JP2004292627A - Metal nanorod, metal nanorod-containing composition, its manufacturing process and its application - Google Patents
Metal nanorod, metal nanorod-containing composition, its manufacturing process and its application Download PDFInfo
- Publication number
- JP2004292627A JP2004292627A JP2003086625A JP2003086625A JP2004292627A JP 2004292627 A JP2004292627 A JP 2004292627A JP 2003086625 A JP2003086625 A JP 2003086625A JP 2003086625 A JP2003086625 A JP 2003086625A JP 2004292627 A JP2004292627 A JP 2004292627A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- nanorod
- metal nanorod
- axis
- major axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Electrolytic Production Of Metals (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Paints Or Removers (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、可視光・近赤外線に対する吸収機能や電磁波遮蔽機能を有する金属ナノロッドについて、長軸および短軸が均一な金属ナノロッドと、これを含有するコーティング組成物、およびこの金属ナノロッドが分散した塗膜を有する基材、またはこの金属ナノロッドを練り込んだ基材に関する。
【0002】
【従来技術】
金属の微粒子に光を照射するとプラズモン吸収と呼ばれる共鳴吸収現象が生じる。この吸収現象は金属の種類と形状によって吸収波長域が異なる。例えば、球状の金微粒子が水に分散した金コロイドは530nm付近に吸収域を持つが、微粒子の形状を短軸10nmのロッド状にすると、ロッドの短軸に起因する530nm付近の吸収の他に、ロッドの長軸に起因する長波長側の吸収を有することが知られている(例えば、S−S.Chang et al,Langmuir,1999,15.p701−709)。
【0003】
従来、金属微粒子がこのようなプラズモン吸収を示すことは知られているが、この現象を利用した組成物またはこの組成物を塗布あるいは練り込んだ基材はこれまで知られていない。例えば、特開平11−80647号および特開平11−319538号には、貴金属や銅のコロイド粒子と高分子顔料分散剤を含むコロイド溶液が記載されているが、これは塗料としての着色性や溶液の安定性を高めることを目的としたものであり、金属微粒子の形状を特定して可視光・近赤外光に対する吸収効果や電磁波遮蔽効果を得るようにしたものではない。また、特表平9−506210号には金属炭化物ナノ微粒子とその製造方法が記載されているが、金属微粒子の短軸と長軸の比を特定して近赤外光に対する吸収機能を高めることは認識されておらず、これを塗料に具体化することは示されていない。
【0004】
さらに従来の文献(S−S.Chang et al,Langmuir,1999,15.p701−709)に記載されている金属ナノロッドは形状が均一ではないため吸収波長域が広がり、波長域が狭いシャープな光吸収効果が得られないなどの問題がある。
【0005】
【課題を解決するための手段】
本発明は従来の上記課題を解決したものであり、金属イオンの還元によって金属ナノロッドを製造する方法において、長軸および短軸の長さの変動が少なく、各長さが均一な金属ナノロッドを製造できるようにし、この金属ナノロッドを含有する組成物および基材を提供するものである。
【0006】
すなわち、本発明は(1)ロッド状の金属粒子であって、長軸および短軸の長さの変動係数がおのおの20%以下であることを特徴とする金属ナノロッドに関する。本発明の金属ナノロッドは、(2)金属イオンの還元によって得られるロッド状の金属粒子であって、長軸が400nm未満、長軸/短軸のアスペクト比が100以下、長軸および短軸の長さの変動係数がおのおの20%以下であるものを含む。
【0007】
また、本発明は(3)上記(1)または(2)に記載する金属ナノロッド、分散剤、分散媒、およびバインダー(樹脂)を含有することを特徴とする金属ナノロッド含有組成物に関する。本発明の金属ナノロッド含有組成物は、(4)金属ナノロッドの含有量(組成物中の固形分換算量)が0.1wt%〜95wt%であるもの、(5)分散剤が窒素原子および/またはイオウ原子を含有するものを含む。
【0008】
さらに、本発明は、(6)上記(3)〜(5)の何れかに記載する組成物によって形成した金属ナノロッドが分散した塗膜を表面に有することを特徴とする金属ナノロッド含有基材に関する。本発明の金属ナノロッド含有基材は、(7)上記(1)または(2)に記載する金属ナノロッドまたは上記(3)〜(5)の何れかに記載する金属ナノロッド含有組成物を練り込んだもの、(8)基材が透明なガラスまたはプラスチックであるものを含む。
【0009】
また、本発明は、(9)界面活性剤を含む液中で金属イオンを還元して金属ナノロッドを製造する方法において、CH3(CH2)nN+(CH3)3Br−(nは1〜15の整数)の化学式で表される界面活性剤と、(CH3(CH2)n)4N+Br−(nは1〜15の整数)の化学式で表される界面活性剤との混合界面活性剤を用いることによって金属ナノロッドの長軸および短軸の変動係数を20%以下に制御することを特徴とする金属ナノロッドの製造方法に関する。さらに、本発明は(10)上記(1)または(2)に記載する金属ナノロッドを、分散剤の存在下で分散媒に分散させ、この分散液をバインダー(樹脂)と混合することを特徴とする金属ナノロッド含有組成物の製造方法に関する。
【0010】
【発明の実施の形態】
以下、本発明を実施形態に基づいて具体的に説明する。
本発明は長軸および短軸の長さが均一な金属ナノロッドに関する。具体的には例えば、金属イオンの還元によって得られるロッド状の金属粒子であって、長軸が400nm未満、好ましくは5〜200nmであり、長軸/短軸のアスペクト比が100以下、好ましくは2〜10の金属ナノロッドにおいて、長軸および短軸の変動係数が各々20%以下、好ましくは15%以下のものである。
【0011】
一般に変動係数Cvは、不偏分散U、算術平均値Xのとき、次式〔1〕によって定められる。また、不偏分散Uは次式〔2〕によって定められる。これを金属ナノロッドの長軸および短軸の長さに適用すると、長軸の長さの変動係数Cv、および短軸の長さの変動係数Cvは、各長さの不偏分散Uと算術平均値Xに基づいて次式〔1〕によって与えられ、また、この不偏分散Uは次式〔2〕によって与えられる。具体的には、金属ナノロッドの測定数n、測定数nの各測定値をXi(i=1、2、…、n)であるとき、各測定値Xiと算術平均値Xの差(Xi−X)の2乗を1〜nについて合計し、これを(n−1)で除した値が不偏分散Uである。このように長軸と短軸の各長さについて、実際の測定値Xiとその算術平均値Xに基づいて不偏分散Uが求められ、この不偏分散Uに基づいて長軸長さと短軸長さの変動係数Cvがおのおの定められる。
【0012】
【式】
【0013】
本発明の金属ナノロッドは長軸と短軸の各長さについて、何れもその変動係数Cvが20%以下であり、均一な形状を有する。従って、光吸収波長域が狭く、特定の波長域においてシャープな光吸収性能を有する。例えば、長軸が400nm未満であって、長軸/短軸のアスペクト比が約5.0の金属ナノロッドを含むものは850nm波長の光を吸収するが、本発明に係る金属ナノロッドのこの波長域の透過率は概ね10%台であって高い光吸収性能を有する一方、周辺の波長域では高い透過率を示し、特定の波長域においてシャープな光吸収性能を有する。
【0014】
金属ナノロッドは、例えば電解還元によって製造することができる。電解液中に差し入れた金属電極に電圧を加えると、陽極から金属イオンが溶出して陰極で還元される。還元された金属イオンは適度な大きさのクラスターを形成して陰極を離れ、このクラスターが液中で次第に成長してロッド状の金属粒子が形成される。具体的には、長軸が400nm未満であり、長軸/短軸のアスペクト比が100以下の金属ナノロッドを得ることができる。この電解還元において、クラスターの成長を促すために界面活性剤を添加した電解液を用いるが、アルキル鎖を含み、該アルキル鎖長を限定した界面活性剤を用いることによって金属ナノロッドの長軸および短軸の変動係数を制御することができる。具体的には、好ましくは4級アンモニウム塩型のアルキル鎖を含む界面活性剤であってアルキル鎖長が異なる2種の界面活性剤を含む液中で金属イオンを還元することによって、金属ナノロッドの長軸および短軸について、各軸長の変動係数を20%以下に抑制することができる。
【0015】
アルキル鎖長が異なる2種の界面活性剤としては、例えば、以下の化学式(イ)(ロ)で表される、(CH2)基の数nが1〜15の整数(アルキル鎖の炭素数2〜16)の界面活性剤を用いることができる。
(イ) CH3(CH2)nN+(CH3)3Br−:
CH3(CH2)15N+(CH3)3Br−〔CTAB:n=15〕
(ロ) (CH3(CH2)n)4N+Br−:
(CH3(CH2)11)4N+Br−〔TC12AB:n=11〕
(CH3(CH2)5)4N+Br− 〔TC6AB:n=5〕
【0016】
長軸および短軸の各軸長の変動係数を20%以下に抑制した金属ナノロッドを分散剤、分散媒、およびバインダー(樹脂)と混合することによって金属ナノロッド含有組成物を得ることができる。この組成物の金属ナノロッドの含有量は組成物中の固形分換算量で0.1wt%〜95wt%、好ましくは20〜90wt%が適当である。金属ナノロッドの含有量がこれより少ないとその効果が不十分になり、これより金属ナノロッドの含有量が多いと相対的にバインダー(樹脂)成分が少なくなるので適当ではない。
【0017】
分散剤は窒素原子および/またはイオウ原子を含有するものが好ましい。例えば窒素原子やイオウ原子を吸着部位に含むシランカップリング剤などが用いられる。金属ナノロッドはこの窒素原子やイオウ原子と吸着してバインダー中に分散する。分散媒は水性溶または非水性の何れでもよく、両方を用いてもよい。バインダーは水分散系、非水系、水溶性樹脂の何れか1種類もしくはその混合物を用いることができる。上記金属ナノロッドを分散剤の存在下で分散媒に分散させ、この分散液をバインダーと混合することによって長軸および短軸の変動係数を20%以下に抑制した金属ナノロッドを含有するコーティング組成物を得ることができる。
【0018】
上記コーティング組成物を基材表面に塗布することによって長軸および短軸の変動係数を20%以下に抑制した金属ナノロッドが表面に分散した基材を得ることができる。また、本発明の上記金属ナノロッドまたは上記コーティング組成物を樹脂やガラスに練り込むことによって長軸および短軸の変動係数を20%以下に抑制した金属ナノロッドが内部に分散した基材を得ることができる。これらの基材は樹脂やガラスなどの透明材料で形成されたものは、上記金属ナノロッドによって特定波長の光を吸収するので、PDP用光学フィルター、カラーフィルター、熱線カットフィルターなどに利用することができる。
【0019】
【実施例および比較例】
以下に本発明の実施例および比較例を示す。
〔実施例1〕
電解液として、界面活性剤〔CH3(CH2)15N+(CH3)3Br−:CTAB(アルキル鎖の炭素数16)〕を0.08mol/l、界面活性剤〔(CH3(CH2)11)4N+Br−:TC12AB(アルキル鎖の炭素数12)〕0.0054mol/lを含む100mlの水を用い、金板を陽極とし、白金板を陰極とし、さらに白金板の側方に電圧を加えない銀板を設けた電解装置によって、20mAの定電流を電極に加え、超音波振動を与えながら電解を2時間行って金ナノロッドを得た。この金ナノロッドの長軸と短軸の変動係数はおのおの10%であり、長軸の平均長さ50nm、長軸/短軸のアスペクト比は約5.0であった。
この金ナノロッドを含有する電解水溶液から遠心分離によって過剰の界面活性剤を除去した後、金ナノロッド含有量が85重量%になるようにアクリル樹脂エマルジョン(固形分40重量%)を混合して塗料とした。この塗料をガラス基板に塗布して乾燥することによって、金ナノロッドが表面に分散した塗膜(膜厚2μm)を有するガラス基板を得た。このガラス基板の分光特性および表面抵抗値をそれぞれ測定した。この結果を表1に示した。なお、分光特性の測定は日本分光社製装置(V−570)を用い、表面抵抗値の測定は三菱化学社製装置(ロレスタ・GP、4端針法)を用いた。
【0020】
〔実施例2〕
実施例1のTC12ABに代えて界面活性剤として〔(CH3(CH2)5)4N+Br−:TC6AB(アルキル鎖の炭素数6)〕を0.0081mol/l用いた以外は実施例1と同様にして金ナノロッドを得た。この金ナノロッドの長軸と短軸の変動係数はおのおの15%であり、長軸の平均長さ40nm、長軸/短軸のアスペクト比は約5.0であった。さらに実施例1と同様にしてこの金ナノロッドを85重量%含有する塗料を調製した。この塗料をガラス基板に塗布して乾燥することによって、金ナノロッドが表面に分散した塗膜(膜厚2μm)を有するガラス基板を得た。このガラス基板の分光特性および表面抵抗値をそれぞれ実施例1と同様にして測定した。この結果を表1に示した。
【0021】
〔比較例1〕
実施例1のTC12ABに代えて界面活性剤として〔(CH3)4N+Br−:TC1AB(アルキル鎖の炭素数1)〕を0.0081mol/l用いた以外は実施例1と同様にして金ナノロッドを得た。この金ナノロッドの長軸と短軸の変動係数は40%であり、長軸の平均長さ30nm、長軸/短軸のアスペクト比は約5.0であった。さらに、実施例1と同様にしてこの金ナノロッドを85重量%含有する塗料を調製した。この塗料をガラス基板に塗布して乾燥することによって、金ナノロッドが表面に分散した塗膜(膜厚2μm)を有するガラス基板を得た。このガラス基板の分光特性および表面抵抗値を実施例1と同様にして測定した。この結果を表1に示した。
【0022】
〔比較例2〕
実施例1のTC12ABに代えて界面活性剤としてTC1ABとTC6ABの混合液(混合比TC1AB:TC6AB=9:1)を0.0081mol/l用いた以外は実施例1と同様にして金ナノロッドを得た。この金ナノロッドの長軸の変動係数は20%、短軸の変動係数は40%であり、長軸の平均長さ30nm、長軸/短軸のアスペクト比は約5.0であった。さらに、実施例1と同様にしてこの金ナノロッドを85重量%含有する塗料を調製した。この塗料をガラス基板に塗布して乾燥することによって、金ナノロッドが表面に分散した塗膜(膜厚2μm)を有するガラス基板を得た。このガラス基板の分光特性および表面抵抗値をそれぞれ実施例1と同様にして測定した。この結果を表1に示した。
【0023】
〔比較例3〕
実施例1のTC12ABに代えて界面活性剤としてTC1ABとTC12ABの混合液(混合比TC1AB:TC12AB=9:1)を0.0081mol/l用いた以外は実施例1と同様にして金ナノロッドを得た。この金ナノロッドの長軸の変動係数は40%、短軸の変動係数は20%であり、長軸の平均長さ30nm、長軸/短軸のアスペクト比は約5.0であった。さらに、実施例1と同様にしてこの金ナノロッドを85重量%含有する塗料を調製した。この塗料をガラス基板に塗布して乾燥することによって、金ナノロッドが表面に分散した塗膜(膜厚2μm)を有するガラス基板を得た。このガラス基板の分光特性および表面抵抗値をそれぞれ実施例1と同様にして測定した。この結果を表1に示した。
【0024】
表1に示すように、長軸および短軸の変動係数が20%以下である本発明の金属ナノロッドが分散した塗膜を有するガラス基板は、何れも700nmにおける透過率は80〜85%であるが、850nmにおける透過率は10%であり、この波長に対して優れた選択的な光吸収性能を有する(実施例1、2)。一方、比較例1〜3は700nmおよび850nmにおける透過率は何れも40〜60%であり、選択的な光吸収能力は大幅に低く、700nmにおいても光吸収作用を有している。さらに、本発明の実施例1、2の基板表面抵抗は比較例1〜3よりも小さく、導電性に優れている。
【0025】
【表1】
【0026】
【発明の効果】
本発明の金属ナノロッドは長軸と短軸の変動係数が小さいので、ロッド形状が均一であり、特定波長に対してシャープな光吸収性能を有し、周辺の波長に対して大きな影響を与えずに特定波長に対して高い光吸収効果を発揮する。本発明の金属ナノロッドを用いることにより、可視光域〜近赤外線光域の特定波長に対してシャープな選択的光吸収性能を有し、かつ電磁波遮蔽性能に優れた光学フィルムを得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal nanorod having a function of absorbing visible light and near infrared light and a function of shielding electromagnetic waves, a metal nanorod having a uniform long axis and a short axis, a coating composition containing the same, and a coating composition in which the metal nanorod is dispersed. The present invention relates to a substrate having a film or a substrate into which the metal nanorods are kneaded.
[0002]
[Prior art]
When light is applied to metal fine particles, a resonance absorption phenomenon called plasmon absorption occurs. This absorption phenomenon varies in the absorption wavelength range depending on the type and shape of the metal. For example, a gold colloid in which spherical gold fine particles are dispersed in water has an absorption region around 530 nm. However, when the shape of the fine particles is a rod shape with a short axis of 10 nm, in addition to the absorption around 530 nm caused by the short axis of the rod, It is known to have absorption on the long wavelength side caused by the long axis of the rod (for example, SS Chang et al, Langmuir, 1999, 15. p701-709).
[0003]
Conventionally, it has been known that metal fine particles exhibit such plasmon absorption, but a composition utilizing this phenomenon or a substrate coated or kneaded with this composition has not been known so far. For example, JP-A-11-80647 and JP-A-11-319538 describe a colloid solution containing colloidal particles of a noble metal or copper and a polymer pigment dispersant. The purpose of the present invention is to increase the stability of the metal particles, but is not to specify the shape of the metal fine particles so as to obtain an absorption effect against visible light / near infrared light or an electromagnetic wave shielding effect. Japanese Patent Publication No. Hei 9-506210 describes metal carbide nanoparticles and a method for producing the same. However, it is necessary to specify the ratio of the short axis to the long axis of the metal fine particles to enhance the absorption function for near-infrared light. Is not recognized and is not shown to embody this in paints.
[0004]
Furthermore, the metal nanorods described in the conventional literature (S. S. Chang et al, Langmuir, 1999, 15. p701-709) are not uniform in shape, so the absorption wavelength range is widened and sharp light is narrow in the wavelength range. There is a problem that the absorption effect cannot be obtained.
[0005]
[Means for Solving the Problems]
The present invention has solved the above-mentioned conventional problems. In a method for producing a metal nanorod by reduction of metal ions, a method of producing a metal nanorod in which the length of the major axis and the minor axis is small and each length is uniform. And a composition and a substrate containing the metal nanorod.
[0006]
That is, the present invention relates to (1) metal nanorods, which are rod-shaped metal particles, each of which has a variation coefficient of the length of the major axis and the minor axis of 20% or less. The metal nanorods of the present invention are (2) rod-shaped metal particles obtained by reduction of metal ions, having a major axis of less than 400 nm, a major axis / minor axis aspect ratio of 100 or less, and a major axis and a minor axis. Includes each having a coefficient of variation of length of 20% or less.
[0007]
The present invention also relates to (3) a metal nanorod-containing composition comprising the metal nanorod described in (1) or (2) above, a dispersant, a dispersion medium, and a binder (resin). The metal nanorod-containing composition of the present invention comprises (4) a metal nanorod content (solid content equivalent in the composition) of 0.1 wt% to 95 wt%, and (5) a dispersant comprising nitrogen atoms and / or Or those containing sulfur atoms.
[0008]
Furthermore, the present invention relates to (6) a metal nanorod-containing base material having a coating film on the surface of which a metal nanorod formed by the composition according to any one of (3) to (5) is dispersed. . The metal nanorod-containing substrate of the present invention is kneaded with (7) the metal nanorod described in (1) or (2) or the metal nanorod-containing composition described in any of (3) to (5). And (8) those in which the substrate is transparent glass or plastic.
[0009]
Further, the present invention provides (9) a method for producing metal nanorods by reducing metal ions in a liquid containing a surfactant, wherein CH 3 (CH 2 ) n N + (CH 3 ) 3 Br − (n is A surfactant represented by a chemical formula of (CH 3 (CH 2 ) n ) 4 N + Br − (n is an integer of 1 to 15); The present invention relates to a method for producing a metal nanorod, wherein the variation coefficient of the major axis and the minor axis of the metal nanorod is controlled to 20% or less by using the mixed surfactant. Further, the present invention is characterized in that (10) the metal nanorods described in the above (1) or (2) are dispersed in a dispersion medium in the presence of a dispersant, and this dispersion is mixed with a binder (resin). The present invention relates to a method for producing a metal nanorod-containing composition.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described based on embodiments.
The present invention relates to a metal nanorod having a uniform long axis and short axis. Specifically, for example, rod-shaped metal particles obtained by reduction of metal ions, the major axis is less than 400 nm, preferably 5 to 200 nm, and the major axis / minor axis aspect ratio is 100 or less, preferably In 2 to 10 metal nanorods, the variation coefficients of the major axis and the minor axis are each 20% or less, preferably 15% or less.
[0011]
In general, the variation coefficient Cv is determined by the following equation [1] when the unbiased variance U and the arithmetic mean value X are used. The unbiased variance U is determined by the following equation [2]. When this is applied to the lengths of the major axis and the minor axis of the metal nanorods, the variation coefficient Cv of the major axis length and the variation coefficient Cv of the minor axis length become the unbiased variance U of each length and the arithmetic mean value. X is given by the following equation [1], and this unbiased variance U is given by the following equation [2]. Specifically, when the measured number n of the metal nanorods and each measured value of the measured number n are Xi (i = 1, 2,..., N), the difference between each measured value Xi and the arithmetic average value X (Xi− The value obtained by summing the squares of X) for 1 to n and dividing the sum by (n-1) is the unbiased variance U. In this way, for each of the major axis and minor axis lengths, the unbiased variance U is obtained based on the actual measured value Xi and its arithmetic mean X, and based on the unbiased variance U, the major axis length and the minor axis length are determined. Is determined in each case.
[0012]
【formula】
[0013]
The metal nanorod of the present invention has a uniform shape with a variation coefficient Cv of 20% or less for each of the major axis and the minor axis. Therefore, the light absorption wavelength range is narrow, and the light absorption performance is sharp in a specific wavelength range. For example, a metal nanorod having a major axis of less than 400 nm and a major axis / minor axis aspect ratio of about 5.0 absorbs light having a wavelength of 850 nm. Has a high light absorption performance in the order of 10%, and has a high transmittance in a peripheral wavelength range, and has a sharp light absorption performance in a specific wavelength range.
[0014]
Metal nanorods can be produced, for example, by electrolytic reduction. When a voltage is applied to the metal electrode inserted in the electrolyte, metal ions elute from the anode and are reduced at the cathode. The reduced metal ions form clusters of an appropriate size and leave the cathode, and the clusters gradually grow in the liquid to form rod-shaped metal particles. Specifically, a metal nanorod having a major axis of less than 400 nm and an aspect ratio of major axis / minor axis of 100 or less can be obtained. In this electrolytic reduction, an electrolytic solution to which a surfactant is added is used to promote the growth of clusters. However, by using a surfactant containing an alkyl chain and having a limited alkyl chain length, the long axis and the short axis of the metal nanorod can be reduced. The coefficient of variation of the axis can be controlled. Specifically, a metal ion is reduced in a liquid containing a surfactant, preferably a surfactant containing an alkyl chain of a quaternary ammonium salt type, having two different alkyl chain lengths. With respect to the major axis and the minor axis, the variation coefficient of each axis length can be suppressed to 20% or less.
[0015]
As the two kinds of surfactants having different alkyl chain lengths, for example, the number n of (CH 2 ) groups represented by the following chemical formulas (a) and (b) is an integer of 1 to 15 (the carbon number of the alkyl chain). Surfactants 2) to 16) can be used.
(A) CH 3 (CH 2 ) n N + (CH 3 ) 3 Br − :
CH 3 (CH 2) 15 N + (CH 3) 3 Br - [CTAB: n = 15]
(Ii) (CH 3 (CH 2) n) 4 N + Br -:
(CH 3 (CH 2) 11 ) 4 N + Br - [TC12AB: n = 11]
(CH 3 (CH 2) 5 ) 4 N + Br - [TC6AB: n = 5]
[0016]
A metal nanorod-containing composition can be obtained by mixing a metal nanorod in which the variation coefficient of each of the major axis and the minor axis is suppressed to 20% or less with a dispersant, a dispersion medium, and a binder (resin). The content of the metal nanorods in this composition is from 0.1 wt% to 95 wt%, preferably from 20 to 90 wt%, in terms of the solid content in the composition. If the content of the metal nanorods is less than this, the effect becomes insufficient, and if the content of the metal nanorods is greater than this, the binder (resin) component relatively decreases, which is not suitable.
[0017]
The dispersant preferably contains a nitrogen atom and / or a sulfur atom. For example, a silane coupling agent containing a nitrogen atom or a sulfur atom in an adsorption site is used. The metal nanorods adsorb to the nitrogen and sulfur atoms and disperse in the binder. The dispersion medium may be either aqueous or non-aqueous, or both may be used. As the binder, any one of an aqueous dispersion type, a non-aqueous type, and a water-soluble resin or a mixture thereof can be used. The metal nanorods are dispersed in a dispersion medium in the presence of a dispersing agent, and a coating composition containing the metal nanorods in which the variation coefficient of the long axis and the short axis is suppressed to 20% or less by mixing the dispersion with a binder. Obtainable.
[0018]
By applying the above coating composition to the surface of the substrate, a substrate in which metal nanorods having a variation coefficient of the major axis and the minor axis of 20% or less are dispersed on the surface can be obtained. Further, by kneading the metal nanorods or the coating composition of the present invention into a resin or glass, it is possible to obtain a substrate in which the metal nanorods in which the variation coefficient of the major axis and the minor axis is suppressed to 20% or less are dispersed. it can. These substrates formed of a transparent material such as resin or glass absorb light of a specific wavelength by the metal nanorods, and thus can be used as an optical filter for PDP, a color filter, a heat ray cut filter, and the like. .
[0019]
[Examples and Comparative Examples]
Hereinafter, examples and comparative examples of the present invention will be described.
[Example 1]
As an electrolytic solution, a surfactant [CH 3 (CH 2 ) 15 N + (CH 3 ) 3 Br − : CTAB (alkyl chain having 16 carbon atoms)] 0.08 mol / l and a surfactant [(CH 3 ( CH 2) 11) 4 N + Br -: TC12AB ( with 100ml water containing several 12)] 0.0054 mol / l of carbon atoms in the alkyl chain, a gold plate as an anode, the platinum plate as a cathode, and further the platinum plate Electrolysis was performed for 2 hours while applying a constant current of 20 mA to the electrodes and applying ultrasonic vibration using an electrolysis apparatus provided with a silver plate to which no voltage was applied on the side, to obtain gold nanorods. The variation coefficient of the major axis and minor axis of this gold nanorod was 10% each, the average major axis length was 50 nm, and the aspect ratio of major axis / minor axis was about 5.0.
After removing excess surfactant by centrifugation from the electrolytic aqueous solution containing the gold nanorods, an acrylic resin emulsion (solid content: 40% by weight) was mixed so that the gold nanorods content became 85% by weight, and the paint and did. This paint was applied to a glass substrate and dried to obtain a glass substrate having a coating film (film thickness: 2 μm) in which gold nanorods were dispersed on the surface. The spectral characteristics and surface resistance of the glass substrate were measured. The results are shown in Table 1. The spectral characteristics were measured using a device manufactured by JASCO Corporation (V-570), and the surface resistance was measured using a device manufactured by Mitsubishi Chemical Corporation (Loresta GP, four-point needle method).
[0020]
[Example 2]
Example 2 Example 2 was repeated except that [(CH 3 (CH 2 ) 5 ) 4 N + Br − : TC6AB (the number of carbon atoms in the alkyl chain was 6)] was used as a surfactant instead of TC12AB of Example 1. A gold nanorod was obtained in the same manner as in 1. The coefficient of variation of the major axis and minor axis of this gold nanorod was 15%, the average major axis length was 40 nm, and the aspect ratio of major axis / minor axis was about 5.0. Further, in the same manner as in Example 1, a paint containing 85% by weight of the gold nanorod was prepared. This paint was applied to a glass substrate and dried to obtain a glass substrate having a coating film (film thickness: 2 μm) in which gold nanorods were dispersed on the surface. The spectral characteristics and surface resistance of this glass substrate were measured in the same manner as in Example 1. The results are shown in Table 1.
[0021]
[Comparative Example 1]
In the same manner as in Example 1 except that 0.0081 mol / l of [(CH 3 ) 4 N + Br − : TC1AB (the number of carbon atoms in the alkyl chain)] was used as a surfactant instead of TC12AB of Example 1 A gold nanorod was obtained. The variation coefficient of the major axis and minor axis of this gold nanorod was 40%, the average major axis length was 30 nm, and the aspect ratio of major axis / minor axis was about 5.0. Further, a coating material containing 85% by weight of the gold nanorod was prepared in the same manner as in Example 1. This paint was applied to a glass substrate and dried to obtain a glass substrate having a coating film (film thickness: 2 μm) in which gold nanorods were dispersed on the surface. The spectral characteristics and surface resistance of this glass substrate were measured in the same manner as in Example 1. The results are shown in Table 1.
[0022]
[Comparative Example 2]
Gold nanorods were obtained in the same manner as in Example 1 except that 0.0081 mol / l of a mixed solution of TC1AB and TC6AB (mixing ratio TC1AB: TC6AB = 9: 1) was used as a surfactant instead of TC12AB of Example 1. Was. The variation coefficient of the major axis of the gold nanorod was 20%, the variation coefficient of the minor axis was 40%, the average length of the major axis was 30 nm, and the aspect ratio of the major axis / minor axis was about 5.0. Further, a coating material containing 85% by weight of the gold nanorod was prepared in the same manner as in Example 1. This paint was applied to a glass substrate and dried to obtain a glass substrate having a coating film (film thickness: 2 μm) in which gold nanorods were dispersed on the surface. The spectral characteristics and surface resistance of this glass substrate were measured in the same manner as in Example 1. The results are shown in Table 1.
[0023]
[Comparative Example 3]
Gold nanorods were obtained in the same manner as in Example 1 except that 0.0081 mol / l of a mixed solution of TC1AB and TC12AB (mixing ratio TC1AB: TC12AB = 9: 1) was used as a surfactant instead of TC12AB of Example 1. Was. The variation coefficient of the major axis of this gold nanorod was 40%, the variation coefficient of the minor axis was 20%, the average length of the major axis was 30 nm, and the aspect ratio of the major axis / minor axis was about 5.0. Further, a coating material containing 85% by weight of the gold nanorod was prepared in the same manner as in Example 1. This paint was applied to a glass substrate and dried to obtain a glass substrate having a coating film (film thickness: 2 μm) in which gold nanorods were dispersed on the surface. The spectral characteristics and surface resistance of this glass substrate were measured in the same manner as in Example 1. The results are shown in Table 1.
[0024]
As shown in Table 1, each of the glass substrates having a coating film in which the metal nanorods of the present invention have a variation coefficient of the major axis and the minor axis of 20% or less has a transmittance at 700 nm of 80 to 85%. However, the transmittance at 850 nm is 10%, and has excellent selective light absorption performance for this wavelength (Examples 1 and 2). On the other hand, in Comparative Examples 1 to 3, the transmittances at 700 nm and 850 nm are all 40 to 60%, and the selective light absorbing ability is significantly low, and has a light absorbing effect even at 700 nm. Furthermore, the substrate surface resistances of Examples 1 and 2 of the present invention are smaller than Comparative Examples 1 to 3, and are excellent in conductivity.
[0025]
[Table 1]
[0026]
【The invention's effect】
Since the metal nanorods of the present invention have a small variation coefficient between the long axis and the short axis, the rod shape is uniform, has a sharp light absorption performance for a specific wavelength, and does not greatly affect peripheral wavelengths. It exhibits a high light absorption effect for a specific wavelength. By using the metal nanorods of the present invention, it is possible to obtain an optical film having sharp selective light absorption performance for a specific wavelength in the visible light region to near infrared light region and excellent electromagnetic wave shielding performance.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003086625A JP4573153B2 (en) | 2003-03-26 | 2003-03-26 | Metal nanorod, metal nanorod-containing composition, method for producing the same, and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003086625A JP4573153B2 (en) | 2003-03-26 | 2003-03-26 | Metal nanorod, metal nanorod-containing composition, method for producing the same, and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004292627A true JP2004292627A (en) | 2004-10-21 |
JP4573153B2 JP4573153B2 (en) | 2010-11-04 |
Family
ID=33401198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003086625A Expired - Fee Related JP4573153B2 (en) | 2003-03-26 | 2003-03-26 | Metal nanorod, metal nanorod-containing composition, method for producing the same, and use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4573153B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7824761B2 (en) | 2005-02-17 | 2010-11-02 | National University Corporation Hokkaido University | Metal structure and production method therefor |
JP2011046676A (en) * | 2009-08-28 | 2011-03-10 | Kyushu Univ | Rod-shaped gold fine particle structure, method for producing the same, and application thereof |
KR20130027828A (en) * | 2011-09-08 | 2013-03-18 | 김종훈 | Manufacturing method of metal |
RU2496920C1 (en) * | 2012-03-11 | 2013-10-27 | Сергей Дмитриевич Терентьев | Method of preparation of nanomaterials |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001357511A (en) * | 2000-06-15 | 2001-12-26 | Fuji Photo Film Co Ltd | Ferromagnetic metal powder and magnetic recording medium using the same |
JP2004198665A (en) * | 2002-12-17 | 2004-07-15 | Mitsubishi Materials Corp | Light absorbing material and composition for forming same |
-
2003
- 2003-03-26 JP JP2003086625A patent/JP4573153B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001357511A (en) * | 2000-06-15 | 2001-12-26 | Fuji Photo Film Co Ltd | Ferromagnetic metal powder and magnetic recording medium using the same |
JP2004198665A (en) * | 2002-12-17 | 2004-07-15 | Mitsubishi Materials Corp | Light absorbing material and composition for forming same |
Non-Patent Citations (1)
Title |
---|
JPN7009004794, 山田淳, "金ナノロッドの光誘起形態変化", 光化学協会会報, 19990825, 第30号 No.2, p.136−137 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7824761B2 (en) | 2005-02-17 | 2010-11-02 | National University Corporation Hokkaido University | Metal structure and production method therefor |
JP2011046676A (en) * | 2009-08-28 | 2011-03-10 | Kyushu Univ | Rod-shaped gold fine particle structure, method for producing the same, and application thereof |
KR20130027828A (en) * | 2011-09-08 | 2013-03-18 | 김종훈 | Manufacturing method of metal |
KR101701819B1 (en) * | 2011-09-08 | 2017-02-13 | 김명진 | Manufacturing method of metal |
RU2496920C1 (en) * | 2012-03-11 | 2013-10-27 | Сергей Дмитриевич Терентьев | Method of preparation of nanomaterials |
Also Published As
Publication number | Publication date |
---|---|
JP4573153B2 (en) | 2010-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5596609B2 (en) | Metal colloid solution and paint using the same | |
JP4821951B2 (en) | Wire-shaped gold fine particles, production method thereof, containing composition and use | |
KR101125491B1 (en) | Method for producing metal fine particle, metal fine particle produced thereby, composition containing same, light absorbing material, and application thereof | |
JP4665499B2 (en) | Metal fine particles, production method thereof, composition containing the same, and use thereof | |
JP5074837B2 (en) | Method for producing flat silver powder, flat silver powder, and conductive paste | |
JP4524745B2 (en) | Metal nanowire-containing conductive material and use thereof | |
JP2006070300A (en) | Metal particulate-containing composition and its application | |
EP3296042A1 (en) | Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder | |
JP4332610B2 (en) | Composition containing metal nanorod and metal oxide powder and use thereof | |
JP2003315531A (en) | Polymer film containing metal nanorod and optical filter | |
TWI565838B (en) | Copper powder and the use of its copper paste, conductive paint, conductive film, and copper powder manufacturing methods | |
JP2004196923A (en) | Metal nanowire-containing composition and electromagnetic wave-shielding filter | |
JP4879762B2 (en) | Silver powder manufacturing method and silver powder | |
JP4573153B2 (en) | Metal nanorod, metal nanorod-containing composition, method for producing the same, and use thereof | |
JP5326336B2 (en) | Conductor and manufacturing method thereof | |
JP5059317B2 (en) | Method for producing silver particles | |
JP4529160B2 (en) | METAL PARTICLE, PROCESS FOR PRODUCING THE SAME, COMPOSITION CONTAINING THE SAME AND USE THEREOF | |
JP4521652B2 (en) | Metal nanorod-containing composition and use thereof | |
JP4491776B2 (en) | Method for producing conductive paste, etc. | |
CN108602119B (en) | Nanowire, method for producing same, nanowire dispersion liquid, and transparent conductive film | |
JP2007138249A (en) | Method for producing silver grain, silver grain-containing composition containing the obtained silver grain and its use | |
JP2005019028A (en) | Metal colloid liquid, and conductive ink using it | |
JP2005097581A (en) | Metal nano rod with small minor axis, composition containing the rod, and application thereof | |
JP5151229B2 (en) | Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method | |
JP2013244463A (en) | Composite particle-dispersed liquid, complex, and production methods thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100804 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100805 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4573153 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |