인기계 | Cooling tower and heat exchanging system using ventilator for basement |
RU2552093C1 (en) * | 2013-11-15 | 2015-06-10 | Федеральное государственное бюджетное образовательно учреждение высшего профессионального образования "Юго-Западный государственный университет" (ФГБОУВПО "ЮЗГУ") | Power saving system of parameters regulation of supply air |
EP2772698A4 (en) * | 2011-10-25 | 2015-11-11 | Panacea Disinfectant Co Ltd | Functional air conditioning device and functional air conditioning method |
RU2572265C1 (en) * | 2014-07-15 | 2016-01-10 | Общество С Ограниченной Ответственностью "Газпром Трансгаз Краснодар" | Underground structure with natural heat-exchange ventilation |
JP2016169909A (en) * | 2015-03-13 | 2016-09-23 | 五洋建設株式会社 | Underground heat utilization system at base isolation structure |
US20170248332A1 (en) * | 2011-06-03 | 2017-08-31 | James P. Wright | Geothermal Heating, Cooling, and Dehumidification Ventilation System |
CN113338531A (en) * | 2021-05-28 | 2021-09-03 | 四川大洋建工集团有限公司 | House building wall structure and construction method thereof |
CN114526518A (en) * | 2022-02-18 | 2022-05-24 | 广州莱堡科技有限公司 | Air conditioning system and method for slit channel radiation convection |
CN114754448A (en) * | 2022-05-06 | 2022-07-15 | 重庆长厦安基建筑设计有限公司 | Ventilation energy-saving system of green building |
-
2003
- 2003-11-20 JP JP2003390041A patent/JP2004212038A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007050328A (en) * | 2005-08-17 | 2007-03-01 | Land Creative:Kk | Contaminated soil purification method |
JP2009092364A (en) * | 2007-10-09 | 2009-04-30 | Locus:Kk | Energy saving ventilation system and energy saving building provided therewith |
JP2009192185A (en) * | 2008-02-18 | 2009-08-27 | Kitami Institute Of Technology | Air conditioning ventilation system |
KR100986728B1 (en) | 2008-12-18 | 2010-10-08 | 대림산업 주식회사 | Apparatus and method for air consditioning and ventilation using a heat pump and solar heat |
US20170248332A1 (en) * | 2011-06-03 | 2017-08-31 | James P. Wright | Geothermal Heating, Cooling, and Dehumidification Ventilation System |
JP2013002217A (en) * | 2011-06-20 | 2013-01-07 | Hokkaido Research Organization | Air purification type building and air purification method of building |
EP2772698A4 (en) * | 2011-10-25 | 2015-11-11 | Panacea Disinfectant Co Ltd | Functional air conditioning device and functional air conditioning method |
JP2013113463A (en) * | 2011-11-28 | 2013-06-10 | Passiv Energie Japan Inc | Heat storage element and ventilation unit using the same |
CN103322640B (en) * | 2012-03-19 | 2017-06-30 | 北京海林节能科技股份有限公司 | Air conditioner energy saving control method, system and air-conditioning switching system that synthesis energy saving is built |
CN103322640A (en) * | 2012-03-19 | 2013-09-25 | 北京海林节能设备股份有限公司 | Air-conditioner energy saving control method, air-conditioner energy saving control system and air-conditioner switching system of comprehensive energy-saving building |
CN103486767A (en) * | 2012-06-13 | 2014-01-01 | 浙江盾安人工环境股份有限公司 | Soil-source heat pump system for heating and humidifying phalaenopsis planting greenhouse |
KR101504261B1 (en) | 2012-07-06 | 2015-03-19 | 주식회사 경인기계 | Cooling tower and heat exchanging system using ventilator for basement |
RU2533355C2 (en) * | 2012-12-06 | 2014-11-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) | Regenerative system for regulation of inlet air parameters |
RU2552093C1 (en) * | 2013-11-15 | 2015-06-10 | Федеральное государственное бюджетное образовательно учреждение высшего профессионального образования "Юго-Западный государственный университет" (ФГБОУВПО "ЮЗГУ") | Power saving system of parameters regulation of supply air |
RU2572265C1 (en) * | 2014-07-15 | 2016-01-10 | Общество С Ограниченной Ответственностью "Газпром Трансгаз Краснодар" | Underground structure with natural heat-exchange ventilation |
JP2016169909A (en) * | 2015-03-13 | 2016-09-23 | 五洋建設株式会社 | Underground heat utilization system at base isolation structure |
CN113338531A (en) * | 2021-05-28 | 2021-09-03 | 四川大洋建工集团有限公司 | House building wall structure and construction method thereof |
CN114526518A (en) * | 2022-02-18 | 2022-05-24 | 广州莱堡科技有限公司 | Air conditioning system and method for slit channel radiation convection |
CN114526518B (en) * | 2022-02-18 | 2024-05-17 | 广州莱堡科技有限公司 | Air conditioning system with slit channel radiation convection and method thereof |
CN114754448A (en) * | 2022-05-06 | 2022-07-15 | 重庆长厦安基建筑设计有限公司 | Ventilation energy-saving system of green building |
CN114754448B (en) * | 2022-05-06 | 2023-07-07 | 重庆长厦安基建筑设计有限公司 | Ventilating energy-saving system of green building |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004212038A (en) | Air conditioning ventilation system for building | |
JP3091195B1 (en) | Geothermal air conditioning system | |
KR101269287B1 (en) | Thermal energy collection ventilator | |
US20170248332A1 (en) | Geothermal Heating, Cooling, and Dehumidification Ventilation System | |
JP2014051874A (en) | Energy-saving ventilation system for air-tightness house | |
WO2011033325A1 (en) | Cooling, heating, surface-radiating and air exchanging building system with low energy consumption for energy-saving houses with increased passive quality | |
JP2002340382A (en) | House | |
JP2013509559A (en) | Apparatus for air conditioning a room and heat pump assembly for use in the apparatus | |
JP4524348B1 (en) | Energy saving ventilation system | |
JP2006098025A (en) | Ventilation method of solar system house | |
KR20070054230A (en) | Ventilator and building | |
JP3562527B1 (en) | Geothermal air conditioning system | |
JP4341848B2 (en) | Air-collecting solar dehumidification cooler system | |
JP4744802B2 (en) | Circulating humidity control mechanism in the building | |
JP2009198095A (en) | Solar heating and drying system | |
CN100427703C (en) | Prefabricated construction partition board with air conditioning function | |
JP4049380B2 (en) | Building ventilation system | |
WO1979000874A1 (en) | Heating device | |
JP2001116293A (en) | Air-conditioning system utilizing geothermy and circulating water flow | |
JP2003343884A (en) | Circulating type cooling and heating method of building using geothermal power | |
JPH1144435A (en) | Air circulation type air conditioning floor heating system house | |
Bhatia | Alternatives to Active HVAC systems | |
JP2967342B2 (en) | Outside air cooling system for houses | |
JP2005163369A (en) | Ventilation device for dwelling house | |
JP2008281284A (en) | Building air-blowing system, and building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20051228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060327 |