[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004296349A - Container for housing material conversion device and material conversion apparatus - Google Patents

Container for housing material conversion device and material conversion apparatus Download PDF

Info

Publication number
JP2004296349A
JP2004296349A JP2003089273A JP2003089273A JP2004296349A JP 2004296349 A JP2004296349 A JP 2004296349A JP 2003089273 A JP2003089273 A JP 2003089273A JP 2003089273 A JP2003089273 A JP 2003089273A JP 2004296349 A JP2004296349 A JP 2004296349A
Authority
JP
Japan
Prior art keywords
converter
container
base
material converter
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003089273A
Other languages
Japanese (ja)
Other versions
JP3872442B2 (en
Inventor
Kouichiro Sugai
広一朗 菅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003089273A priority Critical patent/JP3872442B2/en
Publication of JP2004296349A publication Critical patent/JP2004296349A/en
Application granted granted Critical
Publication of JP3872442B2 publication Critical patent/JP3872442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a container for housing a material conversion device having a heat insulating structure that is adapted to allow the outer surface thereof to be kept at an acceptable level of low temperature at which there are no problems with its portability, and to allow the interior thereof to be thermally insulated stably at a high temperature equivalent to a fuel reforming condition, and a material conversion apparatus using the housing container, superior in compactness, simplicity, and safety, as a material conversion apparatus for portable electronics. <P>SOLUTION: The container 2 for housing a material conversion device includes a substrate 6 having a recess to house the material conversion device 3 on the top surface, a raw material supply path 15 and a conversion material to be converted discharge path 16 formed on the substrate 6, a wiring conductor 9 to which an input electrode or an output electrode of the material conversion device 3 is connected, respectively, and a lid 10 attached to cover the recess of the substrate 6. The use of the container 2 for housing a material conversion allows a material conversion apparatus 1 to keep itself at an acceptable level of a low temperature at which there are no problems with its portability, and to be small in size and robust in construction and high in efficiency. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水素改質器等の材料変換器を収容して使用するための小型化・軽量化に対応可能な材料変換器収納用容器、およびそれを用いた小型化・軽量化に対応可能な水素改質装置等の材料変換装置に関するものである。
【0002】
【従来の技術】
近年、低温で動作する小型燃料電池の開発が活発に進められている。これら小型燃料電池の用途としては、携帯電話,PDA,ノートパソコン,デジタルカメラやビデオ等の出力が数W〜数十Wの携帯電子機器用の電源としての用途が考えられる。燃料電池とは、燃料と酸化剤を電極に供給することによって化学エネルギーを電気エネルギーに変換するシステムである。燃料の代表は水素(H)であり、酸化剤の代表が酸素(O)であり、アノード(燃料極)に水素を、カソード(酸素極)に酸素を供給する。酸素は空気に含まれているため簡単に供給できるが、アノードに供給する水素は自然界には存在せず、燃料として製造しなければならない。
【0003】
小型で低出力用途向けの燃料電池としてDMFC(Direct Methanol Fuel Cell)がある。これは、メタノールを水素に改質せずに直接電解質のセルに供給して反応させる燃料電池である。液体燃料のメタノールは取り扱いやすく、改質器を必要としないことから、システムの簡略化が容易なため、開発が活発化している。ただし、DMFCには、メタノールが高分子固体電解質膜を透過するクロスオーバーという現象があり、といった深刻な問題がある。DMFCでは通常、電解質にPEFC(Polymer Electrolyte Fuel Cell)と同じパーフルオロスルホン酸系ポリマが使われるが、このポリマはメタノールを透過しやすい性質を持っているため、未反応のメタノールがカソードに到着してしまう。カソードに到着したメタノールはOと反応してCOとHOを生成する。この際の反応はすべて熱エネルギーとなって発電には寄与せずロスとなる。また、メタノールの存在下でカソードの電極電位が下がってしまい、これに加えて、アノードでは、メタノールが電極のPtに付着し酸化反応を起こす際にCOが発生し、COがPtに吸着することにより電極電位が上がって、結果として取り出せる電位が減ってしまう。したがって、小型で低出力用途向けの燃料電池としては、80℃程度の低い運転動作と50〜60%の高いエネルギー変換効率を持ち、小型・軽量であることから、メタノール等を改質することによって得られる水素(H)を燃料とするPEFCが優れていると考えられる。
【0004】
水素燃料はメタノール等の水素を含む液体燃料(アルコール類)を改質することによって得られる。改質は、改質可能な液体燃料(アルコール類)を水蒸気と結合させて水素を発生させるプロセスである。例えば、次の化学反応式(1)に示すような水蒸気改質反応(式中では、液体燃料としてメタノールを使用)を引き起こして、水素ガス(H)を生成する。なお、この改質反応により生成される水素以外の微量の生成物(主に、CO)は、大気中に排出される。
【0005】
CHOH+HO → 3H+CO ・・・(1)
この改質可能な燃料混合物を、通常は白金またはニッケル化合物であり、ペレット状またはボード状アルミナの上に担持された改質用触媒を用いて改質する。改質器は、触媒保持体と、同保持体の外周を覆う金属製パイプと、両者間に配置した保持シール材とからなり、保持シール材としては、通常、セラミックファイバー等の無機繊維のみからなるものが用いられている。この保持シール材は、例えば自動車の走行中等において触媒保持体が金属製パイプと当接した際の破損を防ぐため、また金属製シェルと触媒保持体との間から炭化水素化合物がリークすることを防ぐために用いられている。
【0006】
上記化学反応式(1)に示すような水蒸気改質反応は、一般に、200〜300℃程度の温度条件(燃料改質条件に相当する)で促進されるため、従来の改質部においては、燃料ガスを空気により燃焼させ、発生した燃焼熱(ΔH)が改質部に供給されていたが、PEFCを汎用の化学電池のようなポータブル電源として適用する場合にあっては、改質部を半導体製造の技術を応用した、例えば、シリコン基板(またはシリコンチップ)上に構成することができるため、改質部が形成される領域のシリコン基板上に、抵抗層等からなる薄膜ヒーターを形成することにより熱源として機能し、簡易かつ小型化が可能な構成で、上記水蒸気改質反応を良好に促進することができる。
【0007】
〔特許文献1〕
特開2001−266910号公報
〔特許文献2〕
特開2002−319427号公報
【0008】
【発明が解決しようとする課題】
しかしながら、携帯電子機器に改質器を搭載するためには、従来の大型燃料電池用改質器とは異なった、コンパクト性,簡便性,安全性に優れる材料変換器収納用容器が必要になる。また、汎用の化学電池のようなポータブル電源として適用するためには、材料変換器収納用容器の外部は、携帯性に問題がない程度の低い温度に保たれる必要があり、一方で、材料変換器収納用容器の内部は、水蒸気改質反応は吸熱反応であるため、燃料改質条件に相当する高い温度で安定に保温されるような断熱構造が必要となる。
【0009】
また、電気化学反応により負荷に供給される駆動電源(電圧/電流)は、PEFCの燃料極に供給される水素ガス(H)の量に依存する。したがって、改質部に供給される液体燃料の量および改質部の温度を制御することにより、負荷に供給される電気エネルギーを任意に調整することができる。そのためには、材料変換器収納用容器に、改質部が形成されるシリコン基板上の抵抗層等からなる薄膜ヒーターに入力する電流を制御する配線が必要となる。
【0010】
本発明は以上のような従来の技術の問題点に鑑み完成されたものであり、その目的は、材料変換器を収納可能な、小型で堅牢な材料変換器収納用容器であり、また、容器内を断熱し、温度勾配の均一化を図ることで、高効率制御が可能な材料変換装置を構成することができる材料変換器収納用容器およびそれを用いた材料変換装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明の材料変換器収納用容器は、上面に材料変換器を収容する凹部を有するセラミックスから成る基体と、この基体を貫通して外面から前記凹部にかけて形成された、前記材料変換器への原料供給路および前記材料変換器からの変換材料排出路と、前記基体の外面から前記凹部にかけて配設された、この凹部側の端部に前記材料変換器の入力電極または出力電極が、前記外面側の端部に外部電気回路の配線がそれぞれ電気的に接続される複数の配線導体と、前記基体の前記凹部の周囲の上面に前記凹部を覆って取着される、前記凹部を気密に封止する蓋体を具備することを特徴とするものである。
【0012】
本発明の材料変換器収納用容器によれば、抵抗層等からなる薄膜ヒーターに電流が入出力されるための電極が形成されている材料変換器を収容できる材料変換器収納用容器であって、液体または気体からなる原料を供給する原料供給路と改質された後の変換材料(燃料ガスとしての水素等)が排出される変換材料排出路とを具備し、凹部を有するセラミックスから成る基体と蓋体とで材料変換器を内部に収納して気密に封止することができる。これにより、材料変換器が露出して損傷を受けることがなく、また、材料変換器に無用な電気的接触をしないで済むので、信頼性および安全性の高い材料変換装置を得ることができる。
【0013】
さらに、基体の外面側の端部に外部電気回路の配線が、基体の凹部側の端部に材料変換器の入力電極および出力電極がそれぞれ電気的に接続される複数の配線導体を具備しているため、外部電気回路から、燃料改質条件に相当する温度になるように、材料変換器にある薄膜ヒーターに電流を流して制御することが可能となり、改質効率を向上させることが可能である。
【0014】
また、本発明の材料変換器収納用容器は、上記構成において、前記原料供給路および前記変換材料排出路の少なくとも一方が、前記基体に形成された貫通孔と、この貫通孔の前記凹部側の開口に接続された管部材とから成ることを特徴とするものである。さらに、この構成において、前記貫通孔の前記外面側の開口に第2の管部材が接続されていることを特徴とするものである。
【0015】
これによれば、液体または気体からなる原料を第2の管部材,貫通孔,管部材,原料供給口の順に通して凹部内の材料変換器に導入し、改質された後の例えば燃料ガス(水素)を、変換材料排出口,管部材,貫通孔,第2の管部材の順に通して、PEFC等へ供給することが可能である。また、材料変換器収納用容器の基体の構成材料としてセラミックスを主成分とした緻密質焼結体を用い、材料変換器と材料変換器収納用容器の継ぎ手として管部材を用いるものとしたことにより、液体または気体からなる原料および改質後の燃料ガスが材料変換器収納用容器の外へ漏れることを確実に抑制することができる。
【0016】
さらに、本発明の材料変換器収納用容器は、上記構成において、前記管部材の熱伝導率が前記基体より小さいことを特徴とするものである。
【0017】
これによれば、管部材の熱伝導率が基体の熱伝導率より小さいときには、外部のPEFCと容器内部の材料変換器とを結ぶ導管内で熱としてのエネルギーが失われにくいため、材料変換器の薄膜ヒーターの発熱量を低減することができる。また、材料変換器で発生した熱が管部材を通じて基体に伝導しにくいため、材料変換器の温度が安定し、均一な温度に容易に保つことができる。
【0018】
また、本発明の材料変換器収納用容器は、上記構成において、前記凹部の内面および前記蓋体の前記凹部に対向する下面の少なくとも一方に、輻射熱反射用被膜が形成されていることを特徴とするものである。さらに、この構成において、前記輻射熱反射用被膜が、メタライズ金属膜またはメッキ金属膜またはメタライズ金属膜にメッキ金属膜を被着したものであることを特徴とするものである。
【0019】
これによれば、材料変換器収納用容器の材料変換器を収納する部分の内面に輻射熱反射用被膜が形成されているときには、またこの輻射熱反射用被膜が、放射率の低いメタライズ金属膜またはメッキ金属膜またはメタライズ金属膜にメッキ金属膜を被着したものであるときには、材料変換器で発生した高温の熱が輻射して材料変換器収納用容器に伝わることを抑制することができ、材料変換器収納用容器の外表面の温度上昇を抑制することができるので、材料変換器収納用容器の外表面を携帯性に問題なく低い温度に保つことが可能である。また、材料変換器の熱が収納用容器から容器外部へ逃げることが抑制されるため、材料変換器を燃料改質条件に相当する高い温度で安定に保つことが容易になり、効率的に改質を行なうことが可能となる。
【0020】
また、本発明の材料変換装置は、上記構成の本発明の材料変換器収納用容器の前記凹部に材料変換器を収容して、この材料変換器の原料供給口に前記原料供給路を、変換材料排出口に前記変換材料排出路をそれぞれ接続するとともに、前記材料変換器の入力電極および出力電極に前記配線導体をそれぞれ電気的に接続し、前記基体の前記凹部の周囲の上面に前記凹部を覆って前記蓋体を取着して成ることを特徴とするものである。
【0021】
本発明の材料変換装置によれば、本発明の材料変換器収納用容器を用いて構成されることから、以上のような本発明の材料変換器収納用容器による特長を備えた、原料となる材料や変換後の材料の漏れを防ぎ、材料変換器収納用容器内を断熱して温度勾配の均一化を図ることも可能となるため、収納する材料変換器を長期にわたり安定して作動させることが可能な、小型・堅牢で高効率な材料変換装置を得ることができる。
【0022】
また、本発明の材料変換装置は、上記構成において、前記原料供給路から供給される原料が炭化水素系燃料であり、前記材料変換器が改質器であり、前記変換材料排出路から排出される変換材料が水素であることを特徴とするものである。
【0023】
これによれば、PEFCの燃料として必要な水素(水素ガス)を改質するための材料変換装置となり、例えば、メタン,エタン,プロパン,ブタン,都市ガス,LPガス,天然ガス,その他の炭化水素ガス(2種以上の炭化水素の混合ガスを含む)やメタノール等のアルコール類を、水蒸気により改質して、水素リッチな改質ガスを生成させる材料変換装置となる。
【0024】
また、本発明の材料変換装置は、上記構成において、前記凹部内が真空排気されて前記蓋体により気密に封止されていることを特徴とするものである。
【0025】
これによれば、本発明の材料変換器収納用容器を用いた材料変換装置の断熱構造を真空断熱構造とすることとなり、断熱部分のコンパクト化を図ることができ、小型化に有効な材料変換装置となる。これにより、材料変換器の薄膜ヒーターに電流を印加後に、材料変換器の温度をすばやく上昇させて燃料改質条件に相当する高い温度に短時間で設定することが可能になるため、携帯電子機器の電源を安定的かつ短時間で始動することができる材料変換装置となる。
【0026】
従って、本発明の材料変換器収納用容器および材料変換装置によれば、燃料となる材料や改質後の材料の漏れを防ぎ、材料変換器収納用容器内を断熱して温度勾配の均一化を図ることも可能となるため、収納する材料変換器を長期にわたり安定して作動させることが可能な、小型・堅牢で高効率な材料変換装置を得ることができる。
【0027】
【発明の実施の形態】
次に、本発明を添付図面に基づき詳細に説明する。
【0028】
図1は本発明の材料変換器収納用容器および材料変換装置について実施の形態の一例を示す断面図である。図1において、1は材料変換装置、2は材料変換器収納用容器、3は材料変換器、4は原料供給口、5は原料排出口、6は基体、7は入力電極、8は出力電極、9は配線導体、10は蓋体、11は貫通孔、12は管部材、13は第2の管部材、14は輻射熱反射用被膜であり、15は原料供給路、16は変換材料排出路を示している。
【0029】
材料変換器3は、微小ケミカルデバイスとして、半導体製造技術を適用して、例えば、シリコン,石英,ガラス,シリコンを含む重合体等の基材に、エッチング法により細い溝を形成して液体流路が作製される。そして、操作中の液体の蒸発防止等を目的として、ガラス板等のカバーを陽極接合等により表面に密着させて使用される。また、材料変換器3内には温度調節機構、例えば抵抗層等からなる薄膜ヒーターを形成し、表面には、薄膜ヒーターへ電流を供給する端子として入力電極7および出力電極8が形成されることにより、簡易かつ小型化が可能な構成とされている。例えば代表的な材料変換器3である水素改質器であれば、一般に、200〜300℃程度の温度条件(燃料改質条件に相当する)に調整することで、原料供給口4から導入される液体燃料(アルコール類)を水蒸気と結合させて、原料排出口5から水素を発生させる水蒸気改質反応を良好に促進することができる。
【0030】
材料変換器収納用容器2は、上面に凹部を有する基体6とこの凹部を覆って取着される蓋体10とを具備しており、凹部内に材料変換器3を搭載して気密に封止する役割を持ち、例えば、酸化アルミニウム(Al)質焼結体,ムライト(3Al・2SiO)質焼結体,炭化珪素(SiC)質焼結体,窒化アルミニウム(AlN)質焼結体,窒化珪素(Si)質焼結体,ガラスセラミックス焼結体等のセラミックス材料で形成されている。
【0031】
なお、ガラスセラミックス焼結体はガラス成分とフィラー成分とから成るが、ガラス成分としては、例えばSiO−B系,SiO−B−Al系,SiO−B−Al−MO系(但し、MはCa,Sr,Mg,BaまたはZnを示す),SiO−Al−MO−MO系(但し、MおよびMは同一または異なってCa,Sr,Mg,BaまたはZnを示す),SiO−B−Al−MO−MO系(但し、MおよびMは前記と同じである),SiO−B−M O系(但し、MはLi,NaまたはKを示す),SiO−B−Al−M O系(但し、Mは前記と同じである),Pb系ガラス,Bi系ガラス等が挙げられる。
【0032】
また、フィラー成分としては、例えばAl,SiO,ZrOとアルカリ土類金属酸化物との複合酸化物、TiOとアルカリ土類金属酸化物との複合酸化物、AlおよびSiOから選ばれる少なくとも1種を含む複合酸化物(例えばスピネル,ムライト,コージェライト)等が挙げられる。
【0033】
材料変換器収納用容器2は凹部を有する基体6と蓋体10とを具備しており、基体6の凹部の周囲に凹部を覆って蓋体10を取着することによって凹部を気密に封止するため、半田や銀ろう等の金属接合材料で接合する方法,エポキシ等の樹脂材料で接合する方法,凹部の周囲の上面に鉄合金等で作られたシールリング等を接合してシームウェルドやエレクトロンビームやレーザ等で溶接する方法等によって、基体6に蓋体10が取着される。なお、蓋体10にも基体6と同様の凹部を形成しておいてよい。さらに、シームウェルドやエレクトロンビームやレーザ等で溶接する場合は、真空雰囲気中でこれらの溶接作業を行なうことにより、基体6と蓋体10とから成る容器の内部を真空にすることが可能となる。
【0034】
基体6および蓋体10は、それぞれ厚みを薄くし、材料変換装置1の薄型化・低背化を可能とするためには、機械的強度である曲げ強度が200MPa以上であることが好ましい。
【0035】
基体6および蓋体10は、基体6の凹部内部を気密封止するものであるので、例えば相対密度が95%以上の緻密質からなる酸化アルミニウム質焼結体で形成されていることが好ましい。その場合であれば、例えば、まず酸化アルミニウム粉末に希土類酸化物粉末や焼結助剤を添加・混合して、酸化アルミニウム質焼結体原料粉末を調製する。次いで、この酸化アルミニウム質焼結体原料粉末に有機バインダおよび分散媒を添加・混合してスラリーとし、このスラリーからドクターブレード法によって、あるいは原料粉末に有機バインダを加え、プレス成形・圧延成形等によって、所定の厚みのグリーンシートを作製する。そして、このグリーンシートに対して、金型による打ち抜き・マイクロドリル・レーザ等により、貫通孔11となる貫通孔、ならびに配線導体9を配設するための貫通孔を形成する。
【0036】
なお、貫通孔11のサイズとしては、液体または気体からなる材料の供給・排出を確実に行なえるようにφ0.2mm以上とし、材料である流体の圧力損失を抑え、小型化にも対応するためには、φ5mm以下とすることが好ましい。
【0037】
配線導体9は、酸化を防ぐために、タングステンおよびモリブデンの少なくとも一方で形成されているのが好ましく、その場合であれば、例えば、タングステンおよびモリブデンの少なくとも一方の粉末100重量部に対して、Alを3〜20質量部,Nbを0.5〜5質量部の割合で添加して成る導体ペーストを調製する。この導体ペーストをグリーンシートの表面に所定パターンで印刷塗布するとともに、貫通孔内に充填して、貫通導体としてのヴィア導体を形成することによって、配線導体9が配設される。
【0038】
これらの導体ペースト中には、基体6との密着性を高めるために、酸化アルミナ粉末や、基体6を形成する酸化物セラミックス成分と同一の組成物粉末を0.05〜2体積%の割合で添加することも可能である。
【0039】
なお、基体6の表面および内層の配線導体9の形成は、上記のように貫通孔へ導体ペーストを充填してヴィア導体を形成する前後あるいはそれと同時に、同様の導体ペーストをグリーンシートに対しスクリーン印刷やグラヴィア印刷等の方法で所定パターンに印刷塗布することによって行なわれる。
【0040】
その後、導体ペーストを印刷し充填した所定枚数のグリーンシートを位置合わせして積層圧着した後、この積層体を、例えば非酸化性雰囲気中にて焼成最高温度が1200〜1500度の温度で焼成して、目的とするセラミックスから成る基体6と蓋体10および基体6に配設された配線導体9を得る。
【0041】
基体6および蓋体10は、材料変換器3の薄膜ヒーターで発生した熱が輻射して基体6および蓋体10の温度が上昇するのを抑制するために、輻射率が低い白色の酸化アルミニウム質焼結体で形成することが好ましい。
【0042】
また、基体6は、その厚みを0.2mm以上とすることが好ましい。厚みが0.2mm未満では、強度が被覆しがちなため、基体6に蓋体10を取着したときに発生する応力により、基体6に割れ等が発生しやすくなる傾向がある。他方、厚みが5mmを超えると、基体6が大型化して小型携帯機器に搭載するのに不適切となり、また、熱容量が大きくなるため、材料変換器3の温度をすばやく上昇させて燃料改質条件に相当する高い温度に設定することが困難となる傾向がある。
【0043】
配線導体9は、材料変換器3に電気的に接続されて、材料変換器3の入力電極7および出力電極8に電流・電圧を外部から印加し、あるいは外部へ取り出すための導電路として機能する。
【0044】
配線導体9には、その露出する表面にニッケルから成る良導電性で、かつ耐蝕性およびロウ材との濡れ性が良好な金属をメッキ法により被着させておくと、配線導体9と、入力電極7および出力電極8との、ならびに外部電気回路との電気的接続を良好とすることができる。従って、配線導体9は、その露出する表面にニッケルから成る良導電性で、かつ耐蝕性およびロウ材との濡れ性が良好な金属をメッキ法により被着させておくことが好ましい。
【0045】
そして、配線導体9と材料変換器3の入力電極7および出力電極8との電気的な接続は、銀ロウや金合金等のろう材を介して強固に接着させ、薄膜ヒーターへ電流を供給させる等の構成によって行なえばよい。
【0046】
本発明の材料変換器収納用容器2においては、原料供給路および変換材料排出路の少なくとも一方が、基体6に形成された貫通孔11と、この貫通孔11の凹部側の開口に接続された管部材12とから成り、さらに、貫通孔11の基体6の外面側の開口に第2の管部材13が接続されていることが好ましい。これにより、燃料となる材料や改質後の材料の漏れを防ぎ、燃料電池等への接続が容易となる。
【0047】
このような管部材12および第2の管部材13は、サイズおよび形状としては、液体または気体からなる材料の供給・排出を確実に行なえるように内径がφ0.2mm以上の円管とし、材料である流体の圧力損失を抑えて、かつ小型化にも対応するためには、内径がφ5mm以下の円管とすることが好ましい。さらに、管部材12および第2の管部材13の基体6の貫通孔11の開口と接合される部分の断面形状としては、通常は円形状とすればよいが、これに限定はされず、貫通孔11を覆うサイズであれば、液体または気体からなる原料および改質後の燃料ガスを外へ漏らさずに供給・排出することができるものであれば、角形状のもの、例えば、正方形状や長方形状としてもよい。また、肉厚は原料としての材料の供給や変換後の材料の排出のための圧力で変形しないような厚みが必要であるが、携帯端末等では通常は0.1mm以上であれば良い。また、流れ方向の長さは0.1mm以上あれば、材料変換器3からの熱が基体6に流れるのを少なく抑えることができ、熱の遮断が図れるようになる。
【0048】
管部材12および第2の管部材13を構成する材料としては、基体6との熱膨張差が小さい鉄合金やタングステン合金,モリブデン合金等が好ましい。
【0049】
管部材12および第2の管部材13と基体6と接合は、半田や銀ろう等の金属接合材料やガラス材料で接合する方法を採用すればよく、これにより、確実に気密に封止することが可能となる。
【0050】
基体6の貫通孔11にこれら管部材12および第2の管部材13を接続することにより、原料供給路15および変換材料排出路16が形成され、不要な高い圧で液漏れ等が発生することが無く、原料や改質後の燃料ガスを効率的に循環させることが可能となる材料変換器収納用容器2および材料変換装置1が得られる。
【0051】
また、管部材12の熱伝導率は、基体6の熱伝導率より小さいことが好ましい。管部材12の熱伝導率を基体6の熱伝導率より小さいものとすることにより、外部のPEFCと容器内部の材料変換器3とを結ぶ導管内で熱としてのエネルギーが失われにくいため、材料変換器3の薄膜ヒーターの発熱量を低減することができ、また、材料変換器3で発生した熱が管部材12を通じて基体6に伝導しにくいため、材料変換器3の温度を安定させて均一な温度に容易に保つことができる。
【0052】
さらに、本発明の材料変換器収納用容器2においては、凹部の内面および蓋体10の凹部に対向する下面の少なくとも一方に、輻射熱反射用被膜14が形成されていることが好ましい。この輻射熱反射用被膜14には、メタライズ金属膜またはメッキ金属膜またはメタライズ金属膜にメッキ金属膜を被着したものを用いることができる。これによれば、材料変換器3で発生した高温の熱が輻射して材料変換器収納用容器2に伝わることを抑制することができ、材料変換器収納用容器2の外表面の温度上昇を抑制することができるので、材料変換器収納用容器2の外表面を携帯性に問題なく低い温度に保つことが可能となり、また、材料変換器3の熱が材料変換器収納用容器2から容器外部へ逃げることが抑制されるため、材料変換器3を例えば燃料改質条件に相当する高い温度で安定に保つことが容易になり、効率的に改質を行なうことが可能となる。
【0053】
この輻射熱反射用被膜14としては、タングステンやモリブデン等のメタライズ金属膜、または良導電性で耐蝕性が良好なニッケル等のメッキ金属膜、またはそれらメタライズ金属膜にそれらメッキ金属膜を被着したもので形成するとよい。
【0054】
さらに、輻射熱反射用被膜14は輻射率を小さくする必要があり、輻射率は0.2以下であることが好ましい。これには、輻射熱反射用被膜14の表面を平滑にし、白色に見える光沢のある被膜とすればよい。
【0055】
そして、材料変換器収納用容器2の基体6の凹部に材料変換器3を収容して、材料変換器3の原料供給口4に原料供給路15を、変換材料排出口5に変換材料排出路16をそれぞれ接続するとともに、材料変換器3の入力電極7および出力電極8に配線導体9をそれぞれ電気的に接続し、基体6の凹部の周囲の上面に基体6の凹部を覆って蓋体10を取着することによって、また必要に応じて基体6の凹部内が真空排気されて蓋体10により気密に封止されることによって、図1に示すような本発明の材料変換装置1が完成する。
【0056】
以上の構成により、図1に示すような、材料変換器3を収納可能な、小型で堅牢な本発明の材料変換器収納用容器2が得られ、また、この容器内を断熱して温度勾配の均一化を図ることができ、高効率制御が可能な本発明の材料変換装置1を得ることができる。
【0057】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を加えることは何ら差し支えない。
【0058】
例えば、材料変換器を収容する凹部および原料供給路,変換材料排出路,配線導体を形成するのはセラミックスから成る基体に限られるものではなく、セラミックスから成る蓋体にこれら基体についての機能を持たせて、凹部を形成したり原料供給路,変換材料排出路や配線導体を形成することも可能であり、材料変換装置の設置方法に応じて適宜変更することにより、要求される小型化や低背化への対応が可能となる。
【0059】
【発明の効果】
本発明の材料変換器収納用容器によれば、抵抗層等からなる薄膜ヒーターに電流が入出力されるための電極が形成されている材料変換器を収容できる材料変換器収納用容器であって、液体または気体からなる原料を供給する原料供給路と改質された後の変換材料(燃料ガスとしての水素等)が排出される変換材料排出路とを具備し、凹部を有するセラミックスから成る基体と蓋体とで材料変換器を内部に収納して気密に封止することができる。これにより、材料変換器が露出して損傷を受けることがなく、また、材料変換器に無用な電気的接触をしないで済むので、信頼性および安全性の高い材料変換装置を得ることができる。
【0060】
さらに、基体の外面側の端部に外部電気回路の配線が、基体の凹部側の端部に材料変換器の入力電極および出力電極がそれぞれ電気的に接続される複数の配線導体を具備しているため、外部電気回路から、燃料改質条件に相当する温度になるように、材料変換器にある薄膜ヒーターに電流を流して制御することが可能となり、改質効率を向上させることが可能である。
【0061】
また、本発明の材料変換器収納用容器によれば、原料供給路および変換材料排出路の少なくとも一方が、基体に形成された貫通孔と、この貫通孔の凹部側の開口に接続された管部材とから成るときには、さらに、貫通孔の外面側の開口に第2の管部材が接続されているときには、液体または気体からなる原料を第2の管部材,貫通孔,管部材,原料供給口の順に通して凹部内の材料変換器に導入し、改質された後の例えば燃料ガス(水素)を、変換材料排出口,管部材,貫通孔,第2の管部材の順に通して、PEFC等へ供給することが可能である。また、材料変換器収納用容器の基体の構成材料としてセラミックスを主成分とした緻密質焼結体を用い、材料変換器と材料変換器収納用容器の継ぎ手として管部材を用いるものとすることにより、液体または気体からなる原料および改質後の燃料ガスが材料変換器収納用容器の外へ漏れることを確実に抑制することができる。
【0062】
さらに、本発明の材料変換器収納用容器によれば、管部材の熱伝導率が基体より小さいときには、外部のPEFCと容器内部の材料変換器とを結ぶ導管内で熱としてのエネルギーが失われにくいため、材料変換器の薄膜ヒーターの発熱量を低減することができる。また、材料変換器で発生した熱が管部材を通じて基体に伝導しにくいため、材料変換器の温度が安定し、均一な温度に容易に保つことができる。
【0063】
また、本発明の材料変換器収納用容器によれば、凹部の内面および蓋体の凹部に対向する下面の少なくとも一方に、輻射熱反射用被膜が形成されているときには、さらに、この輻射熱反射用被膜が、メタライズ金属膜またはメッキ金属膜またはメタライズ金属膜にメッキ金属膜を被着したものであるときには、材料変換器で発生した高温の熱が輻射して材料変換器収納用容器に伝わることを抑制することができ、材料変換器収納用容器の外表面の温度上昇を抑制することができるので、材料変換器収納用容器の外表面を携帯性に問題なく低い温度に保つことが可能である。また、材料変換器の熱が収納用容器から容器外部へ逃げることが抑制されるため、材料変換器を燃料改質条件に相当する高い温度で安定に保つことが容易になり、効率的に改質を行なうことが可能となる。
【0064】
本発明の材料変換装置によれば、本発明の材料変換器収納用容器を用いて構成されることから、以上のような本発明の材料変換器収納用容器による特長を備えた、原料となる材料や変換後の材料の漏れを防ぎ、材料変換器収納用容器内を断熱して温度勾配の均一化を図ることも可能となるため、収納する材料変換器を長期にわたり安定して作動させることが可能な、小型・堅牢で高効率な材料変換装置を得ることができる。
【0065】
また、本発明の材料変換装置によれば、原料供給路から供給される原料が炭化水素系燃料であり、材料変換器が改質器であり、変換材料排出路から排出される変換材料が水素であるときには、PEFCの燃料として必要な水素(水素ガス)を改質するための材料変換装置となり、例えば、メタン,エタン,プロパン,ブタン,都市ガス,LPガス,天然ガス,その他の炭化水素ガス(2種以上の炭化水素の混合ガスを含む)やメタノール等のアルコール類を、水蒸気により改質して、水素リッチな改質ガスを生成させる材料変換装置となる。
【0066】
また、本発明の材料変換装置によれば、凹部内が真空排気されて蓋体により気密に封止されているときには、本発明の材料変換器収納用容器を用いた材料変換装置の断熱構造を真空断熱構造とすることとなり、断熱部分のコンパクト化を図ることができ、小型化に有効な材料変換装置となる。これにより、材料変換器の薄膜ヒーターに電流を印加後に、材料変換器の温度をすばやく上昇させて燃料改質条件に相当する高い温度に短時間で設定することが可能になるため、携帯電子機器の電源を安定的かつ短時間で始動することができる材料変換装置となる。
【0067】
従って、本発明の材料変換器収納用容器および材料変換装置によれば、燃料となる材料や改質後の材料の漏れを防ぎ、材料変換器収納用容器内を断熱して温度勾配の均一化を図ることも可能となるため、収納する材料変換器を長期にわたり安定して作動させることが可能な、小型・堅牢で高効率な材料変換装置を得ることができた。
【図面の簡単な説明】
【図1】本発明の材料変換装置の実施の形態の一例を示す断面図である。
【符号の説明】
1:材料変換装置
2:材料変換器収納用容器
3:材料変換器
4:原料供給口
5:変換材料排出口
6:基体
7:入力電極
8:出力電極
9:配線導体
10:蓋体
11:貫通孔
12:管部材
13:第2の管部材
14:輻射熱反射用皮膜
15:原料供給路
16:変換材料排出路
[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is capable of accommodating a material converter storage container capable of accommodating a reduction in size and weight for accommodating and using a material converter such as a hydrogen reformer, and a reduction in size and weight using the same. The present invention relates to a material conversion device such as a simple hydrogen reformer.
[0002]
[Prior art]
In recent years, the development of small fuel cells operating at low temperatures has been actively promoted. As an application of these small fuel cells, an application as a power source for a portable electronic device having an output of several W to several tens W, such as a mobile phone, a PDA, a notebook computer, a digital camera, and a video, can be considered. A fuel cell is a system that converts chemical energy into electrical energy by supplying fuel and an oxidant to an electrode. The representative fuel is hydrogen (H2) And a representative oxidizing agent is oxygen (O2) To supply hydrogen to the anode (fuel electrode) and oxygen to the cathode (oxygen electrode). Oxygen is easily supplied because it is contained in air, but hydrogen supplied to the anode does not exist in nature and must be produced as a fuel.
[0003]
There is a DMFC (Direct Methanol Fuel Cell) as a small fuel cell for low power use. This is a fuel cell in which methanol is directly supplied to an electrolyte cell without being reformed into hydrogen and reacted. Since liquid fuel, methanol, is easy to handle and does not require a reformer, the system is easy to simplify, and development has been active. However, the DMFC has a serious problem such as a crossover phenomenon in which methanol permeates the polymer solid electrolyte membrane. In DMFC, the same perfluorosulfonic acid-based polymer as PEFC (Polymer Electrolyte Fuel Cell) is usually used for the electrolyte. However, since this polymer has a property of easily permeating methanol, unreacted methanol reaches the cathode. Would. The methanol arriving at the cathode is O2Reacts with CO2And H2Generate O. All reactions at this time become thermal energy and do not contribute to power generation, resulting in loss. In addition, in the presence of methanol, the electrode potential of the cathode decreases, and in addition, at the anode, when methanol adheres to the Pt of the electrode and causes an oxidation reaction, CO is generated, and the CO is adsorbed on the Pt. As a result, the electrode potential increases, and as a result, the potential that can be taken out decreases. Therefore, as a small and low-power fuel cell, it has a low operation operation of about 80 ° C., a high energy conversion efficiency of 50 to 60%, and is small and lightweight. The resulting hydrogen (H2) Is considered to be excellent.
[0004]
Hydrogen fuel is obtained by reforming a liquid fuel (alcohols) containing hydrogen such as methanol. Reforming is a process in which a reformable liquid fuel (alcohols) is combined with steam to generate hydrogen. For example, a steam reforming reaction (in the formula, methanol is used as a liquid fuel) as shown in the following chemical reaction formula (1) is caused to generate hydrogen gas (H2). A small amount of products other than hydrogen produced by this reforming reaction (mainly CO 22) Are released into the atmosphere.
[0005]
CH3OH + H2O → 3H2+ CO2  ... (1)
This reformable fuel mixture is reformed using a reforming catalyst, usually a platinum or nickel compound, supported on pellet or board alumina. The reformer is composed of a catalyst holder, a metal pipe that covers the outer periphery of the holder, and a holding sealing material disposed therebetween, and the holding sealing material is generally made of only inorganic fibers such as ceramic fibers. Are used. This holding sealing material is used, for example, to prevent damage when the catalyst holder comes into contact with the metal pipe during running of an automobile, and also to prevent hydrocarbon compounds from leaking from between the metal shell and the catalyst holder. Used to prevent.
[0006]
The steam reforming reaction as shown in the above chemical reaction formula (1) is generally accelerated under a temperature condition of about 200 to 300 ° C. (corresponding to a fuel reforming condition). The fuel gas is burned by air, and the generated heat of combustion (ΔH) is supplied to the reforming unit. However, when the PEFC is applied as a portable power source such as a general-purpose chemical battery, the reforming unit must be For example, a thin film heater made of a resistance layer or the like is formed on a silicon substrate in a region where a modified portion is to be formed because the technology can be formed on a silicon substrate (or a silicon chip) by applying a semiconductor manufacturing technique. Thus, the steam reforming reaction can be favorably promoted with a configuration that functions as a heat source and can be simplified and reduced in size.
[0007]
[Patent Document 1]
JP 2001-266910 A
[Patent Document 2]
JP 2002-319427 A
[0008]
[Problems to be solved by the invention]
However, in order to mount a reformer on a portable electronic device, a container for accommodating a material converter which is different from the conventional reformer for a large fuel cell and which is excellent in compactness, simplicity, and safety is required. . In addition, in order to be applied as a portable power source such as a general-purpose chemical battery, it is necessary to maintain the outside of the container for storing the material converter at a low temperature at which there is no problem in portability. Since the steam reforming reaction is an endothermic reaction inside the converter storage container, a heat insulating structure is required to stably maintain the temperature at a high temperature corresponding to the fuel reforming conditions.
