[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004293999A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2004293999A
JP2004293999A JP2003089574A JP2003089574A JP2004293999A JP 2004293999 A JP2004293999 A JP 2004293999A JP 2003089574 A JP2003089574 A JP 2003089574A JP 2003089574 A JP2003089574 A JP 2003089574A JP 2004293999 A JP2004293999 A JP 2004293999A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
water
air conditioner
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003089574A
Other languages
Japanese (ja)
Other versions
JP3933076B2 (en
Inventor
Hiroyuki Matsushima
弘幸 松嶋
Katsumi Muroi
克美 室井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003089574A priority Critical patent/JP3933076B2/en
Publication of JP2004293999A publication Critical patent/JP2004293999A/en
Application granted granted Critical
Publication of JP3933076B2 publication Critical patent/JP3933076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner, improving the efficiency of the whole system and reducing power consumption even if it is operated as a super-critical refrigeration cycle. <P>SOLUTION: This air conditioner is formed of a heat carrying apparatus 20 in which a compressor 11, a four-way valve 12, an exterior heat exchanger 13, a pressure reducer 15 and a water-refrigerant heat exchanger 17 are connected, a refrigeration cycle, the water-refrigerant heat exchanger 17, a pump 21 and an interior heat exchanger 22 are connected, and a secondary refrigerant is sealed in. The refrigeration cycle is operated so that a high pressure side refrigerant enters a super-critical state, the refrigerant in the water-refrigerant heat exchanger 17 and the secondary refrigerant flow opposite to each other in heating, and the flow rate of the secondary refrigerant is different between the cooling time and the heating time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、地球環境負荷の少ない冷媒が使用される冷凍サイクルを用いた空気調和装置に関し、特に、高圧側で臨界圧力にまで圧縮された冷媒で運転されるものに好適である。
【0002】
【従来の技術】
従来、空気調和装置等の冷凍サイクルには不燃、無毒のフロン冷媒が使用されている。しかし、フロン冷媒は地球温暖化係数が大きく、より環境負荷の少ない冷媒が要望されている。そして、地球環境負荷の少ない冷媒として炭酸ガスが知られているが、炭酸ガスを空気調和装置の冷媒として使用した場合、高圧側が超臨界となり、システム効率が低下する。そのため、炭酸ガスを使用した冷凍サイクルの効率向上策として高圧側の圧力を制御する方法が知られ、例えば、特許文献1に記載されている。
【0003】
【特許文献1】
特許第2931668号公報
【0004】
【発明が解決しようとする課題】
上記のような従来技術では、高圧側の圧力を制御することにより冷凍サイクルの効率は高くなるが、炭酸ガスはフロン冷媒より高圧であり、空気調和の必要な空間まで高圧配管を引く場合、配管を溶接する等の高圧に対する安全性を確保する必要があり、設置時の作業性を考慮すると水等の2次冷媒を使用する必要がある。この場合、システムの高効率化を図るためには、単に冷凍サイクルの効率だけでなく2次冷媒の搬送動力を低減する必要がある。そして、炭酸ガスは放熱器を冷却する空気の温度が高温になると効率が著しく低下する。
【0005】
本発明の目的は、超臨界冷凍サイクルとして運転される空気調和装置であってもシステム全体の効率を向上し、消費電力を少なくすることにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は圧縮機、四方弁、室外熱交換器、減圧装置、水−冷媒熱交換器を接続し冷凍サイクルと、前記水−冷媒熱交換器とポンプと室内熱交換器を接続し2次冷媒を封入した熱搬送装置からなる空気調和装置において、冷凍サイクルは高圧側冷媒が超臨界状態になるように運転され、水−冷媒熱交換器内の冷媒と2次冷媒とは暖房時に対向に流れ、2次冷媒の流量は冷房時と暖房時とで異なるものである。
【0007】
また、上記のものにおいて、水−冷媒熱交換器と前記室内熱交換器との長さに関連して水循環量を変更可能としたことが望ましい。
さらに、本発明は、圧縮機、四方弁、室外熱交換器、減圧装置、水−冷媒熱交換器を接続し高圧側冷媒が超臨界状態になる冷媒を封入した冷凍サイクルと、前記水−冷媒熱交換器とポンプと室内熱交換器を接続し2次冷媒を封入した熱搬送装置からなる空気調和装置において、室内熱交換器の2次冷媒入口を風下、出口を風上、室外熱交換器の冷媒入口を冷房時に風下、出口を風上に設置されたものである。
【0008】
【発明の実施の形態】
以下、本発明の一実施の形態を説明する。
図1は空気調和装置の構成図、図2は減圧装置の詳細図、図3は冷房時の温度−エンタルピ線図、図4は暖房時の温度−エンタルピ線図、図5は水温度差と消費電力の関係図である。図1、2において、1は空気調和装置で室外ユニット2と室内ユニット3から構成されている。室外ユニット2内に設けられた冷凍サイクル10は圧縮機11、冷房暖房で冷媒の流れを切り替える四方弁12、室外熱交換器13、室外熱交換器13に送風する室外ファン14、減圧装置としての膨張弁15及び膨張機16、冷媒−水熱交換器17、膨張機16と回転軸が一体になった副圧縮機18、アキュームレータ19から構成され、内部に冷媒として炭酸ガスが封入されている。
熱搬送装置20は冷媒と熱交換する水−冷媒熱交換器17、ポンプ21、室内熱交換器22、室内熱交換器22に送風する室内ファン23から構成され内部に水等の2次冷媒として水が封入されている。空気調和装置1を制御するために室外制御器30、吐出温度検出器31、室外空気温度検出器32、水戻り温度検出器33、水供給温度検出器34、室内温度検出器35、室内制御器36、操作器37、配管設定器38が設けられている。減圧装置を構成する膨張弁15と膨張機16の配置を図2に示す。4個の逆止弁40により冷房、暖房運転のどちらでも冷媒は膨張弁15を流れたのち膨張機16を流れる構成になっている。
【0009】
以上のように構成された空気調和装置1の動作を説明する。
操作器37で冷房、暖房の選択と室内の温度設定が設定されると室内制御器36から設定条件と室内温度検出器35で検出された温度が室外制御器30に送られるとともに室内ファンが駆動される。室外制御器30により冷房、暖房により四方弁12が切り替えられ、圧縮機11、室外ファン14、ポンプ20が駆動される。ここで、圧縮機11は室内温度設定値と室内温度の差から算出される能力になるように回転数が制御される。また、ポンプ20は水戻り温度検出器33と水供給温度検出器34で検出された温度差が能力により算出された温度差になるように制御される。膨張弁15は圧縮機吐出温度検出器31で検出される温度が能力と外気温度検出器32で検出される温度から算出される設定値になるように制御される。
【0010】
冷房時の動作を図3にて説明する。
四方弁12が冷房側に切り替えられ圧縮機11が駆動すると圧縮機11で高圧高温(図3a点)になった冷媒は四方弁12を通り室外熱交換器13に送られる。室外熱交換器13で室外ファン14より送風された空気に放熱し、高圧低温のガス冷媒(図3b点)となり膨張弁15で減圧された後(図3c点)、膨張機16で膨張しさらに減圧される(図3d点)。このとき、膨張過程で得られた動力(c点とd点のエンタルピ差)は副圧縮機18の駆動に使用される。膨張機16で膨張し低圧、低温の2相になった冷媒は水−冷媒熱交換器17で水を冷却し、ガス冷媒(図3e点)となって四方弁12を通り副圧縮機18で圧縮された後(図3f点)、アキュームレータ19より圧縮機11に戻る。水−冷媒熱交換器17で冷却された水はポンプ21により室内ユニット3内の室内熱交換器22で室内ファン23により送風される室内空気を冷却し、再び水−冷媒熱交換器17に戻る。
【0011】
ここで、室外熱交換器13の冷媒の入口は風下、出口が風上になっているために、室外熱交換器13内での冷媒温度が低下(図3のa点とb点の温度差)と空気が加熱されることによる温度差が相殺され、空気と冷媒の温度差が平均化され熱交換性能が向上する。また、水−冷媒熱交換器17内では冷媒と水が平行に流れることにより、つまり冷媒が熱交換器内を流れる間に生じる圧力損失による温度低下と冷却されることにより水の温度低下により、水と冷媒の温度差が平均化され熱交換性能が向上する。同様に、室内熱交換器21の水の入口は風下、出口が風上になっているために空気と水の温度差が平均化され熱交換性能が向上する。
【0012】
次に暖房時の動作を図4を用いて説明する。
四方弁12が暖房側に切り替えられ圧縮機11が駆動すると圧縮機11で高圧高温になった冷媒(図4a点)は四方弁12を通り水−冷媒熱交換器17に送られ水に放熱し、高圧、低温になった冷媒(図4b点)は膨張弁15で減圧された後(図4c点)、膨張機16で膨張減圧し動力回収した後(図4d点)、低圧、低温の2相の冷媒となり室外熱交換器13に送られる。室外熱交換器13で室外ファン14より送風された空気から吸熱することにより蒸発し、ガス冷媒となって(図4e点)四方弁12を通り副圧縮機18で圧縮された後(図4f点)、アキュームレータ19より圧縮機11に戻る。水−冷媒熱交換器17で加熱された水はポンプ21により室内ユニット3内の室内熱交換器22で室内ファン23により送風される室内空気を加熱し、再び水−冷媒熱交換器17に戻る。
【0013】
暖房時は室外熱交換器13の冷媒の入口は風上、出口が風下になっているために、つまり圧力損失により温度が低下した冷媒が室外熱交換器13の後列になるために空気と冷媒の温度差が平均化され熱交換性能が向上する。また、水−冷媒熱交換器17内では冷媒と水が対抗に流れることにより、冷媒が熱交換器内を流れる間に生じる圧力損失による温度低下と冷却され、水の温度低下により、水と冷媒の温度差が平均化され熱交換性能が向上する。同様に、室内熱交換器21の水の入口は風下、出口が風上になっているために空気と水の温度差が平均化され熱交換性能が向上する。
【0014】
冷房時と暖房時の水戻り温度検出器33と水供給温度検出器34で検出された温度差は、暖房時が大きくなるように設定されている。冷凍サイクルの特性からポンプ21の回転数を大きくし熱搬送装置20内の水の流量を多くすることにより同一能力での冷凍サイクルの消費電力は低下する。しかし、2次冷媒の流量を増加させると流量増と熱搬送装置20内の圧力損失のためにポンプ21の消費電力が増加する。
【0015】
冷房時、水−冷媒熱交換器17の冷媒温度は圧力損失による温度低下はあるものの変化は少なく、水の温度差を大きくするため蒸発温度を低下させ、図5に示すように空気調和装置1全体の消費電力を最少にするためには水流量を多くし、水温度差を小さくする。
暖房時は水−冷媒熱交換器17内の冷媒の温度が図4のa点とb点の差に見られるように大きくなり、水と冷媒を対向に流すことにより水流量を少なくし、水温度差を大きくしても圧縮機吐出冷媒温度が適正になるように膨張弁15で制御し、高圧側の圧力上昇を少なく、消費電力を少なくするために水温度差を小さくする。
【0016】
さらに、ポンプ20の消費電力は同一水循環量でも室外ユニット2と室内ユニット3の設置場所により配管長さが異なり消費電力が変化する。このために、配管設定器38により配管長さを設定することにより、常に消費電力が少ない水温度差で運転が可能となる。すなわち、室外ユニット2と室内ユニット3の設置場所が離れ、水配管の長さが長くなると圧力損失によるポンプ21の消費電力が増加する。このために、配管長さの増加に応じて水温度を大きめに設定することで冷凍サイクル2の消費電力は増加するが、それ以上にポンプ21の消費電力が低減でき全体として消費電力の増加を抑制できる。
【0017】
以上のように、水循環量を冷房と暖房で変えることにより空気調和装置の消費電力を低減できる。また、減圧装置として膨張弁と膨張機を設け、圧縮機吐出温度より膨張弁を制御することにより冷房時のような放熱終了後の冷媒温度が高い場合にも膨張機により冷媒の膨張動力が回収できると共に、蒸発開始時のエンタルピを小さくでき、圧縮機動力の低減と能力向上を図れる。そして、圧縮機吐出温度を最適に設定することにより水−冷媒熱交換器の入口冷媒温度を最適にでき熱交換性能を確保できる。
【0018】
水−冷媒熱交換器とポンプと室内熱交換器を接続し2次冷媒を封入した熱搬送装置からなる空気調和装置において、水−冷媒熱交換器内の冷媒と2冷媒を暖房時に対向に流れるように設置するとともに、冷房時と暖房時の2次冷媒の流量を異なるように設定したので、高圧側冷媒が超臨界状態になる冷媒を封入した冷凍サイクルを利用する空気調和装置の消費電力を少なくできる。また、室内熱交換器の2次冷媒入口を風下、出口を風上、室外熱交換器の冷媒入口を冷房時に風下、出口を風上にすることにより室内熱交換器及び室外熱交換器の伝熱性能が向上し空気調和装置の消費電力を低減できる。
【0019】
【発明の効果】
以上述べたように、本発明によれば超臨界冷凍サイクルとして運転される空気調和装置であってもシステム全体の効率を向上し、消費電力を少なくすることができる。
【図面の簡単な説明】
【図1】空気調和装置の構成をブロック図。
【図2】減圧装置の詳細を示す模式図。
【図3】冷房時の温度−エンタルピ線図。
【図4】暖房時の温度−エンタルピ線図。
【図5】水温度差と消費電力の関係を示すグラフ。
【符号の説明】
1…空気調和装置、2…で室外ユニット、3…室内ユニット、10…冷凍サイクル、11…圧縮機、12…四方弁、13…室外熱交換器、14…室外ファン、15…膨張弁、16…膨張機、17…冷媒−水熱交換器、18…副圧縮機、20…熱搬送装置、21…ポンプ、22…室内熱交換器、23…室内ファン、30…室外制御器、31…吐出温度検出器、32…室外空気温度検出器、33…水戻り温度検出器、34…水供給温度検出器、35…室内温度検出器、36…室内制御器、37…操作器、38…配管設定器、40…逆止弁。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner using a refrigeration cycle in which a refrigerant having a low global environmental load is used, and is particularly suitable for an operation using a refrigerant compressed to a critical pressure on a high pressure side.
[0002]
[Prior art]
Conventionally, non-combustible and non-toxic Freon refrigerants are used in refrigeration cycles of air conditioners and the like. However, a CFC refrigerant having a large global warming potential and a refrigerant having a lower environmental load are demanded. Carbon dioxide gas is known as a refrigerant having a low global environmental load. However, when carbon dioxide gas is used as a refrigerant for an air conditioner, the high pressure side becomes supercritical and system efficiency is reduced. Therefore, as a measure for improving the efficiency of a refrigeration cycle using carbon dioxide gas, a method of controlling the pressure on the high pressure side is known, for example, described in Patent Document 1.
[0003]
[Patent Document 1]
Japanese Patent No. 2931668 [0004]
[Problems to be solved by the invention]
In the prior art as described above, the efficiency of the refrigeration cycle is increased by controlling the pressure on the high pressure side.However, when the carbon dioxide gas is at a higher pressure than the Freon refrigerant and the high pressure pipe is drawn to a space requiring air conditioning, It is necessary to ensure safety against high pressure such as welding, and it is necessary to use a secondary refrigerant such as water in consideration of workability at the time of installation. In this case, in order to increase the efficiency of the system, it is necessary to reduce not only the efficiency of the refrigeration cycle but also the power for transporting the secondary refrigerant. When the temperature of the air for cooling the radiator becomes high, the efficiency of the carbon dioxide gas is significantly reduced.
[0005]
An object of the present invention is to improve the efficiency of the entire system and reduce power consumption even in an air conditioner operated as a supercritical refrigeration cycle.
[0006]
[Means for Solving the Problems]
To achieve the above object, the present invention connects a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and a water-refrigerant heat exchanger to a refrigeration cycle, the water-refrigerant heat exchanger, a pump, and indoor heat. In an air conditioner comprising a heat transfer device connected to an exchanger and filled with a secondary refrigerant, the refrigeration cycle is operated so that the high-pressure side refrigerant is in a supercritical state, and the refrigerant in the water-refrigerant heat exchanger is connected to the secondary refrigerant. The refrigerant flows oppositely during heating, and the flow rate of the secondary refrigerant differs between during cooling and during heating.
[0007]
In the above, it is preferable that the water circulation amount can be changed in relation to the length of the water-refrigerant heat exchanger and the indoor heat exchanger.
Furthermore, the present invention relates to a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, and a water-refrigerant heat exchanger are connected and a refrigerant in which a high-pressure side refrigerant is in a supercritical state is enclosed, In an air conditioner comprising a heat transfer device in which a heat exchanger, a pump and an indoor heat exchanger are connected and a secondary refrigerant is sealed, an indoor heat exchanger has a secondary refrigerant inlet leeward, an outlet leeward, and an outdoor heat exchanger. The refrigerant inlet is set downwind during cooling, and the outlet is set upwind.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described.
1 is a configuration diagram of an air conditioner, FIG. 2 is a detailed diagram of a pressure reducing device, FIG. 3 is a temperature-enthalpy diagram during cooling, FIG. 4 is a temperature-enthalpy diagram during heating, and FIG. It is a relation diagram of power consumption. 1 and 2, reference numeral 1 denotes an air conditioner, which includes an outdoor unit 2 and an indoor unit 3. The refrigeration cycle 10 provided in the outdoor unit 2 includes a compressor 11, a four-way valve 12 for switching the flow of refrigerant in cooling and heating, an outdoor heat exchanger 13, an outdoor fan 14 for blowing air to the outdoor heat exchanger 13, and a pressure reducing device. It comprises an expansion valve 15, an expander 16, a refrigerant-water heat exchanger 17, a sub-compressor 18 having an integral rotary shaft with the expander 16, and an accumulator 19, in which carbon dioxide gas is sealed as a refrigerant.
The heat transfer device 20 includes a water-refrigerant heat exchanger 17 that exchanges heat with a refrigerant, a pump 21, an indoor heat exchanger 22, and an indoor fan 23 that blows air to the indoor heat exchanger 22. Water is enclosed. An outdoor controller 30, a discharge temperature detector 31, an outdoor air temperature detector 32, a water return temperature detector 33, a water supply temperature detector 34, an indoor temperature detector 35, an indoor controller for controlling the air conditioner 1 36, an operation device 37, and a pipe setting device 38 are provided. FIG. 2 shows the arrangement of the expansion valve 15 and the expander 16 constituting the pressure reducing device. With the four check valves 40, the refrigerant flows through the expansion valve 15 and then flows through the expander 16 in both cooling and heating operations.
[0009]
The operation of the air conditioner 1 configured as described above will be described.
When the selection of cooling and heating and the indoor temperature setting are set by the operating device 37, the setting conditions and the temperature detected by the indoor temperature detector 35 are sent from the indoor controller 36 to the outdoor controller 30 and the indoor fan is driven. Is done. The four-way valve 12 is switched by cooling and heating by the outdoor controller 30, and the compressor 11, the outdoor fan 14, and the pump 20 are driven. Here, the number of rotations of the compressor 11 is controlled so as to have the capacity calculated from the difference between the room temperature set value and the room temperature. Further, the pump 20 is controlled so that the temperature difference detected by the water return temperature detector 33 and the water supply temperature detector 34 becomes the temperature difference calculated by the capacity. The expansion valve 15 is controlled so that the temperature detected by the compressor discharge temperature detector 31 becomes a set value calculated from the capacity and the temperature detected by the outside air temperature detector 32.
[0010]
The operation during cooling will be described with reference to FIG.
When the four-way valve 12 is switched to the cooling side and the compressor 11 is driven, the refrigerant which has become high pressure and high temperature (point 3a in FIG. 3) in the compressor 11 passes through the four-way valve 12 and is sent to the outdoor heat exchanger 13. The heat is radiated to the air blown from the outdoor fan 14 by the outdoor heat exchanger 13, becomes high-pressure and low-temperature gas refrigerant (point b in FIG. 3), is decompressed by the expansion valve 15 (point c in FIG. 3), and is expanded by the expander 16. The pressure is reduced (point 3d in FIG. 3). At this time, the power obtained in the expansion process (the enthalpy difference between the points c and d) is used to drive the sub-compressor 18. The refrigerant that has been expanded into two phases of low pressure and low temperature by being expanded by the expander 16 is cooled by a water-refrigerant heat exchanger 17, becomes a gas refrigerant (point e in FIG. 3), passes through the four-way valve 12, and is cooled by the sub compressor 18. After being compressed (point f in FIG. 3), the accumulator 19 returns to the compressor 11. The water cooled in the water-refrigerant heat exchanger 17 cools the indoor air blown by the indoor fan 23 in the indoor heat exchanger 22 in the indoor unit 3 by the pump 21 and returns to the water-refrigerant heat exchanger 17 again. .
[0011]
Here, since the refrigerant inlet of the outdoor heat exchanger 13 is leeward and the outlet is leeward, the refrigerant temperature in the outdoor heat exchanger 13 decreases (the temperature difference between points a and b in FIG. 3). ) And the temperature difference due to the heating of the air cancels out, the temperature difference between the air and the refrigerant is averaged, and the heat exchange performance is improved. Also, in the water-refrigerant heat exchanger 17, the refrigerant and the water flow in parallel, that is, the temperature drop due to the pressure loss caused while the refrigerant flows through the heat exchanger and the temperature drop of the water due to cooling, The temperature difference between water and refrigerant is averaged, and the heat exchange performance is improved. Similarly, since the inlet of the water of the indoor heat exchanger 21 is downwind and the outlet is upwind, the temperature difference between air and water is averaged, and the heat exchange performance is improved.
[0012]
Next, the operation during heating will be described with reference to FIG.
When the four-way valve 12 is switched to the heating side and the compressor 11 is driven, the refrigerant which has become high pressure and high temperature in the compressor 11 (point a in FIG. 4) is sent to the water-refrigerant heat exchanger 17 through the four-way valve 12 and radiates heat to water. The refrigerant that has become high pressure and low temperature (point b in FIG. 4) is decompressed by the expansion valve 15 (point c in FIG. 4), expanded and decompressed by the expander 16 to recover power (point d in FIG. 4), and It becomes a phase refrigerant and is sent to the outdoor heat exchanger 13. After being absorbed by the air blown by the outdoor fan 14 in the outdoor heat exchanger 13 to evaporate and become a gas refrigerant (point e in FIG. 4), the refrigerant passes through the four-way valve 12 and is compressed by the sub-compressor 18 (point f in FIG. 4). ), Returning to the compressor 11 from the accumulator 19. The water heated by the water-refrigerant heat exchanger 17 heats the indoor air blown by the indoor fan 23 by the indoor heat exchanger 22 in the indoor unit 3 by the pump 21 and returns to the water-refrigerant heat exchanger 17 again. .
[0013]
At the time of heating, the inlet of the refrigerant of the outdoor heat exchanger 13 is upwind and the outlet is downwind, that is, the refrigerant whose temperature has decreased due to the pressure loss becomes the rear row of the outdoor heat exchanger 13 so that the air and the refrigerant Are averaged, and the heat exchange performance is improved. Further, in the water-refrigerant heat exchanger 17, the refrigerant and water flow in opposition to each other, whereby the refrigerant is cooled and cooled by the pressure loss generated while the refrigerant flows through the heat exchanger. Are averaged, and the heat exchange performance is improved. Similarly, since the inlet of the water of the indoor heat exchanger 21 is downwind and the outlet is upwind, the temperature difference between air and water is averaged, and the heat exchange performance is improved.
[0014]
The temperature difference detected by the water return temperature detector 33 and the water supply temperature detector 34 during cooling and during heating is set to be large during heating. By increasing the rotation speed of the pump 21 and increasing the flow rate of water in the heat transfer device 20 from the characteristics of the refrigeration cycle, the power consumption of the refrigeration cycle with the same capacity decreases. However, if the flow rate of the secondary refrigerant is increased, the power consumption of the pump 21 increases due to the increase in the flow rate and the pressure loss in the heat transfer device 20.
[0015]
At the time of cooling, the refrigerant temperature of the water-refrigerant heat exchanger 17 has a small change although there is a temperature drop due to the pressure loss, and the evaporation temperature is lowered in order to increase the temperature difference of the water. As shown in FIG. To minimize the overall power consumption, increase the water flow rate and reduce the water temperature difference.
During heating, the temperature of the refrigerant in the water-refrigerant heat exchanger 17 increases as seen from the difference between the points a and b in FIG. 4. Even if the temperature difference is increased, the expansion valve 15 is controlled so that the compressor discharge refrigerant temperature becomes appropriate, and the water temperature difference is reduced in order to reduce the pressure increase on the high pressure side and reduce power consumption.
[0016]
Furthermore, even if the power consumption of the pump 20 is the same water circulation amount, the pipe length varies depending on the installation location of the outdoor unit 2 and the indoor unit 3, and the power consumption changes. For this reason, by setting the pipe length by the pipe setting device 38, it is possible to always operate with a water temperature difference that consumes less power. That is, when the installation locations of the outdoor unit 2 and the indoor unit 3 are separated and the length of the water pipe is increased, the power consumption of the pump 21 due to the pressure loss increases. For this reason, the power consumption of the refrigeration cycle 2 is increased by setting the water temperature to be relatively large in accordance with the increase in the pipe length, but the power consumption of the pump 21 can be further reduced and the power consumption as a whole can be increased. Can be suppressed.
[0017]
As described above, the power consumption of the air conditioner can be reduced by changing the amount of water circulation between cooling and heating. An expansion valve and an expander are provided as a decompression device, and the expansion valve is controlled by the compressor discharge temperature to recover the expansion power of the refrigerant by the expander even when the refrigerant temperature after the end of heat release such as during cooling is high. In addition, the enthalpy at the start of evaporation can be reduced, and the power of the compressor can be reduced and the capacity can be improved. By setting the compressor discharge temperature optimally, the inlet refrigerant temperature of the water-refrigerant heat exchanger can be optimized, and the heat exchange performance can be secured.
[0018]
In an air conditioner including a water-refrigerant heat exchanger, a heat transfer device that connects a pump and an indoor heat exchanger, and encapsulates a secondary refrigerant, the refrigerant in the water-refrigerant heat exchanger and the two refrigerants are opposed to each other during heating. And the flow rate of the secondary refrigerant during cooling and during heating is set to be different, so that the power consumption of the air conditioner using a refrigeration cycle in which the refrigerant in which the high-pressure side refrigerant becomes supercritical is sealed. Can be reduced. In addition, the secondary refrigerant inlet of the indoor heat exchanger is leeward, the outlet is leeward, the refrigerant inlet of the outdoor heat exchanger is leeward during cooling, and the outlet is leeward during cooling, so that the transfer of the indoor heat exchanger and the outdoor heat exchanger is performed. Thermal performance is improved and power consumption of the air conditioner can be reduced.
[0019]
【The invention's effect】
As described above, according to the present invention, even in an air conditioner operated as a supercritical refrigeration cycle, the efficiency of the entire system can be improved and power consumption can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of an air conditioner.
FIG. 2 is a schematic diagram showing details of a decompression device.
FIG. 3 is a temperature-enthalpy diagram during cooling.
FIG. 4 is a temperature-enthalpy diagram during heating.
FIG. 5 is a graph showing a relationship between a water temperature difference and power consumption.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Air conditioner, 2 ... Outdoor unit, 3 ... Indoor unit, 10 ... Refrigeration cycle, 11 ... Compressor, 12 ... Four-way valve, 13 ... Outdoor heat exchanger, 14 ... Outdoor fan, 15 ... Expansion valve, 16 ... Expander, 17 ... Refrigerant-water heat exchanger, 18 ... Subcompressor, 20 ... Heat transfer device, 21 ... Pump, 22 ... Indoor heat exchanger, 23 ... Indoor fan, 30 ... Outdoor controller, 31 ... Discharge Temperature detector, 32: outdoor air temperature detector, 33: water return temperature detector, 34: water supply temperature detector, 35: indoor temperature detector, 36: indoor controller, 37: operating device, 38: piping setting Vessel, 40 ... check valve.

Claims (3)

圧縮機、四方弁、室外熱交換器、減圧装置、水−冷媒熱交換器を接続し冷凍サイクルと、前記水−冷媒熱交換器とポンプと室内熱交換器を接続し2次冷媒を封入した熱搬送装置からなる空気調和装置において、
前記冷凍サイクルは高圧側冷媒が超臨界状態になるように運転され、前記水−冷媒熱交換器内の冷媒と前記2次冷媒とは暖房時に対向に流れ、前記2次冷媒の流量は冷房時と暖房時とで異なることを特徴とする空気調和装置。
A compressor, a four-way valve, an outdoor heat exchanger, a decompression device, and a water-refrigerant heat exchanger were connected to connect a refrigeration cycle, and the water-refrigerant heat exchanger, a pump, and an indoor heat exchanger were connected to charge a secondary refrigerant. In an air conditioner consisting of a heat transfer device,
The refrigeration cycle is operated such that the high-pressure side refrigerant is in a supercritical state, the refrigerant in the water-refrigerant heat exchanger and the secondary refrigerant flow oppositely during heating, and the flow rate of the secondary refrigerant is during cooling. An air conditioner characterized in that it differs between heating and heating.
請求項1記載のものにおいて、前記水−冷媒熱交換器と前記室内熱交換器との長さに関連して水循環量を変更可能としたことを特徴とする空気調和装置。The air conditioner according to claim 1, wherein a water circulation amount can be changed in relation to a length of the water-refrigerant heat exchanger and the indoor heat exchanger. 圧縮機、四方弁、室外熱交換器、減圧装置、水−冷媒熱交換器を接続し高圧側冷媒が超臨界状態になる冷媒を封入した冷凍サイクルと、前記水−冷媒熱交換器とポンプと室内熱交換器を接続し2次冷媒を封入した熱搬送装置からなる空気調和装置において、
前記室内熱交換器の2次冷媒入口を風下、出口を風上、前記室外熱交換器の冷媒入口を冷房時に風下、出口を風上に設置されたことを特徴とする空気調和装置。
A refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, and a water-refrigerant heat exchanger are connected and a refrigerant in which the high-pressure side refrigerant becomes a supercritical state is enclosed, and the water-refrigerant heat exchanger and a pump are provided. In an air conditioner comprising a heat transfer device connected to an indoor heat exchanger and filled with a secondary refrigerant,
An air conditioner, wherein a secondary refrigerant inlet of the indoor heat exchanger is leeward, an outlet is leeward, and a refrigerant inlet of the outdoor heat exchanger is leeward during cooling, and an outlet is installed upwind.
JP2003089574A 2003-03-28 2003-03-28 Air conditioner Expired - Fee Related JP3933076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089574A JP3933076B2 (en) 2003-03-28 2003-03-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089574A JP3933076B2 (en) 2003-03-28 2003-03-28 Air conditioner

Publications (2)

Publication Number Publication Date
JP2004293999A true JP2004293999A (en) 2004-10-21
JP3933076B2 JP3933076B2 (en) 2007-06-20

Family

ID=33403388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089574A Expired - Fee Related JP3933076B2 (en) 2003-03-28 2003-03-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP3933076B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207928A (en) * 2005-01-28 2006-08-10 Mitsubishi Electric Corp Refrigeration air conditioning system
FR2902864A1 (en) * 2006-06-27 2007-12-28 Eurocave Sa Sa Controlled ambience part e.g. wine cellar, air-conditioning device, has auxiliary loop exchanging heat in main loop and exchanging heat with air for part to be air-conditioned in fluid or air exchanger housed in auxiliary enclosure
EP2000754A2 (en) * 2007-06-04 2008-12-10 RHOSS S.p.A. Method for estimation the thermal load of a circuit for a service fluid at outlet from a refrigerating machine
WO2010070842A1 (en) * 2008-12-17 2010-06-24 日立アプライアンス株式会社 Heat pump device
WO2011095120A1 (en) * 2010-02-04 2011-08-11 珠海格力电器股份有限公司 Air conditioner and outdoor unit of air conditioner
US20120042674A1 (en) * 2009-05-12 2012-02-23 Mitsubishi Electric Corporation Air-conditioning apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207928A (en) * 2005-01-28 2006-08-10 Mitsubishi Electric Corp Refrigeration air conditioning system
FR2902864A1 (en) * 2006-06-27 2007-12-28 Eurocave Sa Sa Controlled ambience part e.g. wine cellar, air-conditioning device, has auxiliary loop exchanging heat in main loop and exchanging heat with air for part to be air-conditioned in fluid or air exchanger housed in auxiliary enclosure
EP2000754A2 (en) * 2007-06-04 2008-12-10 RHOSS S.p.A. Method for estimation the thermal load of a circuit for a service fluid at outlet from a refrigerating machine
EP2000754A3 (en) * 2007-06-04 2013-03-27 RHOSS S.p.A. Method for estimation the thermal load of a circuit for a service fluid at outlet from a refrigerating machine
WO2010070842A1 (en) * 2008-12-17 2010-06-24 日立アプライアンス株式会社 Heat pump device
JP2010144963A (en) * 2008-12-17 2010-07-01 Hitachi Appliances Inc Heat pump device
US20120042674A1 (en) * 2009-05-12 2012-02-23 Mitsubishi Electric Corporation Air-conditioning apparatus
EP2431675A1 (en) * 2009-05-12 2012-03-21 Mitsubishi Electric Corporation Air conditioner
JP5465242B2 (en) * 2009-05-12 2014-04-09 三菱電機株式会社 Air conditioner
EP2431675A4 (en) * 2009-05-12 2015-02-18 Mitsubishi Electric Corp Air conditioner
US9366452B2 (en) 2009-05-12 2016-06-14 Mitsubishi Electric Corporation Air-conditioning apparatus with primary and secondary heat exchange cycles
US9534807B2 (en) 2009-05-12 2017-01-03 Mitsubishi Electric Corporation Air conditioning apparatus with primary and secondary heat exchange cycles
WO2011095120A1 (en) * 2010-02-04 2011-08-11 珠海格力电器股份有限公司 Air conditioner and outdoor unit of air conditioner

Also Published As

Publication number Publication date
JP3933076B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP5395479B2 (en) Air conditioning system
JP4486133B2 (en) Cooling device for communication device and cooling control method thereof
JP3679323B2 (en) Refrigeration cycle apparatus and control method thereof
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP2004069286A (en) Air conditioner having cold water and hot water supplying device
JP2011080634A (en) Refrigerating cycle device and hot-water heating device
JP2008025924A (en) Refrigerant filling method in refrigerating device using carbon dioxide as refrigerant
JP2004218944A (en) Heat pump air conditioning and water heater
JP2005226950A (en) Refrigerating air conditioner
JP2007218460A (en) Refrigerating cycle device and cool box
EP2918921B1 (en) Hot water generator
KR101497210B1 (en) Hybrid cooling and heating system and the appratus having it
JP2004144399A (en) Refrigeration cycle device
JP2012202581A (en) Refrigeration cycle device and control method thereof
JP2005249384A (en) Refrigerating cycle device
JP2011085284A (en) Heat pump type heating device
JP3933076B2 (en) Air conditioner
WO2013080497A1 (en) Refrigeration cycle device and hot water generating apparatus comprising same
JP2017166773A (en) Heat pump type cold/hot water supply system
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP3863555B2 (en) Refrigeration cycle equipment
KR20180113367A (en) Hybrid air-conditioning system
JPH11344240A (en) Air conditioning heat source
KR100613502B1 (en) Heat pump type air conditioner
KR200412598Y1 (en) Heat pump system for having function of hot water supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees