【0001】
【発明の属する技術分野】
本発明は、排ガス浄化用触媒の製造方法および装置に係り、特に、触媒成分を均一に担持させることにより、薄板、軽量で、均一厚さの板状触媒を効率よく製造することができる排ガス浄化用触媒の製造方法および装置に関する。
【0002】
【従来の技術】
発電所、各種工場、自動車などから排出される排煙中の窒素酸化物(NOx)は、光化学スモッグや酸性雨の原因物質であり、その効果的な除去方法としてアンモニアを還元剤とした選択的接触還元法が広く採用されている。脱硝触媒としては、例えば酸化チタンを担体とし、バナジウム、モリブデンまたはタングステンを活性成分にしたものが好適に使用されており、通常、板状、ハニカム状、粒状等に成形して用いられている。
【0003】
排ガス浄化用板状触媒の製造法としては、例えば酸化チタンとバナジウム、モリブデン、タングステンなどの触媒成分の塩類を水と共に混練した後、基材に塗布するなどして成形し、焼成する混練法、触媒成分粉末をスラリー化したもの(以下、触媒スラリという)をエキスパンドメタル等の触媒基材にコーティングするコーティング法等があり、コーティング法は、触媒をより薄板化、軽量化できる点で混練法に比べて有用であるとされている。コーティング法で調製された触媒はコーティング触媒と呼ばれ、例えば図5に示したように、平板状のエキスパンドメタルに帯状の突起を多数設けて断面凹凸状に成形し、これを触媒スラリに浸漬して触媒成分をコーティングした後、乾燥および/または焼成することによって調製される。
【特許文献1】特開昭53−026788号公報
【特許文献2】特開2002−336706号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術は、混練法に比べて薄板化、軽量化を図ることができるものの、触媒スラリを基材表面に均一にコーティングすることが困難であり、特に、粘度が変化しやすい触媒スラリを用いる際は、粘度が高くなると触媒担持量が多くなり、逆に粘度が低くなると基材の貫通孔、例えばエキスパンドメタルの目(開孔)に触媒成分が塗布されず、開孔が空いたまま残るという問題があった。また、触媒基材にコーティングされたスラリは時間と共に自重で下方に移動するために、移動先である下方部の触媒厚さが上方部に比べて厚くなるという問題があり、特にスラリが余剰にコートされた場合に大きな問題となっている。
【0005】
本発明の課題は、上記従来技術の問題点を解決し、触媒スラリを基材表面に均一にコーティングし、薄板、軽量で、しかも均一厚さの板状触媒を効率よく調製することができる排ガス浄化用触媒の製造方法および装置を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明者は、スラリに浸漬した触媒基材の引き上げ方法、およびその後の乾燥方法と触媒担持量および触媒厚さ等との関係について鋭意研究した結果、触媒基材をスラリから引き上げる際、引き上げ方向に対向する方向にエアーをブローしながら液切りすることにより触媒担持量を均一にできること、および触媒コーティング基材に対し、重力に対向する方向に熱風を吹き付けながら乾燥することにより液垂れが防止されて均一厚さの板状触媒が得られることを見出し、本発明に到達したものである。
【0007】
すなわち、本願で特許請求する発明は、以下のとおりである。
(1)板状の触媒基材を触媒活性成分を含むスラリに浸漬し触媒成分を付着させたのち引き上げ、所定温度で乾燥し、焼成する排ガス浄化用触媒の製造方法において、前記触媒基材をスラリから引き上げる際、基材表面に、該基材の引き上げ方向と対向する方向にエアーを吹き付けて液切りしたのち、重力と対向する方向に熱風を吹き付けて液垂れを防止しつつ乾燥することを特徴とする排ガス浄化用触媒の製造方法。
【0008】
(2)前記触媒基材を前記スラリから引き上げる速度を1〜4cm/secとすることを特徴とする上記(1)に記載の排ガス浄化用触媒の製造方法。
(3)前記液切りする際のエアーの吹き付け風速を1〜5m/secとすることを特徴とする上記(1)または(2)に記載の排ガス浄化用触媒の製造方法。
(4)前記板状の触媒基材は、平板状のエキスパンドメタルまたはこれを断面凹凸状、波形、この字状、階段状に成形したものであることを特徴とする上記(1)〜(3)の何れかに記載の排ガス浄化用触媒の製造方法。
【0009】
(5)板状の触媒基材を触媒成分含有スラリに浸漬して触媒成分をコーティングしたのち乾燥および/または焼成する排ガス浄化用触媒の製造装置であって、前記触媒成分含有スラリの貯槽と、該貯槽中のスラリに触媒基材を浸漬して基材表面に触媒成分を付着させたのち引き上げる触媒基材の上下動手段と、前記触媒基材をスラリ貯槽から引き上げる際、基材表面に、該基材の引き上げ方向と対向する方向にエアーを吹き付けて液切りするエアーノズルと、触媒成分がコーティングされた基材に対し重力と対向する方向に熱風を吹き付けて乾燥させる熱風ノズルとを有することを特徴とする排ガス浄化用触媒の製造装置。
【0010】
【発明の実施の形態】
次に、本発明を図面を用いて詳細に説明する。
図1は、本発明の一実施例を示す触媒製造装置の正面図、図2は、図1の平面図である。図において、この装置は、触媒成分含有スラリの貯槽2と、該スラリ槽2に触媒基材としてのエキスパンドメタル1を浸漬して基材表面に触媒成分を付着させたのち引き上げる触媒基材の上下動手段としての上下シリンダ3と、前記エキスパンドメタル1をスラリ槽2から引き上げる際、引き上げ方向と対向する方向にその表面に空気12を吹き付けて液切りするエアーノズル4と、触媒コーティング基材に対し、重力とは対向する方向に熱風13を吹き付けて乾燥させる熱風ノズル5とから主として構成されている。14は、上下シリンダ3の下端に設けられた基材把持手段としての網かご、6は、上下シリンダ3の移動手段としての台車、9は、台車6のガイドレール、10は、ガイドレール9の脚である。
【0011】
このような構成において、開始位置15で、エキスパンドメタル1が網かご14に保持され、台車6の移動により浸漬位置16まで水平移動し、ここで、上下シリンダ3が作動し、エキスパンドメタル1を網かご14ごと下降させてスラリ槽2内に浸漬し、一定時間経過後、網かご14ごと引き上げて触媒成分がコーティングされる。このとき、図3に示したように、エアノズル4から引き上げ方向と対向する向きに吹き付け空気12が噴射され、これによってエキスパンドメタル1の上昇と共に該エキスパンドメタル1に付着した余剰のスラリが下方へと移動し、下端部を経て液切りされ、これによって触媒スラリが均一に担持した触媒コーティング基材が得られる。
【0012】
得られた触媒コーティング基材は、台車6の移動によって乾燥位置17に到り、ここで、図4に示したように、熱風ノズル5からエキスパンドメタル1の下方より上方に向かって、すなわち重力に対向する方向に熱風13が吹き付けられ、基材に付着したスラリの下方への移動を防止しつつ乾燥され、スラリはコーティングされたままの状態で固化する。
【0013】
このようにして乾燥された触媒コーティング基材は、台車6の移動によってガイドレール9上を矢印8に沿って水平方向に移動し、取出位置18で網かご14から取り出され、必要に応じて図示省略した焼成装置で焼成されて排ガス浄化用触媒となる。以下、上記と同様の操作が順次繰り返され、触媒成分が均一にコアティングされた、薄板、軽量で均一厚さの板状触媒が安定、かつ連続的に製造される。
【0014】
本実施例によれば、エキスパンドメタル1をスラリ槽2から引き上げる際、エアーノズル4から引き上げ方向とは対向する方向に空気12が吹き付けられるので、余剰に付着したスラリが液切りされ、これによってエキスパンドメタル1に触媒成分を均一にコーティングすることができる。
【0015】
また、本実施例によれば、熱風ノズル5からエキスパンドメタル1の下方より上方に向かって重力に対向する方向に熱風13を吹き付けながら乾燥することにより、付着スラリが下方へ移動することなく、すなわち液垂れすることなくエアブローされたときのままの均一の状態で、固化するので、触媒成分が均一に付着した均一厚さの板状触媒が得られる。
本実施例において、触媒成分としては、例えばバナジウム、モリブデンおよびタングステンのうち少なくとも1種を触媒活性成分として含む酸化チタン触媒が好適に使用される。
【0016】
本発明においては、触媒基材を触媒成分含有スラリに浸漬させたのち引き上げる際、引き上げ方向とは逆方向にエアーを吹き付けて余剰に付着したスラリの液切りを行う。すなわち、触媒基材を触媒成分含有スラリに浸漬するコーティング法においては、基材をスラリに浸漬したのち引き上げる際、付着スラリは自重によって下方へ移動する。従って、通常板状触媒の板厚は上部よりも下部が厚くなるが、本発明においては、基材を触媒スラリから引き上げる際、基材の両面に引き上げ方向とは逆方向、すなわち、上方から下方に向かってエアブローして強制的にスラリを下方へ移動させ、下端から液切りさせることにより、スラリ担持量を均一化することができる。スラリが自重により下部に移動する速度はスラリ粘度により異なる。従ってスラリ粘度に応じて、基材の引き上げ速度、エアーブロー時のエアー流速、エアブロー角度等を調整することにより、スラリがより均一に担持した板状触媒が得られる。
【0017】
また、本発明においては、触媒コーティング基材に対し、重力と対向する方向に熱風を吹き付けてスラリの下方への移動を防止しつつ乾燥する。これによって液垂れを防止して均一厚さの触媒体が得られる。すなわち、触媒スラリを液切りし、基材表面に均一に担持させた場合であっても、乾燥時に、付着スラリが時間の経過と共に自重によって下方へ移動し、下部の板厚が上部の板厚よりも厚くなる場合がある。また、板状基材に設けられた表裏に貫通する貫通孔、例えばエキスパンドメタルの網目を塞ぐようにコーティングされた膜状のスラリが切れて孔空きが発生することがあるが、本発明においては、液切り後、基材の両面下方より上方に向かって熱風を吹き付けながら乾燥させることにより、自重によるスラリの下方への移動を防止し、スラリをコーティング時のままの状態で固定させることができる。
【0018】
本発明において、基材引き上げ時にエアーを吹き付ける、基材の引き上げ方向と対向する方向とは、重力方向であるが、斜め重力方向を含む、総じて引き上げ方向と対向する方向をいう。また、乾燥時に熱風を吹き付ける、重力と対向する方向とは上方向であるが、斜め上方向を含む、総じて重力と対向する方向をいう。
【0019】
本発明において、触媒基材をスラリから引き上げる速度は、1〜4m/secであることが好ましく、より好ましくは、2〜3m/secである。引き上げ速度が大きすぎると、触媒付着量が不足し、小さすぎると板厚が厚くなり、かつ液垂れ現象を防止するのが困難となる。
また、本発明において、液切りする際のエアーの吹き付け風速は、1〜5m/secであることが好ましく、より好ましくは、2〜4m/secである。風速が、高すぎると網目にコーティンングされたスラリが切れて孔空きが発生しやすくなり、低すぎると、液切り効果が十分に得られなくなる。
【0020】
本発明において、触媒基材に触媒成分ををコーティングした後、すなわちエアブローによって余剰のスラリを液切りしたのち、できるだけ速やかに重力と対向する方向に熱風を吹き付けて乾燥することが好ましい。これによってより厚さが均一で品質が安定した板状触媒を製造することができる。
【0021】
【発明の効果】
本願の請求項1に記載の発明によれば、触媒成分が均一に付着した薄板、軽量で、しかも均一厚さの排ガス浄化用触媒を製造することができる。
本願の請求項2に記載の発明によれば、上記発明の効果に加え、触媒成分をより均一に付着させることができる。
【0022】
本願の請求項3に記載の発明によれば、上記発明と同様、触媒成分をより均一に付着させることができる。
本願の請求項4に記載の発明によれば、上記発明の効果に加え、触媒表面積が大きい高活性の排ガス浄化用触媒が得られる。
本願の請求項5に記載の発明によれば、触媒成分が均一に付着した薄板、軽量で、しかも均一厚さの排ガス浄化用触媒を製造することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である触媒製造装置の正面図。
【図2】図1の平面図。
【図3】浸漬およびエアブロー工程を示す説明図。
【図4】熱風乾燥工程を示す説明図。
【図5】エキスパンドメタルを成形した板状の触媒基材を示す斜視図。
【符号の説明】
1…エキスパンドメタル、2…スラリ槽、3…上下シリンダ、4…エアノズル、5…熱風ノズル、6…台車、7…上下移動方向を示す矢印、8…水平移動方向を示す矢印、9…ガイドレール、10…ガイドレール脚、11…スラリ、12…吹き付け空気、13…熱風、14…網かご、15…開始位置、6…浸漬位置、17…乾燥位置、18…取出位置。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for producing an exhaust gas purifying catalyst, and more particularly to an exhaust gas purifying method capable of efficiently producing a thin, lightweight, plate-like catalyst having a uniform thickness by uniformly supporting a catalyst component. The present invention relates to a method and an apparatus for producing a catalyst for use.
[0002]
[Prior art]
Nitrogen oxides (NOx) in flue gas emitted from power plants, various factories, automobiles, etc. are substances causing photochemical smog and acid rain. The catalytic reduction method is widely used. As the denitration catalyst, for example, a catalyst in which titanium oxide is used as a carrier and vanadium, molybdenum or tungsten is used as an active component is suitably used, and is usually used after being shaped into a plate, a honeycomb, a granule or the like.
[0003]
As a method for producing a plate catalyst for purifying exhaust gas, for example, a kneading method in which salts of catalyst components such as titanium oxide and vanadium, molybdenum, and tungsten are kneaded with water, and then formed by applying the mixture to a substrate and firing, There is a coating method in which a slurry of catalyst component powder (hereinafter, referred to as catalyst slurry) is coated on a catalyst base such as expanded metal. The coating method is a kneading method because the catalyst can be made thinner and lighter. It is said to be more useful. The catalyst prepared by the coating method is called a coating catalyst. For example, as shown in FIG. 5, a large number of band-shaped projections are provided on a flat expanded metal to form a concave-convex section, and this is immersed in a catalyst slurry. It is prepared by coating and drying and / or calcining the catalyst component.
[Patent Document 1] Japanese Patent Application Laid-Open No. 53-026788 [Patent Document 2] Japanese Patent Application Laid-Open No. 2002-336706
[Problems to be solved by the invention]
However, although the above prior art can reduce the thickness and weight as compared with the kneading method, it is difficult to uniformly coat the catalyst slurry on the surface of the base material, and particularly, the catalyst slurry whose viscosity is liable to change. In the case of using, when the viscosity increases, the amount of the supported catalyst increases. On the contrary, when the viscosity decreases, the catalyst component is not applied to the through holes of the base material, for example, the eyes (openings) of the expanded metal, and the openings are opened. There was a problem that it remained. In addition, since the slurry coated on the catalyst substrate moves downward with its own weight with time, there is a problem that the catalyst thickness of the lower portion, which is the destination, becomes thicker than the upper portion, and especially the slurry is excessive. This is a major problem when coated.
[0005]
An object of the present invention is to solve the above-mentioned problems of the prior art, to uniformly coat a catalyst slurry on a substrate surface, and to efficiently prepare a thin plate, a lightweight, plate catalyst having a uniform thickness. An object of the present invention is to provide a method and an apparatus for producing a purification catalyst.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventor has conducted a diligent study on a method of pulling up a catalyst substrate immersed in a slurry, and a subsequent drying method and a relationship between a catalyst loading amount, a catalyst thickness, and the like. When pulling up from the slurry, the catalyst loading amount can be made uniform by draining while blowing air in the direction opposite to the pulling up direction, and drying while blowing hot air on the catalyst coating substrate in the direction opposite to gravity This has led to the finding that dripping is prevented and a plate-like catalyst having a uniform thickness is obtained, and the present invention has been achieved.
[0007]
That is, the invention claimed in the present application is as follows.
(1) In a method for producing an exhaust gas purifying catalyst, a plate-shaped catalyst substrate is immersed in a slurry containing a catalytically active component, the catalyst component is attached thereto, then pulled up, dried at a predetermined temperature, and calcined. When pulling up from the slurry, the surface of the substrate is blown with air in a direction opposite to the direction in which the substrate is pulled up, and then drained, and then dried while preventing hot dripping by blowing hot air in a direction opposite to gravity. A method for producing a catalyst for purifying exhaust gas.
[0008]
(2) The method for producing an exhaust gas purifying catalyst according to the above (1), wherein a speed at which the catalyst substrate is pulled up from the slurry is 1 to 4 cm / sec.
(3) The method for producing an exhaust gas purifying catalyst according to the above (1) or (2), wherein the blowing speed of the air at the time of draining the liquid is 1 to 5 m / sec.
(4) The plate-shaped catalyst substrate is a plate-shaped expanded metal or a plate-shaped expanded metal formed into a cross-sectional uneven shape, a corrugated shape, a character shape, or a step shape. The method for producing an exhaust gas purifying catalyst according to any one of the above (1) to (4).
[0009]
(5) An apparatus for producing an exhaust gas purifying catalyst, wherein a catalyst component in the form of a plate is immersed in a slurry containing the catalyst component, coated with the catalyst component, and then dried and / or calcined. Up and down movement means of the catalyst base to be pulled up after immersing the catalyst base in the slurry in the storage tank and attaching the catalyst component to the base surface, and when pulling up the catalyst base from the slurry storage tank, on the base surface, An air nozzle that sprays air in a direction opposite to the direction in which the base material is pulled up to drain the liquid, and a hot air nozzle that blows hot air in a direction opposite to gravity on the base material coated with the catalyst component to dry the substrate. An apparatus for producing an exhaust gas purifying catalyst, comprising:
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front view of a catalyst manufacturing apparatus showing one embodiment of the present invention, and FIG. 2 is a plan view of FIG. In this figure, this apparatus comprises a storage tank 2 for a catalyst component-containing slurry, and an expanded metal 1 as a catalyst base material immersed in the slurry tank 2 to attach the catalyst component to the base material surface, and then lift the catalyst base material up and down. An upper / lower cylinder 3 as a moving means, an air nozzle 4 for blowing liquid 12 by blowing air 12 on a surface of the expanded metal 1 in a direction opposite to a lifting direction when the expanded metal 1 is pulled up from the slurry tank 2, And a hot air nozzle 5 for blowing hot air 13 in a direction opposite to gravity to dry the hot air. Reference numeral 14 denotes a net cage provided as a substrate holding means provided at the lower end of the upper and lower cylinders 3, 6 denotes a carriage as a moving means of the upper and lower cylinders 3, 9 denotes a guide rail of the carriage 6, and 10 denotes a guide rail of the guide rail 9. Legs.
[0011]
In such a configuration, at the start position 15, the expanded metal 1 is held by the net cage 14 and horizontally moved to the immersion position 16 by the movement of the bogie 6, where the upper and lower cylinders 3 are operated, and the expanded metal 1 is The basket 14 is lowered and immersed in the slurry tank 2, and after a certain period of time, the net basket 14 is lifted and coated with the catalyst component. At this time, as shown in FIG. 3, the blowing air 12 is injected from the air nozzle 4 in a direction opposite to the pulling-up direction, whereby the excess metal adhered to the expanded metal 1 moves downward as the expanded metal 1 rises. It moves and is drained through the lower end, thereby obtaining a catalyst-coated substrate on which the catalyst slurry is uniformly supported.
[0012]
The obtained catalyst-coated base material reaches the drying position 17 due to the movement of the carriage 6, where, as shown in FIG. 4, from the hot air nozzle 5 upward from below the expanded metal 1, that is, to gravity. Hot air 13 is blown in the opposite direction to dry while preventing the slurry attached to the base material from moving downward, and the slurry is solidified as it is coated.
[0013]
The catalyst-coated base material thus dried moves in the horizontal direction along the arrow 8 on the guide rail 9 by the movement of the carriage 6, and is taken out of the net basket 14 at the take-out position 18, and is illustrated as necessary. It is fired by the omitted firing device to become an exhaust gas purifying catalyst. Thereafter, the same operation as described above is sequentially repeated, and a thin, lightweight, plate-like catalyst having a uniform thickness, in which the catalyst components are uniformly coated, is stably and continuously produced.
[0014]
According to the present embodiment, when the expanded metal 1 is pulled up from the slurry tank 2, the air 12 is blown from the air nozzle 4 in a direction opposite to the pulling up direction, so that the excessively attached slurry is drained, thereby expanding the expanded metal 1. Metal 1 can be uniformly coated with a catalyst component.
[0015]
Further, according to the present embodiment, by drying while blowing the hot air 13 from the hot air nozzle 5 upward from below the expanded metal 1 in a direction facing gravity, the attached slurry does not move downward, that is, Since it solidifies in a uniform state as it was when air blown without dripping, a plate-like catalyst having a uniform thickness to which the catalyst components are uniformly adhered can be obtained.
In this embodiment, as the catalyst component, for example, a titanium oxide catalyst containing at least one of vanadium, molybdenum and tungsten as a catalytically active component is preferably used.
[0016]
In the present invention, when the catalyst base material is immersed in the slurry containing the catalyst component and then pulled up, air is blown in a direction opposite to the pulling direction to drain the excessively attached slurry. That is, in the coating method in which the catalyst base material is dipped in the catalyst component-containing slurry, when the base material is dipped in the slurry and then pulled up, the attached slurry moves downward by its own weight. Therefore, the plate thickness of the plate-shaped catalyst is usually thicker at the lower part than at the upper part. However, in the present invention, when the base material is pulled up from the catalyst slurry, the direction opposite to the pulling direction is applied to both surfaces of the base material, that is, from the upper side to the lower side. By forcibly moving the slurry downward by air blowing toward and draining the liquid from the lower end, the slurry carrying amount can be made uniform. The speed at which the slurry moves downward by its own weight depends on the slurry viscosity. Therefore, by adjusting the lifting speed of the base material, the air flow rate at the time of air blowing, the air blowing angle, and the like according to the slurry viscosity, a plate-like catalyst in which the slurry is more uniformly supported can be obtained.
[0017]
In the present invention, the catalyst-coated substrate is dried while blowing hot air in a direction opposite to gravity to prevent the slurry from moving downward. As a result, dripping is prevented and a catalyst body having a uniform thickness is obtained. In other words, even when the catalyst slurry is drained and evenly supported on the substrate surface, during drying, the attached slurry moves downward by its own weight with the passage of time, and the lower plate thickness changes to the upper plate thickness. It may be thicker than In addition, through-holes penetrating the front and back provided in the plate-shaped base material, for example, a film-like slurry coated so as to close the mesh of the expanded metal may be cut to generate holes, but in the present invention, After the liquid is drained, the slurry is dried while blowing hot air upward from both lower sides of the substrate, thereby preventing the slurry from moving downward by its own weight and fixing the slurry as it is at the time of coating. .
[0018]
In the present invention, the direction in which air is blown at the time of pulling up the base material and the direction opposite to the pulling direction of the base material is the direction of gravity, but refers to the direction generally including the diagonal gravity direction and opposite to the pulling direction. Further, the direction facing the gravity, which blows hot air at the time of drying, is the upward direction, but generally refers to the direction facing the gravity, including the diagonally upward direction.
[0019]
In the present invention, the speed at which the catalyst substrate is pulled up from the slurry is preferably 1 to 4 m / sec, more preferably 2 to 3 m / sec. If the pulling speed is too high, the amount of the attached catalyst is insufficient.
In the present invention, the air blowing speed at the time of draining the liquid is preferably 1 to 5 m / sec, and more preferably 2 to 4 m / sec. If the wind speed is too high, the slurry coated on the mesh is broken and holes are likely to be generated, and if the wind speed is too low, the drainage effect cannot be sufficiently obtained.
[0020]
In the present invention, it is preferable that after the catalyst component is coated on the catalyst base material, that is, after the excess slurry is drained by air blow, hot air is blown in a direction opposite to gravity as quickly as possible to dry. This makes it possible to produce a plate catalyst having a more uniform thickness and a stable quality.
[0021]
【The invention's effect】
According to the invention described in claim 1 of the present application, it is possible to manufacture an exhaust gas purifying catalyst that is thin, light and has a uniform thickness on which a catalyst component is uniformly attached.
According to the invention described in claim 2 of the present application, in addition to the effects of the above invention, the catalyst component can be more uniformly attached.
[0022]
According to the invention described in claim 3 of the present application, similarly to the above invention, the catalyst component can be more uniformly adhered.
According to the invention described in claim 4 of the present application, in addition to the effects of the above invention, a highly active exhaust gas purifying catalyst having a large catalyst surface area can be obtained.
According to the invention as set forth in claim 5 of the present application, it is possible to manufacture an exhaust gas purifying catalyst which is thin, light and has a uniform thickness, on which the catalyst components are uniformly attached.
[Brief description of the drawings]
FIG. 1 is a front view of a catalyst manufacturing apparatus according to one embodiment of the present invention.
FIG. 2 is a plan view of FIG.
FIG. 3 is an explanatory view showing a dipping and air blowing step.
FIG. 4 is an explanatory view showing a hot air drying step.
FIG. 5 is a perspective view showing a plate-like catalyst substrate formed from an expanded metal.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Expanded metal, 2 ... Slurry tank, 3 ... Vertical cylinder, 4 ... Air nozzle, 5 ... Hot air nozzle, 6 ... Dolly, 7 ... Arrow indicating vertical movement direction, 8 ... Arrow indicating horizontal movement direction, 9 ... Guide rail Reference numeral 10: guide rail legs, 11: slurry, 12: blowing air, 13: hot air, 14: mesh basket, 15: starting position, 6: dipping position, 17: drying position, 18: take-out position.