[0009]
The driving power (voltage / current) supplied to the load by the electrochemical reaction is hydrogen gas (H) supplied to the fuel electrode of the PEFC.2) Depends on the quantity. Therefore, by controlling the amount of the liquid fuel supplied to the reforming section and the temperature of the reforming section, the electric energy supplied to the load can be arbitrarily adjusted. For that purpose, a wiring for controlling a current input to a thin film heater made of a resistance layer or the like on a silicon substrate on which a reforming unit is formed is required in a container for accommodating a material converter.
[0010]
The present invention has been completed in view of the problems of the conventional techniques as described above, and an object of the present invention is to provide a small and robust container for storing a material converter capable of storing a material converter. It is an object of the present invention to provide a container for accommodating a material converter capable of forming a material conversion device capable of high-efficiency control by insulating the inside thereof and making the temperature gradient uniform, and a material conversion device using the same. .
[0011]
[Means for Solving the Problems]
A container for accommodating a material converter according to the present invention includes a base made of ceramics having a concave portion for accommodating the material converter on an upper surface, and a raw material for the material converter formed from the outer surface to the concave portion through the base. A supply path and a conversion material discharge path from the material converter, and an input electrode or an output electrode of the material converter are provided at an end on the side of the recess from the outer surface of the base to the recess. A plurality of wiring conductors each of which is electrically connected to a wiring of an external electric circuit at an end of the base; and an upper surface surrounding the concave portion of the base, which is attached to cover the concave portion, hermetically sealing the concave portion. It is characterized by having a lid body that performs.
[0012]
According to the material converter storage container of the present invention, a material converter storage container capable of storing a material converter in which an electrode for inputting and outputting a current to and from a thin film heater made of a resistance layer or the like is formed. A substrate made of ceramics having a raw material supply path for supplying a raw material composed of a liquid or a gas, and a conversion material discharge path for discharging a converted conversion material (hydrogen as a fuel gas, etc.) The lid can be used to house the material converter and hermetically seal it. Accordingly, the material converter is not exposed and damaged, and unnecessary electrical contact with the material converter is not required, so that a highly reliable and safe material conversion device can be obtained.
[0013]
Further, a wiring of an external electric circuit is provided at an end on the outer surface side of the base, and a plurality of wiring conductors to which input and output electrodes of the material converter are electrically connected are provided at an end of the base on the concave side. Therefore, it becomes possible to control the thin-film heater in the material converter by supplying an electric current from an external electric circuit to a temperature corresponding to the fuel reforming condition, thereby improving the reforming efficiency. is there.
[0014]
Further, in the material converter storage container according to the present invention, in the above-described configuration, at least one of the raw material supply path and the conversion material discharge path has a through hole formed in the base, and a through hole formed on the recess side of the through hole. And a pipe member connected to the opening. Further, in this configuration, a second pipe member is connected to the opening on the outer surface side of the through hole.
[0015]
According to this, a raw material composed of a liquid or a gas passes through the second pipe member, the through hole, the pipe member, and the raw material supply port in order, and is introduced into the material converter in the concave portion. (Hydrogen) can be supplied to the PEFC or the like through the conversion material discharge port, the pipe member, the through hole, and the second pipe member in this order. In addition, a dense sintered body mainly composed of ceramics is used as a constituent material of the base of the material converter storage container, and a pipe member is used as a joint between the material converter and the material converter storage container. In addition, it is possible to reliably prevent the raw material composed of liquid or gas and the reformed fuel gas from leaking out of the container for accommodating the material converter.
[0016]
Further, in the container for accommodating a material converter according to the present invention, in the above configuration, the heat conductivity of the tube member is smaller than that of the base.
[0017]
According to this, when the thermal conductivity of the tube member is smaller than the thermal conductivity of the base, energy as heat is less likely to be lost in the conduit connecting the external PEFC and the material converter inside the container. Calorific value of the thin film heater can be reduced. Further, since the heat generated in the material converter is less likely to be conducted to the base through the tube member, the temperature of the material converter is stabilized, and it is possible to easily maintain a uniform temperature.
[0018]
Further, in the material converter storage container of the present invention, in the above-described configuration, at least one of the inner surface of the recess and the lower surface of the lid facing the recess is formed with a radiant heat reflection coating. To do. Further, in this configuration, the radiation heat reflection coating is characterized in that a metallized metal film, a plated metal film, or a metallized metal film is coated with a plated metal film.
[0019]
According to this, when the radiant heat reflection coating is formed on the inner surface of the portion for storing the material converter of the material converter storage container, the radiant heat reflection coating also has a low emissivity metallized metal film or plating. When a metal film or a metallized metal film is coated with a plated metal film, the high-temperature heat generated in the material converter can be suppressed from being radiated and transmitted to the container for storing the material converter. Since the temperature rise on the outer surface of the container for container can be suppressed, the outer surface of the container for material converter can be kept at a low temperature without any problem in portability. In addition, since the heat of the material converter is prevented from escaping from the storage container to the outside of the container, it is easy to maintain the material converter stably at a high temperature corresponding to the fuel reforming condition, thereby improving the efficiency. It is possible to do quality.
[0020]
Further, the material conversion apparatus of the present invention accommodates a material converter in the recess of the material converter storage container of the present invention having the above-described configuration, and converts the material supply path into a material supply port of the material converter. The conversion material discharge path is connected to a material discharge port, and the wiring conductor is electrically connected to an input electrode and an output electrode of the material converter, respectively, and the concave portion is formed on an upper surface around the concave portion of the base. It is characterized in that the cover is attached and covered.
[0021]
According to the material conversion device of the present invention, since the material conversion device is configured using the material converter storage container of the present invention, it is a raw material having the above-described features of the material converter storage container of the present invention. To prevent leakage of materials and converted materials and to insulate the inside of the container for storing material converters to make the temperature gradient uniform, so that the stored material converters operate stably for a long period of time. It is possible to obtain a compact, robust and high-efficiency material conversion device capable of performing the above.
[0022]
Further, in the material conversion device of the present invention, in the above configuration, the raw material supplied from the raw material supply path is a hydrocarbon-based fuel, the material converter is a reformer, and the raw material is discharged from the conversion material discharge path. Wherein the converting material is hydrogen.
[0023]
According to this, a material conversion device for reforming hydrogen (hydrogen gas) required as a fuel for PEFC is provided. For example, methane, ethane, propane, butane, city gas, LP gas, natural gas, and other hydrocarbons A material conversion apparatus is provided that reforms a gas (including a mixed gas of two or more hydrocarbons) and alcohols such as methanol with steam to generate a hydrogen-rich reformed gas.
[0024]
Further, in the material conversion device of the present invention, in the above configuration, the inside of the concave portion is evacuated and hermetically sealed by the lid.
[0025]
According to this, the heat insulation structure of the material conversion device using the container for accommodating the material converter of the present invention is a vacuum heat insulation structure, so that the heat insulation portion can be made compact, and material conversion effective for miniaturization can be achieved. Device. This makes it possible to quickly raise the temperature of the material converter and set it to a high temperature corresponding to the fuel reforming conditions in a short time after applying a current to the thin film heater of the material converter. Is a material conversion device capable of stably starting the power supply in a short time.
[0026]
Therefore, according to the material converter storage container and the material conversion device of the present invention, leakage of the material serving as fuel and the material after reforming is prevented, and the inside of the material converter storage container is insulated to make the temperature gradient uniform. Therefore, it is possible to obtain a small, robust, and highly efficient material conversion device capable of stably operating the stored material converter for a long period of time.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail with reference to the accompanying drawings.
[0028]
FIG. 1 is a sectional view showing an example of an embodiment of a container for accommodating a material converter and a material conversion device of the present invention. In FIG. 1, 1 is a material conversion device, 2 is a container for storing a material converter, 3 is a material converter, 4 is a raw material supply port, 5 is a raw material discharge port, 6 is a base, 7 is an input electrode, and 8 is an output electrode. , 9 is a wiring conductor, 10 is a lid, 11 is a through hole, 12 is a tube member, 13 is a second tube member, 14 is a radiant heat reflection coating, 15 is a raw material supply path, and 16 is a conversion material discharge path. Is shown.
[0029]
The material converter 3 is, as a microchemical device, formed by forming a thin groove by etching on a base material such as silicon, quartz, glass, or a polymer containing silicon by applying a semiconductor manufacturing technique. Is produced. Then, a cover such as a glass plate is used in close contact with the surface by anodic bonding or the like for the purpose of preventing the liquid from evaporating during the operation. A temperature control mechanism, for example, a thin film heater made of a resistance layer or the like is formed in the material converter 3, and an input electrode 7 and an output electrode 8 are formed on the surface as terminals for supplying current to the thin film heater. Thus, the configuration can be simplified and reduced in size. For example, in the case of a hydrogen reformer which is a typical material converter 3, generally, the temperature is adjusted to about 200 to 300 ° C. (corresponding to the fuel reforming condition) to introduce the hydrogen from the raw material supply port 4. By combining the liquid fuel (alcohols) with the steam, the steam reforming reaction for generating hydrogen from the raw material outlet 5 can be favorably promoted.
[0030]
The material converter storage container 2 includes a base body 6 having a concave portion on the upper surface and a lid 10 attached to cover the concave portion. The material converter 3 is mounted in the concave portion and hermetically sealed. Has the role of stopping, for example, aluminum oxide (Al2O3) Sintered body, mullite (3Al2O3・ 2SiO2) Sintered body, silicon carbide (SiC) based sintered body, aluminum nitride (AlN) based sintered body, silicon nitride (Si3N4) It is formed of a ceramic material such as a sintered compact or a glass-ceramic sintered compact.
[0031]
The glass-ceramic sintered body is composed of a glass component and a filler component.2-B2O3System, SiO2-B2O3-Al2O3System, SiO2-B2O3-Al2O3-MO system (where M represents Ca, Sr, Mg, Ba or Zn), SiO2-Al2O3-M1OM2O type (however, M1And M2Represent the same or different Ca, Sr, Mg, Ba or Zn), SiO2-B2O3-Al2O3-M1OM2O type (however, M1And M2Is the same as above), SiO2-B2O3-M3 2O type (however, M3Represents Li, Na or K), SiO2-B2O3-Al2O3-M3 2O type (however, M3Is the same as described above), Pb-based glass, Bi-based glass and the like.
[0032]
As the filler component, for example, Al2O3, SiO2, ZrO2Oxide of TiO2 and alkaline earth metal oxide, TiO2Oxide of aluminum and alkaline earth metal oxide, Al2O3And SiO2And complex oxides containing at least one selected from the group consisting of spinel, mullite, cordierite, and the like.
[0033]
The material converter storage container 2 includes a base 6 having a concave portion and a lid 10. The concave portion is hermetically sealed by covering the concave portion around the concave portion of the base 6 and attaching the lid 10. For this purpose, a method of joining with a metal joining material such as solder or silver solder, a method of joining with a resin material such as epoxy, or a seam weld by joining a seal ring made of an iron alloy or the like to the upper surface around the recess. The lid 10 is attached to the base 6 by a method such as welding with an electron beam or a laser. Note that the lid 10 may be formed with a recess similar to the base 6. Further, when welding is performed by seam welding, electron beam, laser, or the like, by performing these welding operations in a vacuum atmosphere, the inside of the container including the base 6 and the lid 10 can be evacuated. .
[0034]
In order to reduce the thickness of each of the base 6 and the lid 10 and enable the material conversion device 1 to be thinner and lower in height, it is preferable that the bending strength, which is the mechanical strength, is 200 MPa or more.
[0035]
Since the base 6 and the lid 10 hermetically seal the inside of the concave portion of the base 6, it is preferable that the base 6 and the lid 10 are formed of a dense aluminum oxide sintered body having a relative density of 95% or more, for example. In such a case, for example, a rare earth oxide powder or a sintering aid is first added to and mixed with the aluminum oxide powder to prepare an aluminum oxide-based sintered body raw material powder. Next, an organic binder and a dispersion medium are added to and mixed with the aluminum oxide-based sintered body raw material powder to form a slurry. From the slurry, a doctor blade method is used, or an organic binder is added to the raw material powder, and the resulting mixture is press-formed and roll-formed. Then, a green sheet having a predetermined thickness is prepared. Then, a through hole to be the through hole 11 and a through hole for disposing the wiring conductor 9 are formed in the green sheet by punching using a die, micro drilling, laser or the like.
[0036]
The size of the through-hole 11 is φ0.2 mm or more so as to reliably supply and discharge a material made of a liquid or a gas, in order to suppress a pressure loss of a fluid as a material and to cope with downsizing. Is preferably not more than φ5 mm.
[0037]
In order to prevent oxidation, the wiring conductor 9 is preferably formed of at least one of tungsten and molybdenum. In this case, for example, 100 parts by weight of powder of at least one of tungsten and molybdenum may be used.2O33 to 20 parts by mass, Nb2O5Is added at a ratio of 0.5 to 5 parts by mass to prepare a conductive paste. The conductor paste is printed and applied on the surface of the green sheet in a predetermined pattern, and is filled in the through hole to form a via conductor as a through conductor, whereby the wiring conductor 9 is provided.
[0038]
In these conductor pastes, in order to enhance the adhesion to the substrate 6, an alumina oxide powder or a powder of the same composition as the oxide ceramic component forming the substrate 6 is contained at a ratio of 0.05 to 2% by volume. It is also possible to add.
[0039]
The formation of the wiring conductor 9 on the surface of the base 6 and the inner layer is performed by screen-printing the same conductor paste on the green sheet before or after filling the through-hole with the conductor paste to form the via conductor as described above or at the same time. It is performed by printing and applying a predetermined pattern by a method such as printing or gravure printing.
[0040]
Then, after a predetermined number of green sheets filled with the conductive paste are printed and filled and pressed by lamination, the laminated body is fired, for example, in a non-oxidizing atmosphere at a firing temperature of 1200 to 1500 degrees. Thus, the base 6 and the lid 10 made of the target ceramic and the wiring conductor 9 disposed on the base 6 are obtained.
[0041]
The base 6 and the lid 10 are made of a white aluminum oxide material having a low emissivity in order to suppress the heat generated by the thin film heater of the material converter 3 from radiating to increase the temperature of the base 6 and the lid 10. Preferably, it is formed of a sintered body.
[0042]
Further, it is preferable that the thickness of the base 6 be 0.2 mm or more. If the thickness is less than 0.2 mm, the strength tends to be covered, and the stress generated when the lid 10 is attached to the base 6 tends to cause cracks and the like in the base 6. On the other hand, if the thickness exceeds 5 mm, the base 6 becomes large and becomes unsuitable for mounting on a small portable device, and the heat capacity becomes large. Tends to be difficult to set to a high temperature corresponding to
[0043]
The wiring conductor 9 is electrically connected to the material converter 3 and functions as a conductive path for applying a current or voltage to the input electrode 7 and the output electrode 8 of the material converter 3 from the outside or extracting the current and voltage to the outside. .
[0044]
If a metal having good conductivity, made of nickel, and having good corrosion resistance and good wettability with a brazing material is coated on the exposed surface of the wiring conductor 9 by plating, the wiring conductor 9 and the input Good electrical connection with the electrode 7 and the output electrode 8 and with an external electric circuit can be achieved. Therefore, it is preferable that a metal having good conductivity, good corrosion resistance and good wettability with the brazing material, made of nickel, be applied to the exposed surface of the wiring conductor 9 by plating.
[0045]
Then, the electrical connection between the wiring conductor 9 and the input electrode 7 and the output electrode 8 of the material converter 3 is firmly bonded via a brazing material such as silver brazing or a gold alloy to supply current to the thin film heater. And the like.
[0046]
In the material converter storage container 2 of the present invention, at least one of the raw material supply path and the conversion material discharge path is connected to the through hole 11 formed in the base 6 and the opening of the through hole 11 on the concave side. Preferably, the second pipe member 13 is connected to the opening of the through hole 11 on the outer surface side of the base 6. This prevents leakage of a material serving as a fuel or a material after reforming, and facilitates connection to a fuel cell or the like.
[0047]
The tube member 12 and the second tube member 13 are formed in a circular tube having an inner diameter of 0.2 mm or more so that the supply and discharge of a liquid or gaseous material can be reliably performed. In order to suppress the pressure loss of the fluid and to cope with miniaturization, it is preferable to use a circular pipe having an inner diameter of 5 mm or less. Furthermore, the cross-sectional shape of the portion of the base member 6 of the tube member 12 and the second tube member 13 that is joined to the opening of the through hole 11 may be generally circular, but is not limited thereto. As long as it can supply and discharge the raw material composed of a liquid or a gas and the reformed fuel gas without leaking to the outside as long as the size covers the hole 11, a square shape, for example, a square shape or the like can be used. It may be rectangular. The wall thickness needs to be such that it is not deformed by the pressure for supplying the material as a raw material or discharging the converted material, but it is usually 0.1 mm or more for a portable terminal or the like. Further, if the length in the flow direction is 0.1 mm or more, the flow of heat from the material converter 3 to the base 6 can be suppressed to be small, so that heat can be cut off.
[0048]
As a material for forming the tube member 12 and the second tube member 13, an iron alloy, a tungsten alloy, a molybdenum alloy, or the like having a small difference in thermal expansion from the base 6 is preferable.
[0049]
The tube member 12 and the second tube member 13 and the base 6 may be joined to each other by a method of joining with a metal joining material such as solder or silver solder or a glass material. Becomes possible.
[0050]
By connecting the tube member 12 and the second tube member 13 to the through hole 11 of the base 6, the raw material supply path 15 and the conversion material discharge path 16 are formed, and liquid leakage or the like occurs at an unnecessary high pressure. Thus, the material converter storage container 2 and the material conversion device 1 that can efficiently circulate the raw material and the reformed fuel gas can be obtained.
[0051]
Further, the thermal conductivity of the tube member 12 is preferably smaller than the thermal conductivity of the base 6. By making the thermal conductivity of the tube member 12 smaller than the thermal conductivity of the substrate 6, energy as heat is hardly lost in the conduit connecting the external PEFC and the material converter 3 inside the container. The calorific value of the thin film heater of the converter 3 can be reduced, and the heat generated in the material converter 3 is difficult to conduct to the base 6 through the pipe member 12, so that the temperature of the material converter 3 is stabilized and uniform. Temperature can be easily maintained.
[0052]
Further, in the material converter housing container 2 of the present invention, it is preferable that a radiant heat reflection coating 14 is formed on at least one of the inner surface of the concave portion and the lower surface of the lid body 10 facing the concave portion. The radiation heat reflection coating 14 may be a metallized metal film, a plated metal film, or a metallized metal film coated with a plated metal film. According to this, it is possible to suppress the high-temperature heat generated in the material converter 3 from being radiated and transmitted to the material converter storage container 2, and to suppress the temperature rise of the outer surface of the material converter storage container 2. Since the temperature can be suppressed, the outer surface of the material converter storage container 2 can be maintained at a low temperature without any problem in portability, and the heat of the material converter 3 is transferred from the material converter storage container 2 to the container. Since the escape to the outside is suppressed, it becomes easy to keep the material converter 3 stable, for example, at a high temperature corresponding to the fuel reforming condition, and the reforming can be performed efficiently.
[0053]
As the radiant heat reflecting film 14, a metallized metal film such as tungsten or molybdenum, a plated metal film of nickel or the like having good conductivity and good corrosion resistance, or a metallized metal film coated with the plated metal film It is good to form with.
[0054]
Further, the radiation heat reflection coating 14 needs to have a low emissivity, and the emissivity is preferably 0.2 or less. For this purpose, the surface of the radiant heat reflection coating 14 may be made a smooth and glossy coating that looks white.
[0055]
Then, the material converter 3 is accommodated in the concave portion of the base 6 of the material converter storage container 2, and the material supply path 15 is provided at the material supply port 4 of the material converter 3, and the conversion material discharge path is provided at the conversion material discharge port 5. 16 and the wiring conductor 9 is electrically connected to the input electrode 7 and the output electrode 8 of the material converter 3, respectively. The material conversion device 1 according to the present invention as shown in FIG. 1 is completed by attaching the base member and, if necessary, evacuating the inside of the concave portion of the base member 6 and hermetically sealing it with the lid 10. I do.
[0056]
With the above configuration, a compact and robust container 2 for accommodating the material converter of the present invention, which can accommodate the material converter 3 as shown in FIG. 1, is obtained. Can be obtained, and the material conversion device 1 of the present invention capable of performing high-efficiency control can be obtained.
[0057]
It should be noted that the present invention is not limited to the above-described embodiments, and various changes may be made without departing from the spirit of the present invention.
[0058]
For example, the recess for accommodating the material converter, the material supply path, the conversion material discharge path, and the wiring conductor are not limited to the base made of ceramics, and the lid made of ceramics has the function of these bases. In addition, it is possible to form a concave portion, and to form a material supply path, a conversion material discharge path, and a wiring conductor. It becomes possible to respond to eversion.
[0059]
【The invention's effect】
According to the material converter storage container of the present invention, a material converter storage container capable of storing a material converter in which an electrode for inputting and outputting a current to and from a thin film heater made of a resistance layer or the like is formed. A substrate made of ceramics having a raw material supply path for supplying a raw material composed of a liquid or a gas, and a conversion material discharge path for discharging a converted conversion material (hydrogen as a fuel gas, etc.) The lid can be used to house the material converter and hermetically seal it. Accordingly, the material converter is not exposed and damaged, and unnecessary electrical contact with the material converter is not required, so that a highly reliable and safe material conversion device can be obtained.
[0060]
Further, a wiring of an external electric circuit is provided at an end on the outer surface side of the base, and a plurality of wiring conductors to which input and output electrodes of the material converter are electrically connected are provided at an end of the base on the concave side. Therefore, it becomes possible to control the thin-film heater in the material converter by supplying an electric current from an external electric circuit to a temperature corresponding to the fuel reforming condition, thereby improving the reforming efficiency. is there.
[0061]
Further, according to the container for accommodating the material converter of the present invention, at least one of the raw material supply path and the conversion material discharge path has a through-hole formed in the base and a pipe connected to the opening on the concave side of the through-hole. When the second pipe member is connected to the opening on the outer surface side of the through-hole, the raw material made of liquid or gas is supplied to the second pipe member, the through-hole, the pipe member, and the raw material supply port. , And then introduced into the material converter in the concave portion, and the reformed fuel gas (hydrogen), for example, is passed through the conversion material discharge port, the pipe member, the through-hole, and the second pipe member in this order to obtain PEFC. And so on. In addition, by using a dense sintered body mainly composed of ceramics as a constituent material of the base of the material converter storage container, a pipe member is used as a joint between the material converter and the material converter storage container. In addition, it is possible to reliably prevent the raw material composed of liquid or gas and the reformed fuel gas from leaking out of the container for accommodating the material converter.
[0062]
Further, according to the container for accommodating the material converter of the present invention, when the thermal conductivity of the pipe member is smaller than that of the base, energy as heat is lost in the conduit connecting the external PEFC and the material converter inside the container. Since it is difficult, the calorific value of the thin film heater of the material converter can be reduced. Further, since the heat generated in the material converter is less likely to be conducted to the base through the tube member, the temperature of the material converter is stabilized, and it is possible to easily maintain a uniform temperature.
[0063]
According to the container for accommodating the material converter of the present invention, when the coating for radiant heat reflection is formed on at least one of the inner surface of the recess and the lower surface of the lid facing the recess, the coating for radiant heat reflection is further provided. However, when the metallized metal film or the plated metal film or the metallized metal film is coated with the plated metal film, the high-temperature heat generated in the material converter is suppressed from being radiated and transmitted to the container for storing the material converter. Since the temperature rise on the outer surface of the material converter storage container can be suppressed, the outer surface of the material converter storage container can be kept at a low temperature without any problem in portability. In addition, since the heat of the material converter is prevented from escaping from the storage container to the outside of the container, it is easy to maintain the material converter stably at a high temperature corresponding to the fuel reforming condition, thereby improving the efficiency. It is possible to do quality.
[0064]
According to the material conversion device of the present invention, since the material conversion device is configured using the material converter storage container of the present invention, it is a raw material having the above-described features of the material converter storage container of the present invention. To prevent leakage of materials and converted materials and to insulate the inside of the container for storing material converters to make the temperature gradient uniform, so that the stored material converters operate stably for a long period of time. It is possible to obtain a compact, robust and high-efficiency material conversion device capable of performing the above.
[0065]
According to the material conversion device of the present invention, the raw material supplied from the raw material supply path is a hydrocarbon fuel, the material converter is a reformer, and the conversion material discharged from the conversion material discharge path is hydrogen. , A material conversion device for reforming hydrogen (hydrogen gas) required as a fuel of PEFC, such as methane, ethane, propane, butane, city gas, LP gas, natural gas, and other hydrocarbon gas A material conversion apparatus that reforms alcohols (including a mixed gas of two or more hydrocarbons) and methanol with steam to generate a hydrogen-rich reformed gas.
[0066]
Further, according to the material converter of the present invention, when the inside of the recess is evacuated and hermetically sealed by the lid, the heat insulating structure of the material converter using the container for storing the material converter of the present invention is provided. The vacuum heat insulating structure can be used, and the heat insulating portion can be made compact, so that the material conversion device is effective for downsizing. This makes it possible to quickly raise the temperature of the material converter and set it to a high temperature corresponding to the fuel reforming conditions in a short time after applying a current to the thin film heater of the material converter. Is a material conversion device capable of stably starting the power supply in a short time.
[0067]
Therefore, according to the material converter storage container and the material conversion device of the present invention, the leakage of the fuel material or the reformed material is prevented, and the inside of the material converter storage container is insulated to make the temperature gradient uniform. As a result, a compact, robust and highly efficient material converter capable of stably operating the stored material converter for a long period of time was obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a material conversion device of the present invention.
[Explanation of symbols]
1: Material conversion device
2: Container for material converter storage
3: Material converter
4: Raw material supply port
5: Conversion material outlet
6: Substrate
7: Input electrode
8: Output electrode
9: Wiring conductor
10: Lid
11: Through-hole
12: pipe member
13: second pipe member
14: Radiation reflection coating
15: Raw material supply path
16: Conversion material discharge path

Claims (9)

上面に材料変換器を収容する凹部を有するセラミックスから成る基体と、該基体を貫通して外面から前記凹部にかけて形成された、前記材料変換器への原料供給路および前記材料変換器からの変換材料排出路と、前記基体の外面から前記凹部にかけて配設された、該凹部側の端部に前記材料変換器の入力電極または出力電極が、前記外面側の端部に外部電気回路の配線がそれぞれ電気的に接続される複数の配線導体と、前記基体の前記凹部の周囲の上面に前記凹部を覆って取着される、前記凹部を気密に封止する蓋体とを具備することを特徴とする材料変換器収納用容器。A base made of ceramics having a concave portion for accommodating a material converter on the upper surface, a raw material supply path to the material converter and a conversion material from the material converter formed through the base and extending from the outer surface to the concave portion; A discharge path and an input electrode or an output electrode of the material converter are provided at an end on the side of the recess provided from the outer surface of the base to the recess, and a wiring of an external electric circuit is provided at an end on the outer side. A plurality of wiring conductors that are electrically connected to each other; and a lid that is attached to an upper surface of the base around the recess to cover the recess and hermetically seals the recess. For storing material converters. 前記原料供給路および前記変換材料排出路の少なくとも一方が、前記基体に形成された貫通孔と、該貫通孔の前記凹部側の開口に接続された管部材とから成ることを特徴とする請求項1記載の材料変換器収納用容器。At least one of the raw material supply path and the conversion material discharge path includes a through hole formed in the base, and a pipe member connected to an opening of the through hole on the concave side. 2. The container for storing a material converter according to claim 1. 前記管部材の熱伝導率が前記基体より小さいことを特徴とする請求項2記載の材料変換器収納用容器。The container for accommodating a material converter according to claim 2, wherein the thermal conductivity of the tube member is smaller than that of the base. 前記貫通孔の前記外面側の開口に第2の管部材が接続されていることを特徴とする請求項2記載の材料変換器収納用容器。3. The container for accommodating a material converter according to claim 2, wherein a second pipe member is connected to the opening on the outer surface side of the through hole. 前記凹部の内面および前記蓋体の前記凹部に対向する下面の少なくとも一方に、輻射熱反射用被膜が形成されていることを特徴とする請求項1記載の材料変換器収納用容器。The container for accommodating a material converter according to claim 1, wherein a coating for radiant heat reflection is formed on at least one of an inner surface of the concave portion and a lower surface of the lid facing the concave portion. 前記輻射熱反射用被膜が、メタライズ金属膜またはメッキ金属膜またはメタライズ金属膜にメッキ金属膜を被着したものであることを特徴とする請求項5記載の材料変換器収納用容器。The container for accommodating a material converter according to claim 5, wherein the radiant heat reflection coating is a metallized metal film, a plated metal film, or a metallized metal film coated with a plated metal film. 請求項1乃至請求項6のいずれかに記載の材料変換器収納用容器の前記凹部に材料変換器を収容して、該材料変換器の原料供給口に前記原料供給路を、変換材料排出口に前記変換材料排出路をそれぞれ接続するとともに、前記材料変換器の入力電極および出力電極に前記配線導体をそれぞれ電気的に接続し、前記基体の前記凹部の周囲の上面に前記凹部を覆って前記蓋体を取着して成ることを特徴とする材料変換装置。A material converter is accommodated in the recess of the container for accommodating a material converter according to any one of claims 1 to 6, and the material supply path is provided at a material supply port of the material converter, and a conversion material discharge port is provided. The conversion material discharge path is connected to each, and the wiring conductors are electrically connected to the input electrode and the output electrode of the material converter, respectively. A material conversion device having a lid attached. 前記原料供給路から供給される原料が炭化水素系燃料であり、前記材料変換器が改質器であり、前記変換材料排出路から排出される変換材料が水素であることを特徴とする請求項7記載の材料変換装置。The raw material supplied from the raw material supply path is a hydrocarbon-based fuel, the material converter is a reformer, and the conversion material discharged from the conversion material discharge path is hydrogen. 8. The material conversion device according to 7. 前記凹部内が真空排気されて前記蓋体により気密に封止されていることを特徴とする請求項7記載の材料変換装置。The material converting apparatus according to claim 7, wherein the inside of the concave portion is evacuated and hermetically sealed by the lid.
JP2003089273A 2003-03-27 2003-03-27 Material converter storage container and material conversion device Expired - Fee Related JP3872442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089273A JP3872442B2 (en) 2003-03-27 2003-03-27 Material converter storage container and material conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089273A JP3872442B2 (en) 2003-03-27 2003-03-27 Material converter storage container and material conversion device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006101799A Division JP4400889B2 (en) 2006-04-03 2006-04-03 Material converter storage container and material conversion device

Publications (2)

Publication Number Publication Date
JP2004296349A true JP2004296349A (en) 2004-10-21
JP3872442B2 JP3872442B2 (en) 2007-01-24

Family

ID=33403188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089273A Expired - Fee Related JP3872442B2 (en) 2003-03-27 2003-03-27 Material converter storage container and material conversion device

Country Status (1)

Country Link
JP (1) JP3872442B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143554A (en) * 2004-11-24 2006-06-08 Kyocera Corp Fuel reformer housing vessel, and fuel reforming apparatus
JP2006143542A (en) * 2004-11-22 2006-06-08 Kyocera Corp Vessel for containing fuel reformer and fuel reforming device
JP2006155954A (en) * 2004-11-25 2006-06-15 Kyocera Corp Fuel reforming device
JP2006155953A (en) * 2004-11-25 2006-06-15 Kyocera Corp Fuel reformer housing vessel, fuel reforming device and fuel reforming system
JP2006151726A (en) * 2004-11-26 2006-06-15 Kyocera Corp Vessel for housing fuel reforming reactor and fuel reforming unit
JP2006234685A (en) * 2005-02-25 2006-09-07 Kyocera Kinseki Corp Chip for detecting small mass
JP2006232609A (en) * 2005-02-24 2006-09-07 Kyocera Corp Fuel reformer-housing container and fuel reforming apparatus
JP2006264998A (en) * 2005-03-22 2006-10-05 Kyocera Corp Fuel reformer and fuel reforming apparatus
JP2007073408A (en) * 2005-09-08 2007-03-22 Casio Comput Co Ltd Reaction device
JP2007091499A (en) * 2005-09-27 2007-04-12 Casio Comput Co Ltd Reactor
JP2007134645A (en) * 2005-11-14 2007-05-31 Shinko Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
EP1826175A1 (en) * 2004-10-27 2007-08-29 Kyocera Corporation Container for housing fuel reformer and fuel reforming apparatus
WO2007099972A1 (en) * 2006-02-27 2007-09-07 Kyocera Corporation Reaction apparatus, method for assembling reaction apparatus and package for storing reactor
JP2010215502A (en) * 2010-05-14 2010-09-30 Casio Computer Co Ltd Reactor
US7811341B2 (en) 2005-12-28 2010-10-12 Casio Computer Co., Ltd. Reaction device, heat-insulating container, fuel cell device, and electronic apparatus
US7867298B2 (en) 2007-03-27 2011-01-11 Casio Computer Co., Ltd. Reacting apparatus comprising a plurality of reactors
US8038959B2 (en) 2005-09-08 2011-10-18 Casio Computer Co., Ltd. Reacting device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1826175A1 (en) * 2004-10-27 2007-08-29 Kyocera Corporation Container for housing fuel reformer and fuel reforming apparatus
EP1826175A4 (en) * 2004-10-27 2010-12-01 Kyocera Corp Container for housing fuel reformer and fuel reforming apparatus
US8182559B2 (en) 2004-10-27 2012-05-22 Kyocera Corporation Fuel reformer housing container and fuel reforming apparatus
JP2006143542A (en) * 2004-11-22 2006-06-08 Kyocera Corp Vessel for containing fuel reformer and fuel reforming device
JP4628069B2 (en) * 2004-11-24 2011-02-09 京セラ株式会社 Fuel reformer storage container and fuel reformer
JP2006143554A (en) * 2004-11-24 2006-06-08 Kyocera Corp Fuel reformer housing vessel, and fuel reforming apparatus
JP2006155954A (en) * 2004-11-25 2006-06-15 Kyocera Corp Fuel reforming device
JP2006155953A (en) * 2004-11-25 2006-06-15 Kyocera Corp Fuel reformer housing vessel, fuel reforming device and fuel reforming system
JP2006151726A (en) * 2004-11-26 2006-06-15 Kyocera Corp Vessel for housing fuel reforming reactor and fuel reforming unit
JP2006232609A (en) * 2005-02-24 2006-09-07 Kyocera Corp Fuel reformer-housing container and fuel reforming apparatus
JP2006234685A (en) * 2005-02-25 2006-09-07 Kyocera Kinseki Corp Chip for detecting small mass
JP2006264998A (en) * 2005-03-22 2006-10-05 Kyocera Corp Fuel reformer and fuel reforming apparatus
JP4631623B2 (en) * 2005-09-08 2011-02-16 カシオ計算機株式会社 Reactor
JP2007073408A (en) * 2005-09-08 2007-03-22 Casio Comput Co Ltd Reaction device
US7662349B2 (en) 2005-09-08 2010-02-16 Casio Computer Co., Ltd. Reactor
US8038959B2 (en) 2005-09-08 2011-10-18 Casio Computer Co., Ltd. Reacting device
JP2007091499A (en) * 2005-09-27 2007-04-12 Casio Comput Co Ltd Reactor
JP2007134645A (en) * 2005-11-14 2007-05-31 Shinko Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
US7811341B2 (en) 2005-12-28 2010-10-12 Casio Computer Co., Ltd. Reaction device, heat-insulating container, fuel cell device, and electronic apparatus
US8177869B2 (en) 2005-12-28 2012-05-15 Casio Computer Co., Ltd. Reaction device, heat-insulating container, fuel cell device, and electronic apparatus
WO2007099972A1 (en) * 2006-02-27 2007-09-07 Kyocera Corporation Reaction apparatus, method for assembling reaction apparatus and package for storing reactor
EP2002888A4 (en) * 2006-02-27 2011-09-28 Kyocera Corp Reaction apparatus, method for assembling reaction apparatus and package for storing reactor
EP2002888A2 (en) * 2006-02-27 2008-12-17 Kyocera Corporation Reaction apparatus, method for assembling reaction apparatus and package for storing reactor
US8282884B2 (en) 2006-02-27 2012-10-09 Kyocera Corporation Reacting apparatus, method of assembling reacting apparatus and reactor containing package
JP5207961B2 (en) * 2006-02-27 2013-06-12 京セラ株式会社 Reactor and method for assembling the reactor
US7867298B2 (en) 2007-03-27 2011-01-11 Casio Computer Co., Ltd. Reacting apparatus comprising a plurality of reactors
JP2010215502A (en) * 2010-05-14 2010-09-30 Casio Computer Co Ltd Reactor

Also Published As

Publication number Publication date
JP3872442B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
JP4400889B2 (en) Material converter storage container and material conversion device
JP3872442B2 (en) Material converter storage container and material conversion device
JP4157405B2 (en) Fuel reformer storage container
JP4471634B2 (en) Fuel reformer storage container
JP2004296348A (en) Fuel cell casing, and fuel cell
JP3740459B2 (en) Fuel cell container and fuel cell
JP2004234981A (en) Container for fuel cell and fuel cell
JP2006302914A (en) Wiring board
JP2004206946A (en) Case for fuel cell, and fuel cell
JP4471635B2 (en) Fuel reformer storage container
JP3774442B2 (en) Fuel cell container and fuel cell
JP5046484B2 (en) Fuel reformer storage container and fuel reformer
JP3894878B2 (en) Fuel cell container and fuel cell
JP3740455B2 (en) Fuel cell container and fuel cell
JP3740463B2 (en) Fuel cell container and fuel cell
JP4493357B2 (en) Fuel reformer storage container and fuel reformer
JP4497849B2 (en) Fuel cell container and fuel cell
JP4889217B2 (en) Manufacturing method of fuel reformer
JP3740464B2 (en) Fuel cell container and fuel cell
JP4628090B2 (en) Fuel reformer storage container and fuel reformer
JP2005132667A (en) Vessel for housing fuel reformer
JP4458889B2 (en) Fuel reformer storage container and fuel reformer
JP4794182B2 (en) Fuel reformer storage container and fuel reformer
JP4986374B2 (en) Fuel cell container, fuel cell and electronic device
JP4628069B2 (en) Fuel reformer storage container and fuel reformer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees