JP2004207177A - Redox flow battery and operation method of the same - Google Patents
Redox flow battery and operation method of the same Download PDFInfo
- Publication number
- JP2004207177A JP2004207177A JP2002378065A JP2002378065A JP2004207177A JP 2004207177 A JP2004207177 A JP 2004207177A JP 2002378065 A JP2002378065 A JP 2002378065A JP 2002378065 A JP2002378065 A JP 2002378065A JP 2004207177 A JP2004207177 A JP 2004207177A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- tank
- battery
- gas
- redox flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、レドックスフロー電池及びその運転方法に関するものである。特に、電池特性の低下を抑制することができるレドックスフロー電池、及びその運転方法に関するものである。
【0002】
【従来の技術】
レドックスフロー電池は、従来、負荷平準化や瞬停対策用として利用されている。図2はレドックスフロー電池の動作原理を示す説明図である。この電池は、イオン交換膜からなる隔膜103で正極セル100Aと負極セル100Bとに分離されたセル100を具える。正極セル100Aと負極セル100Bの各々には正極電極104と負極電極105とを内蔵している。正極セル100Aには正極電解液を供給・排出するための正極用タンク101が導管106、107を介して接続されている。負極セル100Bにも負極電解液を導入・排出する負極用タンク102が同様に導管109、110を介して接続されている。各電解液にはバナジウムイオンなど原子価が変化するイオンの水溶液を用い、ポンプ108、111で循環させ、正負極電極104、105におけるイオンの価数変化反応に伴って充放電を行う。例えば、バナジウムイオンを含む電解液を用いた場合、セル内で充放電時に生じる反応は次のとおりである。
正極:V4+→V5++e-(充電) V4+←V5++e-(放電)
負極:V3++e-→V2+(充電) V3++e-←V2+(放電)
【0003】
図2に示すようにバナジウムイオンの酸化還元反応を利用するレドックスフロー電池では、外部から酸素ガスが侵入すると、電解液中の活性物質と反応して活性物量を低下させ、電池効率が低下することがある。また、外部から侵入した酸素ガスが負極の2価バナジウムイオン(V2+)を酸化させると、電解液の価数バランスが崩れ、酸化還元ペア(V2+/V5+又はV3+/V4+)の絶対量が減少する。このような状態で、充放電動作を繰り返すと、電池容量(電池貯蔵電力量)を低下させたり、内部抵抗が増加して充放電効率を低下させることがある。
【0004】
そこで、酸素ガス濃度を一定に保つべく、従来、レドックスフロー電池では、各極のタンクにつくられる気相部の空気を窒素ガスなどの不活性ガスに置換して密閉したり、タンクの気相部に不活性ガスを常時フローすることが行われている。
【0005】
また、酸素ガスの侵入を防止するべく、特許文献1では、セルとタンクとを接続する管状部材を酸素透過係数が一定値以下のプラスチック材料で構成することが提案されている。特許文献2では、プラスチックに酸素ガス不透過性の金属をラミネートしたシートでタンクを作製することが提案されている。
【0006】
一方、特許文献3では、電解液にバナジウムイオンを加えて化学反応させることで、価数バランスの崩れた電解液を再生させる方法を開示している。また、特許文献4では、レドックスフロー電池に電解液の再生装置を接続して、電解液を酸化又は還元することで電解液を再生させる方法を開示している。
【0007】
【特許文献1】
特開昭60-225366号公報(特許請求の範囲参照)
【特許文献2】
特開2001-043885号公報(特許請求の範囲参照)
【特許文献3】
特開2000-030721号公報(特許請求の範囲参照)
【特許文献4】
特開昭62-90875号公報(特許請求の範囲、第1図参照)
【0008】
【発明が解決しようとする課題】
しかし、市販されている窒素ガスには、通常、極微量ではあるが酸素ガスが含まれている。従来、このような極めて微量の酸素では、電池性能に影響がないと考えられていた。しかし、本発明者が検討した結果、極微量の酸素ガスであっても、特に、長期に亘る運転では、交換膜やセルなどの酸化劣化、電池容量の低下、内部抵抗の増加、電池効率の低下などといった電池性能に影響を与える恐れがあることを見出した。従って、極微量の酸素ガスも排除することが望まれている。また、不活性ガスを常時流入する方式では、コスト高になるという問題もある。
【0009】
一方、酸素ガスは、外部から侵入する以外に、極めて微量であるが副反応として水の分解により発生することがある。特許文献1及び2の技術では、外部からの酸素ガスの侵入を効果的に防止することができ、十分な成果が得られている。しかし、上記のように極微量の酸素ガスでも電池性能に影響を与えることがあり、外部からの酸素ガスの侵入を防止することに加えて、この副反応にて発生する酸素ガスの除去も望まれる。
【0010】
他方、酸素ガスとの反応により価数バランスが崩れた場合、特許文献3及び4の技術のように電解液を再生することで対応することが考えられる。これらの技術は、上記のように副反応で酸素ガスが発生しても、電池性能の不具合を改善するのに十分な効果が得られている。しかし、特許文献4の技術では、複雑な再生装置を用いる必要がある。特許文献3の技術では、電解液を大量に加えず、複雑な再生装置も必要ないが、離島などの設置場所では、電解液の追加作業が行いにくい場合がある。また、少量ではあるが別途電解液が必要であるため、コスト高になる傾向にある。
【0011】
そこで、本発明の主目的は、簡便な構成で酸素ガスによる不具合を抑制して、電池性能の低下を防止することができるレドックスフロー電池、及びその運転方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、電解液が流通する電気構成部材に酸素除去物質を具えることで上記目的を達成する。
【0013】
即ち、本発明レドックスフロー電池は、セルに電解液を供給排出する電池構成部材に酸素除去物質を具えることを特徴とする。また、本発明レドックスフロー電池の運転方法は、セルに電解液を供給排出する電池構成部材に酸素除去物質を具えて、前記電池構成部材の気相部の酸素濃度を200ppm以下に制御することを特徴とする。
【0014】
レドックスフロー電池を構成する電池構成部材において、例えば、タンクや導管などは、絶縁性と耐酸性とが要求されるため、通常、ポリエチレン、ポリ塩化ビニル、ゴムなどの樹脂で形成される。これらの樹脂は、酸素ガスに対して完全な不透過性でなく、極微量であるが酸素ガスを透過する。例えば、厚さ14mmのポリエチレン製のタンクでは、約14ml/m2・日である。そのため、上記樹脂から形成されたタンクなどの気相部には、外部から侵入した酸素ガスが存在する。また、外部からの侵入だけでなく、副反応により発生する極微量の酸素ガスもある。これら極微量の酸素ガスは、従来、実用に問題のない量と考えられてきたが、本発明者が検討した結果、長期的には電解液の価数バランスを崩す原因となり得るとの知見を得た。そこで、本発明は、価数バランスが崩れるまでの寿命を更に延ばすべく、酸素除去物質を用いることを規定する。更に、従来は、電池性能の低下が生じる酸素ガス量を定量的に規定していなかった。そこで、本発明は、酸素ガスの制御量を規定する。以下、本発明をより詳しく説明する。
【0015】
本発明において酸素除去物質は、酸素ガスを除去できるものであればよく、例えば、主成分が鉄である鉄粉系酸素除去物質が挙げられる。その他、Co、Niなどの金属粉、酸素吸着能を有するゼオライトなどが挙げられる。市販のものを用いてもよい。また、一定量の酸素を除去すると色が変わるなどの酸素の除去状態が目視できる表示機能を具える酸素除去物質を用いると、交換時期などが把握し易く好ましい。
【0016】
上記酸素除去物質の量は、侵入や発生する酸素ガスを十分に除去できる量であればよく、酸素の除去状態に応じて適宜変更するとよい。また、タンクの構成材料、タンク内の電解液の貯蔵量、運転サイクルなどによって適宜変更してもよい。そして、気相部の酸素濃度が200ppm以下になるように酸素除去物質の量を調節することが好ましい。後述する試験から明らかなように、気相部の酸素濃度が200ppm以下であれば、長期に亘って価数バランスの変化が生じにくい。なお、上記酸素濃度が保持できるように、定期検査などで電池の運転を停止する際、酸素除去物質を交換してもよい。また、交換頻度は、配置する酸素除去物質の状態によって適宜変更してもよい。
【0017】
上記酸素除去物質を配置する電池構成部材としては、例えば、電解液を貯留するタンクや、タンクとセル間に配置されて電解液を流通する導管などが挙げられる。タンクに配置する場合、タンクの気相部に設置部を設けてもよい。設置部は、タンク内部に設けてもよいし、タンクと別個に取り外し可能に設けてもよい。
前者の場合、例えば、タンク内部に酸素除去物質を配置可能な棚と、この棚に酸素除去物質を設置できるようにタンクの外壁に開閉口とを設ける構成が挙げられる。開閉口には、透明な窓を設けておくと、上記のように表示機能を具える酸素除去物質の場合、酸素の除去状態を確認することができて好ましい。後者の場合、例えば、内部に酸素除去物質を配置可能で、かつ密閉できる箱状体と、タンク内部の気相部と連結するための配管とを具えるものが挙げられる。箱状体には、透明な窓を設けておくと、上記のように表示機能を具える酸素除去物質の場合、酸素の除去状態を確認することができて好ましい。配管には、バルブを設けておくことが好ましい。酸素除去物質を交換するなどで箱状体を取り外す際、バルブを閉めることで、タンク内部の気相部の気密状態を保持することができるからである。一方、導管に配置する場合は、上記と同様の箱状体と配管とを具える設置部を具える構成が挙げられる。なお、上記酸素除去物質は、電解液と接触しにくいように配置する。
【0018】
本発明において、気相部の酸素濃度の測定は、例えば、気相部の気体の一部を採取し、ガスクロマトグラフを用いて行うことが挙げられる。その他、ガスクロマトグラフとマススペクトルとを組み合わせて分析することも可能である。
【0019】
本発明において電解液は、起電力が高く、エネルギー密度が大きく、正極電解液と負極電解液とが混合しても充電によって再生することができる単一元素系であるバナジウムイオンを含むものが好適である。例えば、硫酸バナジウム溶液などが挙げられる。また、本発明において、この電解液を貯蔵するタンクや電解液を流通させる導管は、ポリエチレン、ポリ塩化ビニル、ゴムなどの樹脂から形成されるものを用いてもよい。これらの樹脂は、長期的には外部の酸素を透過することがあるが、本発明は、透過された酸素を酸素除去物質により除去するため、電解液の価数バランスが崩れるなどの不具合を抑制することができる。また、酸素ガス不透過性の金属をラミネートした樹脂で形成されたタンクや導管を用いてもよい。このとき、外部からの酸素の侵入を効果的に防ぐことができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
AC2kW×2時間のレドックスフロー電池を作製して運転を行い、価数バランスの変化を調べてみた。本試験では、電解液にバナジウムイオンを含む硫酸バナジウム溶液を用い、図2に示すレドックスフロー電池を組み立てた。各試料は、容量230l(リットル)のタンクを二つ用意し、それぞれのタンクに正極電解液(V4+:1.8mol/l)、負極電解液(V3+:1.8mol/l)を各200l(リットル)入れて、タンクの気相部の体積を30l(リットル)とした。また、本試験では、セル(電極の大きさ20cm×25cm)を22枚積層させたサブセルスタック2組を直列に連結したセルスタックからなる電池を用いた。
【0021】
試料No.1は、ポリエチレン製のタンク(厚さ8mm)を用い、各タンクの気相部に図1に示すように設置部2を設けて、この設置部2の中に鉄系酸素除去物質1(三菱ガス化学株式会社製、商品名エージレスZPT(登録商標)、酸素除去容量11.6l(リットル))をそれぞれ310gずつ配置した。
【0022】
試料No.2は、アルミニウム蒸着(厚さ7μm)を施したポリエチレンテレフタレート(PET、厚さ12μm)にポリエチレンフィルム(PEフィルム、厚さ40μm)でコーティングしたポリエチレン製タンク(ポリエチレンの厚さ8mm)を用いた。そして、各タンクの気相部に図1に示すような設置部2を設けて、この設置部2の中に鉄系酸素除去物質1(三菱ガス化学株式会社製、商品名エージレスZPT(登録商標)、酸素除去容量3l(リットル))をそれぞれ80gずつ配置した。
【0023】
試料No.1及び2において、酸素除去物質1の配置は以下のように行った。本例では、図1に示すようにタンク101(102)に取り外し可能な設置部2を設けた。設置部2は、内部に酸素除去物質1が配置可能なポリエチレン製(上記試料No.2のタンクと同様にコーティングを施したもの)の箱状体3と、タンク101(102)内部の気相部10と箱状体3とを連結する配管4(ポリエチレン製)とを具えるもので、箱状体3には透明な窓3a(ポリプロピレン製)を、配管4にはバルブ5を設けている。
【0024】
このような箱状体3をタンク101(102)に取り付けておく。そして、箱状体3内に所要量の酸素除去物質1を配置した後、窒素ガスを十分に充填して密閉する。このとき、バルブ5は、閉じておく。一方、タンク101(102)に所定量の電解液を流入後、気相部10に窒素ガスを十分に充填しておく。そして、バルブ5を開けて、タンク101(102)内部の気相部10の気体が箱状体3の内部に流通できるようにする。以上のようにして、タンク101(102)の気相部10に酸素除去物質1が配置される。なお、タンク101(102)及び設置部2は、気密に保持されている。本試験で用いた酸素除去物質1は、所定の酸素を除去すると包装容器が変色するものであり、箱状体3に設けた窓3aにより、酸素除去物質1の酸素の除去状況を確認することができる。
【0025】
試料No.3は、ポリエチレン製のタンク(厚さ8mm)を用い、タンクの気相部に鉄系酸素除去物質を配置せず、気相部に窒素ガスの封入のみ行った。
【0026】
これら試料No.1〜3について、2時間充電/2時間放電の連続的な定電力充放電を4000サイクル(約15年運転相当のサイクル数)行った。充放電条件を以下に示す。
(充放電条件)
充放電方法:定電流
電流密度 :70(mA/cm2)
充電終了電圧:1.55(V)
放電終了電圧:1.00(V)
温度 :25℃
【0027】
その結果、試料No.1は、電池容量が3.9kW、正負電解液混合後の3価バナジウムイオン(V3+)と4価バナジウムイオン(V4+)の比(V3+/V4+)は、運転前を1とすると、0.95であった。試料No.2は、電池容量が3.9kW、V3+/V4+は、運転前を1とすると、0.96であった。このことから、酸素除去物質を具えることで、外部から酸素が侵入したり、副反応により酸素が発生しても、価数バランスがほとんど変化していないことがわかる。また、上記の結果から、酸素ガス不透過性の金属をラミネートした樹脂で形成した電池構成部材(本例では、タンク)を用いると、より効果的であることがわかる。長期に亘る運転では、副反応により発生する酸素が電池性能を低下させる要因になり得ると推測される。具体的には、酸素ガスが5価バナジウムイオン(V5+)と反応して、例えば、ペルオキシバナジルイオンなどの化合物をつくり、この化合物が、イオン交換膜や電極などの電池構成部材の酸化劣化を促進すると推測される。従って、タンクの気相部に酸素除去物質を具える方が電池性能をより向上できると推測される。
【0028】
一方、酸素除去物質を具えていない試料No.3は、電池容量が3.5kW、V3+/V4+は、運転前を1とすると、0.85であった。試料No.1及び2と比較して、試料No.3のV3+/V4+が1からずれるのは、混合前に正極電解液に存在したV5+と、負極電解液に存在したV3+とが反応してV4+がつくられ、V4+が増加したためである。即ち、試料No.3は、長期に亘る運転を行うと、価数バランスが変化することがあると考えられる。
【0029】
また、電解液混合前に各極のタンクの酸素濃度を測定してみた。測定は、図1に示すようにタンク101(102)に設けた測定用配管6のバルブ7を開けて、タンク101(102)内部の気体を採取し、この気体をガスクロマトグラフにかけることでおこなった。その結果、試料No.1は、200ppm、試料No.2は、150ppmと、200ppm以下であった。更に、試料No.1及び2の電池構成部材を調べてみたが、特に変化は見られなかった。
【0030】
一方、試料No.3は、酸素濃度が360ppmであり、価数バランスが変化したのは、外部から侵入する酸素及び副反応により発生する酸素のためであると考えられる。また、電池構成部材を調べてみたところ、隔膜や電極などで一部酸化されている箇所が見られた。
【0031】
上記試験の結果から、タンクなどの電池構成部材の気相部に酸素除去物質を具えることで、電池性能の低下を抑制することが可能であることがわかる。また、電池性能だけでなく、隔膜や電極などの酸化劣化を抑制することもでき、電池構成部材の寿命をより長くすることができると推測される。
【0032】
【発明の効果】
以上説明したように本発明レドックスフロー電池によれば、電池構成部材に酸素除去物質を具えて、外部から侵入する酸素だけでなく、副反応により発生する酸素をも除去することで、電解液中の活性物質の低下や電解液の価数バランスが崩れるのを抑制することができるという優れた効果を奏し得る。そのため、本発明レドックスフロー電池は、従来と比較して、電池性能の低下を防止することができる。また、酸素除去物質により、酸素ガスを効果的に採取することで、電池構成部材の酸化による劣化を抑制することができ、電池構成部材の寿命を延命することができる。更に、本発明レドックスフロー電池は、酸素除去物質を配置するという簡便な構成であるため、作業性もよく、経済性にも優れる。
【図面の簡単な説明】
【図1】本発明レドックスフロー電池において、タンク付近の構成を表す模式図である。
【図2】レドックスフロー電池の動作原理の説明図である。
【符号の説明】
1 酸素除去物質 2 配置部 3 箱状体 3a 窓 4 配管 5、7 バルブ
6 測定用配管 10 気相部
100 セル 100A 正極セル 100B 負極セル 101 正極用タンク
102 負極用タンク 103 隔膜 104 正極電極 104 正負極電極
105 負極電極 106 導管 108 ポンプ 109 導管[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a redox flow battery and a method for operating the same. In particular, the present invention relates to a redox flow battery capable of suppressing a decrease in battery characteristics, and an operation method thereof.
[0002]
[Prior art]
Redox flow batteries have conventionally been used for load leveling and countermeasures against momentary power failures. FIG. 2 is an explanatory diagram showing the operation principle of the redox flow battery. This battery includes a
The positive electrode: V 4+ → V 5+ + e - ( charging) V 4+ ← V 5+ + e - ( discharge)
The negative electrode: V 3+ + e - → V 2+ ( charging) V 3+ + e - ← V 2+ ( discharge)
[0003]
As shown in Fig. 2, in a redox flow battery that utilizes the oxidation-reduction reaction of vanadium ions, when oxygen gas enters from the outside, it reacts with the active substance in the electrolyte to reduce the amount of the active substance, and the battery efficiency decreases. There is. Also, when oxygen gas entering from the outside oxidizes the divalent vanadium ion (V 2+ ) of the negative electrode, the valence balance of the electrolytic solution is disrupted, and the redox pair (V 2+ / V 5+ or V 3+ / V 4+ ) decreases in absolute amount. In such a state, if the charge / discharge operation is repeated, the battery capacity (battery stored power amount) may be reduced, or the internal resistance may increase to lower the charge / discharge efficiency.
[0004]
Therefore, in order to keep the oxygen gas concentration constant, in the conventional redox flow battery, the air in the gas phase created in the tank for each electrode is replaced with an inert gas such as nitrogen gas and sealed, An inert gas is constantly flowed through the section.
[0005]
Further, in order to prevent oxygen gas from entering, Patent Document 1 proposes that a tubular member connecting a cell and a tank be made of a plastic material having an oxygen permeability coefficient of a certain value or less. Patent Literature 2 proposes manufacturing a tank with a sheet obtained by laminating an oxygen-impermeable metal on plastic.
[0006]
On the other hand, Patent Literature 3 discloses a method of regenerating an electrolyte having a valence balance that has been lost by adding vanadium ions to the electrolyte and causing a chemical reaction.
[0007]
[Patent Document 1]
JP-A-60-225366 (refer to claims)
[Patent Document 2]
JP 2001-043885 Gazette (see claims)
[Patent Document 3]
JP 2000-030721 A (see claims)
[Patent Document 4]
JP-A-62-90875 (claims, see FIG. 1)
[0008]
[Problems to be solved by the invention]
However, commercially available nitrogen gas usually contains oxygen gas, albeit in a trace amount. Conventionally, it has been considered that such an extremely small amount of oxygen does not affect the battery performance. However, as a result of the study by the present inventor, even in the case of a very small amount of oxygen gas, especially in a long-term operation, the oxidative deterioration of the exchange membrane and the cells, the decrease of the battery capacity, the increase of the internal resistance, the increase of the battery efficiency, etc. It has been found that the battery performance may be affected such as deterioration. Therefore, it is desired to eliminate a trace amount of oxygen gas. In addition, there is also a problem that the cost is high in the method of always flowing the inert gas.
[0009]
On the other hand, oxygen gas may be generated by decomposition of water as a side reaction although it is extremely small in addition to entering from outside. The techniques of Patent Documents 1 and 2 can effectively prevent invasion of oxygen gas from the outside, and have achieved sufficient results. However, as described above, even a very small amount of oxygen gas may affect battery performance. In addition to preventing oxygen gas from entering from outside, it is also desirable to remove oxygen gas generated by this side reaction. It is.
[0010]
On the other hand, when the valence balance is lost due to the reaction with oxygen gas, it is conceivable to cope by regenerating the electrolyte as in the techniques of
[0011]
Accordingly, a main object of the present invention is to provide a redox flow battery capable of suppressing a problem due to oxygen gas with a simple configuration and preventing a decrease in battery performance, and a method of operating the same.
[0012]
[Means for Solving the Problems]
The present invention achieves the above object by providing an electrical component through which an electrolyte flows with an oxygen removing substance.
[0013]
That is, the redox flow battery of the present invention is characterized in that a battery component for supplying and discharging an electrolytic solution to and from a cell includes an oxygen removing substance. In addition, the method for operating a redox flow battery of the present invention includes providing an oxygen removing substance in a battery component that supplies and discharges an electrolytic solution to a cell, and controlling the oxygen concentration in the gas phase of the battery component to 200 ppm or less. Features.
[0014]
In a battery component constituting a redox flow battery, for example, a tank, a conduit, and the like are required to have insulation and acid resistance, and thus are usually formed of a resin such as polyethylene, polyvinyl chloride, or rubber. These resins are not completely impervious to oxygen gas, but are permeable to oxygen gas in a trace amount. For example, for a 14 mm thick polyethylene tank, the rate is about 14 ml / m 2 · day. Therefore, an oxygen gas that has entered from the outside exists in a gas phase portion such as a tank formed of the resin. In addition, there is a trace amount of oxygen gas generated not only by external intrusion but also by side reaction. Conventionally, these trace amounts of oxygen gas have been considered to have no problem in practical use.However, as a result of investigations by the present inventors, it has been found that they may cause a valence balance of the electrolyte to be lost in the long term. Obtained. Therefore, the present invention provides for the use of an oxygen-removing substance in order to further extend the life until the valence balance is lost. Further, conventionally, the amount of oxygen gas at which the battery performance is reduced has not been defined quantitatively. Therefore, the present invention defines the control amount of the oxygen gas. Hereinafter, the present invention will be described in more detail.
[0015]
In the present invention, the oxygen removing substance may be any substance that can remove oxygen gas, and examples thereof include an iron powder-based oxygen removing substance whose main component is iron. Other examples include metal powders such as Co and Ni, and zeolites having oxygen adsorption ability. A commercially available product may be used. Further, it is preferable to use an oxygen-removing substance having a display function of visually confirming the state of removal of oxygen, such as a change in color when a certain amount of oxygen is removed, because it is easy to grasp the replacement time and the like.
[0016]
The amount of the oxygen-removing substance may be an amount that can sufficiently remove the oxygen gas that enters or is generated, and may be appropriately changed according to the state of removing oxygen. Further, it may be appropriately changed according to the constituent material of the tank, the storage amount of the electrolytic solution in the tank, the operation cycle, and the like. Then, it is preferable to adjust the amount of the oxygen removing substance so that the oxygen concentration in the gas phase becomes 200 ppm or less. As is clear from the test described later, when the oxygen concentration in the gas phase is 200 ppm or less, the valence balance hardly changes over a long period of time. When the operation of the battery is stopped for a periodic inspection or the like, the oxygen removing substance may be replaced so that the oxygen concentration can be maintained. Further, the replacement frequency may be appropriately changed depending on the state of the oxygen removing substance to be arranged.
[0017]
Examples of the battery component in which the oxygen-removing substance is arranged include a tank for storing an electrolytic solution, and a conduit arranged between the tank and the cell for flowing the electrolytic solution. When it is arranged in a tank, an installation part may be provided in the gas phase part of the tank. The installation section may be provided inside the tank, or may be provided detachably separately from the tank.
In the former case, for example, a configuration in which a shelf on which an oxygen-removing substance can be placed inside a tank and an opening / closing port on an outer wall of the tank so that the oxygen-removing substance can be installed on the shelf can be given. It is preferable to provide a transparent window at the opening / closing port, in the case of an oxygen removing substance having a display function as described above, since the state of removing oxygen can be confirmed. In the latter case, for example, a box-shaped body in which an oxygen-removing substance can be arranged and which can be hermetically sealed, and a pipe for connecting to a gas phase portion inside the tank can be used. It is preferable that a transparent window be provided in the box-like body so that the state of oxygen removal can be confirmed in the case of an oxygen removing substance having a display function as described above. It is preferable to provide a valve in the piping. This is because, when the box-shaped body is removed by exchanging the oxygen removing substance or the like, by closing the valve, the gas-tight state of the gas phase inside the tank can be maintained. On the other hand, in the case of disposing it in a conduit, a configuration including an installation portion including a box-like body and a pipe similar to the above is exemplified. Note that the oxygen-removing substance is arranged so as not to come into contact with the electrolytic solution.
[0018]
In the present invention, the measurement of the oxygen concentration in the gas phase may be performed, for example, by collecting a part of the gas in the gas phase and using a gas chromatograph. In addition, it is also possible to analyze by combining a gas chromatograph and a mass spectrum.
[0019]
In the present invention, the electrolyte preferably has a high electromotive force, a high energy density, and contains vanadium ions which are a single element system that can be regenerated by charging even when the cathode electrolyte and the anode electrolyte are mixed. It is. For example, a vanadium sulfate solution and the like can be mentioned. In the present invention, the tank for storing the electrolytic solution and the conduit for flowing the electrolytic solution may be made of a resin such as polyethylene, polyvinyl chloride, or rubber. These resins may permeate external oxygen in the long term, but the present invention removes the permeated oxygen with an oxygen-removing substance, thereby suppressing problems such as a loss of valence balance of the electrolytic solution. can do. Further, a tank or a conduit formed of a resin laminated with an oxygen-impermeable metal may be used. At this time, invasion of oxygen from the outside can be effectively prevented.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
A redox flow battery of AC2kW x 2 hours was fabricated and operated, and the change in valence balance was examined. In this test, a redox flow battery shown in FIG. 2 was assembled using a vanadium sulfate solution containing vanadium ions as an electrolyte. For each sample, two tanks each having a capacity of 230 l (liter) were prepared, and a positive electrode electrolyte (V 4+ : 1.8 mol / l) and a negative electrode electrolyte (V 3+ : 1.8 mol / l) were provided in each tank. 200 l (liter) was added, and the volume of the gas phase portion of the tank was adjusted to 30 l (liter). In addition, in this test, a battery including a cell stack in which two sets of subcell stacks each including 22 cells (electrode size: 20 cm × 25 cm) were stacked in series was used.
[0021]
For sample No. 1, a polyethylene tank (8 mm thick) was used, and an installation part 2 was provided in the gas phase part of each tank as shown in FIG. 310 g (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: Ageless ZPT (registered trademark), oxygen removal capacity: 11.6 l (liter)) was disposed in each case.
[0022]
Sample No. 2 was a polyethylene tank (polyethylene 8 mm thick) in which polyethylene terephthalate (PET, 12 μm thick) on which aluminum was deposited (7 μm thick) was coated with a polyethylene film (PE film, 40 μm thick). Using. An installation section 2 as shown in FIG. 1 is provided in the gas phase section of each tank, and an iron-based oxygen removing substance 1 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name Ageless ZPT (registered trademark) ) And an oxygen removal capacity of 3 l (liter) were arranged in an amount of 80 g each.
[0023]
In Sample Nos. 1 and 2, the oxygen removing substance 1 was arranged as follows. In this example, as shown in FIG. 1, the tank 101 (102) was provided with a detachable installation section 2. The installation part 2 has a box-shaped body 3 made of polyethylene (coated in the same manner as the tank of the above sample No. 2) in which the oxygen removing substance 1 can be placed, and a gas phase inside the tank 101 (102). It is provided with a pipe 4 (made of polyethylene) connecting the
[0024]
Such a box 3 is attached to the tank 101 (102). Then, after disposing a required amount of the oxygen removing substance 1 in the box-shaped body 3, it is sufficiently filled with nitrogen gas and sealed. At this time, the valve 5 is closed. On the other hand, after flowing a predetermined amount of the electrolytic solution into the tank 101 (102), the
[0025]
For sample No. 3, a polyethylene tank (8 mm thick) was used, and no iron-based oxygen removing substance was disposed in the gas phase of the tank, and only nitrogen gas was sealed in the gas phase.
[0026]
For these sample Nos. 1 to 3, a continuous constant power charge / discharge of 2 hours charge / 2 hours discharge was performed for 4000 cycles (the number of cycles equivalent to about 15 years of operation). The charge / discharge conditions are shown below.
(Charging and discharging conditions)
Charge / discharge method: constant current Current density: 70 (mA / cm 2 )
Charge end voltage: 1.55 (V)
Discharge end voltage: 1.00 (V)
Temperature: 25 ℃
[0027]
As a result, sample No. 1 had a battery capacity of 3.9 kW, and the ratio (V 3+ / V 4+ ) of trivalent vanadium ions (V 3+ ) and tetravalent vanadium ions (V 4+ ) after mixing the positive and negative electrolytes. ) Was 0.95, assuming that before driving was 1. Sample No. 2 had a battery capacity of 3.9 kW, and V 3+ / V 4+ was 0.96, assuming that 1 before operation. This shows that the provision of the oxygen-removing substance hardly changes the valence balance even if oxygen enters from the outside or oxygen is generated by a side reaction. From the above results, it is understood that it is more effective to use a battery component (a tank in this example) formed of a resin laminated with a metal impermeable to oxygen gas. In long-term operation, it is presumed that oxygen generated by a side reaction can be a factor that lowers battery performance. Specifically, oxygen gas reacts with pentavalent vanadium ions (V 5+ ) to form compounds such as peroxyvanadyl ions, which are oxidized and deteriorated by battery components such as ion exchange membranes and electrodes. Is presumed to promote. Therefore, it is presumed that the provision of the oxygen removing substance in the gas phase of the tank can further improve the battery performance.
[0028]
On the other hand, the battery capacity of the sample No. 3 having no oxygen removing substance was 3.5 kW, and the V 3+ / V 4+ was 0.85, assuming that the value before operation was 1. Compared to Sample No.1 and 2, the V 3+ / V 4+ sample No.3 deviates from 1, and V 5+ that existed in the cathode electrolyte before mixing, was present in the negative electrode electrolyte This is because V 4+ reacts with V 3+ to form V 4+ and V 4+ increases. That is, it is considered that the valence balance of Sample No. 3 may change when the sample is operated for a long period of time.
[0029]
Before mixing the electrolyte, the oxygen concentration in the tank of each electrode was measured. The measurement is performed by opening the
[0030]
On the other hand, in Sample No. 3, the oxygen concentration was 360 ppm, and it is considered that the valence balance changed due to oxygen invading from the outside and oxygen generated by a side reaction. Further, when the battery components were examined, it was found that some parts were oxidized at the diaphragm, electrodes, and the like.
[0031]
From the results of the above test, it can be seen that the provision of the oxygen-removing substance in the gas phase of the battery component such as the tank can suppress the deterioration of the battery performance. Further, it is presumed that not only the battery performance but also the oxidative deterioration of the diaphragm, the electrodes, and the like can be suppressed, and the life of the battery constituent members can be prolonged.
[0032]
【The invention's effect】
As described above, according to the redox flow battery of the present invention, the battery constituent member is provided with an oxygen removing substance to remove not only oxygen entering from the outside but also oxygen generated by a side reaction, so that the An excellent effect can be achieved in that the reduction of the active substance and the collapse of the valence balance of the electrolytic solution can be suppressed. Therefore, the redox flow battery of the present invention can prevent a decrease in battery performance as compared with the related art. In addition, by effectively collecting oxygen gas using the oxygen removing substance, deterioration of the battery components due to oxidation can be suppressed, and the life of the battery components can be extended. Further, since the redox flow battery of the present invention has a simple configuration in which an oxygen removing substance is disposed, the redox flow battery is excellent in workability and economical.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a configuration near a tank in a redox flow battery of the present invention.
FIG. 2 is an explanatory diagram of an operation principle of a redox flow battery.
[Explanation of symbols]
1 Oxygen removing substance 2 Arrangement part 3
6
100
102
105
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002378065A JP2004207177A (en) | 2002-12-26 | 2002-12-26 | Redox flow battery and operation method of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002378065A JP2004207177A (en) | 2002-12-26 | 2002-12-26 | Redox flow battery and operation method of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004207177A true JP2004207177A (en) | 2004-07-22 |
Family
ID=32815047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002378065A Pending JP2004207177A (en) | 2002-12-26 | 2002-12-26 | Redox flow battery and operation method of the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004207177A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013054921A1 (en) * | 2011-10-14 | 2013-04-18 | 株式会社ギャラキシー | Vanadium electrolyte, production method therefor, and production device therefor |
WO2014207923A1 (en) * | 2013-06-28 | 2014-12-31 | 日新電機 株式会社 | Redox flow battery |
JP2015232960A (en) * | 2014-06-10 | 2015-12-24 | 住友電気工業株式会社 | Battery system |
KR101784059B1 (en) * | 2014-06-13 | 2017-10-10 | 주식회사 엘지화학 | Vanadium solution, electrolyte comprising the same, secondary battery comprising the same and preparation method thereof |
US10003097B2 (en) | 2011-08-02 | 2018-06-19 | Vizn Energy Systems, Incorporated | Process for operating a redox flow battery system |
-
2002
- 2002-12-26 JP JP2002378065A patent/JP2004207177A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10003097B2 (en) | 2011-08-02 | 2018-06-19 | Vizn Energy Systems, Incorporated | Process for operating a redox flow battery system |
WO2013054921A1 (en) * | 2011-10-14 | 2013-04-18 | 株式会社ギャラキシー | Vanadium electrolyte, production method therefor, and production device therefor |
JP5363691B2 (en) * | 2011-10-14 | 2013-12-11 | 株式会社ギャラキシー | Vanadium electrolyte, method for producing the same, and apparatus for producing the same |
WO2014207923A1 (en) * | 2013-06-28 | 2014-12-31 | 日新電機 株式会社 | Redox flow battery |
JP2015232960A (en) * | 2014-06-10 | 2015-12-24 | 住友電気工業株式会社 | Battery system |
KR101784059B1 (en) * | 2014-06-13 | 2017-10-10 | 주식회사 엘지화학 | Vanadium solution, electrolyte comprising the same, secondary battery comprising the same and preparation method thereof |
US10096842B2 (en) | 2014-06-13 | 2018-10-09 | Lg Chem, Ltd. | Vanadium solution, electrolyte comprising same, secondary battery comprising same, and method for preparing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2541660B1 (en) | Redox-flow battery and method of operating thereof | |
JP6549572B2 (en) | Redox flow battery and method for balancing the charge state of the flow battery | |
FI108685B (en) | Electrochemical apparatus for emitting electrical current using air electrode | |
US9379397B2 (en) | Air battery | |
US9608301B2 (en) | Electrochemical energy store | |
JP6742338B2 (en) | Balancing cell for flow battery with bipolar membrane and its use | |
JP2015509650A5 (en) | ||
WO2013054921A1 (en) | Vanadium electrolyte, production method therefor, and production device therefor | |
JP5422083B2 (en) | Non-flow redox battery | |
JPH01307173A (en) | Electrolyte regenerating device for redox flow battery | |
WO2013168536A1 (en) | Direct aluminum fuel cell and electronic device | |
CN109417184B (en) | Redox flow battery, electric quantity measuring system and electric quantity measuring method | |
US9209503B2 (en) | Metal oxygen battery containing oxygen storage materials | |
JP5864682B2 (en) | Method for producing pasty vanadium electrolyte and method for producing vanadium redox battery | |
EP3125353A1 (en) | Metal-air battery apparatus and method of operating the same | |
JP2004207177A (en) | Redox flow battery and operation method of the same | |
JP2001093560A (en) | Redox (reduction-oxidation) flow battery | |
JP2014063711A (en) | Metal air battery | |
TWI518978B (en) | Redox flow battery | |
JPH07211347A (en) | Electrolyte flowing type battery having electrolyte readjusting device | |
JP2021120965A (en) | Electrochemical capacitor | |
KR20160085113A (en) | Module for mixing of electrolyte and method for mixing of electrolyte for flow battery using the same | |
JPWO2018020811A1 (en) | Electrolyte solution and electrochemical device | |
JP5167450B1 (en) | Method for producing vanadium electrolyte | |
JP3283825B2 (en) | Redox flow battery and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090224 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090717 |