【0001】
【発明の属する技術分野】
本発明は、発熱電子部品を冷媒で冷却できる接触型液冷受熱ポンプと、これを備えた発熱電子部品の冷却装置に関するものである。
【0002】
【従来の技術】
最近のコンピューターにおける高速化の動きはきわめて急速であり、CPUのクロック周波数は以前と比較して格段に大きなものになってきている。この結果、CPUの発熱量が増し、従来のようにヒートシンクで空冷するだけでは能力不足で、高効率で高出力の冷却装置が不可欠になっている。そこでこのような冷却装置として、発熱電子部品を搭載した基板を、冷媒を循環させて冷却する冷却装置が提案された。
【0003】
以下、このような冷媒を循環させて冷却する従来の電子機器の冷却装置について説明する。なお、本明細書において電子機器というのは、CPU等にプログラムをロードして処理を行う装置、中でもノート型パソコンのような携行可能な小型の装置を中核とするが、このほかに通電により発熱する発熱電子部品を搭載した装置を含むものである。この従来の第1の冷却装置は、例えば図7に示すようなものが知られている。図7は従来の電子機器の第1冷却装置の構成図である。図7において、100は筐体であり、101は発熱電子部品、102は発熱電子部品101を実装した基板、103は発熱電子部品101と冷媒との間で熱交換を行ない発熱電子部品101を冷却する冷却器、104は冷媒から熱を取り除く放熱器、105は冷媒を循環させるポンプ、106はこれらを接続する配管、107は放熱器104を空冷するファンである。
【0004】
この従来の第1冷却装置の動作を説明すると、ポンプ105から吐出された冷媒は、配管106を通って冷却器103に送られる。ここで発熱電子部品101の熱を奪うことでその温度が上昇し、放熱器104に送られる。この放熱器104でファン107によって強制空冷されてその温度が降下し、再びポンプ105へ戻ってこれを繰り返す。このように、冷媒を循環させて発熱電子部品101を冷却するものであった。
【0005】
次に、電子機器の従来の第2冷却装置として、図8に示すものが提案されている(例えば特許文献1参照)。
【0006】
この第2冷却装置は、発熱部材を狭い筐体内に搭載したとき、発熱部材の発生熱を放熱部である金属筐体壁まで効率良く輸送し発熱部材を冷却するものである。図8は従来の電子機器の第2冷却装置の構成図である。図8において、108は電子機器の配線基板、109はキーボード、110は半導体発熱素子、111はディスク装置、112は表示装置、113は半導体発熱素子110との間で熱交換する受熱ヘッダ、114は放熱のための放熱ヘッダ、115はフレキシブルチューブ、116は電子機器の金属筐体である。
【0007】
この第2冷却装置は、発熱部材である半導体発熱素子110と金属筐体116とをフレキシブル構造の熱輸送デバイスにより熱的に接続するものである。この熱輸送デバイスは、半導体発熱素子110に取り付けた液流路を有する扁平状の受熱ヘッダ113、液流路を有し金属筐体116の壁に接触させた放熱ヘッダ114、さらに両者を接続するフレキシブルチューブ115で構成され、内部に封入した液を放熱ヘッダ114に内蔵した液駆動機構により受熱ヘッダ113と放熱ヘッダ114との間で駆動あるいは循環させるものである。これにより、半導体発熱素子110と金属筐体116とが部品配列に左右されることなく容易に接続できるとともに、液の駆動により高効率で熱が輸送される。放熱ヘッダ114においては、放熱ヘッダ114と金属筐体116とが熱的に接続されているので、金属筐体116の高い熱伝導率のために熱が広く金属筐体116に拡散されるものである。
【0008】
また、本出願人も、冷却効率を改善しながら小型化、薄型化でき、構造が簡単な渦流ポンプを使った冷却装置を既に提案した(特願2002−139598)。
【0009】
【特許文献1】
特開平7−142886号公報
【0010】
【発明が解決しようとする課題】
しかしながら、従来の第1冷却装置では、発熱電子部品101と冷媒とで熱交換を行ない発熱電子部品101を冷却する冷却器103、冷媒から熱を取り除くための放熱器104、冷媒を循環させるポンプ105、図示はしないが冷媒を補充しなければならず補充用タンクが必要であり、これらを組み合わせるため装置が大型且つ複雑で小型化が難しく、コストも高くなるという問題があった。すなわち従来の第1冷却装置は、本来大型の電子機器の冷却に適したものであって、小型、軽量且つ薄型で、様々の姿勢で運ばれ、使われる最近の高性能携行型のノート型パソコン等には対応しきれないものであった。
【0011】
また、従来の第2冷却装置はノート型パソコン等に使用することが可能であるが、半導体発熱素子110に取り付けた扁平状の受熱ヘッダ113も、金属筐体116の壁に接触させた放熱ヘッダ114もいずれもがボックス状で厚くならざるをえず、ノート型パソコン等の薄型化を妨げるものであった。すなわち従来の第2冷却装置では、放熱ヘッダ114の中に液体駆動装置として他のポンプより横幅が比較的小さくなる往復動ポンプが設けられており、しかし残念なことに、この往復動ポンプこそが放熱ヘッダ114の厚さを規定して全体を厚くしている。これではノート型パソコンの薄型化はできない。
【0012】
そして、薄型のノート型パソコンで第2冷却装置の往復動ポンプを受熱ヘッダ113の中に収容することは困難である。すなわちポンプの厚さのほかに半導体発熱素子110等の厚みも加わって、ノート型パソコンの高さを増加させ、薄型化に逆行することになるからである。その上、往復動ポンプの振動と騒音は、これを載置する半導体発熱素子110に影響を与えるし、耳障りになる場合もあり、これらの面からも実現は困難である。
【0013】
さらに、第2冷却装置において、金属筐体116の壁に接触させた放熱ヘッダ114は、放熱面積が小さくて伝熱効率が悪く、冷却力に限界が存在するものであった。冷却力を上げるために放熱面積を増すことも考えられるが、これ以上面積を増すのでは流路が長くなって循環量が増し、内蔵した往復動ポンプの出力増加を招き、これによって放熱ヘッダ114の厚みを増すという矛盾があった。そこで、往復動ポンプを独立して金属筐体116内に収納するという手段を講じると、限界まで無駄なスペースを減少させたノート型パソコン本体に新たなスペースを割かなければならないし、組み立て作業も面倒になってしまう。このように、第2冷却装置はノート型パソコン等の小型化、薄型化に対しては限界を有するものであった。そして、最近のようにCPUの能力が向上して益々大きな冷却能力が要求されるときに、このような問題を抱えた従来の第2冷却装置では将来性で疑問が残るものであった。
【0014】
また、本出願人の提案した冷却装置は、従来の第1冷却装置、第2冷却装置の課題を解決できる優れた冷却装置であったが、渦流ポンプにおいては、ポンプ室がステータの外周側に位置するため、CPUの位置がポンプ中心に位置する場合には吸熱を行うポンプ室とCPUとの距離が大きくなり、受熱効率の改善の余地があった。しかし、この渦流ポンプを単純に他の形式のポンプで置き換えることは難しい。すなわち、他の形式のポンプでは吸込路と吐出路、さらにはステータが存在することにより、CPUと接触する受熱面をポンプ表面に構成するのが難しいからである。そして、敢えてこれを実行すると受熱効率はおち、小型化、薄型化することができなくなるものであった。
【0015】
そこで、本発明は、冷却効率を改善しながら小型化、薄型化でき、構造が簡単な接触型液冷受熱ポンプを提供することを目的とする。
【0016】
また、本発明は、冷却効率を改善しながら小型化、薄型化でき、構造が簡単な冷却装置を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明の接触型液冷受熱ポンプは上記課題を解決するためになされたものであって、外表面に発熱電子部品と接触するための受熱面が形成され、内部には、ポンプ室とこのポンプ室内壁面間を連絡し受熱面から受熱した熱を対面側へ伝える伝熱柱とが設けられたポンプケーシングと、ポンプ室に配設され、伝熱柱周りに回転して吸込口から吸い込んだ冷媒を昇圧する羽根車と、羽根車を回転させる駆動部を備えたことを特徴とする。
【0018】
本発明によれば、冷却効率を改善しながら小型化、薄型化でき、構造が簡単な冷却装置とすることができる。
【0019】
【発明の実施の形態】
請求項1の発明は、外表面に発熱電子部品と接触するための受熱面が形成され、内部には、ポンプ室とこのポンプ室内壁面間を連絡し受熱面から受熱した熱を対面側へ伝える伝熱柱とが設けられたポンプケーシングと、ポンプ室に配設され、伝熱柱周りに回転して吸込口から吸い込んだ冷媒を昇圧する羽根車と、羽根車を回転させる駆動部を備えたことを特徴とする接触型液冷受熱ポンプであり、伝熱柱が設けられたため受熱した熱を対面側へ伝えることができ、高い受熱効率を達成できる。
【0020】
請求項2の発明は、請求項1の発明において、伝熱柱が受熱面の受熱中心部と対応するポンプ室内壁面の位置に立設され、発熱電子部品の熱を伝熱することを特徴とする接触型液冷受熱ポンプであり、伝熱柱が設けられたため受熱した熱を対面側へ伝えることができ、伝熱柱が受熱面の受熱中心部にあるため高効率に熱を奪い、羽根車を囲んだポンプ室内壁面全体で冷媒への熱伝導を行なうために高い受熱効率を達成できる。
【0021】
請求項3の発明は、請求項1または2の発明において、ポンプケーシングが、受熱面を形成した第1ケーシングと、該第1ケーシングと嵌合される第2ケーシングとから構成され、且つ伝熱柱が、第1ケーシングのポンプ室内壁面から突出して設けられた第1突出柱と、第2ケーシングのポンプ室壁面から突出し第1突出柱と当接する第2突出柱とから構成され、該伝熱柱により第1ケーシングと第2ケーシングとが熱的に接続されることを特徴とする接触型液冷受熱ポンプであり、ポンプケーシングを第2ケーシングと第1ケーシングで構成し、それぞれに第2突出柱と第1突出柱を設けるので伝熱柱を容易に作ることができ、羽根車を囲んだポンプ室内壁面全体で冷媒への熱伝導を行なうために高い受熱効率を達成できる。
【0022】
請求項4の発明は、請求項3の発明において、第2突出柱または第1突出柱の径がポンプ室内壁面に近づくに従って大きくなるように形成されたことを特徴とする接触型液冷受熱ポンプであり、受熱面と対面するポンプ内壁面(第2ケーシング)側へ熱伝達する熱抵抗を小さくすることができる。
【0023】
請求項5の発明は、請求項3または4の発明において、第1突出柱と第2突出柱が当接する接続面には熱交換促進剤が配設され、周囲がシール材でシールされたことを特徴とする接触型液冷受熱ポンプであり、伝熱柱の接触面にそれらの接触面での熱抵抗を減少させるための熱交換促進剤(シリコングリース等)を冷媒から隔離し冷媒中に溶け出すのを防ぐことができる。
【0024】
請求項6の発明は、請求項3〜5のいずれかの発明において、第2突出柱と第1突出柱には、いずれか一方に雌ネジ、他方に雄ネジが形成され、螺合することによって熱的に接続されることを特徴とするの接触型液冷受熱ポンプであり、接触面積を増加させるとともに隙間を減少させ、接続熱抵抗を減少させることができる。
【0025】
請求項7の発明は、請求項1〜6のいずれかの発明において、伝熱柱の周面に動圧発生溝が形成されたことを特徴とする接触型液冷受熱ポンプであり、羽根車の回転により、羽根車との間に動圧を発生させ、羽根車を伝熱柱と非接触で回転させることができる。
【0026】
請求項8の発明は、請求項1〜6のいずれかの発明において、伝熱柱の周面と対面する羽根車の軸受または該羽根車内周面に動圧発生溝が形成されたことを特徴とする接触型液冷受熱ポンプであり、羽根車の回転により、羽根車との間に動圧を発生させ、羽根車を伝熱柱と非接触で回転させることができる。
【0027】
請求項9の発明は、請求項1〜8のいずれかの発明において、ポンプ室には、ポンプ室内壁面から羽根車に向けて複数の柱状体が突設されたことを特徴とする接触型液冷受熱ポンプであり、ポンプ室内壁面の表面積が増加し、冷媒に渦を発生させ、受熱量を増加させることができる。
【0028】
請求項10の発明は、請求項1〜9のいずれかの発明において、羽根車には、ポンプ室内壁面に向けて複数の柱状体が突設されたことを特徴とする接触型液冷受熱ポンプであり、ポンプ室内壁面との相互作用により層流境界層が形成される傾向にあるポンプ室内を容易に乱流化し、受熱効率を高めることができる。
【0029】
請求項11の発明は、請求項9または10の発明において、ポンプ室内壁面から突出した柱状体と羽根車から突出した柱状体が半径方向で位置が重ならないように位置をずらして配列されたことを特徴とする接触型液冷受熱ポンプであり、羽根車が円滑に回転して、ポンプ室内壁面との相互作用により層流境界層が形成される傾向にあるポンプ室内を容易に乱流化し、受熱効率を高めることができる。
【0030】
請求項12の発明は、請求項1〜11のいずれかの発明において、第1ケーシングと第2ケーシングの少なくともいずれかの肉厚が、伝熱柱の中心から半径方向外方に向けて薄く形成されたことを特徴とする接触型液冷受熱ポンプであり、第1ケーシングと第2ケーシングの半径方向の外側にも熱を伝達し易くなり、受熱のためにそれぞれの面積を有効に利用することができる。
【0031】
請求項13の発明は、請求項1〜12のいずれかの発明において、ポンプ室内壁面には、少なくとも一部に複数の凹部が形成されることを特徴とする接触型液冷受熱ポンプであり、ポンプ室内壁面の層流境界層の剥離を促進し、受熱効率を向上させることができる。
【0032】
請求項14の発明は、冷媒を循環するための閉循環路に放熱器と請求項1〜13のいずれかの発明の接触型液冷受熱ポンプが設けられ、接触型液冷受熱ポンプが発熱電子部品に接触されて内部の冷媒の熱交換作用で該発熱電子部品から熱を奪い、放熱器から放熱を行うことを特徴とする発熱電子部品の冷却装置であり、冷却効率を改善しながら小型、軽量且つ薄型化が行え、発熱電子部品に接触することにより、ノート型パソコン等でも構造が簡単であるにも関わらず、容易に高効率の冷却をすることができる。
【0033】
以下、本発明の実施の形態について、図1〜6を用いて説明する。
【0034】
(実施の形態1)
本発明の実施の形態1における接触型液冷受熱ポンプとそれを備えた発熱電子部品の冷却装置について説明する。図1は本発明の実施の形態1における接触型液冷受熱ポンプの断面図、図2は本発明の実施の形態1における接触型液冷受熱ポンプの羽根車正面図、図3は本発明の実施の形態1における接触型液冷受熱ポンプの下ケーシングの正面図、図4は本発明の実施の形態1における冷却装置の構成図である。
【0035】
図1、2において、1は遠心型の接触型液冷受熱ポンプを構成するポンプケーシング、1aはポンプケーシング1を構成する上ケーシング(本発明の第2ケーシング)、1bはポンプケーシング1の下ケーシング(本発明の第1ケーシング)である。2はポンプケーシング1の内部で回転する羽根車、2a,2bはオープン型の羽根、2cは支持板である。また図2に示す2dは、羽根車2の中央に設けられた円形開口である。羽根2a,2bは、いわゆる両吸込み型羽根車と同様に、支持板2cの両面に後ろ向き羽根として形成される。羽根車2の外周(支持板2cの外周)にはN極、S極が交互に配列されたマグネットロータ(図示しない)が設けられている。磁石を配置してもよいし、着磁させて形成するのでもよい。
【0036】
3は下ケーシング1bから上ケーシング1aの中央に設けられた伝熱柱、3aは上ケーシング1aの中央に立設された伝熱柱3の上部柱(本発明の第2突出柱)、3bは第1ケーシング1bの中央から上ケーシング1a側に立設された下部柱(本発明の第1突出柱)、3cは上部柱3aと下部柱3bとが突き合わされる熱接続面、4はOリング等のシール材である。上部柱3aと下部柱3bは上ケーシング1aと下ケーシング1bとを嵌合するとき、中央で当接し、伝熱柱3を構成して上ケーシング1aと下ケーシング1bとを熱的に接続する。上部柱3aと下部柱3bは、図示はしないが根本の径がポンプ室内壁面に近づくに従って大きくなるように形成するのも熱伝達を向上させるためには好適である。また、上部柱3aと下部柱3bはどちらか一方に雌ネジ、他方に雄ネジを設け、上ケーシング1aと下ケーシング1bを嵌合するときにこれを螺合して締結し、熱的接続を強化するのもよい。
【0037】
上部柱3aと下部柱3bが対向して突き合された熱接続面3cには、熱抵抗を減少させるために熱交換促進剤であるシリコングリースなどを充填するのが好適である。そして、これは、伝熱柱3の周囲には後述するように冷媒が流れるため冷媒中にシリコングリースが溶け出すのを防ぐ必要があり、そのためにシール材4を施すことによってこの溶出を防止する。これにより、熱接続面3cと冷媒は遮断される。
【0038】
5は上ケーシング1aと下ケーシング1bとを嵌合したとき形成されるポンプ室、5aは上ケーシング1aに窪み状に形成されたポンプ室天面、5bは下ケーシング1bに窪み状に形成されたポンプ室底面である。ポンプ室天面5aとポンプ室底面5bとは上ケーシング1aと下ケーシング1bを嵌合したとき、ポンプ室5のポンプ室内壁面を形成し、この内部に羽根車2が回転自在に収容、保持される。そして、伝熱柱3はこのポンプ室内壁面を連絡し、下ケーシング1bから受熱した熱を上ケーシング1aに伝える機能をもつことになる。
【0039】
6aは上ケーシング1aに設けられ冷媒を吐出する上吐出路、6bは下ケーシング1aに設けられ、同じく冷媒を吐出する下吐出路である。この下吐出路6bは、図3に示すようにポンプ室5内に開口している。上吐出路6aも図示はしないが同様である。7は下ケーシング1bに設けられ、半径方向外方から羽根車2中央の円形開口2d付近にまで冷媒を導く吸込路、7aは吸込路7から送られてきた冷媒をポンプ室5の羽根2a,2bの入口に広く流入させるための吸込開口、8は羽根車2外周のマグネットロータを駆動するためのステータ(本発明の駆動部)である。吸込路7は、図示はしないが、上ケーシング1aと下ケーシング1bの双方にそれぞれ設けるのも好適である。
【0040】
また、9はCPU等の発熱電子部品、10は下ケーシング1bと発熱電子部品9が接触し、熱交換する受熱面である。伝熱柱3は、発熱電子部品9の発熱中心(発熱で最も高温となる部位)が配置される受熱中心部、すなわち受熱面10で最も高温となる部分の中心もしくはその近傍にあるため、最も効果的に伝熱できる。また、発熱電子部品9は、通常表面がフラットなチップ部品であり、受熱面10は、熱接続するため、発熱電子部品9の表面形状と相補的に係合する表面形状とする必要がある。従って受熱面10も通常はフラットな表面となる。11は羽根車2を支持する伝熱柱3の周囲に形成された動圧発生用の動圧発生溝である。
【0041】
ところで、上ケーシング1aと下ケーシング1bは、とくに下ケーシング1bは、高熱伝導率で放熱性のよい材料、例えば銅、アルミニウム等で構成する。なお、本実施の形態1の遠心型の接触型液冷受熱ポンプは回転軸方向の厚さが5〜10mm、半径方向の代表寸法が40〜50mm、回転数は1200rpm、流量が0.08〜0.12L/分、ヘッドが0.35〜0.45m程度のポンプである。また、本発明のポンプの諸元は、本実施の形態1の値を含んで、厚さ3〜20mm、半径方向代表寸法10〜70mm、流量が0.01〜0.8L/分、ヘッド0.1〜2m程度のものとなる。これは比速度でいうと、24〜28(単位:m、m3/分、rpm)程度のポンプであって、従来のポンプとはまったく隔絶した大きさの小型薄型のポンプである。
【0042】
上述したように吸込路7から吸いこまれた冷媒はケーシング1中央の伝熱柱3の周囲に設けられた吸込開口7aからポンプ室5内へ吸いこまれる。ポンプ室5内では支持板2cの両面に設けられた羽根2a,2bがそれぞれ冷媒と運動量の授受を行い、冷媒は羽根車2の両面で昇圧されて吐出される。このとき冷媒は、ポンプ室5の下ケーシング1b側において、受熱面10の裏側に当るポンプ室底面5bと熱交換を行ないながら、下吐出路6bまで流動することになる。この際、羽根車2の羽根2a,2bで層流境界層(温度境界層でもある)を剥ぎ取るようにして流動されるので、境界層は熱伝達率が高い乱流境界層に移行し、受熱面10からの発熱電子部品9の熱は効果的に冷媒に伝えられる。
【0043】
また冷媒への受熱効率を高めるために、ポンプ室底面5bに多数のディンプル(本発明の凹部)を設ければ、ポンプ室5の壁面から層流境界層の剥離を促し熱伝達率を高めることができる。このほか、羽根車2の一部にブラシやブレードを設けると、直接境界層をブラシやブレードで剥ぎ取ることができ、熱伝達率を高めることもできる。
【0044】
ところで、受熱面10からの熱は、下ケーシング1bを介して伝熱柱3に伝わり、伝熱柱3を通って上ケーシング1a側へ伝熱する。この伝熱柱3を熱が伝わる間に、伝熱柱3の周囲の冷媒との間で熱交換を行う。羽根車2は円形開口2dを有し羽根2a,2bが形成されたリング状をしており、ポンプ室5内を自在に回転する。従って、伝熱柱3は羽根車2の回転軸としての機能をもつ。この回転を円滑にするために、実施の形態1においては、上部柱3aと下部柱3bの表面の少なくとも一部にスパイラル状の動圧発生溝11が設けられている。この動圧発生溝11で発生する動圧により、羽根車2は伝熱柱3に直接接触することなく円滑に回転できる。動圧発生溝11は伝熱柱3の周面と対面する羽根車2の軸受またはその内周面、またポンプ室天面5aとポンプ室底面5bにも設けるのも好適である。ヘリカルボーン等の溝に形成するのがよい。このとき、羽根車2に対するアキシャル方向のスラストを発生させ、羽根車2の回転をより円滑にすることができる。さらにポンプ室5内に滞留する気泡の排出させることもできる。上ケーシング1a側へ伝熱した熱は、下ケーシング1bの熱交換とまったく同様に、上ケーシング1aと冷媒の間で熱交換され、羽根2aによって昇圧して吐出路6aから吐出される。
【0045】
続いて、実施の形態1の接触型液冷受熱ポンプを使った冷却装置について説明する。図4において、13は発熱電子部品9から受熱した冷媒の熱を外部に放熱する放熱器、14は接触型液冷受熱ポンプと放熱器13を接続して冷媒を循環するための循環路である。なお、この冷媒としては、食品添加物などに用いられる無害なプロピレングリコール水溶液が適当であり、さらに後述するようにケーシング材料としてアルミや銅等を使用する場合には、これらに対する防食性能を向上させるための防食添加剤を添加するのが望ましい。
【0046】
放熱器13は、熱伝導率が高く放熱性のよい材料、例えば銅、アルミニウム等の薄板材で構成され、内部に冷媒通路とリザーブタンクが形成されている。また、放熱器3に強制的に空気を当てて冷やし冷却効果を増やすためファンを設けてもよい。循環路14は、配管レイアウトの自由度を確保するため、フレキシブルでガス透過性の少ないゴム、例えばブチルゴムなどのゴムチューブで構成されている。これはチューブ内に気泡が混入するのを防止するためである。
【0047】
このように実施の形態1の接触型液冷受熱ポンプは、伝熱柱3により受熱した熱を対面側の上ケーシング1aへ伝えることができ、伝熱柱3が受熱面10の受熱中心部にあるため高効率に熱を奪い、羽根車2を囲んだポンプ室内壁面全体で冷媒への熱伝導を行なうために高い受熱効率を達成できる。冷却効率を改善しながら簡単な構造で安価であり、小型化、薄型化できる。また、実施の形態1の接触型液冷受熱ポンプを使った発熱電子部品の冷却装置は、冷却効率を改善しながら小型、軽量且つ薄型化が行え、発熱電子部品9に接触することにより、構造が簡単であるにも関わらず、容易に高効率の冷却をすることができる。
【0048】
(実施の形態2)
次に、本発明の実施の形態2の接触型液冷受熱ポンプについて説明する。図5は本発明の実施の形態2における接触型液冷受熱ポンプの断面図である。実施の形態2の接触型液冷受熱ポンプは実施の形態1の接触型液冷受熱ポンプと基本的に同一であり、同一符号は同一の構成を示すため、詳細な説明は実施の形態1に譲って省略する。
【0049】
図5において、5a*は上ケーシング1aに形成され中央の上部柱3aが高く周囲が徐々に低くなって窪んだポンプ室天面、5b*は下ケーシング1bに形成され中央の上部柱3bが高く周囲が徐々に低くなって窪んだポンプ室底面である。ポンプ室天面5a*とポンプ室底面5b*とは上ケーシング1aと下ケーシング1bを嵌合したとき、半径方向外方に向うほど室内高さが増すリング状のポンプ室5を形成し、この内部にこれと類似した形状の羽根車2が回転自在に収容される。
【0050】
ところで、下ケーシング1bの形状はポンプ室底面5b*が円錐状であり、ケーシングの肉厚からいうと、中央の上部柱3bの部分で最も厚く、外方になるほど薄い形状を有している。同様に、上ケーシング1aの形状もポンプ室天面5a*が円錐状で、中央の上部柱3aの部分で肉厚が最も厚く、外方になるほどそれが薄くなる形状である。しかも、発熱電子部品9が接触される受熱面10の位置は、その発熱の中央部が下ケーシング1bに設けられた下部柱3bの位置と対応(表裏で一致する)ように設けられている。従って、この下ケーシング1bの肉厚をこのような形状にすることにより、受熱面10からの熱が下部柱3bに効果的に伝わり、また下ケーシング1bの半径方向の熱抵抗も減少するため、ケーシングの隅まで熱が拡散しやすくなり、全体として受熱効率が向上する。
【0051】
また、下部柱3bから熱接続面3cを通って上部柱3a、上ケーシング1aに伝わった熱は、上ケーシング1aの中を半径方向に伝達する。このとき下ケーシング1bと同様、上ケーシング1aを半径方向に伝わりながら、ポンプ室5内を流動する冷媒と熱交換される。
【0052】
このように実施の形態2の接触型液冷受熱ポンプにおいては、中央の下ケーシング1bと上ケーシング1aの肉厚が厚くなっており、ポンプケーシングの半径方向の熱抵抗が減少するため、ケーシングの隅まで熱が拡散し易くなり、全体として受熱効率が向上する。さらに、伝熱柱3を設けて、下ケーシング1bと上ケーシング1aの伝熱を促進し、併せて伝熱柱3を羽根車2の回転軸として利用することができる。羽根車2の支持板2cの肉厚が外周で厚く、マグネットロータの駆動が安定する。
【0053】
(実施の形態3)
続いて、本発明の実施の形態3の接触型液冷受熱ポンプについて説明する。図6は本発明の実施の形態3における接触型液冷受熱ポンプの断面図である。実施の形態3の接触型液冷受熱ポンプは、実施の形態2と同様に、実施の形態1の接触型液冷受熱ポンプと基本的に同一であり、同一符号は同一の構成を示すため、詳細な説明は実施の形態1に譲って省略する。
【0054】
図6において、12aはポンプ室5の内壁面から突出された突起体(本発明の柱状体)、12bは羽根車2の表面に設けられた突起体(本発明の柱状体)である。突起体12a,12bは半径方向で位置が重ならないように、半径方向で位置をずらして配置される。この突起体12a,12bを設けることにより、受熱面積が増加し、受熱量を大幅に向上させることができる。また突起体12a,12bにより、ポンプ室天面5aとポンプ室底面5bの壁面で乱流化し、受熱効率を向上させることができる。突起体12a,12bに加えてディンプル等の凹部を壁面に形成するのも実施の形態1と同様に好適である。
【0055】
羽根車2の中央部分には羽根2a,2bが存在しないため、この部分に突起体23を設けるのが有利であり、また受熱面10の受熱中心部を伝熱柱3の位置と一致させ、この部分に突起体12a,12bを設けることにより局所的に受熱効率を向上させることができる。すなわち、この位置に突起体12a,12bを設けることは、発熱電子部品9の熱が一番高く冷媒との温度差を最も大きいため、伝熱量が大きくなり、しかも伝熱面積を増加させ、熱抵抗を減少させることができ、熱量の移動を促進できる。さらに、突起体12a,12bで乱流化し、これによる受熱効率向上もアップする。
【0056】
このように実施の形態3の接触型液冷受熱ポンプは、突起体12a,12bの作用でポンプ室5内に形成される層流境界層を強制的に乱流化し、対流熱伝達において熱伝達率の理論上の限界値近傍にまで熱伝達率を向上させることができる。
【0057】
【発明の効果】
本発明の接触型液冷受熱ポンプによれば、伝熱柱により受熱した熱を対面側へ伝えることができ、伝熱柱が受熱面の受熱中心部にあるため高効率に熱を奪い、羽根車を囲んだポンプ室内壁面全体で冷媒への熱伝導を行なうために高い受熱効率を達成できる。冷却効率を改善しながら簡単な構造で、小型化、薄型化できる。
【0058】
本発明の冷却装置によれば、冷却効率を改善しながら小型、軽量且つ薄型化が行え、発熱電子部品に接触することにより、構造が簡単であるにも関わらず、容易に高効率の冷却をすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における接触型液冷受熱ポンプの断面図
【図2】本発明の実施の形態1における接触型液冷受熱ポンプの羽根車正面図
【図3】本発明の実施の形態1における接触型液冷受熱ポンプの下ケーシングの正面図
【図4】本発明の実施の形態1における冷却装置の構成図
【図5】本発明の実施の形態2における接触型液冷受熱ポンプの断面図
【図6】本発明の実施の形態3における接触型液冷受熱ポンプの断面図
【図7】従来の電子機器の第1冷却装置の構成図
【図8】従来の電子機器の第2冷却装置の構成図
【符号の説明】
1 ポンプケーシング
1a 上ケーシング
1b 下ケーシング
2 羽根車
2a,2b 羽根
2c 支持板
2d 円形開口
3 伝熱柱
3a 上部柱
3b 下部柱
3c 熱接続面
4 シール材
5 ポンプ室
5a,5a* ポンプ室天面
5b,5b* ポンプ室底面
6a 上吐出路
6b 下吐出路
7 吸込路
7a 吸込開口
8 ステータ
9 発熱電子部品
10 受熱面
11 動圧発生溝
12a,12b 突起体
13 放熱器
14 循環路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a contact-type liquid cooling heat receiving pump capable of cooling a heat-generating electronic component with a refrigerant, and a cooling device for the heat-generating electronic component provided with the same.
[0002]
[Prior art]
In recent years, the speed at which computers have become faster is extremely rapid, and the clock frequency of CPUs has become much higher than before. As a result, the amount of heat generated by the CPU is increased, and the air-cooling with a heat sink as in the related art is insufficient in capacity, and a high-efficiency, high-output cooling device is indispensable. Therefore, as such a cooling device, a cooling device that cools a substrate on which heat-generating electronic components are mounted by circulating a refrigerant has been proposed.
[0003]
Hereinafter, a cooling device for a conventional electronic device that circulates and cools such a refrigerant will be described. In this specification, an electronic device is a device that loads a program into a CPU or the like to perform processing, and in particular, is a small portable device such as a notebook computer. Including a device on which heat-generating electronic components are mounted. As this conventional first cooling device, for example, the one shown in FIG. 7 is known. FIG. 7 is a configuration diagram of a first cooling device of a conventional electronic device. 7, reference numeral 100 denotes a housing; 101, a heat-generating electronic component; 102, a board on which the heat-generating electronic component 101 is mounted; 103, a heat exchange between the heat-generating electronic component 101 and a refrigerant to cool the heat-generating electronic component 101; A radiator 104 for removing heat from the refrigerant, a pump 105 for circulating the refrigerant, a pipe 106 for connecting these, and a fan 107 for cooling the radiator 104 by air.
[0004]
Explaining the operation of this conventional first cooling device, the refrigerant discharged from the pump 105 is sent to the cooler 103 through the pipe 106. Here, by removing the heat of the heat-generating electronic component 101, its temperature rises and is sent to the radiator 104. The radiator 104 is forcibly air-cooled by the fan 107 to lower its temperature, and returns to the pump 105 again to repeat this. In this way, the heat-generating electronic component 101 is cooled by circulating the refrigerant.
[0005]
Next, as a conventional second cooling device for electronic equipment, the one shown in FIG. 8 has been proposed (for example, see Patent Document 1).
[0006]
In the second cooling device, when the heat-generating member is mounted in a narrow housing, heat generated by the heat-generating member is efficiently transported to the metal housing wall, which is a heat radiating portion, to cool the heat-generating member. FIG. 8 is a configuration diagram of a second cooling device of a conventional electronic device. 8, reference numeral 108 denotes a wiring board of an electronic device, 109 denotes a keyboard, 110 denotes a semiconductor heating element, 111 denotes a disk device, 112 denotes a display device, 113 denotes a heat receiving header for exchanging heat with the semiconductor heating element 110, and 114 denotes a heat receiving header. A heat dissipation header for heat dissipation, 115 is a flexible tube, and 116 is a metal housing of an electronic device.
[0007]
The second cooling device thermally connects the semiconductor heat generating element 110, which is a heat generating member, and the metal housing 116 by a heat transport device having a flexible structure. In this heat transport device, a flat heat receiving header 113 having a liquid flow path attached to a semiconductor heating element 110, a heat radiation header 114 having a liquid flow path and in contact with a wall of a metal housing 116, and further connect the two. It is configured by a flexible tube 115 and drives or circulates the liquid sealed therein between the heat receiving header 113 and the heat radiation header 114 by a liquid drive mechanism built in the heat radiation header 114. Thereby, the semiconductor heating element 110 and the metal housing 116 can be easily connected without being affected by the arrangement of parts, and heat is transported with high efficiency by driving the liquid. In the heat dissipation header 114, since the heat dissipation header 114 and the metal housing 116 are thermally connected, heat is widely diffused to the metal housing 116 due to the high thermal conductivity of the metal housing 116. is there.
[0008]
In addition, the present applicant has already proposed a cooling device using a vortex pump having a simple structure that can be reduced in size and thickness while improving the cooling efficiency (Japanese Patent Application No. 2002-139598).
[0009]
[Patent Document 1]
JP-A-7-142886
[0010]
[Problems to be solved by the invention]
However, in the first conventional cooling device, a heat exchange is performed between the heat-generating electronic component 101 and the refrigerant to cool the heat-generating electronic component 101, a radiator 104 for removing heat from the refrigerant, and a pump 105 for circulating the refrigerant. Although not shown, the refrigerant must be replenished and a replenishing tank is required, and there is a problem that the combination of these tanks makes the apparatus large, complicated, difficult to miniaturize, and increases the cost. That is, the conventional first cooling device is originally suitable for cooling a large-sized electronic device, and is a recent high-performance portable notebook personal computer which is small, light and thin, and is carried and used in various postures. And so on.
[0011]
Further, the conventional second cooling device can be used for a notebook computer or the like, but the flat heat receiving header 113 attached to the semiconductor heating element 110 is also a heat dissipation header contacting the wall of the metal housing 116. Each of the 114 was inevitably thick in the shape of a box, which hindered the thinning of a notebook computer or the like. That is, in the second conventional cooling device, a reciprocating pump having a smaller width than other pumps is provided as a liquid driving device in the heat dissipation header 114, but unfortunately, this reciprocating pump is only the reciprocating pump. The thickness of the heat radiation header 114 is specified to make the whole heat thick. This does not make the notebook PC thinner.
[0012]
Then, it is difficult to accommodate the reciprocating pump of the second cooling device in the heat receiving header 113 with a thin notebook personal computer. That is, in addition to the thickness of the pump, the thickness of the semiconductor heating element 110 and the like are added, so that the height of the notebook personal computer is increased, which is against the thinner type. In addition, the vibration and noise of the reciprocating pump affect the semiconductor heat generating element 110 on which the pump is mounted, and may be unpleasant.
[0013]
Further, in the second cooling device, the heat dissipation header 114 that is in contact with the wall of the metal housing 116 has a small heat dissipation area, has poor heat transfer efficiency, and has a limit in cooling power. It is conceivable to increase the heat radiation area in order to increase the cooling power. However, if the heat radiation area is further increased, the flow path becomes longer and the amount of circulation increases, thereby increasing the output of the built-in reciprocating pump. There was a contradiction to increase the thickness of the. Therefore, if measures are taken to house the reciprocating pump independently in the metal casing 116, it is necessary to devote a new space to the notebook personal computer body, which has reduced wasteful space to the limit, and the assembling work is also required. It will be troublesome. As described above, the second cooling device has a limit in reducing the size and thickness of a notebook computer or the like. In recent years, when the performance of the CPU has been improved and a larger cooling capacity is required, the conventional second cooling device having such a problem has a problem in the future.
[0014]
Further, the cooling device proposed by the present applicant is an excellent cooling device that can solve the problems of the conventional first cooling device and second cooling device. However, in the vortex pump, the pump chamber is located on the outer peripheral side of the stator. Therefore, when the position of the CPU is located at the center of the pump, the distance between the pump chamber that absorbs heat and the CPU becomes large, and there is room for improvement in heat receiving efficiency. However, it is difficult to simply replace this vortex pump with another type of pump. That is, in other types of pumps, it is difficult to form a heat receiving surface in contact with the CPU on the surface of the pump due to the presence of the suction path and the discharge path, and the presence of the stator. If this is performed dare, the heat receiving efficiency is reduced, and it is impossible to reduce the size and thickness.
[0015]
Therefore, an object of the present invention is to provide a contact-type liquid cooling heat receiving pump that can be reduced in size and thickness while improving cooling efficiency and has a simple structure.
[0016]
Another object of the present invention is to provide a cooling device that can be reduced in size and thickness while improving cooling efficiency and has a simple structure.
[0017]
[Means for Solving the Problems]
The contact type liquid cooling heat receiving pump of the present invention has been made in order to solve the above-mentioned problem, and has a heat receiving surface for contacting a heat-generating electronic component on an outer surface, and a pump chamber and the pump inside. A pump casing provided with a heat transfer column that communicates between the indoor wall surfaces and transfers heat received from the heat receiving surface to the opposite side, and a refrigerant that is disposed in the pump chamber and rotates around the heat transfer column and sucks in from the suction port. And a drive unit for rotating the impeller.
[0018]
ADVANTAGE OF THE INVENTION According to this invention, a cooling apparatus which can be reduced in size and thickness while improving cooling efficiency, and which has a simple structure can be provided.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the first aspect of the present invention, a heat receiving surface for contacting the heat-generating electronic component is formed on the outer surface, and the inside of the pump chamber communicates between the pump chamber and the wall surface of the pump chamber to transfer heat received from the heat receiving surface to the opposite side. A pump casing provided with a heat transfer column, an impeller that is disposed in the pump chamber, rotates around the heat transfer column, and pressurizes the refrigerant sucked from the suction port, and a drive unit that rotates the impeller This is a contact type liquid cooling heat receiving pump characterized by having a heat transfer column, so that heat received can be transmitted to the facing surface, and high heat receiving efficiency can be achieved.
[0020]
According to a second aspect of the present invention, in the first aspect of the present invention, the heat transfer column is provided upright at a position on the wall surface of the pump chamber corresponding to the heat receiving center of the heat receiving surface, and transfers heat of the heat generating electronic component. Is a contact-type liquid-cooled heat-receiving pump that has a heat-transfer column that can transfer the received heat to the opposite side.The heat-transfer column is located at the center of the heat-receiving surface, so it takes away heat with high efficiency. High heat receiving efficiency can be achieved because heat is transferred to the refrigerant on the entire wall surface of the pump room surrounding the vehicle.
[0021]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the pump casing includes a first casing having a heat receiving surface, and a second casing fitted to the first casing. The column is composed of a first projecting column projecting from the pump chamber wall surface of the first casing and a second projecting column projecting from the pump chamber wall surface of the second casing and abutting on the first projecting column. A contact type liquid cooling heat receiving pump characterized in that a first casing and a second casing are thermally connected by a pillar, wherein the pump casing is composed of a second casing and a first casing, each of which has a second protrusion. Since the column and the first protruding column are provided, the heat transfer column can be easily formed, and high heat receiving efficiency can be achieved because the entire wall of the pump chamber surrounding the impeller conducts heat to the refrigerant.
[0022]
A fourth aspect of the present invention is the contact type liquid cooling heat receiving pump according to the third aspect of the present invention, wherein the diameter of the second protruding column or the first protruding column increases as approaching the wall surface of the pump chamber. Therefore, the thermal resistance for transferring heat to the inner wall surface of the pump (second casing) facing the heat receiving surface can be reduced.
[0023]
According to a fifth aspect of the present invention, in the third or fourth aspect of the present invention, a heat exchange accelerator is provided on a connection surface where the first protruding column and the second protruding column abut, and the periphery is sealed with a sealing material. It is a contact type liquid cooling heat receiving pump characterized in that a heat exchange accelerator (silicone grease etc.) for reducing the thermal resistance at the contact surfaces of the heat transfer columns is separated from the refrigerant and separated into the refrigerant. Melting can be prevented.
[0024]
According to a sixth aspect of the present invention, in any one of the third to fifth aspects of the present invention, one of the second projecting column and the first projecting column has a female screw and the other has a male screw, and is screwed together. The contact type liquid cooling heat receiving pump is characterized in that it is thermally connected by the liquid cooling pump, and can increase the contact area, reduce the gap, and reduce the connection thermal resistance.
[0025]
A seventh aspect of the present invention is the contact type liquid cooling heat receiving pump according to any one of the first to sixth aspects, wherein a dynamic pressure generating groove is formed on a peripheral surface of the heat transfer column. , A dynamic pressure is generated between the impeller and the impeller, and the impeller can be rotated without contact with the heat transfer column.
[0026]
The invention of claim 8 is characterized in that, in any one of the inventions of claims 1 to 6, a dynamic pressure generating groove is formed on a bearing of the impeller facing the peripheral surface of the heat transfer column or on an inner peripheral surface of the impeller. The liquid-cooled heat receiving pump is a contact type liquid cooling heat pump that generates dynamic pressure between the impeller and the impeller by rotation of the impeller, and can rotate the impeller without contact with the heat transfer column.
[0027]
According to a ninth aspect of the present invention, there is provided the contact type liquid according to any one of the first to eighth aspects, wherein the pump chamber has a plurality of pillars projecting from the wall surface of the pump chamber toward the impeller. This is a cold heat receiving pump, in which the surface area of the wall surface of the pump chamber increases, vortices are generated in the refrigerant, and the amount of heat received can be increased.
[0028]
A tenth aspect of the present invention is the contact type liquid cooling heat receiving pump according to any one of the first to ninth aspects, wherein the impeller is provided with a plurality of pillars protruding toward a wall surface of the pump chamber. In addition, the pump chamber in which a laminar boundary layer tends to be formed due to the interaction with the wall surface of the pump chamber is easily turbulent, and the heat receiving efficiency can be increased.
[0029]
According to an eleventh aspect of the present invention, in the invention of the ninth or tenth aspect, the columnar body protruding from the wall of the pump chamber and the columnar body protruding from the impeller are arranged so as to be shifted in position in the radial direction so as not to overlap. It is a contact type liquid cooling heat receiving pump characterized by the fact that the impeller rotates smoothly and easily forms a turbulent flow in the pump chamber in which a laminar boundary layer tends to be formed by interaction with the pump chamber wall surface, Heat receiving efficiency can be increased.
[0030]
According to a twelfth aspect of the present invention, in any one of the first to eleventh aspects, the thickness of at least one of the first casing and the second casing is reduced radially outward from the center of the heat transfer column. A contact type liquid cooling heat receiving pump characterized in that the heat is easily transmitted also to the outside of the first casing and the second casing in the radial direction, and the respective areas are effectively used for receiving the heat. Can be.
[0031]
A thirteenth aspect of the present invention is the contact type liquid cooling heat receiving pump according to any one of the first to twelfth aspects, wherein a plurality of recesses are formed in at least a part of a wall surface of the pump chamber, The separation of the laminar boundary layer on the wall surface of the pump chamber is promoted, and the heat receiving efficiency can be improved.
[0032]
According to a fourteenth aspect of the present invention, a radiator and the contact type liquid cooling heat receiving pump according to any one of the first to thirteenth aspects are provided in a closed circuit for circulating a refrigerant, and the contact type liquid cooling heat receiving pump is provided A cooling device for a heat-generating electronic component, which removes heat from the heat-generating electronic component by a heat exchange action of an internal refrigerant in contact with the component and radiates heat from a radiator. Light weight and thinness can be achieved, and by contacting the heat-generating electronic components, high-efficiency cooling can be easily performed even with a notebook computer or the like, despite its simple structure.
[0033]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0034]
(Embodiment 1)
A contact-type liquid cooling heat receiving pump and a cooling device for a heat-generating electronic component including the same according to the first embodiment of the present invention will be described. 1 is a sectional view of a contact type liquid cooling heat receiving pump according to Embodiment 1 of the present invention, FIG. 2 is a front view of an impeller of the contact type liquid cooling heat receiving pump according to Embodiment 1 of the present invention, and FIG. FIG. 4 is a front view of a lower casing of the contact type liquid cooling heat receiving pump according to Embodiment 1, and FIG. 4 is a configuration diagram of a cooling device according to Embodiment 1 of the present invention.
[0035]
1 and 2, reference numeral 1 denotes a pump casing forming a centrifugal contact type liquid cooling heat receiving pump, 1a denotes an upper casing (second casing of the present invention) forming the pump casing 1, and 1b denotes a lower casing of the pump casing 1. (First casing of the present invention). Reference numeral 2 denotes an impeller that rotates inside the pump casing 1, 2a and 2b denote open-type blades, and 2c denotes a support plate. 2d is a circular opening provided at the center of the impeller 2. The blades 2a and 2b are formed as rearwardly facing blades on both surfaces of the support plate 2c, similarly to a so-called double suction type impeller. A magnet rotor (not shown) in which N poles and S poles are alternately arranged is provided on the outer periphery of the impeller 2 (outer periphery of the support plate 2c). A magnet may be provided or magnetized.
[0036]
3 is a heat transfer column provided from the lower casing 1b to the center of the upper casing 1a, 3a is an upper column (a second protruding column of the present invention) of the heat transfer column 3 erected in the center of the upper casing 1a, 3b is Lower pillars (first protruding pillars of the present invention) erected from the center of the first casing 1b to the upper casing 1a side, 3c is a heat connection surface where the upper pillars 3a and the lower pillars 3b abut each other, and 4 is an O-ring. And the like. When the upper casing 3a and the lower casing 3b are fitted with each other, the upper casing 3a and the lower casing 3b abut at the center when the upper casing 1a and the lower casing 1b are fitted to each other to form the heat transfer column 3 and thermally connect the upper casing 1a and the lower casing 1b. Although not shown, the upper column 3a and the lower column 3b are preferably formed so that the root diameter increases as approaching the wall surface of the pump chamber in order to improve heat transfer. Also, the upper column 3a and the lower column 3b are provided with a female screw on one side and a male screw on the other, and when the upper casing 1a and the lower casing 1b are fitted together, they are screwed together and fastened to establish thermal connection. It is good to strengthen.
[0037]
It is preferable to fill the heat connection surface 3c where the upper column 3a and the lower column 3b face each other with abutment with silicon grease or the like which is a heat exchange promoter in order to reduce thermal resistance. Since the refrigerant flows around the heat transfer column 3 as described later, it is necessary to prevent the silicon grease from being dissolved in the refrigerant. For this reason, the elution is prevented by applying the sealing material 4. . Thereby, the heat connection surface 3c and the refrigerant are shut off.
[0038]
5 is a pump chamber formed when the upper casing 1a and the lower casing 1b are fitted together, 5a is a pump chamber top surface formed in a concave shape in the upper casing 1a, and 5b is formed in a concave shape in the lower casing 1b. This is the bottom of the pump room. When the upper casing 1a and the lower casing 1b are fitted to each other, the pump chamber top surface 5a and the pump chamber bottom surface 5b form a pump chamber wall surface of the pump chamber 5, in which the impeller 2 is rotatably housed and held. You. The heat transfer column 3 has a function of connecting the wall surface of the pump chamber and transferring the heat received from the lower casing 1b to the upper casing 1a.
[0039]
6a is an upper discharge passage provided in the upper casing 1a for discharging the refrigerant, and 6b is a lower discharge passage provided in the lower casing 1a for discharging the refrigerant. The lower discharge passage 6b opens into the pump chamber 5 as shown in FIG. The upper discharge path 6a is similar, though not shown. Reference numeral 7 denotes a suction passage that is provided in the lower casing 1b and guides the refrigerant from the outside in the radial direction to a position near the circular opening 2d at the center of the impeller 2. Reference numeral 7a denotes a blade 2a of the pump chamber 5 that transmits the refrigerant sent from the suction passage 7. Reference numeral 8 denotes a stator (a driving unit of the present invention) for driving a magnet rotor on the outer periphery of the impeller 2 to make the inlet 2b widely flow into the inlet. Although not shown, the suction passages 7 are preferably provided in both the upper casing 1a and the lower casing 1b.
[0040]
Reference numeral 9 denotes a heat-generating electronic component such as a CPU, and reference numeral 10 denotes a heat-receiving surface on which the lower casing 1b and the heat-generating electronic component 9 come into contact and exchange heat. Since the heat transfer column 3 is located at or near the center of the heat-receiving center where the heat-generating center of the heat-generating electronic component 9 (the portion having the highest temperature due to heat generation), that is, the center of the highest-temperature portion on the heat-receiving surface 10, Heat can be transferred effectively. The heat-generating electronic component 9 is usually a chip component having a flat surface, and the heat-receiving surface 10 needs to have a surface shape complementary to the surface shape of the heat-generating electronic component 9 for thermal connection. Therefore, the heat receiving surface 10 also usually has a flat surface. Reference numeral 11 denotes a dynamic pressure generating groove formed around the heat transfer column 3 supporting the impeller 2 for generating dynamic pressure.
[0041]
By the way, the upper casing 1a and the lower casing 1b, particularly the lower casing 1b, are made of a material having high heat conductivity and good heat dissipation, for example, copper, aluminum or the like. The centrifugal contact type liquid cooling heat receiving pump according to the first embodiment has a thickness in the rotation axis direction of 5 to 10 mm, a representative dimension in the radial direction of 40 to 50 mm, a rotation speed of 1200 rpm, and a flow rate of 0.08 to 0.08. The pump has a head of about 0.15 L / min and a head of about 0.35 to 0.45 m. The specifications of the pump of the present invention, including the values of the first embodiment, include a thickness of 3 to 20 mm, a representative radial dimension of 10 to 70 mm, a flow rate of 0.01 to 0.8 L / min, and a head 0 .1 to 2 m. This is a specific speed of 24 to 28 (unit: m, m 3 / Min, rpm), which is a small and thin pump whose size is completely isolated from the conventional pump.
[0042]
As described above, the refrigerant sucked from the suction passage 7 is sucked into the pump chamber 5 from the suction opening 7 a provided around the heat transfer column 3 at the center of the casing 1. In the pump chamber 5, the blades 2a and 2b provided on both surfaces of the support plate 2c exchange momentum with the refrigerant, respectively, and the refrigerant is pressurized and discharged on both surfaces of the impeller 2. At this time, the refrigerant flows to the lower discharge path 6b on the lower casing 1b side of the pump chamber 5 while performing heat exchange with the pump chamber bottom face 5b which is behind the heat receiving surface 10. At this time, since the laminar flow boundary layer (which is also a temperature boundary layer) is stripped off by the blades 2a and 2b of the impeller 2, the boundary layer shifts to a turbulent boundary layer having a high heat transfer coefficient. The heat of the heat-generating electronic component 9 from the heat receiving surface 10 is effectively transmitted to the refrigerant.
[0043]
Further, if a large number of dimples (concave portions of the present invention) are provided on the pump chamber bottom surface 5b in order to increase the heat receiving efficiency to the refrigerant, the laminar flow boundary layer is separated from the wall surface of the pump chamber 5 to increase the heat transfer coefficient. Can be. In addition, if a brush or a blade is provided in a part of the impeller 2, the boundary layer can be directly peeled off with the brush or the blade, and the heat transfer coefficient can be increased.
[0044]
Incidentally, the heat from the heat receiving surface 10 is transmitted to the heat transfer column 3 via the lower casing 1b, and is transmitted to the upper casing 1a through the heat transfer column 3. While the heat is transmitted through the heat transfer column 3, heat exchange is performed with the refrigerant around the heat transfer column 3. The impeller 2 has a circular opening 2d and has a ring shape in which the blades 2a and 2b are formed, and rotates freely in the pump chamber 5. Therefore, the heat transfer column 3 has a function as a rotation axis of the impeller 2. In the first embodiment, a spiral dynamic pressure generating groove 11 is provided on at least a part of the surface of the upper column 3a and the lower column 3b in order to facilitate this rotation. The dynamic pressure generated in the dynamic pressure generating groove 11 allows the impeller 2 to rotate smoothly without directly contacting the heat transfer column 3. The dynamic pressure generating groove 11 is also preferably provided on the bearing of the impeller 2 facing the peripheral surface of the heat transfer column 3 or its inner peripheral surface, and also on the pump chamber top surface 5a and the pump chamber bottom surface 5b. It is preferable to form it in a groove such as a helical bone. At this time, axial thrust with respect to the impeller 2 is generated, and the rotation of the impeller 2 can be made more smooth. Further, air bubbles remaining in the pump chamber 5 can be discharged. The heat transmitted to the upper casing 1a is exchanged between the upper casing 1a and the refrigerant, and the pressure is increased by the blades 2a and discharged from the discharge path 6a, just like the heat exchange of the lower casing 1b.
[0045]
Next, a cooling device using the contact type liquid cooling heat receiving pump of the first embodiment will be described. In FIG. 4, 13 is a radiator for radiating the heat of the refrigerant received from the heat-generating electronic component 9 to the outside, and 14 is a circulation path for connecting the contact type liquid cooling heat receiving pump and the radiator 13 to circulate the refrigerant. . In addition, as this refrigerant, a harmless propylene glycol aqueous solution used for food additives and the like is appropriate, and when aluminum or copper is used as a casing material as described later, the anticorrosion performance against these is improved. It is desirable to add an anticorrosive additive for this purpose.
[0046]
The radiator 13 is made of a material having a high heat conductivity and a good heat radiation property, for example, a thin plate material such as copper or aluminum, and has a refrigerant passage and a reserve tank formed therein. Further, a fan may be provided to cool the radiator 3 by forcibly applying air to increase the cooling effect. The circulation path 14 is made of a rubber tube made of a flexible and less gas-permeable rubber, for example, butyl rubber, in order to secure a degree of freedom in piping layout. This is to prevent air bubbles from entering the tube.
[0047]
As described above, the contact type liquid cooling heat receiving pump of the first embodiment can transfer the heat received by the heat transfer column 3 to the upper casing 1a on the opposite side, and the heat transfer column 3 Therefore, the heat is efficiently taken away, and the entire wall surface of the pump chamber surrounding the impeller 2 conducts heat to the refrigerant, so that high heat receiving efficiency can be achieved. While improving the cooling efficiency, it is inexpensive with a simple structure, and can be reduced in size and thickness. Further, the cooling device for the heat-generating electronic component using the contact-type liquid-cooling heat-receiving pump of the first embodiment can be made compact, lightweight and thin while improving the cooling efficiency. However, the cooling can be easily performed with high efficiency.
[0048]
(Embodiment 2)
Next, a contact type liquid cooling heat receiving pump according to a second embodiment of the present invention will be described. FIG. 5 is a sectional view of a contact type liquid cooling heat receiving pump according to Embodiment 2 of the present invention. The contact type liquid cooling heat receiving pump according to the second embodiment is basically the same as the contact type liquid cooling heat receiving pump according to the first embodiment, and the same reference numerals indicate the same components. Omitted and omitted.
[0049]
In FIG. 5, 5a * The upper surface of the pump chamber is formed in the upper casing 1a, and the upper part 3a at the center is high and the periphery is gradually lowered, and the top surface is depressed. * Is a pump chamber bottom formed in the lower casing 1b and having a central upper column 3b that is high and the periphery thereof is gradually lowered. Pump room top surface 5a * And pump chamber bottom 5b * When the upper casing 1a and the lower casing 1b are fitted to each other, a ring-shaped pump chamber 5 whose interior height increases toward the outside in the radial direction is formed, and an impeller 2 having a similar shape is formed therein. It is rotatably housed.
[0050]
By the way, the shape of the lower casing 1b is * Has a conical shape, and is thickest at the central upper column 3b in terms of the thickness of the casing, and thinner outward. Similarly, the shape of the upper casing 1a is changed to the pump chamber top surface 5a. * Is a conical shape, the thickness of which is thickest at the central upper column 3a, and becomes thinner outward. In addition, the position of the heat receiving surface 10 with which the heat-generating electronic component 9 comes into contact is provided such that the central portion of the heat generation corresponds to the position of the lower pillar 3b provided on the lower casing 1b (coincident on the front and back). Therefore, by setting the thickness of the lower casing 1b to such a shape, heat from the heat receiving surface 10 is effectively transmitted to the lower column 3b, and the thermal resistance of the lower casing 1b in the radial direction is reduced. Heat is easily diffused to the corners of the casing, and the overall heat receiving efficiency is improved.
[0051]
Further, the heat transmitted from the lower column 3b to the upper column 3a and the upper casing 1a through the thermal connection surface 3c is transmitted in the upper casing 1a in the radial direction. At this time, like the lower casing 1b, the heat is exchanged with the refrigerant flowing in the pump chamber 5 while being transmitted through the upper casing 1a in the radial direction.
[0052]
As described above, in the contact type liquid cooling heat receiving pump according to the second embodiment, the thickness of the central lower casing 1b and the upper casing 1a is increased, and the heat resistance in the radial direction of the pump casing is reduced. Heat is easily diffused to the corners, and the overall heat receiving efficiency is improved. Further, the heat transfer column 3 is provided to promote heat transfer between the lower casing 1b and the upper casing 1a, and the heat transfer column 3 can be used as a rotating shaft of the impeller 2. The thickness of the support plate 2c of the impeller 2 is large on the outer periphery, and the driving of the magnet rotor is stabilized.
[0053]
(Embodiment 3)
Next, a contact type liquid cooling heat receiving pump according to a third embodiment of the present invention will be described. FIG. 6 is a sectional view of a contact type liquid cooling heat receiving pump according to Embodiment 3 of the present invention. The contact type liquid cooling heat receiving pump according to the third embodiment is basically the same as the contact type liquid cooling heat receiving pump according to the first embodiment, similarly to the second embodiment. The detailed description is omitted from the first embodiment.
[0054]
In FIG. 6, reference numeral 12a denotes a projection (a columnar body of the present invention) protruding from the inner wall surface of the pump chamber 5, and 12b denotes a projection provided on the surface of the impeller 2 (a columnar body of the present invention). The protrusions 12a and 12b are arranged so as to be shifted in the radial direction so that the positions do not overlap in the radial direction. By providing the projections 12a and 12b, the heat receiving area is increased, and the amount of heat received can be greatly improved. In addition, the protrusions 12a and 12b cause turbulence on the wall surfaces of the pump chamber top surface 5a and the pump chamber bottom surface 5b, thereby improving the heat receiving efficiency. It is also preferable to form a concave portion such as a dimple on the wall surface in addition to the protrusions 12a and 12b, as in the first embodiment.
[0055]
Since the blades 2a and 2b do not exist in the central portion of the impeller 2, it is advantageous to provide the protrusions 23 in this portion. Also, the heat receiving center of the heat receiving surface 10 is matched with the position of the heat transfer column 3, By providing the projections 12a and 12b in this portion, the heat receiving efficiency can be locally improved. In other words, providing the projections 12a and 12b at this position requires that the heat of the heat-generating electronic component 9 be the highest and the temperature difference with the refrigerant be the largest, so that the amount of heat transfer increases and the heat transfer area increases. Resistance can be reduced, and heat transfer can be promoted. Further, turbulence is generated by the projections 12a and 12b, thereby improving the heat receiving efficiency.
[0056]
As described above, the contact type liquid cooling heat receiving pump according to the third embodiment forcibly turbulates the laminar boundary layer formed in the pump chamber 5 by the action of the projections 12a and 12b, and performs heat transfer in convective heat transfer. The heat transfer coefficient can be improved to near the theoretical limit of the coefficient.
[0057]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the contact-type liquid-cooling heat receiving pump of this invention, the heat received by the heat transfer column can be transmitted to the opposite side, and since the heat transfer column is in the heat receiving central part of the heat receiving surface, it takes away heat with high efficiency, High heat receiving efficiency can be achieved because heat is transferred to the refrigerant on the entire wall surface of the pump room surrounding the vehicle. It is possible to reduce the size and thickness with a simple structure while improving the cooling efficiency.
[0058]
ADVANTAGE OF THE INVENTION According to the cooling device of this invention, compactness, light weight, and thinness can be performed, improving cooling efficiency, and by contacting a heat-generating electronic component, high-efficiency cooling can be easily performed despite its simple structure. can do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a contact type liquid cooling heat receiving pump according to Embodiment 1 of the present invention.
FIG. 2 is a front view of an impeller of the contact type liquid cooling heat receiving pump according to the first embodiment of the present invention.
FIG. 3 is a front view of a lower casing of the contact type liquid cooling heat receiving pump according to the first embodiment of the present invention.
FIG. 4 is a configuration diagram of a cooling device according to the first embodiment of the present invention.
FIG. 5 is a sectional view of a contact type liquid cooling heat receiving pump according to a second embodiment of the present invention.
FIG. 6 is a sectional view of a contact type liquid cooling heat receiving pump according to a third embodiment of the present invention.
FIG. 7 is a configuration diagram of a first cooling device of a conventional electronic device.
FIG. 8 is a configuration diagram of a second cooling device of a conventional electronic device.
[Explanation of symbols]
1 pump casing
1a Upper casing
1b Lower casing
2 impeller
2a, 2b feather
2c Support plate
2d circular aperture
3 Heat transfer pillar
3a Upper pillar
3b Lower pillar
3c heat connection surface
4 Sealing material
5 pump room
5a, 5a * Pump room top
5b, 5b * Pump room bottom
6a Upper discharge path
6b Lower discharge path
7 Suction path
7a Suction opening
8 Stator
9 Heating electronic components
10 Heat receiving surface
11 Groove for generating dynamic pressure
12a, 12b protrusion
13 Heatsink
14 Circulation