[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004294042A - Combustion apparatus for heating furnace - Google Patents

Combustion apparatus for heating furnace Download PDF

Info

Publication number
JP2004294042A
JP2004294042A JP2003090918A JP2003090918A JP2004294042A JP 2004294042 A JP2004294042 A JP 2004294042A JP 2003090918 A JP2003090918 A JP 2003090918A JP 2003090918 A JP2003090918 A JP 2003090918A JP 2004294042 A JP2004294042 A JP 2004294042A
Authority
JP
Japan
Prior art keywords
ejection
fuel
cylindrical body
peripheral
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003090918A
Other languages
Japanese (ja)
Other versions
JP4046633B2 (en
Inventor
Makoto Hirano
誠 平野
Kazuma Kiyohira
一眞 清飛羅
Yoshihiro Ogura
啓宏 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003090918A priority Critical patent/JP4046633B2/en
Publication of JP2004294042A publication Critical patent/JP2004294042A/en
Application granted granted Critical
Publication of JP4046633B2 publication Critical patent/JP4046633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion apparatus for a heating furnace, dispensing with a cooling fluid special for cooling a fuel jet, forming a firm and strong flame and restraining the generation of NOx. <P>SOLUTION: The fuel jet part Bn is provided with an outer cylindrical body 11 and an inner cylindrical body 12 coaxially formed so that the tip of the outer cylindrical body 1 is projected from the tip of the inner cylindrical body 12. A central jet passage 13 is formed in the cylinder of the inner cylindrical body 12, and an annular peripheral jet passage 14 is formed between the inner cylindrical body 12 and the outer cylindrical body 11. The parts forming the forward end sides of the respective peripheral jetting passages 14 in the outer peripheral surface of the inner cylindrical body 12 and the inner peripheral surface of the outer cylindrical body 11 are tapered as it goes toward the tip. The tip side of the peripheral jet passage 14 is constructed on a converging jet passage part 14g, and the inner peripheral surface of the projected part from the inner cylindrical body 12 in the outer cylindrical body 11 is formed as a cylindrical guide surface 16. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、炉内にガス燃料を噴出する燃料噴出部と、
その燃料噴出部のガス燃料噴出箇所とは異なる燃焼用酸素含有ガス供給箇所から、前記燃料噴出部から噴出されるガス燃料の燃焼域に燃焼用酸素含有ガスを供給する酸素含有ガス供給部とが設けられた加熱炉用の燃焼装置に関する。
【0002】
【従来の技術】
かかる加熱炉用の燃焼装置(以下、単に燃焼装置と称する場合がある)は、燃料噴出部により、ガス燃料噴出箇所から炉内にガス燃料を噴出し、酸素含有ガス供給部により、燃料噴出部からのガス燃料噴出箇所とは異なる燃焼用酸素含有ガス供給箇所から、燃料噴出部から噴出されるガス燃料の燃焼域に燃焼用酸素含有ガスを供給して、ガス燃料と燃焼用酸素含有ガスとを炉内で接触させて燃焼させるように構成したものである。
【0003】
このような燃焼装置において、従来は、図8に示すように、燃料噴出部Bnは、外径及び内径夫々が軸心方向に一定な直円筒状の外筒状体31と先端にノズル32を備えた直円筒状の内筒状体33とを、外筒状体31の先端とノズル32の先端とが軸心方向で同位置に位置する状態で同軸芯状に備えて構成して、内筒状体33と外筒状体31との間に、ガス燃料を軸心方向に沿って真っ直ぐに噴出する環状の周囲噴出路34を形成していた。
ノズル32は、その中心に位置してガス燃料Gをノズル32の軸心方向に沿って真っ直ぐに噴出する中央噴出孔32cと、その中央噴出孔32cの周囲に環状に並んでノズル32の軸心側とは反対側の外向きにガス燃料Gを噴出する複数の外側噴出孔32sとを備えて構成していた。
そして、ノズル32の中央噴出孔32cからその軸心方向、即ち燃料噴出部Bnの軸心方向に沿って真っ直ぐにガス燃料Gを噴出し、その中央噴出孔32cの周囲に環状に並ぶ複数の外側噴出孔32sから先広がり状にガス燃料Gを噴出し、並びに、環状に並ぶ複数の外側噴出孔32sの外側の環状の周囲噴出路34から燃料噴出部Bnの軸心方向に沿って真っ直ぐにガス燃料Gを噴出して、燃焼させるようになっていた。
又、燃料噴出部Bnの外周部の周囲噴出路34を通してガス燃料Gを通流させて、そのガス燃料Gの通流により燃料噴出部Bnを冷却するようにして、例えば、冷却用の空気を燃料噴出部Bnの外周を通して炉内に供給するように通流させたり、燃料噴出部Bnの外周に冷却ジャケットを設けてその冷却ジャケットに水等の冷却用流体を通流させたりするというように、冷却専用の流体を通流させること無く燃料噴出部Bnの冷却が可能なようにしていた。(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2002−286225号公報
【0005】
【発明が解決しようとする課題】
しかしながら、従来の燃焼装置では、周囲噴出路から、燃料噴出部の軸心方向に沿って真っ直ぐにガス燃料が噴出されることから、その周囲噴出路から噴出されたガス燃料は広がり易く、しかも、ノズルの環状に並ぶ複数の外側噴出孔からは、先広がり状にガス燃料が噴出されることから、そのように外側噴出孔から先広がり状に噴出されるガス燃料流により、周囲噴出路から噴出されたガス燃料の広がりが助長されることとなる。
従って、燃料噴出部から噴出されるガス燃料は、全体として、その流れの勢いが弱くなり易いと共に拡散し易いので、形成される火炎の勢いが弱くなる、即ち、火腰が弱くなる。ちなみに、火炎の火腰が弱くなると、火炎が炉内の雰囲気に煽られやすくなって、火炎の形成方向が不安定となり、火炎が炉壁に接触し易くなるので、炉壁が損傷し易くなり、炉の耐久性を向上する面で好ましいものではない。
【0006】
又、かかる燃焼装置では、加熱対象物の種類等に応じて、燃焼量を同レベル、即ち、燃料噴出部からのガス燃料の噴出量を同レベルにした状態で、火炎の長さを異ならして、炉内の温度分布を変更する必要がある場合がある。
このように火炎の長さを変更するに当たっては、従来の燃焼装置では、ノズルの中央噴出孔の口径を異ならすことにより対応することになる。
即ち、火炎の長さを短くするときは、中央噴出孔の口径を小さくして、その中央噴出孔からのガス燃料の噴出速度を速くすることにより、その速いガス燃料流によるエジェクタ作用によって燃焼用酸素含有ガスの吸引を促進させて、ガス燃料を速く燃焼させて火炎の長さを短くする。
一方、火炎の長さを長くするときは、中央噴出孔の口径を大きくして、その中央噴出孔からのガス燃料の噴出速度を遅くすることにより、燃焼用酸素含有ガスの吸引を少なくして、ガス燃料をゆっくり燃焼させて火炎の長さを長くする。
しかしながら、従来では、燃料噴出部からのガス燃料の噴出速度を変更することにより、火炎の長さを変更することになるが、火炎の長さを短くするためにガス燃料の噴出速度が速くなると、燃焼用酸素含有ガスの吸引が促進されて、ガス燃料の燃焼が速くなることから、火炎温度が高くなり、延いては、NOxの発生量が増加するという問題が生じることになる。
【0007】
本発明は、かかる実情に鑑みてなされたものであり、その目的は、燃料噴出部を冷却するための専用の冷却用流体を不要としながら、火腰の強い火炎を形成し得ると共にNOxの発生を抑制することが可能になる加熱炉用の燃焼装置を提供することにある。
【0008】
【課題を解決するための手段】
〔請求項1記載の発明〕
請求項1に記載の加熱炉用の燃焼装置は、炉内にガス燃料を噴出する燃料噴出部と、
その燃料噴出部のガス燃料噴出箇所とは異なる燃焼用酸素含有ガス供給箇所から、前記燃料噴出部から噴出されるガス燃料の燃焼域に燃焼用酸素含有ガスを供給する酸素含有ガス供給部とが設けられた加熱炉用の燃焼装置ものであって、
前記燃料噴出部が、外筒状体と内筒状体とを外筒状体の先端が内筒状体の先端よりも突出する状態で同軸心状に備えて、前記内筒状体の筒内にて中央噴出路を形成し且つ内筒状体と外筒状体との間に環状の周囲噴出路を形成するように構成され、
前記内筒状体の外周面及び前記外筒状体の内周面夫々の前記周囲噴出路の先端側を形成する部分が先端側ほど小径となる先細り状に形成されて、前記周囲噴出路の先端側が、ガス燃料を内筒状体の外周側から軸芯側に向けて収束するように噴出する収束噴出路部分に構成され、
前記外筒状体における前記内筒状体からの突出部分の内周面が、前記収束噴出路部分の先端の環状の周囲噴出口の外周縁からその外周縁と同径又は略同径にて前方に延びて、前記中央噴出路及び前記周囲噴出路から噴出されるガス燃料を案内する筒状の案内面となるように構成されている点を特徴構成とする。
即ち、中央噴出路から、燃料噴出部の軸心に沿って真っ直ぐにガス燃料が噴出され、周囲噴出路の先端側の収束噴出路部分から、ガス燃料が燃料噴出部の軸心側に向けて収束するようにガス燃料が噴出され、そのように中央噴出路及び周囲噴出路から噴出されたガス燃料が、筒状の案内面にて案内される。
つまり、収束噴出路部分からは、中央噴出路から真っ直ぐに噴出されるガス燃料流に向かって収束するようにガス燃料が噴出され、しかも、筒状の案内面が、収束噴出路部分の先端の環状の周囲噴出口の外周縁からその外周縁と同径又は略同径にて前方に延びるように設けられていて、その筒状の案内面にて、中央噴出路及び収束噴出路部分から噴出されるガス燃料が広がりが規制されながら前方に向かって流れるように案内されて、収束噴出路部分から噴出されるガス燃料が中央噴出路から噴出されるガス燃料流に向かって収束するのが助長されることになるので、燃料噴出部からは、全体として広がりが抑制されながら勢い良くガス燃料が噴出されることになり、火腰の強い火炎が形成される。
又、燃料噴出部の外周部の周囲噴出路を通してガス燃料を通流させて、そのガス燃料の通流により燃料噴出部が冷却されるので、冷却専用の流体を通流させること無く燃料噴出部の冷却が可能になる。
又、火炎の長さを変更する場合は、中央噴出路の流路横断面積及び収束噴出路部分の流路横断面積を同一又は略同一にして、燃料噴出部からのガス燃料の噴出速度を同一又は略同一にしながら、収束噴出路部分の噴出方向の燃料噴出部の軸心側に向く角度(以下、内向き角度と称する場合がある)を異ならせることにより、対応することが可能となる。
即ち、収束噴出路部分の噴出方向の内向き角度を大きくすることにより、火炎の長さを短くすることができ、逆に収束噴出路部分の噴出方向の内向き角度を小さくすることにより、火炎の長さを長くすることができる。
そして、そのように火炎の長さを変更するに当たっては、燃料噴出部からのガス燃料の噴出速度を同一又は略同一にしながら、火炎の長さを変更することが可能となるので、ガス燃料の噴出速度が速くなることに起因した上述従来の如きNOxの発生量が増加するといった不具合を回避することが可能となる。
従って、燃料噴出部を冷却するための専用の冷却用流体を不要としながら、火腰の強い火炎を形成し得ると共にNOxの発生を抑制することが可能になる加熱炉用の燃焼装置を提供することができるようになった。
【0009】
〔請求項2記載の発明〕
請求項2に記載の加熱炉用の燃焼装置は、請求項1において、前記筒状の案内面の長さが、前記周囲噴出口の外周縁の直径よりも短く、且つ、前記周囲噴出口の内周縁の直径よりも長くなるように構成されている点を特徴構成とする。
即ち、本願発明の発明者は、鋭意研究して、筒状の案内面の長さを、収束噴出路部分の先端の周囲噴出口の外周縁の直径よりも短く、且つ、その周囲噴出口の内周縁の直径よりも長くなるように設定すると、筒状の案内面の長さを不必要に長くすること無く、案内面にて、収束噴出路部分から噴出されるガス燃料を中央噴出路から噴出されるガス燃料流に向かって効果的に収束させるように案内させることが可能になることを見出した。
つまり、筒状の案内面の長さを周囲噴出口の内周縁の直径よりも短くすると、案内面の長さが短過ぎて、収束噴出路部分から噴出されるガス燃料を収束させるように案内する作用が弱くなり、一方、筒状の案内面の長さを周囲噴出口の外周縁の直径よりも長くすると、案内作用がそれ程強くならず、却って、案内面の長さが長くなり過ぎて燃料噴出部が大型化するという欠点が顕著になる。
従って、燃料噴出部の小型化を図りながら本発明を実施する上で好ましい具体構成を提供することができるようになった。
【0010】
〔請求項3記載の発明〕
請求項3に記載の加熱炉用の燃焼装置は、請求項1又は2において、前記燃料噴出部が、その燃料噴出部にガス燃料を供給する燃料供給部に対して付け替え自在なように構成され、
前記燃料噴出部として、前記収束噴出路部分の噴出方向の前記軸心側に向く角度が異なる複数の燃料噴出部が設けられている点を特徴構成とする。
即ち、燃料噴出部に取り付ける燃料噴出部を、収束噴出路部分の噴出方向の内向き角度が異なる燃料噴出部に付け替えることにより、形成する火炎の長さを変更することができる。
つまり、上記の請求項1記載の発明において説明したように、収束噴出路部分の噴出方向の内向き角度を異ならせることにより、火炎の長さを変更することができることから、燃料噴出部を燃料供給部に対して付け替え自在なように構成すると共に、燃料噴出部として、収束噴出路部分の内向き角度の異なる複数の燃料噴出部を用意しておくことにより、燃料噴出部のみを付け替えることにより、火炎の長さを変更することが可能になる。
ちなみに、燃料噴出部をそれにガス燃料を供給する燃料供給部を一体的に備えるように構成して、そのように燃料供給部を一体的に備えた燃料噴出部として、収束噴出路部分の内向き角度の異なる複数の燃料噴出部を用意しておいて、その燃料供給部を一体的に備えた燃料噴出部を交換することにより、火炎の長さの変更か可能なように構成することが考えられる。しかしながら、この場合は、燃料供給部を一体的に備えた高価な燃料噴出部を複数用意する必要があるので、燃焼装置が高騰化することになる。
従って、低廉化を図りながら、火炎の長さを変更可能なようにすることができるようになった。
【0011】
〔請求項4記載の発明〕
請求項4に記載の加熱炉用の燃焼装置は、請求項1〜3のいずれかにおいて、前記中央噴出路からのガス燃料の噴出量と前記周囲噴出路からのガス燃料の噴出量との比率を調節する噴出量比調節手段が設けられている点を特徴構成とする。
即ち、噴出量比調節手段により、中央噴出路からのガス燃料の噴出量と周囲噴出路からのガス燃料の噴出量との比率を調節することにより、火炎の長さを変更することができる。
つまり、噴出量比調節手段により、中央噴出路からの噴出量を多くするように調整すると、中央噴出孔からのガス燃料の噴出速度が速くなって、エジェクタ作用による燃焼用酸素含有ガスの吸引が促進されるので、火炎の長さが短くなり、逆に、中央噴出路からの噴出量を少なくするように調整すると、エジェクタ作用が弱まって燃焼用酸素含有ガスの吸引が弱まるので、火炎の長さが長くなる。
ちなみに、中央噴出路からの噴出量が多くなり過ぎて、中央噴出孔からのガス燃料の噴出速度が速くなり過ぎると、NOxの発生量が多くなるので、噴出量比調節手段による火炎の長さ調節範囲は、NOxの発生量が多くなり過ぎないような狭い範囲に規制するようにし、広い範囲での火炎の長さの調節は、燃料噴出部を収束噴出路部分の内向き角度が異なるものに変更することにより対応するのが好ましい。
従って、NOxの発生を抑制しながら、火炎の長さを細かく調節することができるようになった。
【0012】
【発明の実施の形態】
以下、図面に基づいて、本発明を加熱炉としてのガラス溶解炉用の燃焼装置に適用した場合の実施形態を説明する。
先ず、燃焼装置を設けるガラス溶解炉について説明する。
図1及び図2に示すように、ガラス溶解炉は、炉本体1内の下部に平面視で矩形状の溶解槽2を備え、その溶解槽2の一側縁側の燃焼装置設置用の炉壁4に、その燃焼装置設置用の炉壁4に対向する炉壁4に向ける状態で炉内3にガス燃料Gを噴出して溶解槽2の上方に火炎Fを形成すべく燃焼装置を設けるように構成してある。
【0013】
前記燃焼装置設置用の炉壁4の横方向一端に連なる炉壁4における燃焼装置設置側の端部には、ガラス原料を前記燃焼装置からのガス燃料噴出方向と略直交する方向に供給する投入口4iを設け、前記燃焼装置設置用の炉壁4に対向する炉壁4の外部に作業槽9を設けると共に、その作業槽9と溶解槽2との間の炉壁4に、溶解槽2と作業槽9とを連通させる開口部4eを溶解槽2の炉床部に位置させて形成して、所謂、エンドポート式に構成してある。
つまり、前記燃焼装置にて形成される火炎Fにて溶解槽2のガラス原料を溶融させ、投入口4iからガラス原料を溶解槽2に投入して、そのガラス原料を開口部4e側に向かって蛇行状に流動させながら溶融させ、炉床部の開口部4eを通じて、清浄な溶融ガラスを作業槽9に導くように構成してある。
【0014】
前記燃焼装置について説明を加えると、前記燃焼装置は、前記燃焼装置設置用の炉壁4に左右に並べて設ける一対の燃焼部を備えて構成して、それら一対の燃焼部を一定時間(例えば、約15〜30分)毎に交互に燃焼させる、所謂交番燃焼を行わせるようにしてある。
前記一対の燃焼部夫々は、炉内3にガス燃料Gを噴出する2個のガスバーナBと、そのガスバーナBのガス燃料噴出箇所の上方に位置する1個の空気口5から、前記ガスバーナBから噴出されるガス燃料Gの燃焼域に対して燃焼用酸素含有ガスとして燃焼用空気Aを斜め下向きに供給する酸素含有ガス供給部としての1個の空気供給路6とを備えて、所謂、アンダーポート式に構成し、更には、前記空気供給路6に連通し且つ蓄熱材を備えた1個の蓄熱室8を備えて、蓄熱式に構成してある。尚、前記空気口5が、前記ガス燃料噴出箇所とは異なる燃焼用酸素含有ガス供給箇所に相当する。
【0015】
前記一対の燃焼部のガスバーナBは、前記一定時間毎に交互に、ガス燃料Gを噴出する噴出状態と、ガス燃料Gの噴出を停止する噴出停止状態とに切り換えるように構成し、前記一対の燃焼部の空気供給路6は、前記噴出状態のガスバーナBの方の燃焼部の空気供給路6を通じて、前記蓄熱室8を通って前記蓄熱材にて高温(1000〜1200°C程度)に予熱された燃焼用空気Aが前記空気口5から炉内3に供給される給気状態と、前記噴出停止状態のガスバーナBの方の燃焼部の空気供給路6を通じて、前記空気口5から炉内3の燃焼ガスEが排出されると共にその燃焼排ガスEの排熱を前記蓄熱材に蓄熱させる排気状態とに切り換えるように構成してある。
そして、前記一定時間毎に交互に、前記一対の燃焼部のガスバーナBを前記噴出状態と噴出停止状態とに切り換え、且つ、前記一対の燃焼部の空気供給路6を前記給気状態と前記排気状態とに切り換えて、前述のように前記一対の燃焼部を交互に燃焼させるようにしてある。尚、図1及び図2は、右側の燃焼部が燃焼し、左側の燃焼部が消火している状態を示している。
【0016】
以下、ガスバーナBについて説明を加える。
図3、図5及び図6に示すように、ガスバーナBは、炉内3にガス燃料Gを噴出する前記燃料噴出部Bnと、その燃料噴出部Bnにガス燃料Gを供給する燃料供給部Bsとを備えて構成し、燃料噴出部Bnは燃料供給部Bsに対して付け替え自在なように構成してある。
【0017】
図4ないし図6に示すように、ガスバーナBの燃料噴出部Bnは、夫々円筒状の外筒状体11と内筒状体12とを外筒状体11の先端が内筒状体12の先端よりも突出し且つ内筒状体12の後端が外筒状体11の後端よりも突出する状態で同軸心状に備えて、内筒状体12の筒内にて中央噴出路13を形成し且つ内筒状体12と外筒状体11との間に環状の周囲噴出路14を形成するように構成し、内筒状体12の外周面及び外筒状体11の内周面夫々の周囲噴出路14の先端側を形成する部分12g、11gを先端側ほど小径となる先細り状に形成して、周囲噴出路14の先端側を、ガス燃料を内筒状体12の外周側から燃料噴出部Bnの軸芯P(同軸状態の外筒状体11及び内筒状体12の軸心に相当する)側に向けて収束するように噴出する収束噴出路部分14gに構成し、外筒状体11における内筒状体12からの突出部分の内周面を、収束噴出路部分14gの先端の環状の周囲噴出口15の外周縁からその外周縁と同径にて前方に延びて、中央噴出路13及び周囲噴出路14から噴出されるガス燃料を案内する筒状の案内面16となるように構成してある。
【0018】
燃料噴出部Bnとして、収束噴出路部分14gの噴出方向の軸心P側に向く角度、即ち、内向き角度αが異なる複数の燃料噴出部Bnを設けて、複数の燃料噴出部Bnのうち、いずれかを選択して、燃料供給部Bsに取り付けるようになっている。ちなみに、図5にて示す燃料噴出部Bnの収束噴出路部分14gの内向き角度αは、図6にて示す燃料噴出部Bnの収束噴出路部分14gの内向き角度αよりも大きい。
【0019】
図5及び図6に基づいて、内筒状体12及び外筒状体11夫々について説明を加える。
内筒状体12の筒内部は、先端側の内径を後端側の内径よりも小さくして、中央噴出路13の後端側を大径部に、先端側を小径部に形成して、ガス燃料を中央噴出路13の大径部にて圧力をかけた状態で中央噴出路13の小径部を通じて先端の中央噴出口17から噴出するように構成してある。内筒状体12の後端部には、後述する燃料供給部Bsに接続するための雌ネジ部12sを形成してある。又、内筒状体12の外周面の先端側部分は、前述した先細り状部分12gに構成してある。
外筒状体11の内周面における軸芯P方向の中間部分に、前述した先細り状部分11gを形成し、その先細り状部分11gの先端から先の内周面は、先細り状部分11gの先端と同径で外筒状体11の先端まで延びるように形成して、筒状の案内面16を形成してある。又、外筒状体11の後端部には、後述する燃料供給部Bsに接続するための雌ネジ部11sを形成してある。
【0020】
そして、内筒状体12と外筒状体11とを、内筒状体12の先端と外筒状体11の内周面の先細り状部分11gの先端とが軸芯P方向において同位置に位置する状態で同軸状に配設した状態で、後述する燃料供給部Bsに接続するように構成して、内筒状体12の筒内にて中央噴出路13を形成し、内筒状体12と外筒状体11との間に環状の周囲噴出路14を形成すると共に、内筒状体12の外周面の先細り状部分12gと外筒状体11の内周面の先細り状部分11gとの間に、周囲噴出路14の収束噴出路部分14gに構成し、更に、収束噴出路部分14gの先端の環状の周囲噴出口15の外周縁からその外周縁と同径にて前方に延びる外筒状体11の内周面を筒状の案内面16に構成してある。
【0021】
又、内筒状体12の外周面の先細り状部分12g及び外筒状体11の内周面の先細り状部分11gは、それらの間の間隔が先端側ほど狭くなるように形成して、周囲噴出路14の収束噴出路部分14gの流路横断面積が先端側ほど狭くなるように構成してある。そして、ガス燃料を収束噴出路部分14gを通じて圧力をかけてその先端の周囲噴出口15から勢い良く軸芯P側に向かって収束するように噴出するように構成してある。
そして、内筒状体12の外周面の先細り状部分12g及び外筒状体11の内周面の先細り状部分11g夫々の軸芯P側に向く角度を異ならせることにより、周囲噴出路14の収束噴出路部分14gの内向き角度αを異ならせるようになっている。
【0022】
周囲噴出口15の外周縁の径(即ち、筒状の案内面16の径)をa、周囲噴出口15の内周縁の径をb、中央噴出口17の径をc、周囲噴出路14の収束噴出路部分14gにおける軸芯P方向の長さをYとすると、本願発明の発明者は鋭意研究して、周囲噴出口15の外周縁の径a、周囲噴出口15の内周縁の径b、中央噴出口17の径c、周囲噴出路14の収束噴出路部分14gにおける軸芯方向長さYの間の関係を下記の数〔1〕,〔2〕にて示す関係に規定すると、周囲噴出路14の収束噴出路部分14gの内向き角度αを異ならせることにより、火腰の強い火炎を形成すると共にNOxの発生を抑制することができながら、火炎の長さを変更することができることを見出した。
【0023】
【数1】
a≧1.2b≧3.6c
【0024】
【数2】
Y≧(a−b)/2
【0025】
又、筒状の案内面16における軸芯P方向の長さをXとすると、筒状の案内面16の軸芯方向の長さX、周囲噴出口15の外周縁の径a、周囲噴出口15の内周縁の径bの間の関係を下記の〔数3〕にて示す関係に規定すると、筒状の案内面16にて、収束噴出路部分14gから噴出されるガス燃料を中央噴出路13から噴出されるガス燃料流に向かって効果的に収束させるように案内させることが可能になることを見出した。
【0026】
【数3】
a>X>b
【0027】
図5及び図6に示すように、ガスバーナBの燃料供給部Bsは、夫々円筒状の外供給筒18と内供給筒19とを外供給筒18の先端が内供給筒19の先端よりも突出し且つ内供給筒19の後端が外供給筒18の後端よりも突出する状態で同軸心状に組み付け、外供給筒18の後端開口部を環状の蓋板20にて閉じ、外供給筒18にその内部に連通する状態で接続管21を接続して構成してある。
外供給筒18の先端には、前記燃料噴出部Bnの外筒状体11の雌ネジ部11sに螺合する雄ネジ部18sを形成し、内供給筒19の先端には、前記燃料噴出部Bnの内筒状体12の雌ネジ部12sに羅合する雄ネジ部19sを形成してある。
【0028】
そして、燃料供給部Bsの内供給筒19の先端に前記燃料噴出部Bnの内筒状体12の後端を螺合し、並びに、燃料供給部Bsの外供給筒18の先端に前記燃料噴出部Bnの外筒状体11の後端を螺号すると、内筒状体12と外筒状体11とが上述した如き位置関係に配設された状態で、燃料供給部Bsに燃料噴出部Bnを取り付けられるように構成してある。
【0029】
図3に示すように、上述のように燃料供給部Bsに燃料噴出部Bnを取り付けて成るガスバーナBを、燃料噴出部Bnの先端側から炉壁4のバーナ挿通孔4bに挿入して配置し、ガスバーナBの周囲とバーナ挿通孔4bとの間の隙間を封止材22にて封止して、ガスバーナBの外周部を通じて外部から炉内3に空気が浸入するのを遮断するようにしてある。
【0030】
都市ガス等のガス燃料Gを供給するガス供給管23から分岐した2本の分岐管23bの一方の分岐管23bを燃料供給部Bsの内供給筒19の後端に接続し、他方の分岐管23bを燃料供給部Bsの接続管21に接続してある。
各分岐管23bには、ガス燃料の流量を調節する調節弁24及び内部の圧力を計測する圧力計25を設けてある。
そして、燃料噴出部Bnの中央噴出路13には燃料供給部Bsの内供給筒19も筒内流路を通じて、燃料噴出部Bnの周囲噴出路14には燃料供給部Bsの外供給筒18と内供給筒19との間の環状の流路を通じてそれぞれ各別にガス燃料Gを供給するように構成してある。
2台の調節弁24により、各圧力計25の検出圧力に基づいて、中央噴出路13からのガス燃料の噴出量と周囲噴出路14からのガス燃料の噴出量との比率を調節するように構成してあり、2台の調節弁24にて噴出量比調節手段を構成してある。
【0031】
上述のように燃料噴出部Bnを構成したことにより、中央噴出路13からは軸芯Pに沿って真っ直ぐにガス燃料Gが噴出され、周囲噴出路14の収束噴出路部分14gからは、中央噴出路13から真っ直ぐに噴出されるガス燃料流Gに向かって収束するようにガス燃料Gが噴出され、そのように中央噴出路13及び収束噴出路部分14gから噴出されたガス燃料Gが筒状の案内面16にて広がりが規制されながら前方に向かって流れるように案内されるので、燃料噴出部Bnからは、全体として広がりが抑制されながら勢い良くガス燃料Gが噴出されることになり、火腰の強い火炎Fが形成される。
又、燃料噴出部Bnの外周部の周囲噴出路14を通してガス燃料Gを通流させて、そのガス燃料Gの通流により燃料噴出部Bnが冷却されるので、ガスバーナBをその外周部を通じて外部から炉内3に空気が浸入するのを封止材22にて遮断する状態で設けることが可能になり、加熱効率を向上することが可能となる。
【0032】
2台の調節弁24により、中央噴出路13からのガス燃料Gの噴出量と周囲噴出路14からのガス燃料Gの噴出量との比率を調節することにより、火炎Fの長さを調節することができる。ちなみに、前記比率はNOxの発生量が多くなり過ぎない範囲に設定してあり、通常は、1:1になるように調節する。
火炎Fの長さを2台の調節弁24により調整可能な範囲を越えて変更する場合は、燃料供給部Bsに取り付けられている燃料噴出部Bnを、それとは収束噴出路部分14gの内向き角度αが異なる燃料噴出部Bnに付け替えることになる。ちなみに、内向き角度αが大きい燃料噴出部Bnほど、長さの短い火炎Fが形成される。
【0033】
〔別実施形態〕
次に別実施形態を説明する。
(イ) 上記の実施形態においては、本発明をエンドポート式のガラス溶解炉に適用する場合について例示したが、これ以外にも、例えば、所謂サイドポート式のガラス溶解炉にも適用することができる。
サイドポート式のガラス溶解炉は、図7に示すように、平面視で矩形状の溶解槽2の一側縁側の炉壁4に投入口4iを設け、その投入口4iを設けた炉壁4に対向する炉壁4の外部に作業槽9を設けると共に、その作業槽9と溶解槽2との間の炉壁4に、溶解槽2と作業槽9とを連通させる開口部4e(図示省略)を溶解槽2の炉床部に位置させて形成して構成してある。
燃焼装置は、前記投入口4iから取出し孔4eに向かって左右に位置する炉壁4に夫々設ける一対の燃焼部を備えて構成してある。
前記一対の燃焼部夫々は、炉内3にガス燃料Gを噴出する2個のガスバーナBと、そのガスバーナBのガス燃料噴出箇所の上方に位置する1個の空気口5(図示省略)を通してガスバーナBから噴出されるガス燃料Gの燃焼域に対して燃焼用空気Aを斜め下向きに供給する1個の空気供給路6(図示省略)とからなるガスバーナ組の複数(図7では4組)を横方向に並べて備えると共に、前記複数のガスバーナ組に含まれる複数の空気供給路6に連通する1個の蓄熱室8を備えて構成してある。
そして、前記一対の燃焼部を一定時間毎に交互に燃焼させて、交番燃焼を行わせ、投入口4iからガラス原料を溶解槽2に投入して、そのガラス原料を溶融させながら、取出し孔4eに向かって流下させて、取出し孔4eを通じて、清浄な溶融ガラスを作業槽9に導くよう構成してある。
【0034】
(ロ) 各空気口5に対応して設置するガスバーナBの個数は上記の実施形態において例示した2個に限定されるものではなく、1個でも、3個以上でも良い。
【0035】
(ハ) 空気口5から炉内3に供給する燃焼用酸素含有ガスとしては、上記の実施形態において例示した空気以外に、空気に炉内3から排出した燃焼排ガスを混合したものや、酸素含有率を高くした酸素富化空気等、種々のものを用いることができる。
【0036】
(ニ) 本発明は、上記の実施形態で例示したガラス溶解炉や、図7にて示す別実施形態で例示したガラス溶解炉以外にも、種々の加熱炉用の燃焼装置に適用することができる。
例えば、ガスバーナBを交番燃焼させる形式以外に、連続燃焼式のものにも適用することができる。
【図面の簡単な説明】
【図1】実施形態に係る加熱炉用の燃焼装置を設けたガラス溶解炉の縦断側面図
【図2】図1におけるI−I矢視図
【図3】実施形態に係る加熱炉用の燃焼装置を設けたガラス溶解炉の要部の縦断側面図
【図4】実施形態に係る加熱炉用の燃焼装置のガスバーナにおける燃料噴出部の軸心に直交する面での断面図
【図5】実施形態に係る加熱炉用の燃焼装置のガスバーナにおける燃料噴出部の軸芯に沿う面での断面図
【図6】実施形態に係る加熱炉用の燃焼装置のガスバーナにおける燃料噴出部の軸芯に沿う面での断面図
【図7】別実施形態に係る加熱炉用の燃焼装置を備えたガラス溶解炉の横断面図
【図8】従来の加熱炉用の燃焼装置の縦断面図
【符号の説明】
3 炉内
6 酸素含有ガス供給部
11 外筒状体
12 内筒状体
13 中央噴出路
14 周囲噴出路
14g 収束噴出路部分
15 周囲噴出口
16 案内面
24 噴出量比調節手段
Bn 燃料噴出部
Bs 燃料供給部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a fuel ejection unit that ejects gas fuel into a furnace,
An oxygen-containing gas supply unit for supplying a combustion oxygen-containing gas to a combustion zone of gas fuel ejected from the fuel ejection unit from a combustion oxygen-containing gas supply point different from the gas fuel ejection point of the fuel ejection unit. The present invention relates to a combustion device for a heating furnace provided.
[0002]
[Prior art]
A combustion device for such a heating furnace (hereinafter sometimes simply referred to as a combustion device) discharges gas fuel into a furnace from a gas fuel discharge location by a fuel discharge portion, and a fuel discharge portion by an oxygen-containing gas supply portion. A combustion oxygen-containing gas is supplied from a combustion oxygen-containing gas supply point different from the gas fuel injection point to the combustion zone of the gas fuel ejected from the fuel ejection section, and the gas fuel and the combustion oxygen-containing gas are supplied to the combustion area. Are made to contact and burn in a furnace.
[0003]
Conventionally, in such a combustion apparatus, as shown in FIG. 8, a fuel ejection portion Bn is provided with a straight cylindrical outer cylindrical body 31 having an outer diameter and an inner diameter each constant in the axial direction and a nozzle 32 at a tip. The inner cylindrical body 33 having a straight cylindrical shape is provided with a coaxial core in a state where the tip of the outer tubular body 31 and the tip of the nozzle 32 are located at the same position in the axial direction. Between the tubular body 33 and the outer tubular body 31, an annular peripheral ejection path 34 for ejecting gas fuel straight along the axial direction is formed.
The nozzle 32 has a central ejection hole 32c which is located at the center thereof and ejects the gas fuel G straight along the axial direction of the nozzle 32, and an axial center of the nozzle 32 which is annularly arranged around the central ejection hole 32c. And a plurality of outer ejection holes 32s for ejecting the gas fuel G outwardly on the opposite side to the side.
Then, the gas fuel G is ejected straight from the central ejection hole 32c of the nozzle 32 along the axial direction of the nozzle 32, that is, along the axial direction of the fuel ejection portion Bn, and a plurality of outer lines arranged annularly around the central ejection hole 32c. The gas fuel G is ejected from the ejection holes 32s in a widening shape, and the gas fuel G is straightened along the axial center direction of the fuel ejection portion Bn from the annular peripheral ejection path 34 outside the plurality of outer ejection holes 32s arranged in an annular shape. The fuel G was ejected and burned.
Further, the gas fuel G is caused to flow through the peripheral ejection path 34 on the outer peripheral portion of the fuel ejection part Bn, and the fuel ejection part Bn is cooled by the flow of the gas fuel G. For example, a cooling fluid is supplied through the outer periphery of the fuel ejection portion Bn into the furnace, or a cooling jacket is provided on the outer periphery of the fuel ejection portion Bn, and a cooling fluid such as water flows through the cooling jacket. Thus, the fuel jetting portion Bn can be cooled without flowing a cooling-specific fluid. (For example, refer to Patent Document 1).
[0004]
[Patent Document 1]
JP-A-2002-286225
[0005]
[Problems to be solved by the invention]
However, in the conventional combustion device, the gas fuel is ejected straight from the peripheral ejection path along the axial direction of the fuel ejection part, so that the gas fuel ejected from the peripheral ejection path is easy to spread, and Since the gas fuel is ejected from the plurality of outer ejection holes arranged in an annular shape of the nozzle in a divergent shape, the gas fuel flow ejected from the outer ejection holes in a divergent manner is ejected from the surrounding ejection path. The spread of the used gas fuel will be promoted.
Accordingly, the flow of gas fuel ejected from the fuel ejection portion is generally weakened and easily diffused, so that the generated flame is weakened, that is, the flame is weakened. By the way, if the flame of the flame becomes weaker, the flame is easily swept by the atmosphere in the furnace, the direction of the flame formation becomes unstable, and the flame easily contacts the furnace wall, so that the furnace wall is easily damaged. However, it is not preferable in terms of improving the durability of the furnace.
[0006]
Further, in such a combustion apparatus, in accordance with the type of the object to be heated, the amount of combustion is the same, that is, while the amount of gas fuel ejected from the fuel ejection section is the same, the length of the flame is varied. Therefore, it may be necessary to change the temperature distribution in the furnace.
In changing the length of the flame in this manner, in the conventional combustion apparatus, the diameter of the central ejection hole of the nozzle is made different to cope with the change.
That is, when the length of the flame is shortened, the diameter of the central ejection hole is made small, and the ejection speed of the gas fuel from the central ejection hole is increased, so that the combustion by the ejector action by the fast gas fuel flow. By promoting the inhalation of oxygen-containing gas, the gas fuel is burned quickly to shorten the length of the flame.
On the other hand, when increasing the length of the flame, the suction of the oxygen-containing gas for combustion is reduced by increasing the diameter of the central ejection hole and decreasing the ejection speed of the gas fuel from the central ejection hole. The gas fuel is slowly burned to increase the length of the flame.
However, conventionally, the length of the flame is changed by changing the ejection speed of the gas fuel from the fuel ejection portion, but when the ejection speed of the gas fuel is increased to shorten the length of the flame. In addition, since the suction of the oxygen-containing gas for combustion is promoted and the combustion of the gaseous fuel is accelerated, the problem that the flame temperature is increased and the generation amount of NOx is increased is caused.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible to form a strong flame and generate NOx while eliminating the need for a dedicated cooling fluid for cooling a fuel ejection portion. It is an object of the present invention to provide a combustion device for a heating furnace, which can suppress the occurrence of the heat.
[0008]
[Means for Solving the Problems]
[Invention of claim 1]
The combustion device for a heating furnace according to claim 1, a fuel ejection unit that ejects gas fuel into the furnace,
An oxygen-containing gas supply unit for supplying a combustion oxygen-containing gas to a combustion zone of gas fuel ejected from the fuel ejection unit from a combustion oxygen-containing gas supply point different from the gas fuel ejection point of the fuel ejection unit. A combustion device for the provided heating furnace,
The fuel ejection portion is provided with an outer cylindrical body and an inner cylindrical body in a coaxial shape with a tip of the outer tubular body protruding from a tip of the inner tubular body, and a cylinder of the inner tubular body. Is configured to form a central ejection path within and form an annular peripheral ejection path between the inner cylindrical body and the outer cylindrical body,
The outer peripheral surface of the inner cylindrical body and the inner peripheral surface of the outer cylindrical body, each of which forms the tip side of the peripheral ejection path are formed in a tapered shape having a smaller diameter toward the tip side, and The leading end side is configured as a convergent ejection path portion that ejects gas fuel so as to converge from the outer peripheral side of the inner cylindrical body toward the axis center,
The inner peripheral surface of the protruding portion of the outer cylindrical body from the inner cylindrical body has the same diameter or substantially the same diameter as the outer peripheral edge from the outer peripheral edge of the annular peripheral jet at the tip of the convergent jet path portion. It is characterized in that it is configured so as to extend forward and form a cylindrical guide surface for guiding gas fuel ejected from the central ejection path and the peripheral ejection path.
That is, gas fuel is ejected straight from the central ejection path along the axis of the fuel ejection section, and the gas fuel is directed toward the axis of the fuel ejection section from the convergent ejection path portion on the tip side of the peripheral ejection path. The gas fuel is ejected so as to converge, and the gas fuel ejected from the central ejection path and the peripheral ejection path is guided by the cylindrical guide surface.
In other words, gas fuel is jetted from the converging jet channel portion so as to converge toward the gas fuel flow jetted straight from the central jet channel, and the cylindrical guide surface is formed at the end of the convergent jet channel portion. It is provided so as to extend forward from the outer peripheral edge of the annular peripheral outlet with the same diameter or substantially the same diameter as the outer peripheral edge, and ejects from the central ejection path and the convergent ejection path portion at the cylindrical guide surface. The gas fuel is guided so as to flow forward while the spread is regulated, and the gas fuel ejected from the convergent ejection path portion is promoted to converge toward the gas fuel flow ejected from the central ejection path. As a result, gas fuel is jetted from the fuel jetting section with great vigor while being suppressed from spreading as a whole, and a strong flame is formed.
Further, the gas fuel is caused to flow through the peripheral ejection path on the outer peripheral portion of the fuel ejection part, and the fuel ejection part is cooled by the flow of the gas fuel. Can be cooled.
When the length of the flame is changed, the cross-sectional area of the flow path of the central ejection path and the cross-sectional area of the flow path of the convergent ejection path portion are made the same or substantially the same, and the ejection speed of the gas fuel from the fuel ejection section is made the same. Alternatively, it is possible to cope with this by making the angle (hereinafter, sometimes referred to as an inward angle) facing the axis side of the fuel ejection portion in the ejection direction of the convergent ejection path portion substantially the same, while maintaining the same.
That is, the flame length can be shortened by increasing the inward angle of the jetting direction of the convergent jet path portion, and conversely, by decreasing the inward angle of the jetting direction of the convergent jet channel portion, the flame can be reduced. Can be lengthened.
In changing the length of the flame in this way, it is possible to change the length of the flame while making the ejection speed of the gas fuel from the fuel ejection portion the same or substantially the same, so that the gas fuel can be changed. It is possible to avoid such a problem that the amount of generated NOx increases as in the related art described above due to the increase in the ejection speed.
Accordingly, there is provided a combustion apparatus for a heating furnace, which can form a strong flame and suppress generation of NOx without requiring a dedicated cooling fluid for cooling a fuel ejection portion. Now you can do it.
[0009]
[Invention of claim 2]
The combustion device for a heating furnace according to claim 2 is the combustion device according to claim 1, wherein a length of the cylindrical guide surface is shorter than a diameter of an outer peripheral edge of the peripheral spout, and a length of the peripheral spout. The feature is that it is configured to be longer than the diameter of the inner peripheral edge.
That is, the inventor of the present invention has diligently studied and made the length of the cylindrical guide surface shorter than the diameter of the outer peripheral edge of the peripheral outlet at the end of the convergent discharge path portion, and of the peripheral outlet. When set to be longer than the diameter of the inner peripheral edge, the gaseous fuel ejected from the convergent ejection path portion is discharged from the central ejection path at the guide surface without unnecessarily increasing the length of the cylindrical guide surface. It has been found that it can be guided to converge effectively towards the jetted gaseous fuel flow.
In other words, if the length of the cylindrical guide surface is shorter than the diameter of the inner peripheral edge of the peripheral jet, the length of the guide surface is too short and the gas fuel ejected from the convergent jet path is guided so as to converge. On the other hand, if the length of the cylindrical guide surface is made longer than the diameter of the outer peripheral edge of the peripheral jet, the guide operation is not so strong, and on the contrary, the length of the guide surface becomes too long. The disadvantage that the size of the fuel ejection section is increased becomes significant.
Therefore, it is possible to provide a preferable specific configuration for implementing the present invention while reducing the size of the fuel ejection section.
[0010]
[Invention of claim 3]
According to a third aspect of the present invention, there is provided a combustion apparatus for a heating furnace, wherein the fuel ejection section is replaceable with a fuel supply section that supplies gas fuel to the fuel ejection section. ,
It is characterized in that a plurality of fuel ejection portions having different angles toward the axis in the ejection direction of the convergent ejection path portion are provided as the fuel ejection portions.
That is, the length of the flame to be formed can be changed by replacing the fuel ejection portion attached to the fuel ejection portion with a fuel ejection portion having a different inward angle in the ejection direction of the convergent ejection path portion.
In other words, as described in the first aspect of the present invention, the length of the flame can be changed by changing the inward angle of the jetting direction of the convergent jetting path portion. The fuel supply unit is configured so that it can be replaced, and a plurality of fuel ejection units having different inward angles of the convergent ejection path portion are prepared as the fuel ejection unit, so that only the fuel ejection unit is replaced. It will be possible to change the length of the flame.
By the way, the fuel ejection part is constituted so as to be integrally provided with a fuel supply part for supplying gaseous fuel to the fuel ejection part. It is conceivable to prepare a plurality of fuel ejection sections with different angles and replace the fuel ejection section integrally with the fuel supply section so that the length of the flame can be changed. Can be However, in this case, it is necessary to prepare a plurality of expensive fuel ejection sections integrally provided with a fuel supply section, so that the cost of the combustion device rises.
Therefore, the length of the flame can be changed while reducing the cost.
[0011]
[Invention of claim 4]
A combustion apparatus for a heating furnace according to claim 4, according to any one of claims 1 to 3, wherein a ratio between a gas fuel ejection amount from the central ejection passage and a gas fuel ejection amount from the peripheral ejection passage. The characteristic feature is that an ejection amount ratio adjusting means for adjusting the pressure is provided.
That is, the length of the flame can be changed by adjusting the ratio between the amount of gas fuel ejected from the central ejection path and the amount of gas fuel ejected from the peripheral ejection path by the ejection amount ratio adjusting means.
In other words, when the ejection amount ratio adjusting means is adjusted to increase the ejection amount from the central ejection passage, the ejection speed of the gas fuel from the central ejection hole is increased, and the suction of the oxygen-containing gas for combustion by the ejector action is prevented. As the flame is accelerated, the length of the flame is shortened. Conversely, if the amount of gas ejected from the central ejection passage is adjusted to be small, the ejector action is weakened and the suction of the oxygen-containing gas for combustion is weakened. Becomes longer.
By the way, if the ejection amount from the central ejection passage becomes too large and the ejection speed of the gas fuel from the central ejection hole becomes too fast, the generation amount of NOx increases. The adjustment range is restricted to a narrow range where the amount of generated NOx does not become too large, and the adjustment of the flame length in a wide range is performed when the inward angle of the convergent jet path portion differs from the fuel jet portion. It is preferable to respond by changing to.
Therefore, the length of the flame can be finely adjusted while suppressing the generation of NOx.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a combustion apparatus for a glass melting furnace as a heating furnace will be described with reference to the drawings.
First, a glass melting furnace provided with a combustion device will be described.
As shown in FIGS. 1 and 2, the glass melting furnace includes a melting tank 2 having a rectangular shape in a plan view at a lower portion in a furnace body 1, and a furnace wall for installing a combustion device on one side of the melting tank 2. 4, a combustion device is provided so as to blow gas fuel G into the furnace 3 and form a flame F above the melting tank 2 in a state facing the furnace wall 4 facing the furnace wall 4 for installing the combustion device. It is configured in.
[0013]
At the end on the combustion device installation side of the furnace wall 4 connected to the lateral end of the furnace wall 4 for installing the combustion device, a glass material is supplied in a direction substantially orthogonal to the direction of gas fuel ejection from the combustion device. An opening 4i is provided, a work tank 9 is provided outside the furnace wall 4 facing the furnace wall 4 for installing the combustion device, and a melting tank 2 is provided on the furnace wall 4 between the work tank 9 and the melting tank 2. An opening 4e for communication between the melting tank 2 and the work tank 9 is formed at the hearth of the melting tank 2 to form a so-called end port.
That is, the glass raw material in the melting tank 2 is melted by the flame F formed by the combustion device, the glass raw material is charged into the melting tank 2 through the inlet 4i, and the glass raw material is directed toward the opening 4e. It is configured to melt while flowing in a meandering manner, and to lead clean molten glass to the work tank 9 through the opening 4e of the hearth.
[0014]
The combustion device will be described in more detail. The combustion device includes a pair of combustion units provided side by side on the furnace wall 4 for installing the combustion device, and the pair of combustion units is operated for a predetermined time (for example, Every 15 to 30 minutes), so-called alternating combustion is performed.
Each of the pair of combustion units is provided with two gas burners B for injecting the gas fuel G into the furnace 3 and one air port 5 located above the gas fuel ejection point of the gas burner B, from the gas burner B. A single air supply path 6 serving as an oxygen-containing gas supply unit for supplying combustion air A obliquely downward as the oxygen-containing gas for combustion to the combustion region of the gas fuel G to be ejected, It is configured as a port type, and further includes a single heat storage chamber 8 that communicates with the air supply path 6 and has a heat storage material, and is configured as a heat storage type. The air port 5 corresponds to a combustion oxygen-containing gas supply location different from the gas fuel ejection location.
[0015]
The gas burners B of the pair of combustion units are configured to alternately switch between a spouting state in which the gaseous fuel G is spouted and a spouting stopped state in which the spouting of the gaseous fuel G is stopped at regular intervals. The air supply path 6 of the combustion section is preheated to a high temperature (about 1000 to 1200 ° C.) by the heat storage material through the heat storage chamber 8 through the air supply path 6 of the combustion section toward the gas burner B in the jetting state. The combustion air A is supplied from the air port 5 to the furnace 3 through the air port 5, and the air supply path 6 of the combustion section toward the gas burner B in the jetting stopped state. The combustion gas E of No. 3 is discharged, and the exhaust heat of the combustion exhaust gas E is switched to an exhaust state in which the heat is stored in the heat storage material.
Then, the gas burners B of the pair of combustion sections are alternately switched to the ejection state and the ejection stop state at regular intervals, and the air supply path 6 of the pair of combustion sections is switched between the supply state and the exhaust state. The state is switched to the state, and the pair of combustion sections are alternately burned as described above. FIGS. 1 and 2 show a state in which the right burning part is burning and the left burning part is extinguished.
[0016]
Hereinafter, the gas burner B will be described.
As shown in FIGS. 3, 5 and 6, the gas burner B includes a fuel ejection section Bn for ejecting the gas fuel G into the furnace 3, and a fuel supply section Bs for supplying the gas fuel G to the fuel ejection section Bn. The fuel ejection section Bn is configured to be freely replaceable with respect to the fuel supply section Bs.
[0017]
As shown in FIGS. 4 to 6, the fuel ejection portion Bn of the gas burner B is configured such that a cylindrical outer cylindrical body 11 and an inner cylindrical body 12 The central ejection passage 13 is provided coaxially with the inner cylindrical body 12 protruding from the front end and the rear end of the inner cylindrical body 12 projecting from the rear end of the outer cylindrical body 11. The outer peripheral surface of the inner cylindrical body 12 and the inner peripheral surface of the outer cylindrical body 11 are formed so as to form an annular peripheral ejection path 14 between the inner cylindrical body 12 and the outer cylindrical body 11. The portions 12g and 11g forming the distal end side of each peripheral ejection path 14 are formed in a tapered shape having a smaller diameter toward the distal end side, and the distal end side of the peripheral ejection path 14 is supplied with the gas fuel on the outer peripheral side of the inner cylindrical body 12. From the fuel injection portion Bn so as to converge toward the axis P (corresponding to the axis of the outer cylindrical body 11 and the inner cylindrical body 12 in the coaxial state). And the inner peripheral surface of the protruding portion of the outer cylindrical body 11 from the inner cylindrical body 12 is formed from the outer peripheral edge of the annular peripheral outlet 15 at the tip of the convergent jet path portion 14g. It is configured so as to extend forward with the same diameter as the outer peripheral edge and form a cylindrical guide surface 16 for guiding gas fuel ejected from the central ejection passage 13 and the peripheral ejection passage 14.
[0018]
As the fuel ejection portion Bn, a plurality of fuel ejection portions Bn having different angles toward the axis P in the ejection direction of the convergent ejection path portion 14g, that is, different inward angles α, are provided, and among the plurality of fuel ejection portions Bn, Either one is selected and attached to the fuel supply section Bs. Incidentally, the inward angle α of the convergent ejection path portion 14g of the fuel ejection portion Bn shown in FIG. 5 is larger than the inward angle α of the convergent ejection passage portion 14g of the fuel ejection portion Bn shown in FIG.
[0019]
The inner cylindrical body 12 and the outer cylindrical body 11 will each be described based on FIGS. 5 and 6.
The inside of the inner cylindrical body 12 is formed such that the inner diameter at the front end side is smaller than the inner diameter at the rear end side, the rear end side of the central ejection path 13 is formed into a large diameter portion, and the front end side is formed into a small diameter portion, The gas fuel is ejected from the central outlet 17 at the tip through the small-diameter portion of the central outlet 13 while applying pressure at the large-diameter portion of the central outlet 13. At the rear end of the inner cylindrical body 12, a female screw portion 12s for connecting to a fuel supply portion Bs described later is formed. In addition, the distal end portion of the outer peripheral surface of the inner cylindrical body 12 is formed as the aforementioned tapered portion 12g.
The above-mentioned tapered portion 11g is formed at the intermediate portion of the inner peripheral surface of the outer cylindrical body 11 in the direction of the axis P, and the inner peripheral surface extending from the tip of the tapered portion 11g to the tip of the tapered portion 11g. A cylindrical guide surface 16 is formed so as to extend to the tip of the outer cylindrical body 11 with the same diameter as that of the outer cylindrical body 11. A female screw portion 11s for connecting to a fuel supply portion Bs described later is formed at the rear end of the outer cylindrical body 11.
[0020]
Then, the inner cylindrical body 12 and the outer cylindrical body 11 are positioned such that the tip of the inner cylindrical body 12 and the tip of the tapered portion 11g of the inner peripheral surface of the outer cylindrical body 11 are at the same position in the axis P direction. In a state where it is disposed coaxially in a position, it is configured to be connected to a fuel supply portion Bs described later, and a central ejection path 13 is formed in the cylinder of the inner cylinder 12, An annular peripheral ejection path 14 is formed between the inner cylindrical body 12 and the outer cylindrical body 11, and a tapered portion 12g on the outer peripheral surface of the inner cylindrical body 12 and a tapered portion 11g on the inner peripheral surface of the outer cylindrical body 11 are formed. Between the peripheral jet 14 and the convergent jet channel portion 14g, and further extends forward from the outer peripheral edge of the annular peripheral jet port 15 at the tip of the convergent jet channel portion 14g with the same diameter as the outer peripheral edge. The inner peripheral surface of the outer cylindrical body 11 is formed as a cylindrical guide surface 16.
[0021]
Further, the tapered portion 12g on the outer peripheral surface of the inner cylindrical body 12 and the tapered portion 11g on the inner peripheral surface of the outer cylindrical body 11 are formed so that the interval between them becomes smaller toward the distal end side. The convergent ejection path portion 14g of the ejection path 14 is configured such that the cross-sectional area of the passage becomes narrower toward the distal end. Then, gas fuel is applied through a convergent jet path portion 14g by applying pressure, and is jetted from the peripheral jet port 15 at the tip thereof so as to converge vigorously toward the axis P side.
The tapered portion 12g of the outer peripheral surface of the inner cylindrical body 12 and the tapered portion 11g of the inner peripheral surface of the outer cylindrical body 11 have different angles facing the axis P, so that the peripheral ejection path 14 is formed. The inward angle α of the convergent jet path portion 14g is made different.
[0022]
The diameter of the outer peripheral edge of the peripheral outlet 15 (that is, the diameter of the cylindrical guide surface 16) is a, the diameter of the inner peripheral edge of the peripheral outlet 15 is b, the diameter of the central outlet 17 is c, and the diameter of the peripheral outlet 14 is Assuming that the length of the convergent jet path portion 14g in the direction of the axis P is Y, the inventor of the present invention has diligently studied and found that the diameter a of the outer peripheral edge of the peripheral jet 15 and the diameter b of the inner peripheral edge of the peripheral jet 15 are If the relationship between the diameter c of the central outlet 17 and the length Y in the axial direction of the converging outlet portion 14g of the peripheral outlet 14 is defined by the following equations [1] and [2], By making the inward angle α of the converging jet path portion 14g of the jet path 14 different, it is possible to form a strong flame and suppress the generation of NOx while changing the length of the flame. Was found.
[0023]
(Equation 1)
a ≧ 1.2b ≧ 3.6c
[0024]
(Equation 2)
Y ≧ (ab) / 2
[0025]
Further, assuming that the length of the cylindrical guide surface 16 in the axis P direction is X, the length X of the cylindrical guide surface 16 in the axial direction, the diameter a of the outer peripheral edge of the peripheral outlet 15, the peripheral outlet When the relationship between the diameters b of the inner peripheral edge of the nozzle 15 is defined by the following equation (3), the gaseous fuel ejected from the convergent ejection path portion 14g is supplied to the central ejection path by the cylindrical guide surface 16. It has been found that it is possible to guide the gas fuel flow ejected from the nozzle 13 to converge effectively toward the gas fuel flow.
[0026]
[Equation 3]
a>X> b
[0027]
As shown in FIGS. 5 and 6, the fuel supply portion Bs of the gas burner B has a cylindrical outer supply tube 18 and an inner supply tube 19 each having a distal end projecting beyond the distal end of the inner supply tube 19. And, the rear end of the inner supply tube 19 is assembled coaxially with the rear end of the outer supply tube 18 protruding from the rear end of the outer supply tube 18, and the rear end opening of the outer supply tube 18 is closed with an annular lid plate 20. A connection pipe 21 is connected to the device 18 so as to communicate therewith.
At the tip of the outer supply tube 18, a male screw portion 18 s that is screwed into the female screw portion 11 s of the outer tubular body 11 of the fuel ejection portion Bn is formed, and at the tip of the inner supply tube 19, the fuel ejection portion is formed. A male screw portion 19s is formed to fit with the female screw portion 12s of the inner cylindrical body 12 of Bn.
[0028]
Then, the rear end of the inner cylindrical body 12 of the fuel ejection section Bn is screwed into the tip of the inner supply cylinder 19 of the fuel supply section Bs, and the fuel ejection section is engaged with the tip of the outer supply cylinder 18 of the fuel supply section Bs. When the rear end of the outer cylindrical body 11 of the portion Bn is screwed, the fuel supply section Bs is provided with the fuel ejection section Bn in a state where the inner cylindrical body 12 and the outer cylindrical body 11 are arranged in the above-described positional relationship. It is configured so that can be attached.
[0029]
As shown in FIG. 3, a gas burner B having the fuel supply section Bs and the fuel ejection section Bn attached thereto as described above is inserted into the burner insertion hole 4b of the furnace wall 4 from the front end side of the fuel ejection section Bn and arranged. The gap between the periphery of the gas burner B and the burner insertion hole 4b is sealed with a sealing material 22 so as to block air from entering the furnace 3 from outside through the outer periphery of the gas burner B. is there.
[0030]
One of the two branch pipes 23b branched from the gas supply pipe 23 that supplies the gas fuel G such as city gas is connected to the rear end of the inner supply tube 19 of the fuel supply unit Bs, and the other branch pipe is connected. 23b is connected to the connection pipe 21 of the fuel supply section Bs.
Each branch pipe 23b is provided with a control valve 24 for adjusting the flow rate of gas fuel and a pressure gauge 25 for measuring the internal pressure.
The inner supply pipe 19 of the fuel supply section Bs also passes through the in-cylinder flow path in the central discharge path 13 of the fuel discharge section Bn, and the outer supply pipe 18 of the fuel supply section Bs connects to the peripheral discharge path 14 of the fuel discharge section Bn. The gas fuel G is individually supplied through the annular flow path between the inner supply cylinder 19 and each of them.
The two control valves 24 adjust the ratio between the amount of gas fuel ejected from the central ejection passage 13 and the amount of gas fuel ejected from the peripheral ejection passage 14 based on the pressure detected by each pressure gauge 25. The two control valves 24 constitute an ejection amount ratio adjusting means.
[0031]
By configuring the fuel ejection portion Bn as described above, the gas fuel G is ejected straight from the central ejection passage 13 along the axis P, and the central ejection passage 14 g of the peripheral ejection passage 14 is subjected to the central ejection. The gas fuel G is ejected so as to converge toward the gas fuel flow G ejected straight from the passage 13, and the gas fuel G ejected from the central ejection passage 13 and the convergent ejection passage portion 14g is formed into a cylindrical shape. Since the guide surface 16 is guided so as to flow forward while its spread is restricted, the gas fuel G is spouted vigorously from the fuel jetting portion Bn while the spread is suppressed as a whole, A strong flame F is formed.
Further, the gas fuel G is caused to flow through the peripheral ejection path 14 around the outer periphery of the fuel ejection portion Bn, and the fuel ejection portion Bn is cooled by the flow of the gas fuel G. Can be provided in a state where the infiltration of air into the furnace 3 is blocked by the sealing material 22, and the heating efficiency can be improved.
[0032]
The length of the flame F is adjusted by adjusting the ratio between the amount of gas fuel G ejected from the central ejection path 13 and the amount of gas fuel G ejected from the peripheral ejection path 14 by the two control valves 24. be able to. Incidentally, the ratio is set in a range where the generation amount of NOx does not become too large, and is usually adjusted to be 1: 1.
When the length of the flame F is changed beyond the range adjustable by the two control valves 24, the fuel ejection portion Bn attached to the fuel supply portion Bs is moved inward from the convergent ejection passage portion 14g. The fuel injection part Bn having a different angle α will be replaced. Incidentally, the flame F having a shorter length is formed at the fuel ejection portion Bn having a larger inward angle α.
[0033]
[Another embodiment]
Next, another embodiment will be described.
(B) In the above embodiment, the case where the present invention is applied to an end-port type glass melting furnace is described. However, for example, the present invention may be applied to a so-called side-port type glass melting furnace. it can.
As shown in FIG. 7, the side port type glass melting furnace is provided with an inlet 4i in a furnace wall 4 on one side of a rectangular melting tank 2 in a plan view, and the furnace wall 4 provided with the inlet 4i. A work tank 9 is provided outside the furnace wall 4 facing the furnace, and an opening 4 e (not shown) for communicating the melting tank 2 and the work tank 9 is provided in the furnace wall 4 between the work tank 9 and the melting tank 2. ) Is formed at the hearth of the melting tank 2.
The combustion device is provided with a pair of combustion parts respectively provided on the furnace wall 4 located on the left and right from the input port 4i toward the extraction hole 4e.
Each of the pair of combustion units is provided with two gas burners B for injecting the gas fuel G into the furnace 3 and one air port 5 (not shown) located above the gas fuel ejection point of the gas burner B. A plurality (four in FIG. 7) of gas burner sets including one air supply path 6 (not shown) for supplying combustion air A obliquely downward to the combustion area of the gas fuel G ejected from B. In addition to being provided side by side in the lateral direction, it is provided with one heat storage chamber 8 that communicates with a plurality of air supply passages 6 included in the plurality of gas burner sets.
Then, the pair of combustion sections are alternately burned at regular intervals to perform alternating combustion, and the glass material is charged into the melting tank 2 through the charging port 4i, and the glass material is melted while taking out the glass hole 4e. , And the clean molten glass is guided to the work tank 9 through the extraction hole 4e.
[0034]
(B) The number of gas burners B installed corresponding to each air port 5 is not limited to two as exemplified in the above embodiment, but may be one or three or more.
[0035]
(C) As the oxygen-containing gas for combustion supplied from the air port 5 to the inside of the furnace 3, in addition to the air exemplified in the above embodiment, a mixture of air and a combustion exhaust gas discharged from the inside of the furnace 3 or an oxygen-containing gas may be used. Various materials such as oxygen-enriched air with a high rate can be used.
[0036]
(D) The present invention can be applied to various combustion devices for heating furnaces other than the glass melting furnace exemplified in the above embodiment and the glass melting furnace exemplified in another embodiment shown in FIG. it can.
For example, in addition to the type in which the gas burner B is alternately burned, the present invention can be applied to a continuous combustion type.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional side view of a glass melting furnace provided with a combustion device for a heating furnace according to an embodiment.
FIG. 2 is a view taken in the direction of an arrow II in FIG. 1;
FIG. 3 is a longitudinal sectional side view of a main part of a glass melting furnace provided with a heating device for a heating furnace according to an embodiment.
FIG. 4 is a cross-sectional view of a gas burner of the combustion device for a heating furnace according to the embodiment, taken along a plane perpendicular to the axis of a fuel ejection portion.
FIG. 5 is a cross-sectional view of a gas burner of the combustion device for a heating furnace according to the embodiment, taken along a plane along an axis of a fuel ejection portion.
FIG. 6 is a cross-sectional view of the gas burner of the combustion device for a heating furnace according to the embodiment, taken along a plane along the axis of a fuel ejection portion.
FIG. 7 is a cross-sectional view of a glass melting furnace provided with a combustion device for a heating furnace according to another embodiment.
FIG. 8 is a longitudinal sectional view of a conventional combustion device for a heating furnace.
[Explanation of symbols]
3 inside the furnace
6 Oxygen-containing gas supply section
11 outer cylindrical body
12 Inner cylindrical body
13 Central spout
14 Surrounding jet
14g convergent jet path
15 Surrounding spout
16 Guideway
24 Volume control means
Bn fuel injection section
Bs fuel supply unit

Claims (4)

炉内にガス燃料を噴出する燃料噴出部と、
その燃料噴出部のガス燃料噴出箇所とは異なる燃焼用酸素含有ガス供給箇所から、前記燃料噴出部から噴出されるガス燃料の燃焼域に燃焼用酸素含有ガスを供給する酸素含有ガス供給部とが設けられた加熱炉用の燃焼装置であって、
前記燃料噴出部が、外筒状体と内筒状体とを外筒状体の先端が内筒状体の先端よりも突出する状態で同軸心状に備えて、前記内筒状体の筒内にて中央噴出路を形成し且つ内筒状体と外筒状体との間に環状の周囲噴出路を形成するように構成され、
前記内筒状体の外周面及び前記外筒状体の内周面夫々の前記周囲噴出路の先端側を形成する部分が先端側ほど小径となる先細り状に形成されて、前記周囲噴出路の先端側が、ガス燃料を内筒状体の外周側から軸芯側に向けて収束するように噴出する収束噴出路部分に構成され、
前記外筒状体における前記内筒状体からの突出部分の内周面が、前記収束噴出路部分の先端の環状の周囲噴出口の外周縁からその外周縁と同径又は略同径にて前方に延びて、前記中央噴出路及び前記周囲噴出路から噴出されるガス燃料を案内する筒状の案内面となるように構成されている加熱炉用の燃焼装置。
A fuel ejection section for ejecting gas fuel into the furnace,
An oxygen-containing gas supply unit for supplying a combustion oxygen-containing gas to a combustion zone of gas fuel ejected from the fuel ejection unit from a combustion oxygen-containing gas supply point different from the gas fuel ejection point of the fuel ejection unit. A combustion device for a provided heating furnace,
The fuel ejection portion is provided with an outer cylindrical body and an inner cylindrical body in a coaxial shape with a tip of the outer tubular body protruding from a tip of the inner tubular body, and a cylinder of the inner tubular body. Is configured to form a central ejection path within and form an annular peripheral ejection path between the inner cylindrical body and the outer cylindrical body,
The outer peripheral surface of the inner cylindrical body and the inner peripheral surface of the outer cylindrical body, each of which forms the tip side of the peripheral ejection path are formed in a tapered shape having a smaller diameter toward the tip side, and The leading end side is configured as a convergent ejection path portion that ejects gas fuel so as to converge from the outer peripheral side of the inner cylindrical body toward the axis center,
The inner peripheral surface of the protruding portion of the outer cylindrical body from the inner cylindrical body has the same diameter or substantially the same diameter as the outer peripheral edge from the outer peripheral edge of the annular peripheral jet at the tip of the convergent jet path portion. A combustion device for a heating furnace, which extends forward and has a cylindrical guide surface for guiding gas fuel ejected from the central ejection passage and the peripheral ejection passage.
前記筒状の案内面の長さが、前記周囲噴出口の外周縁の直径よりも短く、且つ、前記周囲噴出口の内周縁の直径よりも長くなるように構成されている請求項1記載の加熱炉用の燃焼装置。The length of the said cylindrical guide surface is shorter than the diameter of the outer peripheral edge of the said peripheral jet, and it is comprised so that it may be longer than the diameter of the inner peripheral edge of the said peripheral jet. Combustion device for heating furnace. 前記燃料噴出部が、その燃料噴出部にガス燃料を供給する燃料供給部に対して付け替え自在なように構成され、
前記燃料噴出部として、前記収束噴出路部分の噴出方向の前記軸心側に向く角度が異なる複数の燃料噴出部が設けられている請求項1又は2記載の加熱炉用の燃焼装置。
The fuel ejection unit is configured to be replaceable with respect to a fuel supply unit that supplies gas fuel to the fuel ejection unit,
3. The combustion device for a heating furnace according to claim 1, wherein a plurality of fuel ejection portions having different angles directed toward the axis in the ejection direction of the convergent ejection path portion are provided as the fuel ejection portions.
前記中央噴出路からのガス燃料の噴出量と前記周囲噴出路からのガス燃料の噴出量との比率を調節する噴出量比調節手段が設けられている請求項1〜3のいずれか1項に記載の加熱炉用の燃焼装置。4. An ejection amount ratio adjusting means for adjusting a ratio between an ejection amount of gas fuel from the central ejection passage and an ejection amount of gas fuel from the peripheral ejection passage is provided. A combustion device for the heating furnace according to the above.
JP2003090918A 2003-03-28 2003-03-28 Combustion equipment for heating furnace Expired - Fee Related JP4046633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090918A JP4046633B2 (en) 2003-03-28 2003-03-28 Combustion equipment for heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090918A JP4046633B2 (en) 2003-03-28 2003-03-28 Combustion equipment for heating furnace

Publications (2)

Publication Number Publication Date
JP2004294042A true JP2004294042A (en) 2004-10-21
JP4046633B2 JP4046633B2 (en) 2008-02-13

Family

ID=33404416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090918A Expired - Fee Related JP4046633B2 (en) 2003-03-28 2003-03-28 Combustion equipment for heating furnace

Country Status (1)

Country Link
JP (1) JP4046633B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275334A (en) * 2005-03-28 2006-10-12 Osaka Gas Co Ltd Combustion device for heating furnace
KR100905515B1 (en) 2009-04-14 2009-07-01 박정재 Oxygen-burner
JP2016161216A (en) * 2015-03-02 2016-09-05 大阪瓦斯株式会社 Heating furnace
US9822970B2 (en) 2010-09-14 2017-11-21 Osaka Gas Co., Ltd. Combustion device for melting furnace, and melting furnace
CN115468162A (en) * 2022-08-31 2022-12-13 北京航天石化技术装备工程有限公司 Injection type pilot premix staged combustion pilot burner
CN116241910A (en) * 2023-03-10 2023-06-09 西北工业大学 Flame stabilizing device for combined engine ramjet ignition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275334A (en) * 2005-03-28 2006-10-12 Osaka Gas Co Ltd Combustion device for heating furnace
JP4516873B2 (en) * 2005-03-28 2010-08-04 大阪瓦斯株式会社 Combustion equipment for heating furnace
KR100905515B1 (en) 2009-04-14 2009-07-01 박정재 Oxygen-burner
US9822970B2 (en) 2010-09-14 2017-11-21 Osaka Gas Co., Ltd. Combustion device for melting furnace, and melting furnace
JP2016161216A (en) * 2015-03-02 2016-09-05 大阪瓦斯株式会社 Heating furnace
CN115468162A (en) * 2022-08-31 2022-12-13 北京航天石化技术装备工程有限公司 Injection type pilot premix staged combustion pilot burner
CN116241910A (en) * 2023-03-10 2023-06-09 西北工业大学 Flame stabilizing device for combined engine ramjet ignition

Also Published As

Publication number Publication date
JP4046633B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
EP0877202B1 (en) Oxy/Oil swirl burner
TWI666407B (en) A gaseous fuel burner and a method for heating the gaseous fuel burner
JP2004294042A (en) Combustion apparatus for heating furnace
KR101792124B1 (en) Melting furnace
TW201814213A (en) Burner
JP5689128B2 (en) Combustion apparatus for glass melting furnace and glass melting furnace
JP4516873B2 (en) Combustion equipment for heating furnace
JP5892809B2 (en) Combustion equipment for heating furnace
JP4836399B2 (en) Combustion equipment for heating furnace
JP5313535B2 (en) Combustion equipment for heating furnace
JP3888916B2 (en) Combustion equipment for heating furnace
KR101958409B1 (en) Nozzle for torch cutting machine
JP4190564B2 (en) Combustion equipment for heating furnace
JP4201731B2 (en) Combustion equipment for heating furnace
JP4194624B2 (en) Combustion equipment for heating furnace
JP2007093089A (en) Combustion device for heating furnace
JP2007139380A (en) Combustion device for heating furnace
JP2006275395A (en) Combustion device for heating furnace
JP4139525B2 (en) Combustion equipment for heating furnace
EP3049725B1 (en) Regenerative burner for non-symmetrical combustion
JP5297230B2 (en) Combustion device
JP4137094B2 (en) Combustion equipment for heating furnace
JP4225981B2 (en) Combustion equipment for heating furnace
SU672216A1 (en) Tuyer for blowing metal with gas-oxygen mix
JP2003269703A (en) Combustion device for heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4046633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees