JP2004211140A - Hot-dip galvanized steel sheet and manufacturing method therefor - Google Patents
Hot-dip galvanized steel sheet and manufacturing method therefor Download PDFInfo
- Publication number
- JP2004211140A JP2004211140A JP2002380660A JP2002380660A JP2004211140A JP 2004211140 A JP2004211140 A JP 2004211140A JP 2002380660 A JP2002380660 A JP 2002380660A JP 2002380660 A JP2002380660 A JP 2002380660A JP 2004211140 A JP2004211140 A JP 2004211140A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- hot
- stretch flangeability
- dip galvanized
- galvanized steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は伸びフランジ性および耐二次加工脆性に優れた溶融亜鉛めっき鋼板およびその製造方法に関する。
【0002】
【従来の技術】
近年、地球温暖化防止の観点から、自動車、電気、化学メーカー等各種産業界において排出されるCO2ガスの低減化が要求されている。この具体的な取り組みとして、自動車メーカーでは、電気自動車の開発、ガソリン車の車体軽量化が実施され、燃料比率の低減化を進めている。自動車車体の軽量化に対しては、自動車の各種部品に適用されている鋼板の板厚を減肉化することが有効とされている。
【0003】
しかし、板厚低減による軽量化の反面、車体の剛性の低下が懸念される。車体剛性を維持しつつ軽量化するには、高強度鋼板の適用が有望であり、ロッカー、メンバー等の各種自動車構造部品に高強度鋼板の適用が検討されている。その反面、実際の部品に成形する場合、伸び、伸びフランジ性などのプレス成形性の劣化が問題となる。また、高強度化するほど材料自体の靭性が低下するため、成形後の部品の靭性(耐二次加工脆性)の向上が求められる。
【0004】
こうした要求に対し、従来から種々の高強度鋼板が開発されている。例えば、特開平4−173946号公報には、高延性高強度合金化溶融亜鉛めっき鋼板の製造方法が開示されている。この技術は、C:0.06〜0.30%を有するNb添加鋼を、焼鈍時の冷却の際、所定の温度域における冷却速度をMn,Mo,Cr,Si,P含有量の重み付き合計値で規定することにより、伸び、伸びフランジ性の良好な655〜877MPa(66.8〜89.5kg/mm2)の強度を有する鋼板が得られるというものである。
【0005】
特開平6−93340号公報には、伸びフランジ性の優れた高強度合金化溶融亜鉛めっき鋼板の製造方法及び製造設備が開示されている。この技術は、連続焼鈍溶融亜鉛めっき処理の際、加熱から亜鉛めっきに至るまでの冷却と再加熱の温度を制御して、焼き戻しマルテンサイトを得ることにより、伸びフランジ性の良好な519〜794 MPa(53〜81kg/mm2)の強度を有する鋼板が得られるというものである。
【0006】
特開平6−57373号公報には、耐二次加工脆性に優れる高r値高張力冷延鋼板及びその製造方法が開示されている。この技術は、P添加のTi−Nb−B系の鋼で、B含有量をSi,Mn,P含有量の重み付き合計値で定まる所定範囲内に調整した鋼を用いることにより、耐二次加工脆性の良好な368〜502MPa(37.5〜51.2kg/mm2)の強度を有する鋼板が得られるというものである。
【0007】
特開2001−192768号公報には、優れた延性、伸びフランジ性、および耐疲労特性を有する高張力溶融亜鉛めっき鋼板およびその製造方法が開示されている。この技術は、C:0.05〜0.20%、Si:0.3 〜1.8 %、Mn:1.0 〜3.0%、等を含有し、複合組織を有し、フェライトを体積率で30%以上、焼戻マルテンサイトを体積率で20%以上、残留オーステナイトを体積率で2%以上含み、さらに、前記フェライトおよび焼戻マルテンサイトの平均結晶粒径が10μm 以下であることを特徴としている。
【0008】
【特許文献1】
特開平4−173946号公報
【0009】
【特許文献2】
特開平6−93340号公報
【0010】
【特許文献3】
特開平6−57373号公報
【0011】
【特許文献4】
特開2001−192768号公報
【0012】
【発明が解決しようとする課題】
特開平4−173946号公報に開示された技術では、伸びフランジ性の指標である穴拡げ率λは44〜86%の特性値が得られているが、強度が780MPa以上の鋼板においては、λは44〜61%と安定した高い特性値は得られていない。また、この技術では、980MPa以上の強度の溶融亜鉛めっき鋼板が安定して得られていない。
【0013】
一方、特開平6−93340号公報に開示された技術では、強度が780MPa級の鋼板において、85〜86%と良好な穴拡げ率が得られている。しかし、この技術では、連続溶融亜鉛めっきラインにおいて、均熱帯と溶融亜鉛めっき浴槽の間に強制冷却設備および加熱炉を新規に設置しなければならないことから、製造コストが極めて高い。
【0014】
また、この技術でも980MPa以上の強度の溶融亜鉛めっき鋼板が得られていない。更に、上記の従来技術はいずれも高強度鋼板の伸びフランジ性の向上に着眼した技術であり、鋼板の靭性を向上させることは出来ないと考えられる。このため、これらの技術で得られた鋼板では、プレス成形時の部品の靭性(耐二次加工脆性)の劣化が懸念される。
【0015】
一方、持開平6−57373号公報に開示された技術では、500MPa程度までの強度の耐二次加工脆性の良好な鋼板は得られるが、化学成分から見て780MPa以上の強度を有する鋼板を安定して製造することは困難と考えられる。
【0016】
特開2001−192768号公報記載の技術は、耐疲労特性の向上を目的としているが、耐二次加工脆性については全く開示されていない。
【0017】
また、ロッカーなどの自動車の足回り部品に適用される鋼板としては、耐二次加工脆性が良好であるとともに、780MPa以上の強度が要求されているが、鋼板の高強度化に伴い、プレス成形時に結晶粒界への応力集中が大きくなるため、耐二次加工脆性にとってはより厳しい状況となる。従って、上記の従来技術のいずれにおいても、伸びフランジ性、耐二次加工脆性、780MPa以上の引張強度を満足することができないという問題がある。
【0018】
そこで、本発明では、以上の問題を解決し、780MPa以上の引張強度を有し、伸びフランジ性と耐二次加工脆性に優れた溶融亜鉛めっき鋼板およびそれを安定して製造する方法を提供することを目的とする。
【0019】
【課題を解決するための手段】
上記課題は次の発明により解決される。その発明は、化学成分がmass%でC:0.03〜0.13%、Si≦0.7%、Mn:2.0〜4.0%、P≦0.05%、S≦0.005%、Sol.Al:O.01〜0.1%、N≦0.005%、Ti:0.005〜0.1%、B:0.0002〜0.0040%を含有し、B、Ti、Nが下記不等式を満足し、残部が実質的に鉄からなり、平均粒径が5μm以下のフェライトと体積率が15〜80%のマルテンサイトを有することを特徴とする伸びフランジ性および耐二次加工脆性に優れた溶融亜鉛めっき鋼板である。
【0020】
0.0002≦B−(11/14)[N−(14/48)Ti]≦0.0030 (1)
ここで、式中の元素記号はそれぞれの元素のmass%を示し、[N−(14/48)Ti]≦0の場合は[N−(14/48)Ti]を0とする。
【0021】
また、この発明の溶融亜鉛めっき鋼板において、化学成分としてさらに、mass%で、Nb:0.005〜0.1%、Mo:0.01〜1.0%、V:0.01〜0.5%、Cr:0.01〜0.5%の内一種以上含有することを特徴とする伸びフランジ性および耐二次加工脆性に優れた溶融亜鉛めっき鋼板とすることもできる。
【0022】
これらの発明の溶融亜鉛めっき鋼板に関する製造方法の発明は、上記の化学成分の鋼を、溶製して鋳造する工程と、この鋳造されたスラブを熱間圧延する工程と、その後、酸洗して冷間圧延する工程と、冷間圧延後Ac3点以上900℃以下の温度に加熱し、下記式を満足する時間t(sec)保持した後、冷却し、溶融亜鉛めっき処理を施す工程とを備えたことを特徴とする伸びフランジ性および耐二次加工脆性に優れた溶融亜鉛めっき鋼板の製造方法である。
【0023】
ここで、式中の元素記号はそれぞれの元素のmass%を、tは加熱温度における保持時間(sec)を示し、[N−(14/48)Ti]≦0の場合は[N−(14/48)Ti]を0とする。
【0024】
この発明は、伸びフランジ性および耐二次加工脆性に優れた高強度溶融亜鉛めっき鋼板を得るために、鋭意検討を重ねた結果、見出された知見に基づきなされた。それは、フェライトとマルテンサイトを含む複合組織の高強度鋼板において、伸びフランジ性の低下および耐二次加工脆性の劣化が、プレス成形前のブランキングおよびプレス成形時のフェライト/マルテンサイト界面近傍への応力集中に起因するということである。
【0025】
プレス成形前のブランキングの際は、フェライト/マルテンサイト界面近傍への応力集中によって発生するマイクロボイドに起因して、伸びフランジ性が低下する。プレス成形時には、増大する結晶粒界への応力集中により、靭性(耐二次加工脆性)が劣化する。そこで、フェライトを細粒化するとともに、Bを適正添加して粒界強度を上昇させることにより、マイクロボイドの発生が抑制されて、伸びフランジ性の向上が図れると共に、細粒化と粒界強化により靭性が向上し、耐二次加工脆性の向上が図れるということである。
【0026】
本発明は、780MPa以上の引張強度を有し、伸びフランジ性および耐二次加工脆性に優れた高強度溶融亜鉛めっき鋼板を得るため、上記の要件から構成されている。以下に、本発明の鋼成分の添加理由、成分限定範囲、組織形態および製造条件の限定理由について説明する。
【0027】
(1)鋼成分の範囲
以下、%はmass%を示す。
【0028】
C:0.03〜0.13%
Cは、鋼の強化に有効な元素であり、0.03%以上の添加量を要する。一方、0.13%を超えてCを添加すると、圧延方向にバンド組織が発達し、プレス成形の際、このバンド組織への応力集中が発生するため靭性が劣化する。このため、C量は0.03〜0.13%の範囲内とする。
【0029】
Si:≦0.7%
Siは、鋼の強化に有効な元素であり、適宜添加することができる。しかし、Si量が0.7%を超えると、焼鈍時の冷却過程において高温域でのフェライト変態が促進され、フェライト粒が粒成長するため、発明の意図する微細なフェライト粒が得られなくなる。さらに、Si量が0.7%を超えると、溶融亜鉛めっきの密着性が劣化し、不均一なめっき皮膜が形成されるため、深絞り成形の際、鋼板表層への応力集中が大きくなり、成形後の耐二次加工脆性にとって好ましくない。このため、Si量は0.7%以下とする。なお、Si量を0.3%未満とすると、耐二次加工脆性が更に向上する。従って、Si量を0.3%未満とすることが好ましい。
【0030】
Mn:2.0〜4.0%
Mnは、鋼の強化に有効な元素であり、2.0%以上の添加量を要する。一方、Mnの添加量が4.0%を超えると、スラブの鋳造の際、Mnの偏析が発生しやすくなる。圧延、溶融亜鉛めっき処理後、鋼板にはこの偏析に起因したバンド組織が発達するため、伸びフランジ性が著しく劣化する。このため、Mn量は2.0〜4.0%の範囲内とする。
【0031】
P:≦0.05%
Pは、鋼の強化に有効な元素であり、適宜添加することができる。しかし、Pの添加量が0.05%を超えると、鋳造時のPの偏析に起因した不均一組織が発達しやすくなり、延性が劣化する。従って、Pの添加量を0.05%以下とする。
【0032】
S:≦0.005%
Sは、鋼中に過剰に存在すると、MnSが多量に形成されるため、鋼板の伸びおよび伸びフランジ性に好ましくない。特にS量が0.005%を超えると、この悪影響が懸念される。このため、S量を0.005%以下とする。
【0033】
sol.Al:0.01〜0.1%
Alは鋼の脱酸のために、0.01%以上必要である。しかし、Alの添加量が0.1%を超えると、鋼中に酸化物等のAl系介在物が多くなり、延性が著しく劣化する。このため、Al量は0.01〜0.1%の範囲内とする。
【0034】
N:≦0.005%
Nは、鋼中に過剰に存在すると、スラブの鋳造の際、表面に割れが発生しやすくなる。特に、N量が0.005%を超えると、この悪影響が顕著となる。このため、N量は0.005%以下とする。
【0035】
B:0.0002〜0.0040%
Bは、固溶状態で存在することにより、焼鈍時にオーステナイト粒界に偏析してオーステナイトを細粒化し、オーステナイトから変態するフェライトの細粒化に極めて有効である。また、Bは、オーステナイトからのマルテンサイト変態の促進にも極めて有効な元素であり、これらの効果を得るため0.0002%以上添加する必要がある。しかし、Bの添加量が0.0040%を超えると、これらの効果は飽和するばかりか、めっき表面外観が劣化する。このため、B量は0.0002〜0.0040%の範囲内とする。
【0036】
Ti:0.005〜0.1%
Tiは、Nを析出固定することによりBがBNとなるのを防止して、Bを固溶状態に保つことにより、上記Bの効果、即ちフェライトの細粒化およびマルテンサイト変態の促進に、大きく寄与する。このように固溶Bを確保するには、Tiを0.005%以上添加する必要がある。一方、Tiの添加量が0.1%を超えると、めっき表面外観が劣化する。このため、Ti量は0.005〜0.1%の範囲内とする。
【0037】
固溶B量 B*=B−(11/14)[N−(14/48)Ti]:0.0002〜0.0030%
BおよびTiによる上記の効果を得るには、固溶B量を適正に制御する必要がある。固溶B量の指標としては、B量から析出固定されていないNの当量(11/14)[N−(14/48)Ti]を差し引いた量:
B*=B−(11/14)[N−(14/48)Ti]
を用いる。この量B*が0.0002%未満では所望の微細組織が得られない。一方、この量が0.0030%を超えると、これらの効果は飽和するばかりか、めっき表面外観が劣化する。このため、固溶B量 B*は0.0002〜0.0030%の範囲内とする。なお、[N−(14/48)Ti]の値が、負(TiのN当量>N)となる場合は0とする。この場合、B*=Bとなり、固溶B量はB添加量に等しくなる。
【0038】
本発明では、さらに必要に応じて、Nb,Mo,V,Crを次の範囲で添加することができる。
【0039】
Nb: 添加する場合0.005〜0.1%
Nbは、Cと微細炭化物を形成することにより、組織の細粒化に寄与する元素である。この効果を得るには、0.005%以上の添加を必要とする。一方、Nbの添加量が0.1%を超えると、焼鈍時のフェライト、オーステナイトの再結晶は遅滞し、加工組織が残留し易くなり、鋼板の延性は著しく低下する。このため、Nbを添加する場合は0.005〜0.1%の範囲内とする。
【0040】
Mo:0.01〜1.0%
Moは、鋼の焼入性を向上させる元素であり、鋼の強化に有効である。Moの強化能を得るためには、0.01%以上の添加を必要とする。一方、Moの添加量が1.0%を超えると、めっき表面外観が劣化する。このため、Moを添加する場合は0.01〜1.0%の範囲内とする。
【0041】
V:添加する場合0.01〜0.5%
Vは、鋼の焼入性を向上させる元素であり、鋼の強化に有効である。Vの強化能を得るためには、0.01%以上の添加を必要とする。一方、Vの添加量が0.5%を超えると、効果は飽和する。このため、Vを添加する場合は0.01〜0.5%の範囲内とする。
【0042】
Cr:添加する場合0.01〜0.5%
Crは、Mo,V等と同様、鋼の焼入性を向上させる元素であり、鋼の強化に有効である。この効果を得るためには、0.01%以上のCrの添加を必要とする。一方、Crの添加量が0.5%を超えると、強化能は飽和する。このため、Crを添加する場合は0.01〜0.5%の範囲内とする。
【0043】
上記の鋼成分以外の化学成分については、過剰に添加しなければ、本発明の効果を損なうことはない。例えば、W,Niは0.5%以下であれば、本発明の目的とする特性に悪影響を及ぼさない。なお、この発明で残部が実質的に鉄というのは、その他の合金元素あるいは不可避的不純物についても、本発明の目的とする特性に悪影響を及ぼさないかぎり、含有してもよいことを意味する。
【0044】
(2)鋼板の組織形態
自動車の車体の軽量化の目的から、高強度鋼板の適用に対して、張出し性、伸びフランジ性等のプレス成形性が求められている。張出し性には、n値、伸びなどの素材特性が要求されることから、フェライト、マルテンサイト主体の複合組織鋼板が望ましい。
【0045】
しかし、この鋼板の場合、プレス成形前のブランキングの際、フェライトと硬質のマルテンサイトの界面近傍への応力集中によりマイクロボイドが多く発生するため、伸びフランジ性の低下が懸念されている。また、鋼の高強度化に伴い、素材自体の靭性が低下するため、プレス成形後の部品の靭性(耐二次加工脆性)の劣化が懸念される。このため、高強度材を実部品へ適用する際には、耐二次加工脆性の向上が重要となる。
【0046】
そこで本発明では、フェライト、マルテンサイトを含有する780MPa以上の高強度鋼板において、伸びフランジ性とともに、プレス成形後の耐二次加工脆性を向上させるための組織因子を検討した。この結果、フェライトを平均粒径5μm以下に細粒化するとともに、粒界強度を上昇させるBを適量化することにより、フェライト相と硬質のマルテンサイト相の界面の脆化に対する抵抗が増大し、伸びフランジ性および耐二次加工脆性の向上が可能であることが明らかとなった。
【0047】
具体的な数値は、フェライト粒径とB量を種々に変化させた鋼板を用いて、60゜円錐ポンチによる穴拡げ試験、および深絞り成形材の縦割れ試験を実施して求めた。用いた鋼板は、mass%でC:0.035〜0.075%、Si:0.02〜0.25%、Mn:2.0〜3.0%、P:0.01〜0.03%、S:0.001〜0.003%、sol.Al:0.02〜0.05%、N:0.0020〜0.0035%、Ti:0.01〜0.06%、B:0.0000(無添加)〜0.0040%の化学成分を有し、TSが800〜860MPa、フェライトの平均粒径が2〜15μm、マルテンサイト体積率が27〜42%である溶融亜鉛めっき鋼板(板厚:1.4mm)である。
【0048】
この鋼板を用いて、JFS TlOOl(日本鉄鋼連盟規格)に準拠した穴拡げ試験により、伸びフランジ性の指標である穴拡げ率λを測定した。また、この鋼板から、図1に示すように、120mmφのブランクを採取し、絞り比1.6(75mmφ)でカップに成形した後、カップ高さ27mmにトリムし、縦割れ試験用サンプルを作製した。このカップを用いて、冷媒中でカップの開口試験を実施し、カップの側壁部に縦割れ破壊が発生しない最低温度Tcを測定した。
【0049】
穴拡げ試験結果および縦割れ試験結果を、フェライトの平均粒径dF、固溶B量の指標であるB*=B−(11/14)(N−(14/48)Ti)で整理して、図2に示す。フェライトの平均粒径dFが大きくなるほど、穴拡げ率λは低く、縦割れ臨界温度Tcは高くなり、dFが5μmを超えると(図中の△または●)、λは40〜66%(図中の△)、20〜38%(図中の●)と低くなり、伸びフランジ性は劣化する。
【0050】
またこの図2で、Tcは−10〜−40℃(図中の△)、0〜30℃(図中の●)と高く、耐二次加工脆性が劣化する。また、B*=B−(11/14)(N−(14/48)Ti)が0%の場合には、dFが3μmと小さくても(図中の△)、伸びフランジ性、耐二次加工脆性ともに劣化している。これらの結果は、いずれも穴拡げ試験前の穴打抜き時、および縦割れ試験前の深絞り成形時に、フェライト/マルテンサイトの界面への応力集中が大きいことに起因した特性劣化と考えられる。
【0051】
一方、dFが5μm以下であり、B*=B−(11/14)(N−(14/48)Ti)が0.0002〜0.0030%の場合(図中○)の場合には、λは65〜86%と高く、Tcは−70〜−90℃と低いことから、良好な伸びフランジ性と耐二次加工脆性が得られている。また、B−(11/14)(N−(14/48)Ti)が0.0030%を超える場合(図中の×)は、良好な伸びフランジ性と耐二次加工脆性が得られるものの、めっき表面外観が劣化している。
【0052】
このように、フェライトとマルテンサイトを有する780MPa以上の引張強度の溶融亜鉛めっき鋼板において、伸びフランジ性と耐二次加工脆性を向上させるには、フェライトを平均粒径で5μm以下に細粒化し、更に、粒界強度を上昇させるB量を適量化することが必要であることが明らかとなった。
【0053】
本発明の溶融亜鉛めっき鋼板は、優れた伸びフランジ性と耐二次加工脆性を意図しており、上記(1)のように化学成分を調整し、また、上記(2)のようにフェライトを細粒化した鋼板であり、以下の方法にて製造することができる。
【0054】
(3)鋼板の製造方法
上記(1)で述べた化学成分の鋼を溶製し、鋳造した後、熱間圧延を施す。鋼の溶製、鋳造は特に限定はなく、成分偏析等、特に組織が不均一でなければよい。また、熱間圧延は鋳造後、直ちに開始してもよいし、或いは一旦冷却し、加熱してから行なってもよい。粗圧延した後、仕上圧延を行ない、コイルに巻き取る。板厚方向の組織の均一化を図るためから、
仕上圧延はAr3点以上とし、コイル巻取温度は700℃未満とするのが好ましい。
【0055】
次に、得られた熱延板を酸洗し、冷間圧延した後、連続溶融亜鉛めっき処理を施す。冷間圧延率は特に限定する必要はない。焼鈍時の加熱は、固溶Bの粒界偏析によりオーステナイトを微細化し、これより変態するフェライトを平均粒径5μm以下に細粒化するため、適正制御する必要がある。つまり、加熱温度は、オーステナイト単相域であるAc3点以上とし、また、オーステナイトの粗大化を抑制するため、加熱温度の上限は900℃以下とする。また、オーステナイト粒界へのBの偏析を促進させるためには、加熱温度における保持時間を固溶B量により適正制御しなければならないことが明らかとなった。
【0056】
具体的な数値は、加熱時の保持時間を変化させて焼鈍した鋼板を用いて、組織観察、穴拡げ試験、縦割れ試験を実施して求めた。組織観察では、走査型電子顕微鏡を用いて、圧延方向に平行で板面に垂直な断面において、無作為に抽出した200個分のフェライトの平均粒径とマルテンサイトの体積率を測定した。また、穴拡げ試験、縦割れ試験は上記と同様の方法にて実施した。
【0057】
用いた鋼板は、mass%でC:0.045〜0.070%、Si:0.1〜0.25%、Mn:2.0〜3.0%、P:0.01〜0.03%、S:0.001〜0.003%、sol.Al:0.02〜0.05%、N:0.0020〜0.0040%、Ti:0.01〜0.06%、B:0.0007〜0.0030%、Nb:0.02〜0.04%の化学成分を有する冷延板(板厚:1.4mm)を、加熱温度850℃、加熱時間50〜600secにて焼鈍した溶融亜鉛めっき鋼板で、TSが810〜870MPaである。
【0058】
穴拡げ試験結果、縦割れ試験結果、組織観察結果を、加熱時間、固溶B量の指標 B*=B−(11/14)(N−(14/48)Ti)で整理して、図3に示す。なお、組織観察結果では、マルテンサイト体積率は30〜40%である。
【0059】
図3に示すように、加熱時間t(sec)が長くなるほど、また、B*が少ないほど、フェライトの平均粒径が増大している。これより、平均粒径5μm以下の微細フェライトを得るには、加熱時間tとB*=B−(11/14)[N−(14/48)Ti]で規定される最適条件が存在することが明らかとなった。すなわち、加熱時間t(sec)が4B*×104+30(sec)以上かつ4B*×104+280以下の場合には(図中の○)、フェライトは平均粒径で2〜5μmまで微細化し、λは65〜80%と高く、Tcは−70〜−90℃と低くなり、良好な伸びフランジ性と耐二次加工脆性が得られている。
【0060】
一方、加熱時間tが4B*×104+280(sec)を超えると(図中の□または×)、フェライト平均粒径が6〜9μm(□)、10〜16μm(×)と増大する。これに伴い、穴拡げ率λは前者(□)が42〜55%、後者(×)が20〜35%と低下し、伸びフランジ性は劣化するとともに、縦割れ臨界温度Tcは、前者(□)が−10〜−40℃、後者(×)が10〜40℃と高くなり、良好な耐二次加工脆性は得られない。また、加熱時間が4B*×104+30未満の場合には(図中の△)、未再結晶組織が残留しており、λは10〜20%と低く、Tcは0〜30℃と高くなり、伸びフランジ性、耐二次加工脆性ともに好ましくない。
【0061】
続いて、加熱後の冷却条件、その後の溶融亜鉛めっき浴への浸漬条件は、特に限定する必要はなく、亜鉛めっき処理をした後、必要に応じてめっき層に合金化処理を施してもよい。
【0062】
以上の製造工程を経て、本発明の意図する伸びフランジ性と耐二次加工脆性に優れた高強度溶融亜鉛めっき鋼板を製造することができる。また、このようにして得られた鋼板に電気めっきなどの表面処理を施しても所望の鋼板特性を損なうことはない。
【0063】
【実施例】
表1に示す成分の鋼(鋼番1〜8:本発明鋼、鋼番9〜13:比較鋼)を実験室にて溶製、鋳造して、板厚60mmのスラブを作製した。このスラブを板厚30mmまで分塊圧延した後、大気炉で1270℃×1hrの加熱処理を施し、熱間圧延に供した。仕上圧延は860℃で実施し、550℃×1hrの巻取相当の熱処理を施して、板厚4mmの熱延板を作製した。
【0064】
【表1】
【0065】
次に、熱延板を酸洗し、板厚1.2mmまで冷間圧延した後、焼鈍および溶融亜鉛めっき処理に供した。加熱は850℃×200secとし、この後、平均冷却速度−5℃/sで冷却し、460℃の溶融亜鉛めっき浴中に浸漬した後、550℃で合金化処理を施した。続いて、得られた溶融亜鉛めっき鋼板に伸長率0.7%の調質圧延を施し、引張試験、組織観察、穴拡げ試験、縦割れ試験、めっき表面外観の評価を実施した。
【0066】
引張試験は、JIS Z2241(日本工業規格)に準拠した方法にて実施した。組織観察は、走査型電子顕微鏡を用いて、圧延方向に平行で板面に垂直な断面において、無作為に抽出した200個分のフェライトの平均粒径とマルテンサイトの体積率を測定した。穴拡げ試験は、JFS TlOOl(日本鉄鋼連盟規格)に準拠した方法にて実施し、穴拡げ率λにより、伸びフランジ性を評価した。縦割れ試験は、図1に示すカップ成形材の開口試験にて実施し、縦割れ臨界温度Tcにより、耐二次加工脆性を評価した。
【0067】
また、めっき表面外観は、幅×長さが100mm×1500mmの範囲で、めっき表面を目視にて評価し、不めっき、点状およびすじ状の欠陥が認められた場合には、表面劣化(×)と判定した。これらの特性を評価した結果を表2に示す。
【0068】
【表2】
【0069】
表2に示すように、本発明例No.1〜8(鋼番1〜8)はいずれも本発明成分範囲にあり、TSが790〜1012MPa、フェライトの平均粒径が2〜5μm、マルテンサイト体積率が25〜62%であり、780MPa以上の高い引張強度と平均粒径5μm以下の細粒組織を有する。
【0070】
引張強度が780MPa級の本発明例No.1〜4、No.7、8では、縦割れ限界温度1tは−75〜−110℃と低く、穴拡げ率λは65〜82%と高いことから、良好な伸びフランジ性と耐二次加工脆性が得られている。また、いずれもめっき表面性状は良好である。引張強度が980MPa級の本発明例No.5、6では、Tcは−50℃と低く、λは45%と高いことから、伸びフランジ性、耐二次加工脆性ともに良好な特性が得られており、また、めっき表面性状も良好である。
【0071】
一方、比較例No.9〜13(鋼番9〜13)はいずれも本発明の範囲外にあり、引張強度、伸びフランジ性、耐二次加工脆性、めっき表面性状を満足しない。比較例No.9は、TSが814MPaと780MPa以上の強度が得られているが、λが40%と低く、Tcが−40℃と高いため、伸びフランジ性、耐二次加工脆性は好ましくない。引張強度が980MPa級の比較例No.10では、λが10%と低く、Tcが−5℃と高くなり、伸びフランジ性、耐二次加工脆性は好ましくない。
【0072】
比較例No.11、13は、TSがそれぞれ818、833MPaと所望の引張強度が得られているが、フェライトの平均粒径はいずれも8μmと大きく、λが42%、34%と低く、Tcが−15℃、0℃と高くなり、いずれも伸びフランジ性と耐二次加工脆性は劣化している。また、比較例No.11はめっき表面にすじ状欠陥が認められ、表面性状が好ましくない。比較例No.12はTSが670MPaであり、所望の引張強度が得られていない。
【0073】
【発明の効果】
本発明によれば、鋼の化学成分を規定するとともに、B、Ti、Nで規定される成分量に応じて、焼鈍時の加熱時間を制御することにより、溶融亜鉛めっき処理後の鋼板組織を微細なフェライトとマルテンサイトを主体とする複合組織としている。このように、鋼の化学成分と製造条件を規定することにより、780MPa以上の強度を有する伸びフランジ性と耐二次加工脆性に優れた溶融亜鉛めっき鋼板を、安定して製造することが可能となり、厳しい伸びフランジ成形と低温での強靭性の求められる自動車の構造部品等へ適用できることから、自動車業界における利用価値は大きい。
【図面の簡単な説明】
【図1】鋼板の耐二次加工脆性の評価方法を示す図。
【図2】材質に及ぼすフェライトの平均粒径dFおよび固溶B量 B*の 影響を示す図。( B*=B−(11/14)[N−(14/48)Ti] )
【図3】材質に及ぼす加熱時間tおよび固溶B量 B*の 影響を示す図。( B*=B−(11/14)[N−(14/48)Ti] )[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hot-dip galvanized steel sheet having excellent stretch flangeability and secondary work brittleness resistance, and a method for producing the same.
[0002]
[Prior art]
In recent years, from the viewpoint of prevention of global warming, CO emitted from various industries such as automobiles, electricity and chemical manufacturers 2 Reduction of gas is required. As a specific initiative, automakers are developing electric vehicles and reducing the weight of gasoline-powered vehicles to reduce the fuel ratio. To reduce the weight of an automobile body, it is effective to reduce the thickness of a steel sheet applied to various parts of an automobile.
[0003]
However, while the weight is reduced by reducing the plate thickness, there is a concern that the rigidity of the vehicle body may be reduced. To reduce the weight while maintaining the rigidity of the vehicle body, the use of high-strength steel sheets is promising, and the application of high-strength steel sheets to various automobile structural parts such as rockers and members is being studied. On the other hand, when it is formed into an actual part, deterioration of press formability such as elongation and stretch flangeability becomes a problem. In addition, since the toughness of the material itself decreases as the strength increases, it is required to improve the toughness (secondary work brittleness resistance) of the formed part.
[0004]
To meet such demands, various high-strength steel sheets have been developed. For example, Japanese Patent Application Laid-Open No. 4-173946 discloses a method for producing a high ductility and high strength alloyed hot-dip galvanized steel sheet. According to this technique, when cooling Nb-added steel having a C content of 0.06 to 0.30% at the time of annealing, the cooling rate in a predetermined temperature range is weighted with the Mn, Mo, Cr, Si, and P contents. By specifying the total value, 655 to 877 MPa (66.8 to 89.5 kg / mm) having good elongation and stretch flangeability can be obtained. 2 ) Can be obtained.
[0005]
JP-A-6-93340 discloses a method and a facility for producing a high-strength galvannealed steel sheet having excellent stretch flangeability. This technology controls the temperature of cooling and reheating from heating to galvanizing during the continuous annealing hot-dip galvanizing process to obtain tempered martensite. MPa (53-81 kg / mm 2 ) Can be obtained.
[0006]
JP-A-6-57373 discloses a high r-value and high tensile strength cold rolled steel sheet having excellent secondary work brittleness resistance and a method for producing the same. This technology uses a P-added Ti-Nb-B steel in which the B content is adjusted within a predetermined range determined by a weighted sum of the Si, Mn, and P contents, so that secondary resistance is reduced. 368-502 MPa (37.5-51.2 kg / mm) with good processing brittleness 2 ) Can be obtained.
[0007]
JP-A-2001-192768 discloses a high-strength hot-dip galvanized steel sheet having excellent ductility, stretch flangeability, and fatigue resistance, and a method for producing the same. This technology contains C: 0.05 to 0.20%, Si: 0.3 to 1.8%, Mn: 1.0 to 3.0%, etc., has a composite structure, and contains ferrite. 30% or more by volume, 20% or more by volume of tempered martensite, 2% or more by volume of retained austenite, and the average crystal grain size of the ferrite and tempered martensite is 10 μm or less. It is characterized by.
[0008]
[Patent Document 1]
JP-A-4-173946
[0009]
[Patent Document 2]
JP-A-6-93340
[0010]
[Patent Document 3]
JP-A-6-57373
[0011]
[Patent Document 4]
JP 2001-192768 A
[0012]
[Problems to be solved by the invention]
In the technology disclosed in Japanese Patent Application Laid-Open No. 4-173946, a characteristic value of 44 to 86% is obtained for the hole expansion ratio λ, which is an index of stretch flangeability. No stable high characteristic value of 44 to 61% was obtained. Further, in this technique, a hot-dip galvanized steel sheet having a strength of 980 MPa or more has not been stably obtained.
[0013]
On the other hand, according to the technique disclosed in Japanese Patent Application Laid-Open No. 6-93340, a good hole expansion rate of 85 to 86% is obtained in a steel sheet having a strength of 780 MPa. However, in this technique, in a continuous hot-dip galvanizing line, a forced cooling facility and a new heating furnace must be newly installed between the soaking zone and the hot-dip galvanizing bath, so that the production cost is extremely high.
[0014]
Further, even with this technique, a hot-dip galvanized steel sheet having a strength of 980 MPa or more has not been obtained. Furthermore, all of the above-mentioned prior arts focus on improving the stretch flangeability of a high-strength steel sheet, and it is considered that the toughness of the steel sheet cannot be improved. For this reason, in the steel sheet obtained by these techniques, there is a concern that the toughness (resistance to secondary working embrittlement) of the part during press forming is deteriorated.
[0015]
On the other hand, according to the technique disclosed in Japanese Unexamined Patent Publication No. Hei 6-57373, a steel sheet having a strength of up to about 500 MPa and having good secondary working embrittlement resistance can be obtained. It is considered difficult to manufacture.
[0016]
The technique described in Japanese Patent Application Laid-Open No. 2001-192768 is aimed at improving fatigue resistance characteristics, but does not disclose secondary work brittleness resistance at all.
[0017]
In addition, steel sheets used for undercarriage parts of automobiles such as rockers are required to have good secondary work brittleness and a strength of 780 MPa or more. Since the stress concentration at the crystal grain boundary sometimes increases, the situation becomes more severe for the resistance to secondary working embrittlement. Therefore, any of the above-mentioned conventional techniques has a problem that stretch flangeability, resistance to secondary working brittleness, and tensile strength of 780 MPa or more cannot be satisfied.
[0018]
Therefore, the present invention solves the above problems and provides a hot-dip galvanized steel sheet having a tensile strength of 780 MPa or more, excellent stretch flangeability and secondary work brittleness resistance, and a method for stably producing the same. The purpose is to:
[0019]
[Means for Solving the Problems]
The above problem is solved by the following invention. In the invention, the chemical components are mass% and C: 0.03 to 0.13%, Si ≦ 0.7%, Mn: 2.0 to 4.0%, P ≦ 0.05%, S ≦ 0. 005%, Sol. Al: O. 01-0.1%, N ≦ 0.005%, Ti: 0.005-0.1%, B: 0.0002-0.0040%, B, Ti, N satisfy the following inequality A molten zinc excellent in stretch flangeability and secondary work brittleness resistance, characterized in that the balance substantially comprises iron, ferrite having an average particle size of 5 μm or less and martensite having a volume ratio of 15 to 80%. It is a plated steel sheet.
[0020]
0.0002 ≦ B− (11/14) [N− (14/48) Ti] ≦ 0.0030 (1)
Here, the element symbols in the formula indicate mass% of each element, and when [N− (14/48) Ti] ≦ 0, [N− (14/48) Ti] is set to 0.
[0021]
Further, in the hot-dip galvanized steel sheet of the present invention, Nb: 0.005 to 0.1%, Mo: 0.01 to 1.0%, and V: 0.01 to 0. A hot-dip galvanized steel sheet having excellent stretch flangeability and secondary work brittleness resistance, characterized in that it contains at least one of 5% and Cr: 0.01 to 0.5%.
[0022]
The invention of the manufacturing method relating to the hot-dip galvanized steel sheet of these inventions is a step of smelting and casting steel having the above chemical composition, a step of hot-rolling the cast slab, and then pickling. And a step of heating to a temperature of not less than Ac 3 points and not more than 900 ° C. after the cold rolling, holding for a time t (sec) satisfying the following formula, cooling, and performing a hot-dip galvanizing process. A method for producing a hot-dip galvanized steel sheet having excellent stretch flangeability and secondary work brittleness resistance.
[0023]
Here, the symbol of the element in the formula represents the mass% of each element, t represents the holding time (sec) at the heating temperature, and [N- (14/48) Ti] ≦ [N- (14 / 48) Ti] is set to 0.
[0024]
The present invention has been made based on the findings found as a result of intensive studies in order to obtain a high-strength hot-dip galvanized steel sheet having excellent stretch flangeability and secondary work brittleness resistance. This is because, in a high-strength steel sheet with a composite structure containing ferrite and martensite, a decrease in stretch flangeability and a deterioration in secondary work brittleness resistance are caused by blanking before press forming and near the ferrite / martensite interface during press forming. This is due to stress concentration.
[0025]
During blanking before press molding, stretch flangeability is reduced due to microvoids generated by stress concentration near the ferrite / martensite interface. At the time of press molding, toughness (resistance to secondary working embrittlement) is degraded due to increasing stress concentration on crystal grain boundaries. Therefore, by reducing the size of ferrite and increasing the grain boundary strength by adding B appropriately, the generation of microvoids is suppressed, the stretch flangeability can be improved, and the grain refinement and grain boundary strengthening are achieved. Thereby, the toughness is improved and the secondary work brittleness resistance can be improved.
[0026]
The present invention has the above requirements in order to obtain a high-strength hot-dip galvanized steel sheet having a tensile strength of 780 MPa or more, and excellent stretch flangeability and secondary work brittleness resistance. The reasons for adding the steel components of the present invention, the ranges for limiting the components, the morphology, and the reasons for limiting the manufacturing conditions will be described below.
[0027]
(1) Range of steel components
Hereinafter,% indicates mass%.
[0028]
C: 0.03 to 0.13%
C is an element effective for strengthening steel, and requires an addition amount of 0.03% or more. On the other hand, if C is added in excess of 0.13%, a band structure develops in the rolling direction, and stress concentration occurs in the band structure during press forming, so that toughness deteriorates. For this reason, the C content is in the range of 0.03 to 0.13%.
[0029]
Si: ≦ 0.7%
Si is an element effective for strengthening steel, and can be added as appropriate. However, when the Si content exceeds 0.7%, ferrite transformation in a high temperature range is promoted in the cooling process during annealing, and ferrite grains grow, so that fine ferrite grains intended by the present invention cannot be obtained. Further, when the Si content exceeds 0.7%, the adhesion of hot-dip galvanized coating deteriorates, and an uneven plating film is formed, so that during deep drawing, stress concentration on the surface layer of the steel sheet increases, It is not preferable for the secondary work brittleness resistance after molding. Therefore, the amount of Si is set to 0.7% or less. If the Si content is less than 0.3%, the secondary work brittleness resistance is further improved. Therefore, it is preferable that the amount of Si be less than 0.3%.
[0030]
Mn: 2.0-4.0%
Mn is an element effective for strengthening steel, and requires an addition amount of 2.0% or more. On the other hand, when the added amount of Mn exceeds 4.0%, segregation of Mn tends to occur during casting of the slab. After rolling and hot-dip galvanizing, a band structure due to the segregation develops in the steel sheet, so that the stretch flangeability is significantly deteriorated. For this reason, the Mn content is set in the range of 2.0 to 4.0%.
[0031]
P: ≦ 0.05%
P is an element effective for strengthening steel and can be added as appropriate. However, if the added amount of P exceeds 0.05%, a non-uniform structure due to segregation of P at the time of casting tends to develop, and ductility deteriorates. Therefore, the addition amount of P is set to 0.05% or less.
[0032]
S: ≦ 0.005%
If S is excessively present in steel, a large amount of MnS is formed, which is not preferable for elongation and stretch flangeability of the steel sheet. In particular, when the S content exceeds 0.005%, there is a concern about this adverse effect. For this reason, the S content is set to 0.005% or less.
[0033]
sol. Al: 0.01 to 0.1%
Al is required to be 0.01% or more to deoxidize steel. However, when the addition amount of Al exceeds 0.1%, Al-based inclusions such as oxides increase in steel, and the ductility is significantly deteriorated. For this reason, the Al content is in the range of 0.01 to 0.1%.
[0034]
N: ≦ 0.005%
If N is excessively present in steel, cracks tend to occur on the surface during casting of the slab. In particular, when the N content exceeds 0.005%, this adverse effect becomes remarkable. Therefore, the N content is set to 0.005% or less.
[0035]
B: 0.0002-0.0040%
Since B is present in a solid solution state, it segregates at the austenite grain boundary during annealing to make austenite finer, and is extremely effective in making ferrite transformed from austenite finer. B is also an extremely effective element for promoting martensitic transformation from austenite, and it is necessary to add 0.0002% or more to obtain these effects. However, when the added amount of B exceeds 0.0040%, these effects are not only saturated, but also the plating surface appearance deteriorates. For this reason, the amount of B is made into the range of 0.0002 to 0.0040%.
[0036]
Ti: 0.005 to 0.1%
Ti prevents B from becoming BN by precipitating and fixing N, and by keeping B in a solid solution state, the above-mentioned effect of B, namely, the promotion of finer ferrite and martensitic transformation, Contribute greatly. In order to secure solid solution B as described above, it is necessary to add 0.005% or more of Ti. On the other hand, when the addition amount of Ti exceeds 0.1%, the plating surface appearance deteriorates. Therefore, the amount of Ti is set in the range of 0.005 to 0.1%.
[0037]
Solid solution B amount B * = B- (11/14) [N- (14/48) Ti]: 0.0002-0.0030%
In order to obtain the above effects by B and Ti, it is necessary to appropriately control the amount of solute B. As an index of the amount of solid solution B, the amount obtained by subtracting the equivalent (11/14) [N− (14/48) Ti] of N not precipitated and fixed from the amount of B:
B * = B- (11/14) [N- (14/48) Ti]
Is used. This quantity B * Is less than 0.0002%, a desired fine structure cannot be obtained. On the other hand, if this amount exceeds 0.0030%, these effects are not only saturated, but also the plating surface appearance deteriorates. Therefore, the amount of solid solution B * Is in the range of 0.0002 to 0.0030%. If the value of [N− (14/48) Ti] is negative (N equivalent of Ti> N), it is set to 0. In this case, B * = B, and the amount of solute B becomes equal to the amount of B added.
[0038]
In the present invention, if necessary, Nb, Mo, V, and Cr can be added in the following ranges.
[0039]
Nb: 0.005 to 0.1% when added
Nb is an element that contributes to the refinement of the structure by forming fine carbides with C. In order to obtain this effect, 0.005% or more must be added. On the other hand, when the added amount of Nb exceeds 0.1%, recrystallization of ferrite and austenite during annealing is delayed, a work structure is likely to remain, and the ductility of the steel sheet is significantly reduced. Therefore, when Nb is added, the content is in the range of 0.005 to 0.1%.
[0040]
Mo: 0.01 to 1.0%
Mo is an element that improves the hardenability of steel and is effective for strengthening steel. In order to obtain Mo strengthening ability, addition of 0.01% or more is required. On the other hand, when the addition amount of Mo exceeds 1.0%, the plating surface appearance deteriorates. For this reason, when adding Mo, it is made into the range of 0.01-1.0%.
[0041]
V: 0.01 to 0.5% when added
V is an element that improves the hardenability of steel and is effective for strengthening steel. In order to obtain the strengthening ability of V, 0.01% or more must be added. On the other hand, when the added amount of V exceeds 0.5%, the effect is saturated. Therefore, when V is added, the content is in the range of 0.01 to 0.5%.
[0042]
Cr: 0.01 to 0.5% when added
Cr, like Mo and V, is an element that improves the hardenability of steel, and is effective for strengthening steel. In order to obtain this effect, 0.01% or more of Cr must be added. On the other hand, when the added amount of Cr exceeds 0.5%, the strengthening ability is saturated. Therefore, when Cr is added, the content is in the range of 0.01 to 0.5%.
[0043]
The effects of the present invention will not be impaired unless chemical components other than the above steel components are added in excess. For example, if W and Ni are 0.5% or less, there is no adverse effect on the characteristics aimed at by the present invention. In the present invention, the fact that the balance is substantially iron means that other alloying elements or unavoidable impurities may be contained as long as the desired properties of the present invention are not adversely affected.
[0044]
(2) Microstructure of steel sheet
For the purpose of reducing the weight of an automobile body, press formability such as stretchability and stretch flangeability is required for application of a high-strength steel sheet. Since material properties such as n value and elongation are required for the overhang property, a composite structure steel sheet mainly composed of ferrite and martensite is desirable.
[0045]
However, in the case of this steel sheet, during blanking before press forming, many microvoids are generated due to stress concentration near the interface between ferrite and hard martensite, and there is a concern that the stretch flangeability is reduced. Further, since the toughness of the material itself decreases with the increase in the strength of steel, there is a concern that the toughness (resistance to secondary working embrittlement) of the part after press forming is deteriorated. For this reason, when applying a high-strength material to an actual component, it is important to improve the resistance to secondary working brittleness.
[0046]
Therefore, in the present invention, in a high-strength steel sheet containing 780 MPa or more containing ferrite and martensite, a structural factor for improving the resistance to secondary working brittleness after press forming together with the stretch flangeability was examined. As a result, the ferrite is refined to an average particle size of 5 μm or less, and the amount of B that increases the grain boundary strength is appropriately adjusted, whereby the resistance to embrittlement at the interface between the ferrite phase and the hard martensite phase increases, It has been clarified that the stretch flangeability and the resistance to secondary working brittleness can be improved.
[0047]
Specific numerical values were obtained by conducting a hole expansion test using a 60 ° conical punch and a vertical cracking test of a deep drawn material using steel sheets having variously changed ferrite grain size and B content. The steel sheet used was: mass: C: 0.035 to 0.075%, Si: 0.02 to 0.25%, Mn: 2.0 to 3.0%, P: 0.01 to 0.03. %, S: 0.001 to 0.003%, sol. Al: 0.02 to 0.05%, N: 0.0020 to 0.0035%, Ti: 0.01 to 0.06%, B: 0.0000 (no addition) to 0.0040% of chemical components A hot-dip galvanized steel sheet (sheet thickness: 1.4 mm) having a TS of 800 to 860 MPa, an average ferrite particle size of 2 to 15 μm, and a martensite volume ratio of 27 to 42%.
[0048]
Using this steel sheet, a hole expansion ratio λ, which is an index of stretch flangeability, was measured by a hole expansion test based on JFS TOOL (Japan Iron and Steel Federation Standard). Also, as shown in FIG. 1, a 120 mmφ blank was sampled from this steel plate, formed into a cup with a drawing ratio of 1.6 (75 mmφ), and then trimmed to a cup height of 27 mm to prepare a sample for a vertical crack test. did. Using this cup, an opening test of the cup was performed in a refrigerant, and a minimum temperature Tc at which a vertical crack did not occur on the side wall of the cup was measured.
[0049]
The results of the hole expansion test and the vertical cracking test were calculated using the average ferrite grain size d. F , B which is an index of the amount of solute B * = B- (11/14) (N- (14/48) Ti) and shown in FIG. Average particle size d of ferrite F Is larger, the hole expansion ratio λ is lower, the vertical crack critical temperature Tc is higher, and d F Exceeds 5 μm (△ or ● in the figure), λ decreases to 40 to 66% (% in the figure) and 20 to 38% (% in the figure), and the stretch flangeability deteriorates.
[0050]
In FIG. 2, Tc is as high as −10 to −40 ° C. (Δ in the figure) and 0 to 30 ° C. (● in the figure), and the secondary working brittleness is deteriorated. Also, B * = B- (11/14) (N- (14/48) Ti) when 0%, d F Is as small as 3 μm (△ in the figure), both the stretch flangeability and the resistance to secondary working brittleness are degraded. These results are considered to be attributed to the characteristic deterioration caused by a large stress concentration at the ferrite / martensite interface at the time of hole punching before the hole expansion test and at the time of deep drawing before the longitudinal cracking test.
[0051]
On the other hand, d F Is 5 μm or less, and B * When = B- (11/14) (N- (14/48) Ti) is 0.0002 to 0.0030% (in the figure), λ is as high as 65 to 86% and Tc is Since it is as low as −70 to −90 ° C., good stretch flangeability and secondary work brittleness resistance are obtained. When B- (11/14) (N- (14/48) Ti) exceeds 0.0030% (x in the figure), good stretch flangeability and secondary work brittleness resistance are obtained. In addition, the plating surface appearance is deteriorated.
[0052]
As described above, in a hot-dip galvanized steel sheet having a tensile strength of 780 MPa or more having ferrite and martensite, in order to improve stretch flangeability and secondary work brittleness resistance, ferrite is refined to an average particle size of 5 μm or less, Further, it became clear that it was necessary to optimize the amount of B for increasing the grain boundary strength.
[0053]
The hot-dip galvanized steel sheet of the present invention is intended for excellent stretch flangeability and secondary work brittleness resistance, and adjusts the chemical composition as described in (1) above, and ferrite as described in (2) above. It is a fine-grained steel sheet and can be manufactured by the following method.
[0054]
(3) Steel plate manufacturing method
After melting and casting the steel having the chemical composition described in the above (1), hot rolling is performed. The smelting and casting of steel is not particularly limited, and it is sufficient that the structure such as component segregation is not particularly non-uniform. Hot rolling may be started immediately after casting, or may be performed after cooling and heating. After rough rolling, finish rolling is performed and wound into a coil. In order to equalize the structure in the thickness direction,
Finish rolling is Ar 3 And the coil winding temperature is preferably lower than 700 ° C.
[0055]
Next, the obtained hot-rolled sheet is pickled, cold-rolled, and then subjected to continuous hot-dip galvanizing. The cold rolling reduction need not be particularly limited. Heating during annealing needs to be appropriately controlled in order to refine austenite due to segregation of solid solution B at the grain boundaries and to refine ferrite transformed therefrom to an average grain size of 5 μm or less. That is, the heating temperature is set to the austenite single phase region Ac 3 The upper limit of the heating temperature is 900 ° C. or less in order to suppress the austenite coarsening. Further, it has been clarified that in order to promote the segregation of B at the austenite grain boundaries, the holding time at the heating temperature must be properly controlled by the amount of solid solution B.
[0056]
Specific numerical values were obtained by performing a structure observation, a hole expansion test, and a vertical crack test using a steel sheet annealed while changing the holding time during heating. In the microstructure observation, the average grain size and the volume fraction of martensite of 200 randomly extracted ferrites were measured in a cross section parallel to the rolling direction and perpendicular to the plate surface using a scanning electron microscope. The hole expansion test and the vertical cracking test were performed in the same manner as described above.
[0057]
The steel sheet used was: mass: C: 0.045 to 0.070%, Si: 0.1 to 0.25%, Mn: 2.0 to 3.0%, P: 0.01 to 0.03. %, S: 0.001 to 0.003%, sol. Al: 0.02 to 0.05%, N: 0.0020 to 0.0040%, Ti: 0.01 to 0.06%, B: 0.0007 to 0.0030%, Nb: 0.02 to A hot-dip galvanized steel sheet obtained by annealing a cold-rolled sheet (sheet thickness: 1.4 mm) having a chemical composition of 0.04% at a heating temperature of 850 ° C. and a heating time of 50 to 600 seconds, and has a TS of 810 to 870 MPa.
[0058]
The results of the hole expansion test, the vertical cracking test, and the microstructure observation are converted into the heating time and the solid solution B index B * = B- (11/14) (N- (14/48) Ti) and shown in FIG. In addition, according to the structure observation result, the martensite volume ratio is 30 to 40%.
[0059]
As shown in FIG. 3, as the heating time t (sec) becomes longer, * The smaller the value, the larger the average particle size of the ferrite. Thus, to obtain fine ferrite having an average particle size of 5 μm or less, the heating time t and B * = B- (11/14) [N- (14/48) Ti]. That is, the heating time t (sec) is 4B * × 10 4 +30 (sec) or more and 4B * × 10 4 In the case of +280 or less (○ in the figure), the ferrite is refined to an average particle size of 2 to 5 μm, λ is as high as 65 to 80%, Tc is as low as −70 to −90 ° C., and good elongation is obtained. Flangeability and secondary work brittleness resistance are obtained.
[0060]
On the other hand, when the heating time t is 4B * × 10 4 If it exceeds +280 (sec) (□ or × in the figure), the average ferrite grain size increases to 6 to 9 μm (□) and 10 to 16 μm (×). Along with this, the hole expansion ratio λ is reduced to 42 to 55% for the former (□) and 20 to 35% for the latter (×), and the stretch flangeability is deteriorated. ) Is as high as −10 to −40 ° C., and the latter (×) is as high as 10 to 40 ° C., and good secondary working brittleness resistance cannot be obtained. The heating time is 4B * × 10 4 In the case of less than +30 (△ in the figure), an unrecrystallized structure remains, λ is as low as 10 to 20%, Tc is as high as 0 to 30 ° C., stretch flangeability, secondary working resistance. Both brittleness are not preferred.
[0061]
Subsequently, the cooling conditions after the heating and the subsequent immersion conditions in the hot-dip galvanizing bath are not particularly limited, and after the galvanizing treatment, the plating layer may be subjected to an alloying treatment if necessary. .
[0062]
Through the above manufacturing steps, a high-strength hot-dip galvanized steel sheet excellent in stretch flangeability and secondary work brittleness resistance intended by the present invention can be manufactured. Further, even if the steel sheet thus obtained is subjected to a surface treatment such as electroplating, desired properties of the steel sheet are not impaired.
[0063]
【Example】
Steels having the components shown in Table 1 (steel numbers 1 to 8: steels of the present invention, steel numbers 9 to 13: comparative steels) were melted and cast in a laboratory to produce slabs having a plate thickness of 60 mm. After slab-rolling the slab to a plate thickness of 30 mm, the slab was subjected to a heat treatment at 1270 ° C. × 1 hr in an air furnace and subjected to hot rolling. The finish rolling was performed at 860 ° C., and a heat treatment corresponding to winding at 550 ° C. × 1 hr was performed to prepare a hot-rolled sheet having a thickness of 4 mm.
[0064]
[Table 1]
[0065]
Next, the hot-rolled sheet was pickled, cold-rolled to a sheet thickness of 1.2 mm, and then subjected to annealing and galvanizing. The heating was performed at 850 ° C. × 200 sec. Thereafter, the alloy was cooled at an average cooling rate of −5 ° C./s, immersed in a hot-dip galvanizing bath at 460 ° C., and then subjected to an alloying treatment at 550 ° C. Subsequently, the resulting hot-dip galvanized steel sheet was subjected to temper rolling at an elongation of 0.7%, and a tensile test, a structure observation, a hole expansion test, a vertical crack test, and an evaluation of the plating surface appearance were performed.
[0066]
The tensile test was performed by a method based on JIS Z2241 (Japanese Industrial Standard). Microstructure observation was performed using a scanning electron microscope to measure the average grain size and volume fraction of martensite of 200 randomly extracted ferrites in a cross section parallel to the rolling direction and perpendicular to the plate surface. The hole expansion test was performed by a method based on JFS TOOL (Japan Iron and Steel Federation), and the stretch flangeability was evaluated by the hole expansion ratio λ. The vertical cracking test was carried out by an opening test of the cup molding material shown in FIG. 1, and the secondary working brittleness resistance was evaluated by the vertical cracking critical temperature Tc.
[0067]
Further, the plating surface appearance was evaluated by visual observation of the plating surface in a range of width × length of 100 mm × 1500 mm, and when non-plating, dot-like and streak-like defects were recognized, surface deterioration (× ). Table 2 shows the results of evaluating these characteristics.
[0068]
[Table 2]
[0069]
As shown in Table 2, the present invention example No. 1 to 8 (Steel Nos. 1 to 8) are all within the range of the present invention, TS is 790 to 1012 MPa, ferrite average particle size is 2 to 5 μm, martensite volume ratio is 25 to 62%, and 780 MPa or more. Has a high tensile strength and a fine grain structure with an average particle size of 5 μm or less.
[0070]
Inventive Example No. having a tensile strength of 780 MPa class. 1 to 4, No. In Nos. 7 and 8, since the vertical crack limit temperature 1t is as low as -75 to -110 ° C and the hole expansion ratio λ is as high as 65 to 82%, good stretch flangeability and secondary work brittleness resistance are obtained. . In addition, all have good plating surface properties. Inventive Example No. having a tensile strength of 980 MPa class. In Nos. 5 and 6, since Tc was as low as −50 ° C. and λ was as high as 45%, good properties were obtained in both stretch flangeability and secondary work brittleness resistance, and the plating surface properties were also good. .
[0071]
On the other hand, in Comparative Example No. Nos. 9 to 13 (Steel Nos. 9 to 13) are outside the scope of the present invention, and do not satisfy tensile strength, stretch flangeability, secondary work brittleness resistance, and plating surface properties. Comparative Example No. In No. 9, TS has a strength of 814 MPa or 780 MPa or more, but since λ is as low as 40% and Tc is as high as −40 ° C., stretch flangeability and secondary work brittleness resistance are not preferred. Comparative Example No. having a tensile strength of 980 MPa class. In No. 10, λ is as low as 10% and Tc is as high as −5 ° C., and the stretch flangeability and the resistance to secondary working embrittlement are not preferred.
[0072]
Comparative Example No. In Nos. 11 and 13, TS was 818 and 833 MPa, respectively, and desired tensile strength was obtained. However, the average grain size of ferrite was as large as 8 μm, λ was as low as 42% and 34%, and Tc was −15 ° C. , 0 ° C., and the stretch flangeability and the resistance to secondary working brittleness are all degraded. In Comparative Example No. In No. 11, streaky defects were observed on the plating surface, and the surface properties were not preferable. Comparative Example No. In No. 12, the TS was 670 MPa, and the desired tensile strength was not obtained.
[0073]
【The invention's effect】
According to the present invention, the steel composition after hot-dip galvanizing is controlled by controlling the heating time during annealing while controlling the chemical components of the steel and controlling the heating time during annealing according to the component amounts defined by B, Ti, and N. It has a composite structure mainly composed of fine ferrite and martensite. Thus, by defining the chemical composition of the steel and the production conditions, it becomes possible to stably produce a hot-dip galvanized steel sheet having a stretch flangeability having a strength of 780 MPa or more and an excellent secondary work brittleness resistance. Since it can be applied to structural parts and the like of automobiles that require strict stretch flange forming and toughness at low temperatures, its utility value in the automobile industry is great.
[Brief description of the drawings]
FIG. 1 is a view showing a method for evaluating secondary work brittleness resistance of a steel sheet.
FIG. 2 shows the effect of ferrite on average grain size d F And the amount of solute B * The figure which shows the influence of. (B * = B- (11/14) [N- (14/48) Ti])
FIG. 3 shows the heating time t and the amount of dissolved B on the material B * The figure which shows the influence of. (B * = B- (11/14) [N- (14/48) Ti])
Claims (3)
0.0002≦B−(11/14)[N−(14/48)Ti]≦0.0030
ここで、式中の元素記号はそれぞれの元素のmass%を示し、[N−(14/48)Ti]≦0の場合は[N−(14/48)Ti]を0とする。Chemical component is mass%, C: 0.03-0.13%, Si ≦ 0.7%, Mn: 2.0-4.0%, P ≦ 0.05%, S ≦ 0.005%, Sol . Al: O. 01-0.1%, N ≦ 0.005%, Ti: 0.005-0.1%, B: 0.0002-0.0040%, B, Ti, N satisfy the following inequality A molten zinc excellent in stretch flangeability and secondary working brittleness resistance, characterized in that the balance substantially comprises iron, ferrite having an average particle size of 5 μm or less and martensite having a volume ratio of 15 to 80%. Plated steel sheet.
0.0002 ≦ B− (11/14) [N− (14/48) Ti] ≦ 0.0030
Here, the element symbols in the formula indicate mass% of each element, and when [N− (14/48) Ti] ≦ 0, [N− (14/48) Ti] is set to 0.
4×{B−(11/14)[N−(14/48)Ti]}×104+30≦t≦4×{B−(11/14)[N−(14/48)Ti]}×104+280
ここで、式中の元素記号はそれぞれの元素のmass%を、tは加熱温度における保持時間(sec)を示し、[N−(14/48)Ti]≦0の場合は[N−(14/48)Ti]を0とする。A step of melting and casting the steel having the chemical composition according to claim 1 or 2, a step of hot rolling the cast slab, and a step of cold rolling by pickling. After the cold rolling, heating is performed to a temperature of not less than 3 points and not more than 900 ° C. for a time t (sec) that satisfies the following inequality, followed by cooling and hot-dip galvanizing. A method for producing a hot-dip galvanized steel sheet having excellent stretch flangeability and secondary work brittleness resistance.
4 × {B− (11/14) [N− (14/48) Ti]} × 10 4 + 30 ≦ t ≦ 4 × {B− (11/14) [N− (14/48) Ti]} × 10 4 +280
Here, the symbol of the element in the formula represents the mass% of each element, t represents the holding time (sec) at the heating temperature, and [N- (14/48) Ti] ≦ [N- (14 / 48) Ti] is set to 0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002380660A JP4258215B2 (en) | 2002-12-27 | 2002-12-27 | Hot-dip galvanized steel sheet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002380660A JP4258215B2 (en) | 2002-12-27 | 2002-12-27 | Hot-dip galvanized steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004211140A true JP2004211140A (en) | 2004-07-29 |
JP4258215B2 JP4258215B2 (en) | 2009-04-30 |
Family
ID=32816816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002380660A Expired - Fee Related JP4258215B2 (en) | 2002-12-27 | 2002-12-27 | Hot-dip galvanized steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4258215B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008133062A1 (en) * | 2007-04-13 | 2008-11-06 | Jfe Steel Corporation | High-strength hot-dip galvanized steel sheet and method for producing the same |
KR100896988B1 (en) | 2007-08-16 | 2009-05-14 | 한국원자력연구원 | High-Cr Ferritic/Martensitic Steels having improved neutron irradiation stability containing an enriched boron-11 for the in-core component materials in the Gen-? fission reactor and the fusion reactor |
JP2009120878A (en) * | 2007-11-13 | 2009-06-04 | Jfe Steel Corp | High strength hot-dip galvanized steel sheet with excellent workability, and its manufacturing method |
WO2010126161A1 (en) * | 2009-04-28 | 2010-11-04 | Jfeスチール株式会社 | High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof |
JP2013213232A (en) * | 2012-03-30 | 2013-10-17 | Kobe Steel Ltd | High-yield-ratio high-strength steel sheet having excellent workability |
US20150027593A1 (en) * | 2012-02-22 | 2015-01-29 | Nippon Steel & Sumitomo Metal Corporation | Cold-rolled steel sheet and process for manufacturing same |
CN105814227A (en) * | 2013-12-18 | 2016-07-27 | 杰富意钢铁株式会社 | High strength hot-dip galvanized steel sheet and manufacturing method therefor |
KR20180119638A (en) | 2016-03-31 | 2018-11-02 | 제이에프이 스틸 가부시키가이샤 | A method of manufacturing a cold-rolled hard steel sheet, a method of manufacturing a heat-treated sheet, a method of manufacturing a thin steel sheet, and a method of manufacturing a coated steel sheet |
-
2002
- 2002-12-27 JP JP2002380660A patent/JP4258215B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008280608A (en) * | 2007-04-13 | 2008-11-20 | Jfe Steel Kk | High-strength hot-dip galvanized steel sheet excellent in workability and weldability, and its manufacturing method |
US8389128B2 (en) | 2007-04-13 | 2013-03-05 | Jfe Steel Corporation | High tensile-strength galvanized steel sheet and process for manufacturing high tensile-strength galvanized steel sheet |
WO2008133062A1 (en) * | 2007-04-13 | 2008-11-06 | Jfe Steel Corporation | High-strength hot-dip galvanized steel sheet and method for producing the same |
KR100896988B1 (en) | 2007-08-16 | 2009-05-14 | 한국원자력연구원 | High-Cr Ferritic/Martensitic Steels having improved neutron irradiation stability containing an enriched boron-11 for the in-core component materials in the Gen-? fission reactor and the fusion reactor |
JP2009120878A (en) * | 2007-11-13 | 2009-06-04 | Jfe Steel Corp | High strength hot-dip galvanized steel sheet with excellent workability, and its manufacturing method |
WO2010126161A1 (en) * | 2009-04-28 | 2010-11-04 | Jfeスチール株式会社 | High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof |
JP2010275628A (en) * | 2009-04-28 | 2010-12-09 | Jfe Steel Corp | High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue property, and process for production thereof |
CN102414335A (en) * | 2009-04-28 | 2012-04-11 | 杰富意钢铁株式会社 | High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof |
CN102414335B (en) * | 2009-04-28 | 2014-08-27 | 杰富意钢铁株式会社 | High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof |
US8828557B2 (en) | 2009-04-28 | 2014-09-09 | Jfe Steel Corporation | High strength galvanized steel sheet having excellent formability, weldability, and fatigue properties and method for manufacturing the same |
US10526671B2 (en) * | 2012-02-22 | 2020-01-07 | Nippon Steel Corporation | Cold-rolled steel sheet and process for manufacturing same |
US20150027593A1 (en) * | 2012-02-22 | 2015-01-29 | Nippon Steel & Sumitomo Metal Corporation | Cold-rolled steel sheet and process for manufacturing same |
JP2013213232A (en) * | 2012-03-30 | 2013-10-17 | Kobe Steel Ltd | High-yield-ratio high-strength steel sheet having excellent workability |
EP3054025A4 (en) * | 2013-12-18 | 2016-11-30 | Jfe Steel Corp | High strength hot-dip galvanized steel sheet and manufacturing method therefor |
CN105814227A (en) * | 2013-12-18 | 2016-07-27 | 杰富意钢铁株式会社 | High strength hot-dip galvanized steel sheet and manufacturing method therefor |
US10590503B2 (en) | 2013-12-18 | 2020-03-17 | Jfe Steel Corporation | High-strength galvanized steel sheet and method for manufacturing the same |
KR20180119638A (en) | 2016-03-31 | 2018-11-02 | 제이에프이 스틸 가부시키가이샤 | A method of manufacturing a cold-rolled hard steel sheet, a method of manufacturing a heat-treated sheet, a method of manufacturing a thin steel sheet, and a method of manufacturing a coated steel sheet |
CN108884538A (en) * | 2016-03-31 | 2018-11-23 | 杰富意钢铁株式会社 | The manufacturing method of sheet metal and coated steel sheet and hot rolled steel plate, manufacturing method, the manufacturing method of heat treatment plate, the manufacturing method of the manufacturing method of sheet metal and coated steel sheet of cold rolling is fully hard steel plate |
US10920294B2 (en) | 2016-03-31 | 2021-02-16 | Jfe Steel Corporation | Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full-hard cold-rolled steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing coated steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP4258215B2 (en) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109072380B (en) | Steel sheet, plated steel sheet, and method for producing same | |
JP4635525B2 (en) | High-strength steel sheet excellent in deep drawability and manufacturing method thereof | |
JP5434960B2 (en) | High-strength hot-dip galvanized steel sheet excellent in bendability and weldability and method for producing the same | |
JP4730056B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability | |
WO2019106895A1 (en) | High-strength galvanized steel sheet, and method for manufacturing same | |
CN111936650B (en) | High-strength galvanized steel sheet, high-strength member, and method for producing same | |
JP2019506530A (en) | High strength steel plate having excellent formability and method of manufacturing the same | |
JPWO2019106894A1 (en) | High strength galvanized steel sheet and manufacturing method thereof | |
WO2013114850A1 (en) | Hot-dip galvanized steel sheet and production method therefor | |
JP2010209392A (en) | High strength hot dip galvanized steel sheet having excellent formability, and method for producing the same | |
CN108779536B (en) | Steel sheet, plated steel sheet, and method for producing same | |
JP2011032549A (en) | High-strength hot-dip galvanized steel strip with excellent moldability and less variation of material grade in steel strip, and method for production thereof | |
JP4407449B2 (en) | High strength steel plate and manufacturing method thereof | |
JP5251207B2 (en) | High strength steel plate with excellent deep drawability and method for producing the same | |
JP5034364B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet | |
JP4501699B2 (en) | High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same | |
JP4696870B2 (en) | High strength steel plate and manufacturing method thereof | |
JP4258215B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP4370795B2 (en) | Method for producing hot-dip galvanized steel sheet | |
JP2009144225A (en) | High-strength hot-dip galvanized steel sheet superior in formability and manufacturing method therefor | |
JP3912181B2 (en) | Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof | |
JP3873638B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP3464611B2 (en) | High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same | |
CN111936649B (en) | High-strength galvanized steel sheet, high-strength member, and method for producing same | |
JP2006283156A (en) | High-strength cold rolled steel sheet having excellent formability and weldability, high-strength hot dip galvanized steel sheet, high-strength alloyed galvannealed steel sheet, production method of high-strength cold rolled steel sheet, production method of high-strength hot dip galvanized steel sheet, and production method of high-strength alloyed galvannealed steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050928 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080328 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080910 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20081127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090113 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090126 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4258215 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |