[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004286570A - Nanopillar sensor - Google Patents

Nanopillar sensor Download PDF

Info

Publication number
JP2004286570A
JP2004286570A JP2003078559A JP2003078559A JP2004286570A JP 2004286570 A JP2004286570 A JP 2004286570A JP 2003078559 A JP2003078559 A JP 2003078559A JP 2003078559 A JP2003078559 A JP 2003078559A JP 2004286570 A JP2004286570 A JP 2004286570A
Authority
JP
Japan
Prior art keywords
nanopillar
sensor
substrate
resin
stamper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003078559A
Other languages
Japanese (ja)
Other versions
JP4065801B2 (en
Inventor
Kosuke Kuwabara
孝介 桑原
Akihiro Miyauchi
昭浩 宮内
Masahiko Ogino
雅彦 荻野
Narihisa Motowaki
成久 元脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003078559A priority Critical patent/JP4065801B2/en
Publication of JP2004286570A publication Critical patent/JP2004286570A/en
Application granted granted Critical
Publication of JP4065801B2 publication Critical patent/JP4065801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop an application technique for a pillar having a high aspect ratio, obtained by a nanoprinting method. <P>SOLUTION: The nanopillar sensor consists of the nanopillar formed on a substrate, by a pattern transfer method for heating/pressing the substrate and a stamper on whose surface a fine recession and a protrusion are formed, more specifically, the capacitance sensor is composed of two facing electrodes and a columnar structure (pillar) and for sensing the electrostatic capacity by the inclination of the nanopillar. By employing the nanoprinting method, the capacitance sensor having high sensitivity is manufactured at a low cost, as compared with the conventional capacitance sensor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ナノプリント装置を用い、基板と表面に微細な凹凸が形成されたスタンパを加熱・加圧するパターン転写方法により、基板上に形成されたナノピラーの応用に関する。
【0002】
【従来の技術】
近年、半導体集積回路は微細化,集積化が進んでおり、その微細加工を実現するためのパターン転写技術としてフォトリソグラフィ装置の高精度化が進められてきた。しかし、加工方法が光露光の光源の波長に近づき、リソグラフィ技術も限界に近づいてきた。そのため、さらなる微細化,高精度化を進めるために、リソグラフィ技術に代わり、荷電粒子線装置の一種である電子線描画装置が用いられるようになった。
【0003】
電子線を用いたパターン形成は、i線、エキシマレーザー等の光源を用いたパターン形成における一括露光方法とは異なり、マスクパターンを描画していく方法をとるため、描画するパターンが多ければ多いほど露光(描画)時間がかかり、パターン形成に時間がかかることが欠点とされている。そのため、256メガ、1ギガ、4ギガと、集積度が飛躍的に高まるにつれ、その分パターン形成時間も飛躍的に長くなることになり、スループットが著しく劣ることが懸念される。そこで、電子ビーム描画装置の高速化のために、各種形状のマスクを組み合わせそれらに一括して電子ビームを照射して複雑な形状の電子ビームを形成する一括図形照射法の開発が進められている。この結果、パターンの微細化が進められる一方で、電子線描画装置を大型化せざるを得ないほか、マスク位置をより高精度に制御する機構が必要になるなど、装置コストが高くなるという欠点があった。
【0004】
これに対し、微細なパターン形成を低コストで行うための技術が下記特許文献1及び2、非特許文献1などにおいて開示されている。これは、基板上に形成したいパターンと同じパターンの凹凸を有するスタンパを、被転写基板表面に形成されたレジスト膜層に対して型押しすることで所定のパターンを転写するものであり、特に特許文献2記載や非特許文献1のナノインプリント技術によれば、シリコンウエハをスタンパとして用い、25ナノメートル以下の微細構造を転写により形成可能であるとしている。
【0005】
【特許文献1】
米国特許5,259,926号公報
【特許文献2】
米国特許5,772,905号公報
【非特許文献1】
S.Y.Chou et al.,Appl.Phys.Lett.,vol.67,p.3314(1995)
【0006】
【発明が解決しようとする課題】
そこで、本発明者らは、ナノプリント用プレス装置を用い、基板と表面に微細な凹凸が形成されたスタンパを加熱・加圧するパターン転写方法により、基板上に、高アスペクト比を有するナノオーダーの柱状構造体(ナノピラー)を作製することに成功した。
本発明は、基板上に形成されたナノピラーの応用技術を開発することを目的とする。
【0007】
【課題を解決するための手段】
本発明者は、ナノピラーを各種センサに応用することを考え、本発明に至った。
即ち、本発明は、ナノプリント装置を用い、基板と、表面に微細な凹凸が形成されたスタンパを加熱・加圧するパターン転写方法により、基板上に形成されたナノピラーからなるナノピラーセンサである。
【0008】
具体的には、2つの対向する電極と柱状構造体(ピラー)から構成され、ナノピラーの傾きで電気容量を感知する静電容量センサである。ナノプリント法を用いることにより、従来の静電容量センサに比べて、工程を短縮することができ、高感度な静電容量センサを低コストで製造することが出来る。ナノピラーの傾きで電気容量を感知することにより、フローセンサや加速度センサに用いることができる。
【0009】
なお、樹脂基板または基板上の樹脂膜を成型させて、ナノピラーを製造する方法としては、▲1▼樹脂基板または基板上の樹脂膜を、加熱して変形させる、▲2▼樹脂基板または基板上の樹脂膜を加圧成型後に、光硬化させる、▲3▼樹脂基板または基板上の樹脂膜を光硬化させる、から選択されることが好ましい。
【0010】
【発明の実施の形態】
先ず、図1を参照しながら、ナノプリント方法について説明する。シリコン基板等の表面に微小なパターンを有するスタンパを作製する。これとは別の基板上に樹脂膜を設ける(図(a)。)図示しない加熱・加圧機構を有するプレス装置を用い、該樹脂のガラス転移温度(Tg)以上の温度で、所定の圧力でスタンパを樹脂膜上にプレスする(図(b))。冷却・硬化させる(図(c))。スタンパと基板を剥離して、スタンパの微細なパターンを基板上の樹脂膜に転写する(図(d))。また、加熱硬化する工程の変わりに、光硬化性の樹脂を用い、成型後に、樹脂に光を照射し、樹脂を硬化させても良い。更に、ガラス等の光透過性のスタンパを用い、プレス後に、該光透過性のスタンパの上方より光を照射して、樹脂を光硬化させてもよい。
【0011】
ナノプリント方法によれば、▲1▼集積化された極微細パターンを効率良く転写できる、▲2▼装置コストがやすい、▲3▼複雑な形状に対応できピラー形成なども可能である、等の特徴がある。
【0012】
本発明において、ナノプリントとは、数100μmから数nm程度の範囲の転写を言う。
本発明において、プレス装置は、加熱・加圧機構を有するものや、光透過性スタンパの上方より光を照射できる機構を有するものが、パターン転写を効率良く行う上で好ましい。
【0013】
本発明において、スタンパは、転写されるべき微細なパターンを有するものであり、スタンパに該パターンを形成する方法は特に制限されない。例えば、フォトリソグラフィや電子線描画法等、所望する加工精度に応じて、選択される。スタンパの材料としては、シリコンウエハ、各種金属材料、ガラス、セラミック、プラスチック等、強度と要求される精度の加工性を有するものであれば良い。具体的には、Si、SiC、SiN、多結晶Si、ガラス、Ni、Cr、Cu、及びこれらを1種以上含むものが好ましく例示される。
【0014】
本発明において、基板となる材料は特に限定されないが、所定の強度を有するものであれば良い。具体的には、シリコン、各種金属材料、ガラス、セラミック、プラスチック、等が好ましく例示される。
【0015】
本発明において、微細な構造が転写される樹脂膜は特に限定されないが、所望する加工精度に応じて、選択される。具体的には、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリ塩化ビニール、ポリスチレン、ABS樹脂、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ガラス強化ポリエチレンテレフタレート、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、液晶性ポリマー、フッ素樹脂、ポリアレート、ポリスルホン、ポリエーテルスルホン、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等の熱可塑性樹脂や、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、シリコーン樹脂、ジアリルフタレート樹脂、ポリアミドビスマレイミド、ポリビスアミドトリアゾール等の熱硬化性樹脂、及びこれらを2種以上ブレンドした材料を用いることが可能である。
これらの中で、導電性ナノピラーを得るためには、導電性樹脂を用いるか、導電性フィラーを配合した樹脂を用いることができる。
【0016】
【発明の実施の形態】
以下、本発明の実施例を説明する。
[実施例1:加速度せンサ]
図2は本発明のナノピラー加速度せンサ1である。上部電極2と下部電極3の間にポリスチレンナノピラー4を形成している。
【0017】
ここで、ナノピラーの製造プロセスを説明する。まず、図3(a)のように表面が平滑な石英基板5に厚さ500ナノメートルの白金薄膜6をスパッタリング法により形成した。その上に東京応化工業製のOFPR800レジストを10マイクロメートルの厚みにスピンコートにより塗付した後に露光・現像を経て図3(b)のようにレジスト7を形成した。このレジスト7をマスクとして白金薄膜6をイオンミリングによって除去した後にレジストを剥離して図3(c)のような10ミリメートル×10ミリメートルの下部電極3を形成した。次に図3(d)のように下部電極3の上にスクリーン印刷法によりポリスチレン薄膜8(ポリスチレン679エイアンドエム製)を500ナノメートルの厚みに塗付した。このポリスチレン薄膜8上に前述のナノプリントにより図3(e)のように直径500ナノメートル、高さ5マイクロメートルのポリスチレンナノピラー4を形成して下部基板9を形成した。図4は形成したポリスチレンナノピラー4の走査電子顕微鏡写真である。
【0018】
図5は、ナノピラー加速度センサの製造プロセスを示す。やはり表面が平滑な(001)シリコン基板10の表面に熱酸化膜を形成し、図3(b)のレジスト7と同様の手法で図5(b)のようにレジスト11を得た。このレジスト11をマスクとしてシリコン基板10表面の熱酸化膜を部分的に除去した。この部分的に除去した熱酸化膜をマスクとして、水酸化カリウム溶液を用いる異方性エッチングにより巾500マイクロメートル、深さ9.5マイクロメートルの流路12と電極を形成するセンサ部を図5(c)のように形成した。この後、下部電極3と同様のプロセスでセンサ部に10ミリメートル×10ミリメートル、厚さ500ナノメートルの白金製上部電極2を形成して図5(d)のように上部基板13とした。この上部基板13と下部基板9を図6のように厚さ2マイクロメートルの接着剤14によって接合し、ナノピラー加速度センサ1を得た。
【0019】
本発明のナノピラー加速度センサ1の試験結果を図7と図8を用いて説明する。図7は空気中に保持したナノピラー加速度センサ1に加速度15を与える実験の構成図であり、図8はその実験結果である。加速度15によりポリスチレンナノピラー4が傾くために二つの電極間の静電容量が変化し、最大20%の減少を示した。加速度15と静電容量の変化には強い相関が見られ、ナノピラー加速度センサ1が加速度センサとしての機能を有することを示せた。
【0020】
[実施例2:ナノピラー流量センサ]
以下、本発明のもう一つの実施例を説明する。図9は本発明のナノピラー流量センサ17である。上部電極18と下部電極19の間にポリスチレンナノピラー20を形成しており、二つの電極の間に空気21が流れるようになっている。
【0021】
本センサの形成プロセスは本発明の実施の形態1に示したナノピラー加速度センサ1と同じであるが、センサに流量を測定する空気21を導入・排出するためのコネクタ22がセンサ外部に形成されている。
【0022】
本発明のナノピラー流量センサ17の試験結果を図9と図10を用いて説明する。図9はナノピラー流量センサ17に空気21を流す実験の構成図であり、図10はその実験結果である。空気21の流れによりポリスチレンナノピラー20が傾くために二つの電極間の静電容量が変化し、最大20%の減少を示した。空気21の流量と静電容量の変化には強い相関が見られ、ナノピラー流量センサ17が流量センサとしての機能を有することを示せた。
【0023】
【発明の効果】
本発明によれば、ナノプリント法を用いることにより、従来の静電容量センサに比べて、高感度な静電容量センサを低コストで製造することが出来る。
【図面の簡単な説明】
【図1】ナノプリントの各工程を示す模式図。
【図2】本発明のナノピラー加速度せンサ。
【図3】ナノピラーの製造プロセス。
【図4】形成したポリスチレンナノピラーの走査電子顕微鏡写真。
【図5】ナノピラー加速度センサの製造プロセス。
【図6】ナノピラー加速度センサの製造プロセスの続き。
【図7】空気中に保持したナノピラー加速度センサに加速度を与える実験の構成図。
【図8】空気中に保持したナノピラー加速度センサに加速度を与える実験の結果。
【図9】ナノピラー流量センサに空気を流す実験の構成図。
【図10】ナノピラー流量センサに空気を流す実験の結果。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an application of nanopillars formed on a substrate by a pattern transfer method of heating and pressing a substrate and a stamper having fine irregularities formed on the surface using a nanoprinting apparatus.
[0002]
[Prior art]
2. Description of the Related Art In recent years, miniaturization and integration of semiconductor integrated circuits have been advanced, and photolithography apparatuses have been improved in precision as a pattern transfer technique for realizing the microfabrication. However, the processing method is approaching the wavelength of the light source for light exposure, and the lithography technique is approaching its limit. For this reason, an electron beam lithography apparatus, which is a kind of charged particle beam apparatus, has come to be used in place of the lithography technique in order to achieve further miniaturization and higher precision.
[0003]
The pattern formation using an electron beam is different from the collective exposure method in pattern formation using a light source such as an i-line or an excimer laser, and is based on a method of drawing a mask pattern. It is a drawback that exposure (drawing) takes time and pattern formation takes time. Therefore, as the degree of integration is dramatically increased to 256 mega, 1 giga, and 4 giga, the pattern formation time is drastically increased correspondingly, and there is a concern that the throughput may be significantly inferior. Therefore, in order to increase the speed of the electron beam lithography system, the development of a collective pattern irradiation method that combines masks of various shapes and irradiates them collectively with an electron beam to form an electron beam of a complicated shape is being advanced. . As a result, while the pattern miniaturization is advanced, the electron beam lithography system must be increased in size, and a mechanism for controlling the mask position with higher accuracy is required. was there.
[0004]
On the other hand, techniques for forming a fine pattern at low cost are disclosed in Patent Literatures 1 and 2, Non-Patent Literature 1, and the like. This is to transfer a predetermined pattern by stamping a stamper having the same pattern irregularities as a pattern to be formed on a substrate onto a resist film layer formed on the surface of a substrate to be transferred. According to the nanoimprint technique described in Document 2 and Non-Patent Document 1, it is stated that a microstructure of 25 nm or less can be formed by transfer using a silicon wafer as a stamper.
[0005]
[Patent Document 1]
US Patent No. 5,259,926 [Patent Document 2]
US Patent No. 5,772,905 [Non-Patent Document 1]
S. Y. Chou et al. , Appl. Phys. Lett. , Vol. 67, p. 3314 (1995)
[0006]
[Problems to be solved by the invention]
Therefore, the present inventors use a nanoprinting press device to heat and press a stamper on which fine irregularities are formed on the substrate and the surface. We succeeded in producing columnar structures (nano pillars).
An object of the present invention is to develop an application technology of a nanopillar formed on a substrate.
[0007]
[Means for Solving the Problems]
The present inventor has thought of applying nanopillars to various sensors, and has reached the present invention.
That is, the present invention is a nanopillar sensor including nanopillars formed on a substrate by a pattern transfer method of heating and pressing a substrate and a stamper having fine irregularities on the surface using a nanoprinting apparatus.
[0008]
Specifically, it is an electrostatic capacitance sensor that is composed of two opposing electrodes and a columnar structure (pillar) and senses the electric capacitance by the inclination of the nanopillar. By using the nanoprinting method, the number of steps can be reduced as compared with a conventional capacitance sensor, and a high-sensitivity capacitance sensor can be manufactured at low cost. By sensing the electric capacitance by the inclination of the nanopillar, it can be used for a flow sensor or an acceleration sensor.
[0009]
In addition, as a method of manufacturing a nanopillar by molding a resin substrate or a resin film on the substrate, (1) heating and deforming the resin film on the resin substrate or the substrate; It is preferable to select from the following: (3) photo-curing the resin film after pressure molding and (3) photo-curing the resin substrate or the resin film on the substrate.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the nanoprinting method will be described with reference to FIG. A stamper having a fine pattern on the surface of a silicon substrate or the like is manufactured. A resin film is provided on another substrate (FIG. (A)). A pressing device having a heating / pressing mechanism (not shown) is used at a temperature equal to or higher than the glass transition temperature (Tg) of the resin and a predetermined pressure is applied. Press the stamper on the resin film (FIG. (B)). It is cooled and hardened (Fig. (C)). The stamper and the substrate are separated, and the fine pattern of the stamper is transferred to the resin film on the substrate (FIG. (D)). Alternatively, instead of the step of heating and curing, a photocurable resin may be used, and after molding, the resin may be irradiated with light to cure the resin. Further, a light-transmitting stamper such as glass may be used, and after pressing, light may be irradiated from above the light-transmitting stamper to light-cur the resin.
[0011]
According to the nanoprinting method, (1) the integrated ultra-fine pattern can be efficiently transferred, (2) the apparatus cost is easy, (3) it is possible to cope with complicated shapes and pillars can be formed, and the like. There are features.
[0012]
In the present invention, nanoprinting refers to transfer in the range from several hundreds of μm to several nm.
In the present invention, a press device having a heating / pressing mechanism or a device having a mechanism capable of irradiating light from above the light-transmitting stamper is preferable for efficient pattern transfer.
[0013]
In the present invention, the stamper has a fine pattern to be transferred, and a method of forming the pattern on the stamper is not particularly limited. For example, it is selected according to a desired processing accuracy such as photolithography or electron beam lithography. As the material of the stamper, any material having strength and required workability such as silicon wafer, various metal materials, glass, ceramic, plastic, etc. may be used. Specifically, Si, SiC, SiN, polycrystalline Si, glass, Ni, Cr, Cu, and those containing at least one of them are preferably exemplified.
[0014]
In the present invention, the material used as the substrate is not particularly limited, but may be any material having a predetermined strength. Specifically, silicon, various metal materials, glass, ceramic, plastic, and the like are preferably exemplified.
[0015]
In the present invention, the resin film to which the fine structure is transferred is not particularly limited, but is selected according to a desired processing accuracy. Specifically, polyethylene, polypropylene, polyvinyl alcohol, polyvinylidene chloride, polyethylene terephthalate, polyvinyl chloride, polystyrene, ABS resin, AS resin, acrylic resin, polyamide, polyacetal, polybutylene terephthalate, glass reinforced polyethylene terephthalate, polycarbonate, modified Thermoplastic resins such as polyphenylene ether, polyphenylene sulfide, polyether ether ketone, liquid crystal polymer, fluororesin, polyalate, polysulfone, polyethersulfone, polyamideimide, polyetherimide, thermoplastic polyimide, phenolic resin, melamine resin, urea Resin, epoxy resin, unsaturated polyester resin, alkyd resin, silicone resin, diallyl phthalate resin, poly Bromide bismaleimide, poly bisamide thermosetting resin triazole and the like, and it is possible to use two or more kinds of these blended material.
Among them, in order to obtain conductive nanopillars, a conductive resin can be used, or a resin containing a conductive filler can be used.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, examples of the present invention will be described.
[Example 1: acceleration sensor]
FIG. 2 shows a nanopillar acceleration sensor 1 of the present invention. Polystyrene nanopillars 4 are formed between the upper electrode 2 and the lower electrode 3.
[0017]
Here, a nanopillar manufacturing process will be described. First, as shown in FIG. 3A, a 500 nm thick platinum thin film 6 was formed on a quartz substrate 5 having a smooth surface by a sputtering method. An OFPR800 resist manufactured by Tokyo Ohka Kogyo Co., Ltd. was applied thereon by spin coating to a thickness of 10 μm, and after exposure and development, a resist 7 was formed as shown in FIG. 3B. After removing the platinum thin film 6 by ion milling using the resist 7 as a mask, the resist was peeled off to form the lower electrode 3 of 10 mm × 10 mm as shown in FIG. 3C. Next, as shown in FIG. 3D, a polystyrene thin film 8 (manufactured by Polystyrene 679A & M) was applied on the lower electrode 3 by a screen printing method to a thickness of 500 nm. As shown in FIG. 3E, a polystyrene nanopillar 4 having a diameter of 500 nm and a height of 5 μm was formed on the polystyrene thin film 8 by the above-described nanoprinting, thereby forming a lower substrate 9. FIG. 4 is a scanning electron micrograph of the formed polystyrene nanopillar 4.
[0018]
FIG. 5 shows a manufacturing process of the nanopillar acceleration sensor. Similarly, a thermal oxide film was formed on the surface of the (001) silicon substrate 10 having a smooth surface, and a resist 11 was obtained as shown in FIG. 5B by the same method as the resist 7 of FIG. 3B. Using the resist 11 as a mask, the thermal oxide film on the surface of the silicon substrate 10 was partially removed. Using the partially removed thermal oxide film as a mask, a sensor section for forming an electrode and a flow path 12 having a width of 500 micrometers and a depth of 9.5 micrometers by anisotropic etching using a potassium hydroxide solution is shown in FIG. It was formed as shown in (c). Thereafter, a platinum upper electrode 2 having a size of 10 mm × 10 mm and a thickness of 500 nm was formed on the sensor portion by the same process as that for forming the lower electrode 3, thereby forming an upper substrate 13 as shown in FIG. The upper substrate 13 and the lower substrate 9 were joined with an adhesive 14 having a thickness of 2 micrometers as shown in FIG.
[0019]
The test results of the nanopillar acceleration sensor 1 of the present invention will be described with reference to FIGS. FIG. 7 is a configuration diagram of an experiment in which an acceleration 15 is applied to the nanopillar acceleration sensor 1 held in the air, and FIG. 8 shows the experiment result. Since the polystyrene nanopillars 4 were tilted by the acceleration 15, the capacitance between the two electrodes changed, and a decrease of up to 20% was shown. A strong correlation was found between the acceleration 15 and the change in capacitance, indicating that the nanopillar acceleration sensor 1 has a function as an acceleration sensor.
[0020]
[Example 2: Nano pillar flow sensor]
Hereinafter, another embodiment of the present invention will be described. FIG. 9 shows a nanopillar flow sensor 17 of the present invention. A polystyrene nanopillar 20 is formed between the upper electrode 18 and the lower electrode 19, and air 21 flows between the two electrodes.
[0021]
The formation process of this sensor is the same as that of the nanopillar acceleration sensor 1 shown in the first embodiment of the present invention, except that a connector 22 for introducing and discharging air 21 for measuring a flow rate to the sensor is formed outside the sensor. I have.
[0022]
The test results of the nanopillar flow sensor 17 of the present invention will be described with reference to FIGS. FIG. 9 is a configuration diagram of an experiment in which air 21 flows through the nanopillar flow sensor 17, and FIG. 10 shows the experiment result. Since the flow of the air 21 caused the polystyrene nanopillars 20 to tilt, the capacitance between the two electrodes changed, indicating a maximum reduction of 20%. A strong correlation was found between the flow rate of the air 21 and the change in capacitance, indicating that the nanopillar flow rate sensor 17 has a function as a flow rate sensor.
[0023]
【The invention's effect】
According to the present invention, by using the nanoprinting method, it is possible to manufacture a high-sensitive capacitance sensor at low cost as compared with a conventional capacitance sensor.
[Brief description of the drawings]
FIG. 1 is a schematic view showing each step of nanoprinting.
FIG. 2 shows a nanopillar acceleration sensor of the present invention.
FIG. 3 shows a nanopillar manufacturing process.
FIG. 4 is a scanning electron micrograph of the formed polystyrene nanopillars.
FIG. 5 is a manufacturing process of the nanopillar acceleration sensor.
FIG. 6 is a continuation of the manufacturing process of the nanopillar acceleration sensor.
FIG. 7 is a configuration diagram of an experiment in which an acceleration is applied to a nanopillar acceleration sensor held in the air.
FIG. 8 is a result of an experiment in which acceleration is applied to a nanopillar acceleration sensor held in air.
FIG. 9 is a configuration diagram of an experiment in which air flows through a nanopillar flow sensor.
FIG. 10 shows the results of an experiment in which air is flowed through a nanopillar flow sensor.

Claims (4)

ナノプリント用プレス装置を用い、基板と、表面に微細な凹凸が形成されたスタンパを加熱・加圧するパターン転写方法により、基板上に形成されたナノピラーからなるナノピラーセンサ。A nanopillar sensor composed of nanopillars formed on a substrate by a pattern transfer method of heating and pressing a substrate and a stamper having fine irregularities on the surface using a nanoprinting press device. 請求項1に記載のナノピラーセンサが、2つの対向する電極と柱状構造体(ピラー)から構成され、ナノピラーの傾きで静電容量を感知する静電容量センサであることを特徴とするナノピラーセンサ。The nanopillar sensor according to claim 1, wherein the nanopillar sensor according to claim 1 is a capacitance sensor including two opposing electrodes and a columnar structure (pillar), and detecting a capacitance by a tilt of the nanopillar. 請求項2に記載のナノピラーセンサが、ナノピラーの傾きで静電容量を感知するフローセンサであることを特徴とするナノピラーセンサ。The nanopillar sensor according to claim 2, wherein the nanopillar sensor is a flow sensor that senses capacitance by tilting the nanopillar. 請求項2に記載のナノピラーセンサが、ナノピラーの傾きで静電容量を感知する加速度センサであることを特徴とするナノピラーセンサ。The nanopillar sensor according to claim 2, wherein the nanopillar sensor is an acceleration sensor that senses capacitance by a tilt of the nanopillar.
JP2003078559A 2003-03-20 2003-03-20 Nano pillar sensor Expired - Fee Related JP4065801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003078559A JP4065801B2 (en) 2003-03-20 2003-03-20 Nano pillar sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003078559A JP4065801B2 (en) 2003-03-20 2003-03-20 Nano pillar sensor

Publications (2)

Publication Number Publication Date
JP2004286570A true JP2004286570A (en) 2004-10-14
JP4065801B2 JP4065801B2 (en) 2008-03-26

Family

ID=33293009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003078559A Expired - Fee Related JP4065801B2 (en) 2003-03-20 2003-03-20 Nano pillar sensor

Country Status (1)

Country Link
JP (1) JP4065801B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7439731B2 (en) 2005-06-24 2008-10-21 Crafts Douglas E Temporary planar electrical contact device and method using vertically-compressible nanotube contact structures
US8130007B2 (en) 2006-10-16 2012-03-06 Formfactor, Inc. Probe card assembly with carbon nanotube probes having a spring mechanism therein
US8872176B2 (en) 2010-10-06 2014-10-28 Formfactor, Inc. Elastic encapsulated carbon nanotube based electrical contacts
WO2015123457A1 (en) * 2014-02-12 2015-08-20 California Institute Of Technology Plasmonics nanostructures for multiplexing implantable sensors
US9512000B2 (en) 2014-12-09 2016-12-06 California Institute Of Technology Fabrication and self-aligned local functionalization of nanocups and various plasmonic nanostructures on flexible substrates for implantable and sensing applications
US9846125B2 (en) 2014-09-05 2017-12-19 California Institute Of Technology Surface enhanced Raman spectroscopy detection of gases, particles and liquids through nanopillar structures
US9913603B2 (en) 2014-02-12 2018-03-13 California Institute Of Technology Reflowed gold nanostructures for surface enhanced raman spectroscopy
US9987609B2 (en) 2014-09-05 2018-06-05 California Institute Of Technology Multiplexed surface enhanced Raman sensors for early disease detection and in-situ bacterial monitoring

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7439731B2 (en) 2005-06-24 2008-10-21 Crafts Douglas E Temporary planar electrical contact device and method using vertically-compressible nanotube contact structures
US7710106B2 (en) 2005-06-24 2010-05-04 Crafts Douglas E Temporary planar electrical contact device and method using vertically-compressible nanotube contact structures
US8638113B2 (en) 2005-06-24 2014-01-28 Formfactor, Inc. Temporary planar electrical contact device and method using vertically-compressible nanotube contact structures
US8130007B2 (en) 2006-10-16 2012-03-06 Formfactor, Inc. Probe card assembly with carbon nanotube probes having a spring mechanism therein
US8872176B2 (en) 2010-10-06 2014-10-28 Formfactor, Inc. Elastic encapsulated carbon nanotube based electrical contacts
WO2015123457A1 (en) * 2014-02-12 2015-08-20 California Institute Of Technology Plasmonics nanostructures for multiplexing implantable sensors
US9913603B2 (en) 2014-02-12 2018-03-13 California Institute Of Technology Reflowed gold nanostructures for surface enhanced raman spectroscopy
US9993185B2 (en) 2014-02-12 2018-06-12 California Institute Of Technology Plasmonics nanostructures for multiplexing implantable sensors
US9846125B2 (en) 2014-09-05 2017-12-19 California Institute Of Technology Surface enhanced Raman spectroscopy detection of gases, particles and liquids through nanopillar structures
US9987609B2 (en) 2014-09-05 2018-06-05 California Institute Of Technology Multiplexed surface enhanced Raman sensors for early disease detection and in-situ bacterial monitoring
US9512000B2 (en) 2014-12-09 2016-12-06 California Institute Of Technology Fabrication and self-aligned local functionalization of nanocups and various plasmonic nanostructures on flexible substrates for implantable and sensing applications

Also Published As

Publication number Publication date
JP4065801B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
Barcelo et al. Nanoimprint lithography for nanodevice fabrication
EP1762893B1 (en) Mold, imprint apparatus, and process for producing structure
KR101171197B1 (en) Imprint lithography templates having alignment marks
Kwon et al. Importance of molds for nanoimprint lithography: Hard, soft, and hybrid molds
JP4317375B2 (en) Nanoprint apparatus and fine structure transfer method
KR100508337B1 (en) Fabrication Method of Patterned Polymer Film with Nanometer Scale
Zhou et al. Nanoimprint lithography: a processing technique for nanofabrication advancement
Vigneswaran et al. Recent advances in nano patterning and nano imprint lithography for biological applications
EP2470956B1 (en) Functional nanoparticles
US20050191419A1 (en) Fabrication of nanostructures
KR101970147B1 (en) Optically absorptive material for alignment marks
KR20150127092A (en) Nano imprinting with reusable polymer template with metallic or oxide coating
JP2012507882A (en) Alignment for edge field nanoimprint
US20060154179A1 (en) Imprint lithography
JP4520166B2 (en) Resin microchannel substrate and manufacturing method thereof
KR101399440B1 (en) Method for making stamp for plasmonic nano lithography apparatus plasmonic nano lithography apparatus
US7490547B2 (en) Imprint lithography
JP2004286570A (en) Nanopillar sensor
JP2005520220A (en) Method and system for creating nanoscale patterns in a photocurable composition using an electric field
JP2004288784A (en) Nano printing apparatus and microstructure transfer method
JP2004288802A (en) Light transmissive nano-stamping method
US20050074697A1 (en) Method for fabricating masters for imprint lithography and related imprint process
KR20050037773A (en) Stamper-manufacturing method for imprint lithography
US20100081282A1 (en) Process for adjusting the size and shape of nanostructures
US20100009541A1 (en) Process for Adjusting the Size and Shape of Nanostructures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070314

A131 Notification of reasons for refusal

Effective date: 20070515

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A131 Notification of reasons for refusal

Effective date: 20070828

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees