[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004292755A - Flame-retardant polyamide resin composition - Google Patents

Flame-retardant polyamide resin composition Download PDF

Info

Publication number
JP2004292755A
JP2004292755A JP2003090274A JP2003090274A JP2004292755A JP 2004292755 A JP2004292755 A JP 2004292755A JP 2003090274 A JP2003090274 A JP 2003090274A JP 2003090274 A JP2003090274 A JP 2003090274A JP 2004292755 A JP2004292755 A JP 2004292755A
Authority
JP
Japan
Prior art keywords
polyamide
polyamide resin
flame
weight
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003090274A
Other languages
Japanese (ja)
Other versions
JP2004292755A5 (en
Inventor
Sadatsugu Goto
禎次 後藤
Takashi Iwamoto
隆志 岩元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003090274A priority Critical patent/JP2004292755A/en
Publication of JP2004292755A publication Critical patent/JP2004292755A/en
Publication of JP2004292755A5 publication Critical patent/JP2004292755A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a flame-retardant polyamide resin composition which shows a high extrusion processability and molding processability, has an extremely high flame retardance at a thin-wall part, generates no highly corrosive hydrogen halide gas at combustion and is excellent in mechanical and electrical characteristics. <P>SOLUTION: This polyamide resin composition comprises (a) 30-85 wt.% polyamide resin, (b) 1-30 wt.% adduct formed from melamine and phosphoric acid, (c) 1-30 wt.% phosphinate of a specific structure and/or diphosphinate of a specific structure and (d) 5-40 wt.% inorganic filler. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は難燃ポリアミド樹脂組成物に関する。特に、電気・電子分野のコネクター、ブレーカー、マグネットスイッチ等の部品、自動車分野の電装部品等の部品材料に好適に用いられる難燃ポリアミド樹脂組成物に関する。とりわけ、本発明は押出加工性や成形加工性が良くて、薄肉難燃性が極めて高く、燃焼時に腐食性の高いハロゲン化水素ガスの発生がなく、かつ優れた機械特性、電気特性を有する難燃ポリアミド樹脂組成物に関する。
【0002】
【従来の技術】
従来、ポリアミド樹脂は、機械的強度、耐熱性などに優れることから、自動車部品、機械部品、電気・電子部品などの分野で使用されている。特に、電気・電子部品用途において、ますます難燃性に対する要求レベルが高くなり、本来ポリアミド樹脂の有する自己消火性よりもさらに高度な難燃性が要求され、この為、アンダーライターズ・ラボラトリーのUL94V−0規格に適合する難燃レベルの高度化検討が数多くなされ、そしてそれらは一般にハロゲン系難燃剤やトリアジン系難燃剤を添加する方法が取られている。
【0003】
例えば、ポリアミド樹脂への塩素置換多環式化合物の添加(例えば、特許文献1参照。)や臭素系難燃剤、例えば、デカブロモジフェニルエーテルの添加(例えば、特許文献2参照。)、臭素化ポリスチレンの添加(例えば、特許文献3、4参照。)、臭素化ポリフェニレンエーテルの添加(例えば、特許文献5参照。)、臭素化架橋芳香族重合体の添加(例えば、特許文献6参照。)、臭素化スチレン−無水マレイン酸重合体の添加(例えば、特許文献7参照。)等が知られている。特にこれらハロゲン系難燃剤をガラス繊維等で強化したポリアミド樹脂に配合した組成物は高度の難燃性と高い剛性から、電気・電子部品用途、特にプリント積層板に搭載されたり接続されたりするコネクター用途に多用されてきた。
【0004】
しかしながら、ハロゲン系難燃剤は燃焼時に腐食性のハロゲン化水素及び煙を発生したり、有毒な物質を排出する疑いがもたれ、これら環境問題からハロゲン系難燃剤の配合されたプラスチック製品の使用を規制する動きがある。このことから、ハロゲンフリーのトリアジン系難燃剤が注目され数多く検討がなされている。例えば難燃剤としてメラミンを使用する技術(例えば、特許文献8参照。)、シアヌル酸を使用する技術(例えば、特許文献9参照。)、シアヌル酸メラミンを使用する技術(例えば、特許文献10参照。)が良く知られている。これらの技術で得られた非強化のポリアミド樹脂組成物はUL94V−0規格に適合する高度の難燃レベルを有するものの、ガラス繊維等の無機強化材で強化し剛性を高めた組成においては、難燃剤を多量に配合した場合であっても、燃焼時、綿着火現象があり、UL94V−0規格に適合しない問題がある。
【0005】
一方、イントメッセント型難燃剤であるリン酸メラミン、ピロリン酸メラミンあるいはポリリン酸メラミンをガラス繊維強化ポリアミド樹脂に使用するハロゲンフリーの難燃技術(例えば、特許文献11参照。)、無機質強化ポリアミド樹脂にポリリン酸メラミンに加えチャー化触媒及び/又はチャー形成剤を併用する難燃技術(例えば、特許文献12参照。)、ポリリン酸メラミンとホスフィン酸塩を組み合わせた難燃剤コンビネーション技術(例えば、特許文献13参照。)が提案され、1/16inchの成形品において難燃規格UL94V−0規格を満足することが知られている。
【0006】
しかし、これらの技術では、押出加工時にストランドが発泡したり、多量のガスが発生するなどの押出加工性に難があるばかりでなく、成形加工時に金型汚染を起こすなどいわゆるモールドデポジットが発生したり、流動性や離型性に劣るという欠点があった。また電気・電子部品のコネクター用途で特に要求される1/32inchの薄肉成形品でのUL94V−0規格を満足するためにはリン酸メラミン系難燃剤を多く用いる必要があるため、ガラス繊維強化ポリアミド樹脂組成物の機械的特性が大きく低下するばかりでなく、電気特性、とりわけ高い電圧環境下に於いて使用される電気部品に要求される耐トラッキング性に劣るという欠点があるなど、必ずしも電気・電子部品用の成形材料として満足されるものではなかった。
【0007】
又、1/32inchの薄肉成形品での難燃規格UL94V0を達成する技術として、イントメッセント型難燃剤である硫酸メラミンをガラス繊維強化半芳香族ポリアミド樹脂に適用した技術(例えば、特許文献14参照。)も開示されているが、この技術においてもポリアミド樹脂成分量に対して難燃剤を多く配合する必要があり、上記と同様の問題があった。
さらには、1/32inchの薄肉成形品での難燃規格UL94V−0を達成しつつ、高い耐トラッキング性を付与する技術として無機質強化ポリアミド樹脂にリン酸メラミン複合難燃剤に加えアルカリ土類金属塩を配合する技術(例えば、特許文献15参照。)も提案されているが、この技術で得られた成形品は脆く、例えば複雑な形状を有するコネクターに適用した際は、取り扱い時や運搬時にコネクターが欠けたり、割れを生じる問題があった。
【0008】
【特許文献1】
特開昭48−29846号公報
【特許文献2】
特開昭47−7134号公報
【特許文献3】
特開昭51−47044号公報
【特許文献4】
特開平4−175371号公報
【特許文献5】
特開昭54−116054号公報
【特許文献6】
特開昭63−317552号公報
【特許文献7】
特開平3−168246号公報
【特許文献8】
特公昭47−1714号公報
【特許文献9】
特開昭50−105744号公報
【特許文献10】
特開昭53−31759号公報
【特許文献11】
特表平10−505875号公報
【特許文献12】
WO98/45364
【特許文献13】
特開2001−72978号公報
【特許文献14】
特開2000−119512号公報
【特許文献15】
WO00/09606
【0009】
【発明が解決しようとする課題】
本発明の目的は、押出加工性や成形加工性が良くて、薄肉難燃性が極めて高く、燃焼時に腐食性の高いハロゲン化水素ガスの発生がなく、かつ優れた機械特性、電気特性を兼ね備えた難燃ポリアミド樹脂組成物を提供することにある。
【0010】
【課題を解決するための手段】
本発明者等は、鋭意研究を重ねた結果、無機質強化材、リン系難燃剤及びポリアミド樹脂を組み合わせた系に於いて、特定のホスフィン酸塩を適用した際に、前記目的を達成しうることを見いだし、この知見に基づき本発明を完成するに至った。
すなわち、本発明は、(a)ポリアミド樹脂30〜85重量%、(b)メラミンとリン酸とから形成される付加物1〜30重量%、(c)以下の式(I)で表されるホスフィン酸塩及び/または以下の式(II)で表されるジホスフィン酸塩1〜30重量%および(d)無機充填材5〜40重量%の各成分からなる難燃ポリアミド樹脂組成物である。
【0011】
【化3】

Figure 2004292755
【0012】
【化4】
Figure 2004292755
【0013】
【発明の実施の形態】
本発明について、以下具体的に説明する。
本発明に用いられる(a)ポリアミド樹脂に特に制限はないが、例えば、ε−カプロラクタム、アジピン酸、セバシン酸、ドデカン二酸、イソフタル酸、テレフタル酸、ヘキサメチレンジアミン、テトラメチレンジアミン、2−メチルペンタメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、メタキシリレンジアミン、ビス(3−メチル−4アミノシクロヘキシル)メタン等のポリアミド形成性モノマーを適宜組み合わせて得られるホモポリマー、共重合体及び/またはこれらの混合物を用いることができる。
【0014】
具体的にはポリアミド66、ポリアミド6、ポリアミド610、ポリアミド612、ポリアミド6I(ポリヘキサメチレンイソフタルアミド)、MXD(メタキシリレンジアミン)6ナイロン及びこれらのコポリアミド、及び/またはこれらの混合物が耐熱性の点で好ましい。又、ポリアミド66(ポリヘキサメチレンアジパミド)単位、及びポリアミド6I(ポリヘキサメチレンイソフタルアミド)単位を主たる構成成分とする半芳香族ポリアミド樹脂、特にポリアミド6I単位を5〜30重量%含む半芳香族ポリアミド樹脂が、リン酸メラミン系難燃剤と組み合わせた際に高度の難燃性を発現するので更に好ましい。
【0015】
かかる半芳香族ポリアミド樹脂として具体的には、ポリアミド66(ポリヘキサメチレンアジパミド)単位70〜95重量%とポリアミド6I(ポリヘキサメチレンイソフタルアミド)単位5〜30重量%との共重合体(ポリアミド66/6I)が耐熱性、成形品外観性、成形加工性、電気特性を満足するので好ましく、とりわけポリアミド66単位70〜90重量%とポリアミド6I単位10〜30重量%との共重合体が上記特性に加え、難燃性と成形時の良離型性を有するので特に好ましい。
また、ポリアミド66 70〜95重量%とポリアミド6I(ポリヘキサメチレンイソフタルアミド)5〜30重量%との混合ポリアミドは、耐熱性が高く、耐ハンダ性を要求される用途には好ましい。
【0016】
又、ポリアミド66単位の一部を他の脂肪族ポリアミド単位で置き換えた、ポリアミド66単位40〜89重量%、ポリアミド6I単位5〜30重量%及び他の脂肪族ポリアミド単位1〜30重量%からなる3元共重合体は成形流動性、成形品外観性に優れる。かかる3元共重合体としては、例えばカプロアミド単位(ポリアミド6単位)、ウンデカアミド単位(ポリアミド11単位)、ドデカアミド単位(ポリアミド12単位)、ヘキサメチレンセバカミド単位(ポリアミド610単位)、ヘキサメチレンドデカミド単位(ポリアミド612単位)でポリアミド66単位の一部を置換した3元共重合体、例えば(ポリアミド66/6I/6)、(ポリアミド66/6I/11)、(ポリアミド66/6I/12)、(ポリアミド66/6I/610)、(ポリアミド66/6I/612)が例示できる。
【0017】
また、ポリアミド66単位40〜89重量%、ポリアミド6I単位5〜30重量%及び他の脂肪族ポリアミド単位1〜30重量%からなる混合ポリアミドであっても本発明の目的を達成できる。
ポリアミド6I単位が30重量%を越える共重合体又は混合ポリアミドの場合は、耐熱性、成形加工性、電気特性が必ずしも十分でない場合があり、一方、ポリアミド6I単位が5重量%未満の共重合体又は混合ポリアミドの場合は、十分な難燃レベルを得るには難燃剤を多量に添加する必要がある。
【0018】
本発明の共重合体はランダム共重合体、ブロック共重合体のどちらであっても良く、又、これら共重合体は、本願発明の目的を損なわない範囲で他の芳香族ポリアミド樹脂を共重合成分として含んでいても良い。又、混合ポリアミドとは、2成分以上からなるポリアミドをブレンド、溶融混練等の重合以外の一般に使われる方法により混合したポリアミドのことである。
本発明の半芳香族ポリアミド樹脂の分子量は、成形可能な範囲の物であれば良く、JIS K6810に示される硫酸相対粘度が1.5〜3.5の範囲にあるポリアミド樹脂が、成形流動性が良好でかつ高度な難燃レベルを保持できるので特に好ましい。
【0019】
本発明で用いられるメラミンとリン酸とから形成される付加物(b)とは、次ぎの化学式(C・HP0、(ここでnは縮合度を表す)で示されるもので、メラミンとリン酸、ピロリン酸、ポリリン酸との実質的に等モルの反応生成物から得られる物を意味し、製法には特に制約はない。通常、リン酸メラミンを窒素雰囲気下、加熱縮合して得られるポリリン酸メラミンを挙げることができる。
【0020】
ここでリン酸メラミンを構成するリン酸としては、具体的にはオルトリン酸、亜リン酸、次亜リン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等が挙げられるが、特にオルトリン酸、ピロリン酸を用いたメラミンとの付加物を縮合したポリリン酸メラミンが難燃剤としての効果が高く、好ましい。特に耐熱性の点からかかるポリリン酸メラミンの縮合度nは5以上が好ましい。また、ポリリン酸メラミンはポリリン酸とメラミンの等モルの付加塩であっても良く、メラミンとの付加塩を形成するポリリン酸としては、いわゆる縮合リン酸と呼ばれる鎖状ポリリン酸、環状ポリメタリン酸が挙げられる。これらポリリン酸の縮合度nには特に制約はなく通常3〜50であるが、得られるポリリン酸メラミン付加塩の耐熱性の点でここに用いるポリリン酸の縮合度nは5以上が好ましい。かかるポリリン酸メラミン付加塩はメラミンとポリリン酸との混合物を例えば水スラリーとなし、よく混合して両者の反応生成物を微粒子状に形成させた後、このスラリーを濾過、洗浄、乾燥し、さらに必要であれば焼成し、得られた固形物を粉砕して得られる粉末である。
【0021】
本発明組成物を成形して得られる成形品の機械的強度、成形品外観の点でポリリン酸メラミンの粒径は100μm以下、好ましくは50μm以下に粉砕した粉末を用いるのが良い。0.5〜20μmの粉末を用いると高い難燃性を発現するばかりでなく成形品の強度が著しく高くなるので特に好ましい。
又、ポリリン酸メラミンは必ずしも完全に純粋である必要はなく、未反応のメラミンあるいはリン酸、ポリリン酸が多少残存していても良い。ポリリン酸メラミン中にリン原子として10〜18重量%含有するものが、成形加工時に成形金型に汚染性物質が付着する現象が少なく特に好ましい。
ポリリン酸メラミンは難燃剤として作用するが、シアヌル酸メラミンに代表されるトリアジン系難燃剤に比較して、ガラス繊維等の無機質強化材と併用して使用した際に、高度の難燃化効果を発揮し、特にポリアミド66とポリアミド6Iとの共重合体及び又は混合ポリアミドに配合した際には更に高度な難燃化効果を発現する。
【0022】
本発明に用いるホスフィン酸塩(c)とは、ホスフィン酸と金属炭酸塩、金属水酸化物または金属酸化物を用いて水溶液中で製造され、本質的にモノマー性化合物であるが、反応条件に依存して、環境によっては縮合度が1〜3のポリマー性ホスフィン酸塩も含まれる。ホスフィン酸としては、ジメチルホスフィン酸、エチルメチルホスフィン酸、ジエチルホスフィン酸、メチル−n−プロピルホスフィン酸、メタンジ(メチルホスフィン酸)、ベンゼン−1,4−(ジメチルホスフィン酸)、メチルフェニルホスフィン酸及びジフェニルホスフィン酸等が挙げられる。また金属成分としてはカルシウムイオン、マグネシウムイオン、アルミニウムイオン及び/または亜鉛イオンを含む金属炭酸塩、金属水酸化物または金属酸化物が挙げられる。
【0023】
ホスフィン酸塩としてはジメチルホスフィン酸カルシウム、ジメチルホスフィン酸マグネシウム、ジメチルホスフィン酸アルミニウム、ジメチルホスフィン酸亜鉛、エチルメチルホスフィン酸カルシウム、エチルメチルホスフィン酸マグネシウム、エチルメチルホスフィン酸アルミニウム、エチルメチルホスフィン酸亜鉛、ジエチルホスフィン酸カルシウム、ジエチルホスフィン酸マグネシウム、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛、メチル−n−プロピルホスフィン酸カルシウム、メチル−n−プロピルホスフィン酸マグネシウム、メチル−n−プロピルホスフィン酸アルミニウム、メチル−n−プロピルホスフィン酸亜鉛、メタンジ(メチルホスフィン酸)カルシウム、メタンジ(メチルホスフィン酸)マグネシウム、メタンジ(メチルホスフィン酸)アルミニウム、メタンジ(メチルホスフィン酸)亜鉛、ベンゼン−1,4−(ジメチルホスフィン酸)カルシウム、ベンゼン−1,4−(ジメチルホスフィン酸)マグネシウムが挙げられる。
【0024】
また、ベンゼン−1,4−(ジメチルホスフィン酸)アルミニウム、ベンゼン−1,4−(ジメチルホスフィン酸)亜鉛、メチルフェニルホスフィン酸カルシウム、メチルフェニルホスフィン酸マグネシウム、メチルフェニルホスフィン酸アルミニウム、メチルフェニルホスフィン酸亜鉛、ジフェニルホスフィン酸カルシウム、ジフェニルホスフィン酸マグネシウム、ジフェニルホスフィン酸アルミニウム、ジフェニルホスフィン酸亜鉛が挙げられる。特に難燃性、電気特性の観点からジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛が好ましい。
【0025】
本発明組成物を成形して得られる成形品の機械的強度、成形品外観の点でホスフィン酸塩の粒径は100μm以下、好ましくは50μm以下に粉砕した粉末を用いるのが良い。0.5〜20μmの粉末を用いると高い難燃性を発現するばかりでなく成形品の強度が著しく高くなるので特に好ましい。
ホスフィン酸塩は難燃剤として作用するが、メラミンとリン酸とから形成される付加物と併用することで少ない難燃剤量で優れた薄肉難燃性と優れた電気特性を発現する。
【0026】
本発明に用いる無機質強化材(d)としては、ガラス繊維、炭素繊維、チタン酸カリウム繊維、石膏繊維、黄銅繊維、ステンレス繊維、スチール繊維、セラミックス繊維、ボロンウィスカ繊維、マイカ、タルク、シリカ、炭酸カルシウム、カオリン、焼成カオリン、ウオラストナイト、ガラスビーズ、ガラスフレーク、酸化チタン等の繊維状、粒状、板状、あるいは針状の無機質強化材が挙げられる。これらの強化材は二種以上組み合わせて用いてもよい。特にガラス繊維、ウォラストナイト、タルク、焼成カオリン、マイカが好ましく使用される。又、ガラス繊維は長繊維タイプのロービング、短繊維タイプのチョップドストランド、ミルドファイバー等から選択して用いることが出来る。ガラス繊維はポリアミド用に表面処理した物を用いるのが好ましい。
【0027】
本発明の好ましい態様として、成分(a)、(b)、(c)及び(d)からなる難燃性ポリアミド樹脂組成物において、ポリアミド樹脂(a)の割合は、成形加工性、機械的物性の観点から30重量%以上であり、難燃性、剛性の観点から85重量%以下の範囲である。
メラミンとリン酸とから形成される付加物(b)の割合は、難燃効果の点から1重量%以上であり、混練時の分解ガス発生、金型に汚染性などの観点から30重量%以下であり、好ましくは1〜20重量%の範囲である。
ホスフィン酸塩(c)の割合は、難燃効果の点から1重量%以上であり、混練時の分解ガス発生、金型に汚染性などの観点から30重量%以下であり、好ましくは1〜20重量%の範囲である。
無機充填材(d)の割合は、機械的強度・剛性の観点から5重量%以上であり、物性改良効果の観点から40重量%以下であり、好ましくは10〜30重量%である。
【0028】
本発明では、更に無機系の難燃助剤を機械的物性や成形加工性に悪影響を与えない範囲に於いて添加することもできる。好ましい難燃助剤としては、水酸化マグネシウム、水酸化アルミニウム、硫化亜鉛、酸化鉄、酸化硼素、硼酸亜鉛等が挙げられる。
本発明の難燃ポリアミド樹脂組成物には、本発明の目的を損なわない範囲で、他の成分、例えば顔料、染料等の着色剤や、ポリアミド樹脂の一般的な熱安定剤である銅系熱安定剤(例えばヨウ化銅、酢酸銅等とヨウ化カリウム、臭化カルウムとの併用)、ヒンダードフェノール系酸化劣化防止剤に代表される有機系耐熱剤、耐候性改良剤、核剤、可塑剤、帯電防止剤等の添加剤、他の樹脂ポリマー等を添加することが出来る。
【0029】
本発明の難燃ポリアミド樹脂組成物の製造方法は、特に限定はないが、ポリアミド樹脂、メラミンとリン酸とから形成される付加物、ホスフィン酸塩、無機充填材を常用の単軸または2軸の押出機やニーダー等の混練機を用いて、200〜350℃の温度で溶融混練することが一般的であるが、機械特性を維持するために無機充填材は、ポリアミド樹脂、メラミンとリン酸とから形成される付加物、ホスフィン酸塩が十分に溶融混練された後に添加するのが好ましい。
本発明の組成物は、射出成形、押出成形、ブロー成形など公知の方法によってコネクター、コイルボビン、ブレーカー、電磁開閉器、ホルダー、プラグ、スイッチ等の電気、電子、自動車用途の各種成形品に成形される。
【0030】
【実施例】
以下の実施例により本発明をさらに詳しく説明するが、本発明はこれに限定されるものではない。なお、実施例及び比較例に用いた原材料及び測定方法を以下に示す。
[原材料]
(A)ポリアミド樹脂
(a−1):後記する重合例で得られたポリアミド66/6I(85/15)共重合体
(a−2):ポリアミド66 旭化成工業(株)製 商品名 レオナ1300
(a−3):ポリアミド6 宇部興産(株) 商品名 SF1013A
【0031】
(B)難燃剤
(b−1):ポリリン酸メラミン 日産化学(株)製 商品名 PMP−100
(b−2):メラミンシアヌレート 三菱化学(株)製 商品名 MCA−C0
(C)ホスフィン酸塩
(c−1)後記する製造例で得られた1.2エチルメチルホスフィン酸アルミニウム塩
(D)無機質強化材
(d−1):ガラス繊維、旭ファイバーグラス(株)製 商品名 CS03JA FT756 (平均繊維径10μm)
【0032】
[測定方法]
(1)薄肉難燃性;
UL94(米国Under Writers Laboratories Incで定められた規格)の方法に従って測定した。なお試験片の厚みは1/16inch及び1/32inchとし射出成形機(東芝機械製:IS50EP)を用いて成形して得た。
(2)硫酸相対粘度
JIS K6810に従って98%硫酸での相対粘度を測定した。
(3)機械特性
射出成形機(東芝機械製:IS50EP)を用いて、ASTM D790の曲げ試験片(厚さ3mm)を成形しASTM D790に準拠した方法で曲げ試験を実施し、曲げ強度、曲げ弾性率を求めた。
【0033】
(4)耐トラッキング性
射出成形機(東芝機械製:IS150E)を用いて、シリンダー温度270℃、金型温度80℃で、100×90×3mmの射出成形板を得た。この平板を日立化成(株)製 耐トラッキング試験機 HAT−500−3型にセット、IEC Publication 112規格に従って、100〜600Vの電圧下、0.1%塩化アンモニウム水溶液を30秒毎に滴下し試験片がトラッキングを起こすことなく、50滴で破壊しない最大電圧を求めた。この値が高いものほど耐トラッキング性に優れる。
【0034】
[重合例]
アジピン酸とヘキサメチレンジアミンの等モル塩2.00kgとイソフタル酸とヘキサメチレンジアミンの等モル塩0.35kgおよびアジピン酸0.1kg、および純水2.5kgを5Lのオートクレーブの中に仕込み良く撹拌した。充分窒素置換した後、撹拌しながら温度を室温から220℃まで約1時間かけて昇温した。この際、オートクレーブ内の水蒸気による自然圧で内圧はゲージ圧で1.76MPaになるが、1.76MPa以上の圧にならないよう水を反応系外に除去しながら加熱を続けた。更に2時間後内温が260℃に到達した時点で加熱を止め、オートクレーブのバルブを閉止し、約8時間かけて室温まで冷却した。冷却後オートクレーブを開け、約2kgのポリマーを取りだし粉砕した。得られた粉砕ポリマーを、10Lのエバポレーターに入れ窒素気流下、200℃で10時間固相重合した。固相重合によって得られたポリアミドは、融点245℃、硫酸相対粘度2.38であった。
【0035】
[1、2エチルホスフィン酸アルミニウムの製造例]
2106g(19.5モル)のエチルメチルホスフィン酸を6.5リットルの水に溶解し、507g(6.5モル)の水酸化アルミニウムを激しく撹拌しながら加え、混合物を85℃に加熱した。混合物を80〜90℃で合計65時間撹拌し、その後60℃に冷却し、吸引濾過する。重量が一定となるまで120℃の真空乾燥キャビネット中で乾燥した後、300℃以下では溶融しない微粒子粉末2140gを得た。
【0036】
【実施例1】
ポリアミド樹脂a−1が60重量%、難燃剤b−1が10重量%、ホスフィン酸塩c−1が10重量%、ガラス繊維d−1が20重量%、になるように2軸押出機(東芝機械製TEM35)を用いてシリンダー設定温度260℃、スクリュー回転100rpm、吐出量30kg/hrの条件下で、ポリアミド樹脂a−1、難燃剤b−1およびホスフィン酸塩c−1をトップフィード、ガラス繊維d−1はサイドフィードして混練し、ストランド状に取り出し、冷却後カッターで造粒しポリアミド樹脂組成物ペレットを得た。得られたペレットを前記した測定方法にて諸特性を調べた。その結果を表1にしめす。
【0037】
【実施例2】
ポリアミド樹脂としてa−2を用いた以外は実施例1と同様にしてペレットを得て、諸特性を調べた。その結果を表1にしめす。
【0038】
【実施例3】
ポリアミド樹脂としてa−3を用いた以外は実施例1と同様にしてペレットを得て、諸特性を調べた。その結果を表1にしめす。
【0039】
【実施例4〜6、比較例1〜2】
ポリアミド樹脂a−1、難燃剤b−1、ホスフィン酸塩c−1、ガラス繊維d−1の配合量を表1に示す割合にした以外は実施例1と同様にしてペレットを得て、諸特性を調べた。その結果を表1にしめす。
【0040】
【比較例3】
ポリアミド樹脂a−1が60重量%、難燃剤b−1が10重量%、難燃剤b−2が10重量%、ガラス繊維d−1が20重量%、になるように2軸押出機(東芝機械製TEM35)を用いてシリンダー設定温度240℃、スクリュー回転100rpm、吐出量30kg/hrの条件下で、ポリアミド樹脂a−1、難燃剤b−1および難燃剤b−2をトップフィード、ガラス繊維d−1はサイドフィードして混練し、ストランド状に取り出し、冷却後カッターで造粒しポリアミド樹脂組成物ペレットを得た。得られたペレットを前記した測定方法にて諸特性を調べた。その結果を表1にしめす。
【0041】
【表1】
Figure 2004292755
【0042】
【発明の効果】
本発明の組成物は薄肉成形品においても難燃性が極めて高く、燃焼時に腐食性の高いハロゲン化水素ガスの発生がなく、かつ優れた機械特性、電気特性を兼ね備えた成形材料であり、家電部品、電子部品、自動車部品等の用途に用いることが出来る。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flame-retardant polyamide resin composition. In particular, the present invention relates to a flame-retardant polyamide resin composition suitably used for components such as connectors, breakers, and magnet switches in the electric and electronic fields, and electrical components in the automotive field. In particular, the present invention has good extrudability and moldability, has extremely high thin-wall flame retardancy, does not generate highly corrosive hydrogen halide gas during combustion, and has excellent mechanical and electrical properties. The present invention relates to a flame-retardant polyamide resin composition.
[0002]
[Prior art]
Conventionally, polyamide resins have been used in fields such as automobile parts, mechanical parts, and electric / electronic parts because of their excellent mechanical strength and heat resistance. In particular, in electrical and electronic parts applications, the required level of flame retardancy has become increasingly higher, and a higher degree of flame retardancy has been required than the self-extinguishing property inherent in polyamide resin. For this reason, Underwriters Laboratory's Numerous studies have been made on the enhancement of the flame retardant level conforming to the UL94V-0 standard, and these methods generally employ a method of adding a halogen-based flame retardant or a triazine-based flame retardant.
[0003]
For example, addition of a chlorine-substituted polycyclic compound to a polyamide resin (for example, see Patent Document 1), addition of a brominated flame retardant, for example, decabromodiphenyl ether (for example, see Patent Document 2), and addition of brominated polystyrene. Addition (for example, see Patent Documents 3 and 4), addition of a brominated polyphenylene ether (for example, see Patent Document 5), addition of a brominated crosslinked aromatic polymer (for example, see Patent Document 6), bromination. Addition of a styrene-maleic anhydride polymer (for example, see Patent Document 7) is known. In particular, a composition in which these halogen-based flame retardants are blended with a polyamide resin reinforced with glass fiber, etc., is a connector that is used for electrical and electronic parts, especially for printed laminates, because of its high flame retardancy and high rigidity. It has been frequently used for applications.
[0004]
However, halogen-based flame retardants are suspected of generating corrosive hydrogen halide and smoke during combustion and emitting toxic substances. Due to these environmental problems, the use of plastic products containing halogen-based flame retardants has been restricted. There is a movement to do. For this reason, halogen-free triazine-based flame retardants have been attracting attention and many studies have been made. For example, a technology using melamine as a flame retardant (for example, see Patent Document 8), a technology using cyanuric acid (for example, see Patent Document 9), and a technology using melamine cyanurate (for example, see Patent Document 10). ) Is well known. Although the unreinforced polyamide resin composition obtained by these techniques has a high flame retardant level conforming to the UL94V-0 standard, it is difficult to use a composition reinforced with an inorganic reinforcing material such as glass fiber to increase rigidity. Even when a large amount of a flame retardant is blended, there is a problem that cotton ignition occurs at the time of combustion and does not conform to the UL94V-0 standard.
[0005]
On the other hand, halogen-free flame-retardant technology using melamine phosphate, melamine pyrophosphate or melamine polyphosphate as an intumescent type flame retardant in a glass fiber reinforced polyamide resin (for example, see Patent Document 11), an inorganic reinforced polyamide resin Flame retardant technology using a char forming catalyst and / or a char forming agent in addition to melamine polyphosphate (see Patent Document 12), and a flame retardant combination technology combining melamine polyphosphate and a phosphinate (for example, refer to Patent Document 1). 13) has been proposed, and it is known that a molded article of 1/16 inch satisfies the flame-retardant standard UL94V-0 standard.
[0006]
However, these technologies not only have difficulty in extrusion processability such as foaming of a strand during extrusion processing and generation of a large amount of gas, but also so-called mold deposits such as mold contamination during molding process. And poor fluidity and releasability. Further, in order to satisfy the UL94V-0 standard for 1/32 inch thin-wall molded products particularly required for connectors for electric and electronic parts, it is necessary to use a large amount of melamine phosphate-based flame retardants. Not only the mechanical properties of the resin composition are significantly reduced, but also the electrical properties, particularly the poor tracking resistance required for electrical components used in high voltage environments, such as inferior electrical and electronic properties. It was not satisfactory as a molding material for parts.
[0007]
As a technique for achieving the flame retardant standard UL94V0 for a thin molded article of 1/32 inch, a technique in which melamine sulfate, which is an intumescent type flame retardant, is applied to a glass fiber reinforced semi-aromatic polyamide resin (for example, Patent Document 14) Reference) is also disclosed, but also in this technique, it is necessary to mix a large amount of the flame retardant with respect to the amount of the polyamide resin component, and there is a problem similar to the above.
Furthermore, as a technology for imparting high tracking resistance while achieving the flame retardant standard UL94V-0 in a thin molded article of 1/32 inch, an alkaline earth metal salt is added to an inorganic reinforced polyamide resin in addition to a melamine phosphate composite flame retardant. (For example, refer to Patent Document 15), but a molded article obtained by this technique is brittle, and when applied to a connector having a complicated shape, for example, the connector is required during handling or transportation. Chipping or cracking.
[0008]
[Patent Document 1]
JP-A-48-29846 [Patent Document 2]
JP-A-47-7134 [Patent Document 3]
JP-A-51-47044 [Patent Document 4]
JP-A-4-175371 [Patent Document 5]
JP-A-54-116054 [Patent Document 6]
JP-A-63-317552 [Patent Document 7]
JP-A-3-168246 [Patent Document 8]
JP-B-47-1714 [Patent Document 9]
JP-A-50-105744 [Patent Document 10]
JP-A-53-31759 [Patent Document 11]
Japanese Patent Publication No. 10-505875 [Patent Document 12]
WO98 / 45364
[Patent Document 13]
JP 2001-72978 A [Patent Document 14]
Japanese Patent Application Laid-Open No. 2000-119512 [Patent Document 15]
WO00 / 09606
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide excellent extrudability and moldability, extremely thin flame retardancy, no generation of highly corrosive hydrogen halide gas during combustion, and excellent mechanical and electrical properties. To provide a flame-retardant polyamide resin composition.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and found that the above object can be achieved when a specific phosphinate is applied to a system in which an inorganic reinforcing material, a phosphorus-based flame retardant and a polyamide resin are combined. And completed the present invention based on this finding.
That is, the present invention provides (a) 30 to 85% by weight of a polyamide resin, (b) 1 to 30% by weight of an adduct formed from melamine and phosphoric acid, and (c) represented by the following formula (I). A flame-retardant polyamide resin composition comprising 1 to 30% by weight of a phosphinic acid salt and / or a diphosphinic acid salt represented by the following formula (II) and (d) 5 to 40% by weight of an inorganic filler.
[0011]
Embedded image
Figure 2004292755
[0012]
Embedded image
Figure 2004292755
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be specifically described below.
The polyamide resin (a) used in the present invention is not particularly limited, and examples thereof include ε-caprolactam, adipic acid, sebacic acid, dodecane diacid, isophthalic acid, terephthalic acid, hexamethylene diamine, tetramethylene diamine, and 2-methyl A polyamide-forming monomer such as pentamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, metaxylylenediamine, bis (3-methyl-4aminocyclohexyl) methane is appropriately used. Homopolymers, copolymers and / or mixtures thereof obtained in combination can be used.
[0014]
Specifically, polyamide 66, polyamide 6, polyamide 610, polyamide 612, polyamide 6I (polyhexamethylene isophthalamide), MXD (metaxylylenediamine) 6 nylon and their copolyamides, and / or mixtures thereof are heat-resistant. It is preferred in terms of. Also, semi-aromatic polyamide resins containing polyamide 66 (polyhexamethylene adipamide) units and polyamide 6I (polyhexamethylene isophthalamide) units as main constituents, particularly semi-aromatic resins containing 5 to 30% by weight of polyamide 6I units. Group A polyamide resins are more preferred because they exhibit a high degree of flame retardancy when combined with a melamine phosphate flame retardant.
[0015]
As such a semi-aromatic polyamide resin, specifically, a copolymer of polyamide 66 (polyhexamethylene adipamide) units at 70 to 95% by weight and polyamide 6I (polyhexamethylene isophthalamide) units at 5 to 30% by weight ( Polyamide 66 / 6I) is preferred because it satisfies heat resistance, molded article appearance, molding processability, and electrical properties. In particular, a copolymer of 70 to 90% by weight of polyamide 66 units and 10 to 30% by weight of polyamide 6I units is preferred. It is particularly preferable because it has flame retardancy and good mold release during molding in addition to the above characteristics.
Further, a mixed polyamide of 70 to 95% by weight of polyamide 66 and 5 to 30% by weight of polyamide 6I (polyhexamethylene isophthalamide) has high heat resistance and is preferable for applications requiring solder resistance.
[0016]
Further, the polyamide 66 unit is composed of 40 to 89% by weight, the polyamide 6I unit 5 to 30% by weight, and the other aliphatic polyamide unit 1 to 30% by weight in which a part of the polyamide 66 unit is replaced by another aliphatic polyamide unit. The terpolymer is excellent in molding fluidity and molded article appearance. Examples of such a terpolymer include a caproamide unit (polyamide 6 units), an undecamide unit (polyamide 11 units), a dodecamide unit (polyamide 12 units), a hexamethylene sebacamide unit (polyamide 610 units), and hexamethylene dodecamide. Tertiary copolymer in which a part of the polyamide 66 unit is substituted with a unit (polyamide 612 unit), for example, (polyamide 66 / 6I / 6), (polyamide 66 / 6I / 11), (polyamide 66 / 6I / 12), (Polyamide 66 / 6I / 610) and (Polyamide 66 / 6I / 612) can be exemplified.
[0017]
The object of the present invention can be achieved even with a mixed polyamide composed of 40 to 89% by weight of a polyamide 66 unit, 5 to 30% by weight of a polyamide 6I unit and 1 to 30% by weight of another aliphatic polyamide unit.
In the case of a copolymer or a mixed polyamide containing more than 30% by weight of polyamide 6I units, heat resistance, moldability and electrical properties may not always be sufficient, while a copolymer containing less than 5% by weight of polyamide 6I units may be insufficient. Alternatively, in the case of a mixed polyamide, it is necessary to add a large amount of a flame retardant to obtain a sufficient flame retardant level.
[0018]
The copolymer of the present invention may be either a random copolymer or a block copolymer, and these copolymers are copolymerized with other aromatic polyamide resins within a range not to impair the object of the present invention. It may be included as a component. Further, the mixed polyamide is a polyamide obtained by mixing polyamides composed of two or more components by a generally used method other than polymerization such as blending and melt kneading.
The semi-aromatic polyamide resin of the present invention may have any molecular weight within a range in which it can be molded, and a polyamide resin having a sulfuric acid relative viscosity in the range of 1.5 to 3.5 shown in JIS K6810 may have a molding fluidity. Is particularly preferred since it is good and can maintain a high level of flame retardancy.
[0019]
The adduct (b) formed from melamine and phosphoric acid used in the present invention is represented by the following chemical formula (C 3 H 6 N 6 .HP 0 3 ) n (where n represents the degree of condensation). Means a product obtained from a substantially equimolar reaction product of melamine and phosphoric acid, pyrophosphoric acid or polyphosphoric acid, and the production method is not particularly limited. Usually, a melamine polyphosphate obtained by heating and condensing melamine phosphate under a nitrogen atmosphere can be exemplified.
[0020]
Here, specific examples of the phosphoric acid constituting the melamine phosphate include orthophosphoric acid, phosphorous acid, hypophosphorous acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid and the like. Melamine polyphosphate obtained by condensing an adduct with melamine using an acid or pyrophosphoric acid is preferred because of its high effect as a flame retardant. In particular, the degree of condensation n of the melamine polyphosphate is preferably 5 or more from the viewpoint of heat resistance. The melamine polyphosphate may be an equimolar addition salt of polyphosphoric acid and melamine. Examples of polyphosphoric acid that forms an addition salt with melamine include chain polyphosphoric acid and so-called condensed phosphoric acid, and cyclic polymetaphosphoric acid. No. The degree of condensation n of these polyphosphoric acids is not particularly limited and is usually 3 to 50, but the degree of condensation n of the polyphosphoric acid used here is preferably 5 or more from the viewpoint of the heat resistance of the resulting melamine polyphosphate addition salt. Such a melamine polyphosphate addition salt forms a mixture of melamine and polyphosphoric acid into, for example, a water slurry, and after mixing well to form a reaction product of both into fine particles, the slurry is filtered, washed, dried, and If necessary, it is a powder obtained by firing and pulverizing the obtained solid.
[0021]
From the viewpoint of the mechanical strength and appearance of the molded product obtained by molding the composition of the present invention, it is preferable to use a powder obtained by pulverizing the melamine polyphosphate to a particle size of 100 μm or less, preferably 50 μm or less. Use of a powder having a particle size of 0.5 to 20 μm is particularly preferable because not only high flame retardancy is exhibited, but also the strength of a molded product is significantly increased.
The melamine polyphosphate does not necessarily need to be completely pure, and some unreacted melamine, phosphoric acid, or polyphosphoric acid may remain. Melamine polyphosphate containing 10 to 18% by weight as a phosphorus atom in a melamine polyphosphate is particularly preferable because it does not cause a phenomenon that a contaminant adheres to a molding die during molding.
Melamine polyphosphate acts as a flame retardant, but when compared to triazine flame retardants represented by melamine cyanurate, when used in combination with an inorganic reinforcing material such as glass fiber, a high degree of flame retardancy is achieved. In particular, when blended in a copolymer of polyamide 66 and polyamide 6I and / or in a mixed polyamide, a more advanced flame retardant effect is exhibited.
[0022]
The phosphinate (c) used in the present invention is produced in an aqueous solution using phosphinic acid and a metal carbonate, a metal hydroxide or a metal oxide, and is essentially a monomeric compound. Depending on the environment, polymeric phosphinates with a degree of condensation of 1 to 3 are also included depending on the environment. Examples of the phosphinic acid include dimethylphosphinic acid, ethylmethylphosphinic acid, diethylphosphinic acid, methyl-n-propylphosphinic acid, methanedi (methylphosphinic acid), benzene-1,4- (dimethylphosphinic acid), methylphenylphosphinic acid and And diphenylphosphinic acid. Examples of the metal component include metal carbonates, metal hydroxides and metal oxides containing calcium ions, magnesium ions, aluminum ions and / or zinc ions.
[0023]
Examples of the phosphinate include calcium dimethyl phosphinate, magnesium dimethyl phosphinate, aluminum dimethyl phosphinate, zinc dimethyl phosphinate, calcium ethyl methyl phosphinate, magnesium ethyl methyl phosphinate, aluminum ethyl methyl phosphinate, zinc ethyl methyl phosphinate, diethyl diethyl Calcium phosphinate, magnesium diethylphosphinate, aluminum diethylphosphinate, zinc diethylphosphinate, calcium methyl-n-propylphosphinate, magnesium methyl-n-propylphosphinate, aluminum methyl-n-propylphosphinate, methyl-n- Zinc propylphosphinate, calcium methanedi (methylphosphinate), methanedi (methylphosphinate) mag Siumu, methanedi (methylphosphinate) aluminum methanedi (methylphosphinate) zinc-1,4 (dimethyl phosphinic acid) calcium-1,4 (dimethyl phosphinic acid) magnesium.
[0024]
Also, aluminum benzene-1,4- (dimethylphosphinate), zinc benzene-1,4- (dimethylphosphinate), calcium methylphenylphosphinate, magnesium methylphenylphosphinate, aluminum methylphenylphosphinate, methylphenylphosphinate Zinc, calcium diphenylphosphinate, magnesium diphenylphosphinate, aluminum diphenylphosphinate, zinc zinc diphenylphosphinate. Particularly, aluminum diethylphosphinate and zinc diethylphosphinate are preferable from the viewpoints of flame retardancy and electric characteristics.
[0025]
From the viewpoint of the mechanical strength and the appearance of the molded product obtained by molding the composition of the present invention, it is preferable to use a powder obtained by pulverizing the phosphinate into a particle size of 100 μm or less, preferably 50 μm or less. Use of a powder having a particle size of 0.5 to 20 μm is particularly preferable because not only high flame retardancy is exhibited, but also the strength of a molded product is significantly increased.
The phosphinate acts as a flame retardant, but when used in combination with an adduct formed from melamine and phosphoric acid, exhibits excellent thin-walled flame retardancy and excellent electrical properties with a small amount of flame retardant.
[0026]
Examples of the inorganic reinforcing material (d) used in the present invention include glass fiber, carbon fiber, potassium titanate fiber, gypsum fiber, brass fiber, stainless steel fiber, steel fiber, ceramic fiber, boron whisker fiber, mica, talc, silica, and carbonic acid. Examples include fibrous, granular, plate-like, or needle-like inorganic reinforcing materials such as calcium, kaolin, calcined kaolin, wollastonite, glass beads, glass flakes, and titanium oxide. These reinforcing materials may be used in combination of two or more. Particularly, glass fiber, wollastonite, talc, calcined kaolin and mica are preferably used. The glass fiber can be selected from long fiber type roving, short fiber type chopped strand, milled fiber and the like. It is preferable to use a glass fiber surface-treated for a polyamide.
[0027]
As a preferred embodiment of the present invention, in the flame-retardant polyamide resin composition comprising the components (a), (b), (c) and (d), the proportion of the polyamide resin (a) is determined by molding processability and mechanical properties. From the viewpoint of flame retardancy and rigidity, the range is 85% by weight or less.
The proportion of the adduct (b) formed from melamine and phosphoric acid is 1% by weight or more from the viewpoint of the flame-retardant effect, and 30% by weight from the viewpoint of decomposition gas generation during kneading and contamination of the mold. And preferably in the range of 1 to 20% by weight.
The proportion of the phosphinate (c) is 1% by weight or more from the viewpoint of the flame retardant effect, and is 30% by weight or less from the viewpoint of generation of a decomposition gas at the time of kneading, contamination of a mold, and the like, preferably 1 to It is in the range of 20% by weight.
The proportion of the inorganic filler (d) is 5% by weight or more from the viewpoint of mechanical strength and rigidity, and is 40% by weight or less, and preferably 10 to 30% by weight, from the viewpoint of improving physical properties.
[0028]
In the present invention, an inorganic flame retardant may be further added within a range that does not adversely affect the mechanical properties and moldability. Preferred flame retardants include magnesium hydroxide, aluminum hydroxide, zinc sulfide, iron oxide, boron oxide, zinc borate and the like.
The flame-retardant polyamide resin composition of the present invention includes other components such as a coloring agent such as a pigment and a dye, and a copper-based heat stabilizer which is a general heat stabilizer of the polyamide resin, as long as the object of the present invention is not impaired. Stabilizers (for example, combined use of potassium iodide and potassium bromide with copper iodide, copper acetate, etc.), organic heat-resistant agents represented by hindered phenol-based oxidation deterioration inhibitors, weather resistance improvers, nucleating agents, plasticizers , An additive such as an antistatic agent, and other resin polymers can be added.
[0029]
The method for producing the flame-retardant polyamide resin composition of the present invention is not particularly limited, and a polyamide resin, an adduct formed from melamine and phosphoric acid, a phosphinate, and an inorganic filler are commonly used in a uniaxial or biaxial manner. Is generally kneaded at a temperature of 200 to 350 ° C. using a kneader such as an extruder or a kneader. In order to maintain the mechanical properties, the inorganic filler is made of polyamide resin, melamine and phosphoric acid. It is preferred to add after the adduct formed from the above and the phosphinate are sufficiently melt-kneaded.
The composition of the present invention is formed into various molded products for electric, electronic, and automotive applications such as connectors, coil bobbins, breakers, electromagnetic switches, holders, plugs, and switches by known methods such as injection molding, extrusion molding, and blow molding. You.
[0030]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In addition, the raw materials and measuring methods used in the examples and comparative examples are shown below.
[raw materials]
(A) Polyamide resin (a-1): Polyamide 66 / 6I (85/15) copolymer (a-2) obtained in a polymerization example described later: Polyamide 66 Trade name Leona 1300 manufactured by Asahi Kasei Kogyo Co., Ltd.
(A-3): Polyamide 6 Ube Industries, Ltd. Product name SF1013A
[0031]
(B) Flame retardant (b-1): melamine polyphosphate Nissan Chemical Co., Ltd. product name PMP-100
(B-2): Melamine cyanurate manufactured by Mitsubishi Chemical Corporation MCA-C0
(C) Phosphinic acid salt (c-1) 1.2-ethylmethylphosphinic acid aluminum salt obtained in the following Production Example (D) Inorganic reinforcing material (d-1): glass fiber, manufactured by Asahi Fiberglass Co., Ltd. Product name CS03JA FT756 (Average fiber diameter 10μm)
[0032]
[Measuring method]
(1) thin-walled flame retardant;
The measurement was performed according to the method of UL94 (a standard defined by Under Writers Laboratories Inc, USA). The thickness of the test piece was 1/16 inch and 1/32 inch, and was obtained by molding using an injection molding machine (TOSHIBA MACHINE: IS50EP).
(2) Relative viscosity of sulfuric acid The relative viscosity in 98% sulfuric acid was measured according to JIS K6810.
(3) Mechanical properties Using an injection molding machine (manufactured by Toshiba Machine Co., IS50EP), a bending test piece (thickness: 3 mm) of ASTM D790 was formed, and a bending test was carried out by a method in accordance with ASTM D790 to obtain bending strength and bending. The elastic modulus was determined.
[0033]
(4) Tracking resistance Using an injection molding machine (manufactured by Toshiba Machine Co., IS150E), an injection molded plate of 100 × 90 × 3 mm was obtained at a cylinder temperature of 270 ° C. and a mold temperature of 80 ° C. The flat plate was set on a tracking resistance tester HAT-500-3 manufactured by Hitachi Chemical Co., Ltd., and a test was conducted by dropping a 0.1% ammonium chloride aqueous solution every 30 seconds under a voltage of 100 to 600 V in accordance with IEC Publication 112 standard. The maximum voltage at which the piece did not break with 50 drops without tracking was determined. The higher this value, the better the tracking resistance.
[0034]
[Polymerization example]
Charge 2.00 kg of equimolar salt of adipic acid and hexamethylenediamine, 0.35 kg of equimolar salt of isophthalic acid and hexamethylenediamine, 0.1 kg of adipic acid, and 2.5 kg of pure water into a 5 L autoclave and stir well. did. After sufficient nitrogen replacement, the temperature was raised from room temperature to 220 ° C. over about 1 hour with stirring. At this time, the internal pressure becomes 1.76 MPa as a gauge pressure due to the natural pressure of the steam in the autoclave, but heating was continued while removing water outside the reaction system so that the pressure did not become 1.76 MPa or more. After 2 hours, when the internal temperature reached 260 ° C., the heating was stopped, the valve of the autoclave was closed, and the mixture was cooled to room temperature over about 8 hours. After cooling, the autoclave was opened, and about 2 kg of the polymer was taken out and pulverized. The obtained pulverized polymer was put in a 10 L evaporator and subjected to solid-state polymerization at 200 ° C. for 10 hours under a nitrogen stream. The polyamide obtained by the solid-state polymerization had a melting point of 245 ° C. and a sulfuric acid relative viscosity of 2.38.
[0035]
[Production example of aluminum 1,2 ethyl phosphinate]
2106 g (19.5 mol) of ethylmethylphosphinic acid were dissolved in 6.5 liters of water, 507 g (6.5 mol) of aluminum hydroxide were added with vigorous stirring and the mixture was heated to 85 ° C. The mixture is stirred at 80-90 ° C. for a total of 65 hours, then cooled to 60 ° C. and suction filtered. After drying in a vacuum drying cabinet at 120 ° C. until the weight became constant, 2140 g of fine particle powder which did not melt at 300 ° C. or lower was obtained.
[0036]
Embodiment 1
A twin screw extruder (60% by weight of polyamide resin a-1, 10% by weight of flame retardant b-1, 10% by weight of phosphinate c-1 and 20% by weight of glass fiber d-1) Top feed of polyamide resin a-1, flame retardant b-1 and phosphinate c-1 under the conditions of cylinder set temperature 260 ° C., screw rotation 100 rpm and discharge rate 30 kg / hr using TEM35 manufactured by Toshiba Machine Co., Ltd. The glass fiber d-1 was side-kneaded and kneaded, taken out in a strand shape, cooled, and granulated with a cutter to obtain a polyamide resin composition pellet. Various characteristics of the obtained pellets were examined by the above-mentioned measuring methods. Table 1 shows the results.
[0037]
Embodiment 2
Pellets were obtained in the same manner as in Example 1 except that a-2 was used as the polyamide resin, and various characteristics were examined. Table 1 shows the results.
[0038]
Embodiment 3
Pellets were obtained in the same manner as in Example 1 except that a-3 was used as the polyamide resin, and various characteristics were examined. Table 1 shows the results.
[0039]
Examples 4-6, Comparative Examples 1-2
Pellets were obtained in the same manner as in Example 1 except that the amounts of the polyamide resin a-1, the flame retardant b-1, the phosphinate c-1, and the glass fiber d-1 were changed to the proportions shown in Table 1. The characteristics were investigated. Table 1 shows the results.
[0040]
[Comparative Example 3]
The twin-screw extruder (Toshiba) was prepared such that the polyamide resin a-1 was 60% by weight, the flame retardant b-1 was 10% by weight, the flame retardant b-2 was 10% by weight, and the glass fiber d-1 was 20% by weight. Top feed of polyamide resin a-1, flame retardant b-1 and flame retardant b-2 under the conditions of cylinder set temperature 240 ° C., screw rotation 100 rpm and discharge rate 30 kg / hr using TEM 35 manufactured by Machinery Co., Ltd. d-1 was kneaded by side feed, kneaded, taken out in a strand shape, cooled, and granulated with a cutter to obtain a polyamide resin composition pellet. Various characteristics of the obtained pellets were examined by the above-mentioned measuring methods. Table 1 shows the results.
[0041]
[Table 1]
Figure 2004292755
[0042]
【The invention's effect】
The composition of the present invention is a molding material having extremely high flame retardancy even in a thin-walled molded product, not generating highly corrosive hydrogen halide gas during combustion, and having excellent mechanical and electrical properties. It can be used for applications such as parts, electronic parts, and automobile parts.

Claims (10)

(a)ポリアミド樹脂30〜85重量%、(b)メラミンとリン酸とから形成される付加物1〜30重量%、(c)以下の式(I)で表されるホスフィン酸塩及び/または以下の式(II)で表されるジホスフィン酸塩1〜30重量%および(d)無機充填材5〜40重量%の各成分からなる難燃ポリアミド樹脂組成物。
Figure 2004292755
Figure 2004292755
(A) 30 to 85% by weight of a polyamide resin, (b) 1 to 30% by weight of an adduct formed from melamine and phosphoric acid, (c) a phosphinate represented by the following formula (I) and / or A flame-retardant polyamide resin composition comprising 1 to 30% by weight of a diphosphinate represented by the following formula (II) and 5 to 40% by weight of an inorganic filler (d).
Figure 2004292755
Figure 2004292755
(a)ポリアミド樹脂が、ポリアミド66,ポリアミド6、ポリアミド610、ポリアミド612、ポリアミド6I(ポリヘキサメチレンイソフタルアミド)、MXD6ナイロン及びこれらのコポリアミドの中から選ばれた少なくとも1種からなることを特徴とする請求項1に記載の難燃ポリアミド樹脂組成物。(A) The polyamide resin comprises at least one selected from polyamide 66, polyamide 6, polyamide 610, polyamide 612, polyamide 6I (polyhexamethylene isophthalamide), MXD6 nylon and these copolyamides. The flame-retardant polyamide resin composition according to claim 1. (a)ポリアミド樹脂が、下記(1)〜(2)の中から選ばれた少なくとも1種からなることを特徴とする請求項1に記載の難燃ポリアミド樹脂組成物。
(1)ポリアミド66単位70〜95重量%とポリアミド6I(ポリヘキサメチレンイソフタルアミド)単位5〜30重量%とからなる共重合体及び/またはこれらの混合ポリアミド。
(2)ポリアミド66単位40〜89重量%、ポリアミド6I単位5〜30重量%及び脂肪族ポリアミド単位(但し、ポリアミド66単位を除く)1〜30重量%とからなる3元共重合体及び/またはこれらの混合ポリアミド。
The flame-retardant polyamide resin composition according to claim 1, wherein (a) the polyamide resin comprises at least one selected from the following (1) and (2).
(1) A copolymer comprising 66 to 70% by weight of polyamide 66 units and 5 to 30% by weight of polyamide 6I (polyhexamethylene isophthalamide) units and / or a mixed polyamide thereof.
(2) a terpolymer composed of 40 to 89% by weight of a polyamide 66 unit, 5 to 30% by weight of a polyamide 6I unit, and 1 to 30% by weight of an aliphatic polyamide unit (excluding the polyamide 66 unit) and / or These mixed polyamides.
(a)ポリアミド樹脂の硫酸相対粘度(JIS K6810で測定)が、1.5〜3.5であることを特徴とする請求項1〜3のいずれかに記載の難燃ポリアミド樹脂組成物。(A) The flame retardant polyamide resin composition according to any one of claims 1 to 3, wherein the polyamide resin has a sulfuric acid relative viscosity (measured according to JIS K6810) of 1.5 to 3.5. (b)メラミンとリン酸とから形成される付加物が、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミンから選ばれた少なくとも1種のリン系難燃剤であることを特徴とする請求項1〜4のいずれかに記載の難燃ポリアミド樹脂組成物。(B) The adduct formed from melamine and phosphoric acid is at least one phosphorus flame retardant selected from melamine phosphate, melamine pyrophosphate, and melamine polyphosphate. 5. The flame-retardant polyamide resin composition according to any one of 4. (b)リン系難燃剤が、リン原子として10〜18重量%含有していることを特徴する請求項5に記載の難燃ポリアミド樹脂組成物。The flame-retardant polyamide resin composition according to claim 5, wherein (b) the phosphorus-based flame retardant contains 10 to 18% by weight as a phosphorus atom. (b)リン系難燃剤の平均粒径が、0.5〜20μmであることを特徴とする請求項5に記載の難燃ポリアミド樹脂組成物。The flame-retardant polyamide resin composition according to claim 5, wherein the average particle size of the (b) phosphorus-based flame retardant is 0.5 to 20 µm. (c)ホスフィン酸塩及び/またはジホスフィン酸塩が、下記(1)〜(3)の中から選ばれた化合物であることを特徴とする請求項1〜7に記載の難燃ポリアミド樹脂組成物。
(1)R及びRが、同一かまたは異なり、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、tert−ブチル、n−ペンチル及び/またはフェニルである。
(2)Rが、メチレン、エチレン、n−プロピレン、イソプロピレン、n−ブチレン、tert−ブチレン、n−ペンチレン、n−オクチレンまたはn−ドデシレン、フェニレンまたはナフチレン、メチルフェニレン、エチルフェニレン、tert−ブチルフェニレン、フェニルメチレン、フェニルエチレン、フェニルプロピレンまたはフェニルブチレン、メチルナフチレン、エチルナフチレンまたはtert−ブチルナフチレンである。
(3)Mが、アルミニウムイオンまたは亜鉛イオンである。
The flame-retardant polyamide resin composition according to any one of claims 1 to 7, wherein (c) the phosphinate and / or the diphosphinate is a compound selected from the following (1) to (3). .
(1) R 1 and R 2 are the same or different and are methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-pentyl and / or phenyl.
(2) R 3 is methylene, ethylene, n-propylene, isopropylene, n-butylene, tert-butylene, n-pentylene, n-octylene or n-dodecylene, phenylene or naphthylene, methylphenylene, ethylphenylene, tert- Butylphenylene, phenylmethylene, phenylethylene, phenylpropylene or phenylbutylene, methylnaphthylene, ethylnaphthylene or tert-butylnaphthylene.
(3) M is an aluminum ion or a zinc ion.
(d)無機充填材が、ガラス繊維、ウォラストナイト、タルク、焼成カオリン、マイカの中から選ばれた少なくとも1種の強化材であることを特徴とする請求項1〜8のいずれかに記載の難燃ポリアミド樹脂組成物。(D) The inorganic filler is at least one reinforcing material selected from glass fiber, wollastonite, talc, calcined kaolin, and mica. Flame retardant polyamide resin composition. (a)、(b)、(c)が十分に溶融混練されたのちに、(d)無機充填材を添加して得られることを特徴とする請求項1〜9のいずれかに記載の難燃ポリアミド樹脂組成物。The method according to any one of claims 1 to 9, wherein (a), (b), and (c) are obtained by sufficiently melting and kneading and then adding (d) an inorganic filler. Combustion polyamide resin composition.
JP2003090274A 2003-03-28 2003-03-28 Flame-retardant polyamide resin composition Pending JP2004292755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090274A JP2004292755A (en) 2003-03-28 2003-03-28 Flame-retardant polyamide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090274A JP2004292755A (en) 2003-03-28 2003-03-28 Flame-retardant polyamide resin composition

Publications (2)

Publication Number Publication Date
JP2004292755A true JP2004292755A (en) 2004-10-21
JP2004292755A5 JP2004292755A5 (en) 2006-04-13

Family

ID=33403944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090274A Pending JP2004292755A (en) 2003-03-28 2003-03-28 Flame-retardant polyamide resin composition

Country Status (1)

Country Link
JP (1) JP2004292755A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036231A (en) * 2003-07-14 2005-02-10 Clariant Gmbh Flame retardant polyamide
JP2005336473A (en) * 2004-04-28 2005-12-08 Ube Ind Ltd Flame-retardant resin composition
JP2006037100A (en) * 2004-07-22 2006-02-09 Clariant Gmbh Flame-retardant polymer molding material
JP2007119775A (en) * 2005-10-25 2007-05-17 Lanxess Deutschland Gmbh Polyamide molding composition having improved fluidity
WO2007108202A1 (en) 2006-03-17 2007-09-27 Mitsubishi Engineering-Plastics Corporation Flame retardant polyamide resin composition and molding
WO2008068898A1 (en) 2006-12-04 2008-06-12 Mitsubishi Engineering-Plastics Corporation Flame-retardant polyamide resin composition and molded article
KR100894884B1 (en) 2008-04-30 2009-04-30 제일모직주식회사 Thermoplastic resin composition with excellent flame resistance
CN102924917A (en) * 2012-11-21 2013-02-13 惠州市华聚塑化科技有限公司 Voltage-resistant insulating flame-retardant reinforced nylon 66 engineering plastic
JP2015042744A (en) * 2007-11-16 2015-03-05 エムス−パテント・アクチェンゲゼルシャフト Filled polyamide molding composition
US8987359B2 (en) 2013-03-13 2015-03-24 Cheil Industries Inc. Flame retardant polyamide resin composition and molded article using same
CN114957977A (en) * 2022-04-08 2022-08-30 北京理工大学 Microporous-micronucleus functionalized flame-retardant polyamide resin
CN115353732A (en) * 2022-08-19 2022-11-18 东莞市华盈新材料有限公司 High-temperature-resistant flame-retardant PA10T

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036231A (en) * 2003-07-14 2005-02-10 Clariant Gmbh Flame retardant polyamide
JP2005336473A (en) * 2004-04-28 2005-12-08 Ube Ind Ltd Flame-retardant resin composition
JP2006037100A (en) * 2004-07-22 2006-02-09 Clariant Gmbh Flame-retardant polymer molding material
JP2007119775A (en) * 2005-10-25 2007-05-17 Lanxess Deutschland Gmbh Polyamide molding composition having improved fluidity
WO2007108202A1 (en) 2006-03-17 2007-09-27 Mitsubishi Engineering-Plastics Corporation Flame retardant polyamide resin composition and molding
US8053500B2 (en) 2006-12-04 2011-11-08 Mitsubishi Engineering-Plastics Corporation Flame-retardant polyamide resin composition and molded article
WO2008068898A1 (en) 2006-12-04 2008-06-12 Mitsubishi Engineering-Plastics Corporation Flame-retardant polyamide resin composition and molded article
JP2008163317A (en) * 2006-12-04 2008-07-17 Mitsubishi Engineering Plastics Corp Flame-retardant polyamide resin composition and molded article
JP2015042744A (en) * 2007-11-16 2015-03-05 エムス−パテント・アクチェンゲゼルシャフト Filled polyamide molding composition
JP2009270107A (en) * 2008-04-30 2009-11-19 Cheil Industries Inc Fire retardant thermoplastic resin composition
KR100894884B1 (en) 2008-04-30 2009-04-30 제일모직주식회사 Thermoplastic resin composition with excellent flame resistance
CN102924917A (en) * 2012-11-21 2013-02-13 惠州市华聚塑化科技有限公司 Voltage-resistant insulating flame-retardant reinforced nylon 66 engineering plastic
US8987359B2 (en) 2013-03-13 2015-03-24 Cheil Industries Inc. Flame retardant polyamide resin composition and molded article using same
CN114957977A (en) * 2022-04-08 2022-08-30 北京理工大学 Microporous-micronucleus functionalized flame-retardant polyamide resin
CN115353732A (en) * 2022-08-19 2022-11-18 东莞市华盈新材料有限公司 High-temperature-resistant flame-retardant PA10T
CN115353732B (en) * 2022-08-19 2024-01-30 东莞市华盈新材料有限公司 High-temperature-resistant flame-retardant PA10T

Similar Documents

Publication Publication Date Title
JP4523004B2 (en) Combustion resistant aromatic polyamide resin composition and articles formed therefrom
US8193263B2 (en) Flame-retardant glass fiber-reinforced polyamide resin composition
US20070054992A1 (en) Flame-Retardant Resin Composition
WO2010117708A1 (en) Flame resistant semiaromatic polyamide resin composition and articles therefrom
WO2009009360A1 (en) Flame resistant semiaromatic polyamide resin composition and articles therefrom
JP2010254760A (en) Flame-retardancy strengthened polyamide resin composition
JP5331291B2 (en) Flame retardant reinforced polyamide resin composition
JP4993425B2 (en) Flame retardant polyamide resin composition
JPWO2002028943A1 (en) Flame retardant reinforced polyamide resin composition
JP5062926B2 (en) Glass fiber reinforced flame retardant polyamide resin composition
JP2004292755A (en) Flame-retardant polyamide resin composition
JP2010077194A (en) Flame-retardant, glass fiber-reinforced polyamide resin composition
JP4307880B2 (en) Flame retardant reinforced polyamide resin composition
JP2004300189A (en) Polyamide flame-retardant resin composition
JP2004292531A (en) Flame-retardant polyamide resin composition
US20070173573A1 (en) Flame-retardant resin composition
JP4916139B2 (en) Flame retardant polyamide resin composition
JP2005336473A (en) Flame-retardant resin composition
JP2001279091A (en) Flame-retardant reinforced polyamide composition
JP2012051954A (en) Flame-retardant reinforced polyamide resin composition
JP4278779B2 (en) Flame retardant polyamide resin composition
JP2005336474A (en) Flame-retardant resin composition
JP4574043B2 (en) Reinforced flame retardant polyamide resin composition
JP4798862B2 (en) Flame retardant polyamide composition
JP2002275370A (en) Flame-retardant polyamide resin composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Effective date: 20090709

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100120

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100219