JP2004279099A - External magnetic field sweep magnetic force microscope and measuring method - Google Patents
External magnetic field sweep magnetic force microscope and measuring method Download PDFInfo
- Publication number
- JP2004279099A JP2004279099A JP2003068082A JP2003068082A JP2004279099A JP 2004279099 A JP2004279099 A JP 2004279099A JP 2003068082 A JP2003068082 A JP 2003068082A JP 2003068082 A JP2003068082 A JP 2003068082A JP 2004279099 A JP2004279099 A JP 2004279099A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- external magnetic
- sample
- value
- sweeping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measuring Magnetic Variables (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、試料の局所磁化計測を可能とした磁気力顕微鏡に関し、特に細密化された磁気記録媒体等の磁気応用素子の磁気特性検査に適した技術に関する。
【0002】
【従来の技術】
従来、磁性材料の磁化計測はもっぱら試料振動型磁化測定装置(VSM:Vibrating Sample Magnetometer)等によって行われてきた。このVSMは、S.Fornerによって提案され、非特許文献1にその基本構成が示されている。図5に示すように試料をバイブレータの出力ロッド先端部に取り付け、試料に対して磁場を発生させる電磁石と試料近傍で磁場を検出するセンサーコイルとを配置し、そのセンサーコイルの出力端をロックインアンプの入力端に接続したものである。電磁石によって発生される磁場中でバイブレータにより試料を一定周波数で励振し、その際、センサーコイルに誘起される交流起電力を前記周波数に同期させたロックインアンプを介して検出するものである。しかし、この試料振動型磁化測定装置はコイルによる試料近傍の磁気測定を行うものであり、マクロ的測定であるため、最近の高密度化された各種磁気デバイスを対象としたようなミクロ−ナノ領域の局所で磁化を計測することはできなかった。
【0003】
そのため、最近ではプローブ顕微鏡の一種である磁気力顕微鏡(MFM:Magnetic Force Microscope)によって試料と探針先端部間にかかる磁気力(引力・斥力)を検出して、試料の局所的磁気状態を測定する試みがなされている。特許文献1に提示されている極微小磁区観察装置は、磁場印加による磁区の変化の磁気力顕微鏡による観察を、観測点の繁雑な位置決めの手順を省略して行うことができるようにすることを課題とし、図4に示すように極微小磁区観察試料の配置部と、試料表面に対向して配置される磁気力顕微鏡の探針1と、この探針1が配置された状態で、試料に外部磁場を印加する外部磁場印加手段6とを具備し、磁気力顕微鏡の原理に基づいて試料表面の極微小磁区の観察を行う構成とするものである。この装置によれば試料にかける磁場の向きや大きさを適宜変化させることができるので、例えば磁区発生状態、磁化反転状態のいわば動的観察を行うことができるし、また、動的観察のみならず、試料に対する磁場の印加前と後の変化を静的に観察することもできる旨明細書に記載されている。
ところで、パターンドメディアや、MRAM、スピントランジスターなど、次世代磁気応用素子においては、パターン形成された局所での定量的な磁化測定の必要性がある。また、磁気記録媒体開発においても、局所での外部磁場におけるダイナミックな特性を知る必要性がある。ところが、これらのような試料の特性を特許文献1の装置で計測しようとする場合、オペレータが適宜磁場印加手段が発生させる磁場をマニュアルで調整しながら測定を行わねばならず、データの採取もそのデータの処理解析も厄介な作業となる。
【0004】
【特許文献1】
特開平9−218213号公報 「極微小磁区観察方法と極微小磁区観察装置」 平成9年8月19日公開
【非特許文献1】
http://mswebs.aist−nara.ac.jp/LABs/sharp/vsm.html
【0005】
【発明が解決しようとする課題】
本発明の課題は、オペレータに、設定操作やデータの採取並びにそのデータの処理解析に厄介な手間をかけることなく、高密度化された次世代磁気応用素子の局所での定量的な磁化測定、また、局所での外部磁場におけるダイナミックな特性を知ることができる磁気力顕微鏡を提供することにある。
【0006】
【課題を解決するための手段】
本発明の磁気力顕微鏡は、先端に最大外部磁場より大きい保磁力を備えた微小な探針を有するカンチレバーと、カンチレバーの変位を検出する手段と、カンチレバーと試料間の距離を一定周期で所望の振幅量で振動させる手段と、試料を探針に対し相対的に移動させる移動手段と、試料に対して垂直または平行に磁場印加可能な電磁石からなる外部磁場装置と、磁場の向きと大きさを掃引する手段と、外部磁場に同期してMFM信号を出力する同期増幅器を備えるようにした。
また、更に動的特性を計測しやすいように所定位置から他の所定位置まで探針を駆動走査する手段と、試料の磁性部分と非磁性部分とのMFM信号の差を演算する手段と、所定値から反転所定値にわたり外部磁場を掃引させる手段と、外部磁場値に対応する前記MFM信号差の値を記憶する手段とを備えるようにした。
【0007】
本発明の磁気力顕微鏡は、装置固有の特性分を補償除去する機能を備えるため、所定値から反転所定値にわたり外部磁場を掃引させる手段と、標準試料の定点に設置した探針からの応答MFM信号を外部磁場値に対応させて記憶する手段と、検出したMFM信号から同じ外部磁場値に対応する前記記憶値を差演算する手段とを備えるようにした。
また、本発明の磁気力顕微鏡は、試料の局所でのスイッチング特性を計測できるように、外部磁場を急峻な立ち上がりと急峻な立ち下がりのパルス状に変化させる手段と、試料所定位置に設置した探針からの応答MFM信号を経過時間と共に記憶する手段と、外部磁場とMFM信号を時間軸を合わせて表示する手段とを備えるようにした。
【0008】
【発明の実施の形態】
本発明は前述したように細密化された磁気記録媒体等の磁気応用素子の磁気特性を検査するため開発されたもので、極微小領域の磁気特性を検出することを勘案し、センサとして先鋭化された探針と対峙する試料面間に働く磁気力を検出するプローブ顕微鏡の一種である磁気力顕微鏡を用いることに想到したものである。磁気力顕微鏡装置としての基本構成は特許文献1のような従来のものと同じである。すなわち、図1に示すように先端に磁性材が配置された微小な探針1を有するカンチレバー2と、カンチレバー2の変位を検出する手段3と、カンチレバー2を試料10の表面に対し一定周期で所望の振幅量で振動させるピエゾ材等の励振手段4と、試料10を探針1に対し相対的に移動させる移動手段5と、試料10に対して垂直または平行に磁場印加可能な電磁石等の外部磁場印加手段6とを備える。本発明の磁気力顕微鏡は従来の外部磁場印加手段6の発生する磁場の値をオペレータが適宜設定するのではなく、オペレータが設定した所定値から所定値まで間連続的に変化するように掃引する手段を備え、更にその外部磁場の変化に同期してMFM信号を出力する同期増幅器7を備えるようにした点に特徴を有する。外部磁場は設定したとおり自動的に掃引され、その際のMFM検出信号は外部磁場の変化に同期してMFM信号を出力する同期増幅器7を介して取り出されるので、外部磁場の値と対応したMFM信号を直接得ることができる。所定値から所定値までの掃引は、コンピュータ8に設定を登録すればよく作動時には該コンピュータ8から掃引駆動信号を外部磁場印加手段6に送信すると共に、同期増幅器7へも同期信号として送出する。また、この掃引信号は磁場の極性を反転させる範囲にわたり変化させることができる。
【0009】
【実施例1】
次に特定微小領域の磁化ヒステリシス特性を測定するのに好適な本発明の実施例を示す。この実施例の磁気力顕微鏡装置は、上記した本発明の基本構成に加え試料面上の所定位置から他の所定位置まで探針を繰り返し駆動走査する手段と、試料の磁性部分と非磁性部分とのMFM信号の差を演算する手段と、所定値から反転所定値にわたり外部磁場を掃引させる手段と、外部磁場値に対応する前記MFM信号差の値を記憶する手段とを備えるものである。
試料面上の所定位置から他の所定位置まで探針を駆動走査する手段は、例えば探針1が2点間を繰り返し直線走査するように移動手段5へ駆動信号を送信するもので、試料と探針を相対的に移動させる。図示の例では試料10が載置された試料ステージ9を一方向に所定距離繰り返し移動させるものとなる。例えば試料が高密度化されたメモリチップで磁性部分と非磁性部分が交互に配列されたようなものであったとすると、その試料面上で探針1が一方向に走査されると該探針1は磁性領域と非磁性領域を横切ることになり、MFM信号はその両方の値を交互に出力する。図2に示すように試料面の走査範囲が磁性部分(白領域)と非磁性(斑点領域)2個分づつであったとすると、三角表示の探針1がいずれの領域に対峙しているかで矩形的にMFM信号が変化する。そして外部磁場の値に対応して非磁性領域の信号は変化しないが磁性領域の信号が変化する。しかも外部磁場の極性が反転するとMFM信号も正負すなわち試料面と探針間にかかる力が引力から斥力に逆転する。ただし、探針の保磁力は最大外部磁場によって反転してしまわないだけ十分大きな値を採るようにする必要がある。
【0010】
次に試料の磁性部分と非磁性部分とのMFM信号の差を演算して記憶する手段について説明する。本実施例では外部磁場の値Hを±Kの範囲で変化するものとして掃引させるとその周波数は探針1が磁性部分と非磁性部分の一領域を通過する間に複数回の磁場サイクルを繰り返すことになる。探針1が磁性部分と対峙しているときは外部磁場の変化に対応してMFM信号が正負を越えて変化する。これに対し探針1が非磁性部分と対峙しているときは外部磁場の変化に拘わらずMFM信号は0値を保つ。本発明においてこのMFM信号は同期増幅器7を介し外部磁場掃引信号に同期して取り出されるので、同じ外部磁場のときの磁性部分のMFM信号と非磁性部分のMFM信号とを容易に対応させることができる。また、この値の差をコンピュータの記憶手段に格納することができる。これが本実施例の試料の磁性部分と非磁性部分とのMFM信号の差を演算して記憶する手段である。1回の探針走査若しくは複数回の走査における差演算値の蓄積情報を基に、例えば外部磁場の強さを横軸にそれに対応するMFM信号値を縦軸にしてプロットしディスプレイ11に表示させれば、図2の中央に図示したような試料の特定部分の磁化ヒステリシス特性が直接グラフ表示できる。従来の磁気力顕微鏡装置でこの特性を得るためには外部磁場を所定値に設定した状態で、探針を走査し試料の磁性部分と非磁性部分のMFM信号を記憶し、次に外部磁場を少し変化させて同様なMFM信号を記憶するといった作業をすべての外部磁場と対応させて繰り返し、その取得したデータを整理してからグラフ表示させるといった厄介な作業が求められたところである。この装置において磁化測定の校正はVSM等の標準試料を用いた測定で行うことができる。
なお、本装置の試料としては磁性部分と非磁性部分が配列されたメモリチップのようなものに限らず、一様な磁性部材であっても非磁性材のダミーを試料と隣り合わせることでこの装置を用いて測定することができる。
【0011】
【実施例2】
装置固有の特性分を補償除去する機能を備えた本発明の実施例を説明する。この実施例の装置は上記した本発明の基本構成に加え、所定値から反転所定値にわたり外部磁場を掃引させる手段と、標準試料の定点に設置した探針からの応答MFM信号を外部磁場値に対応させて記憶する手段と、検出したMFM信号から同じ外部磁場値に対応する前記記憶値を差演算する手段とを備える。標準試料は一般には非磁性材が用いられ、その定点に探針1を対峙させ、外部磁場を掃引してMFM信号を取得する。試料が非磁性材であるから本来はMFM信号は外部磁場の値に拘わらず0値を示すはずである。しかし本装置自体の構造等の条件により雑音が信号に重畳することがある。そこで、本実施例の装置により非磁性の試料について外部磁場を掃引してMFM信号を取得すれば、雑音そのものとして得ることができる。この値を記憶しておき実際の試料について測定する際、得られたMFM信号からこの値を引けば本装置の固有の特性分を補償除去することができる。
【0012】
【実施例3】
次に試料の局所でのスイッチング特性を計測することができる本発明の実施例について説明する。この実施例の装置は上記した本発明の基本構成に加え、外部磁場を急峻な立ち上がりと急峻な立ち下がりのパルス状に変化させる手段と、試料所定位置に設置した探針からの応答MFM信号を経過時間と共に記憶する手段と、外部磁場とMFM信号を時間軸を合わせて表示する手段とを備えた外部磁場掃引磁気力顕微鏡である。外部磁場を急峻な立ち上がりと急峻な立ち下がりのパルス状に変化させる手段は、探針1を試料の特定位置に固定した状態で図3に示すように外部磁場印加手段6により試料部分の磁場の強さをa値からb値に急激に立ち上げ、ある時間の後b値からa値に急激に立ち下げるように作用するものである。これはコンピュータ8にa値,b値を設定することで該コンピュータ8からの制御信号として外部磁場印加手段6に送るようにすることで実現できる。このパルス状の磁場変化に対し応答するMFM信号を取り出し、時間軸を合わせてディスプレイ11上に表示する。すると、MFM信号の立ち上がり特性、立ち下がり特性がそのまま示される。この応答特性から探針1を固定した試料の特定位置の素材のスイッチング特性を一目瞭然に把握することができる。この装置により、例えば磁気メモリの記憶速度などを測定することができる。
【発明の効果】
【0013】
本発明の外部磁場掃引磁気力顕微鏡は、先端に最大外部磁場より大きい保磁力を備えた微小な探針を有するカンチレバーと、カンチレバーの変位を検出する手段と、試料面に対するカンチレバーの距離を一定周期で所望の振幅量で振動させる励振手段と、試料を探針に対し相対的に移動させる移動手段と、試料に対して垂直または平行に磁場印加可能な電磁石からなる外部磁場印加手段と、外部磁場の大きさを掃引する手段と、外部磁場に同期してMFM信号を出力する同期増幅器を備えたものであるから、外部磁場を掃引しながらそれと同期してMFM信号を検出して試料の局所磁化計測をオペレータの厄介な作業を必要とせず容易に実行することができる。
また、所定位置から他の所定位置まで探針を駆動走査する手段と、試料の磁性部分と非磁性部分とのMFM信号の差を演算する手段と、所定値から反転所定値にわたり外部磁場を掃引させる手段と、外部磁場値に対応する前記MFM信号差の値を記憶する手段とを更に備えることにより、試料の局所における磁化特性をオペレータの厄介な作業を必要とせず容易に計測することができる。この蓄積情報を基に、例えば外部磁場の強さを横軸にそれに対応するMFM信号値を縦軸にしてプロットしディスプレイ12に表示させれば、図2の中央に図示したような試料の特定部分の磁化ヒステリシス特性が直接グラフ表示できる。
【0014】
本発明の外部磁場掃引磁気力顕微鏡は、所定値から反転所定値にわたり外部磁場を掃引させる手段と、標準試料の定点に設置した探針からの応答MFM信号を外部磁場値に対応させて記憶する手段と、検出したMFM信号から同じ外部磁場値に対応する前記記憶値を差演算する手段とを更に備えることにより、通常のMFM動作時に装置固有の特性分を補償除去する機能を備えることができる。
また、外部磁場を急峻な立ち上がりと急峻な立ち下がりのパルス状に変化させる手段と、試料所定位置に設置した探針からの応答MFM信号を経過時間と共に記憶する手段と、外部磁場とMFM信号を時間軸を合わせて表示する手段とを更に備えた本発明の外部磁場掃引磁気力顕微鏡は、試料の局所でのスイッチング特性を一目瞭然に表示することを可能とし、例えば磁気メモリの記憶速度などを測定することができる。
【図面の簡単な説明】
【図1】本発明に係る外部磁場掃引磁気力顕微鏡の基本構成を示す図である。
【図2】本発明の1実施例の動作を説明する図である。
【図3】本発明の他の実施例の動作を説明する図である。
【図4】従来の磁気力顕微鏡の基本構成を示す図である。
【図5】従来技術であるVSMの基本構成を示す図である。
【符号の説明】
1 探針 7 同期増幅器
2 カンチレバー 8 コンピュータ
3 変位検出手段 9 試料ステージ
4 励振手段 10 試料
5 移動手段 11 ディスプレイ
6 外部磁場印加手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic force microscope capable of measuring a local magnetization of a sample, and more particularly to a technique suitable for inspecting magnetic characteristics of a magnetic application element such as a miniaturized magnetic recording medium.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, magnetization measurement of a magnetic material has been performed exclusively using a vibrating sample magnetometer (VSM) or the like. This VSM is based on S.M. Forner, and its basic configuration is shown in Non-Patent Document 1. As shown in FIG. 5, the sample is attached to the tip of the output rod of the vibrator, and an electromagnet for generating a magnetic field for the sample and a sensor coil for detecting the magnetic field near the sample are arranged, and the output end of the sensor coil is locked in. This is connected to the input terminal of the amplifier. A sample is excited at a constant frequency by a vibrator in a magnetic field generated by an electromagnet, and at that time, an AC electromotive force induced in a sensor coil is detected via a lock-in amplifier synchronized with the frequency. However, this sample vibration type magnetometer measures the magnetism near the sample using a coil, and is a macro-measurement. The magnetization could not be measured locally.
[0003]
Therefore, recently, a magnetic force microscope (MFM: Magnetic Force Microscope) which is a kind of a probe microscope detects a magnetic force (attractive force / repulsive force) applied between the sample and the tip of the probe to measure a local magnetic state of the sample. Attempts have been made to do so. The ultra-small magnetic domain observation device disclosed in Patent Document 1 is designed to enable observation of a change in a magnetic domain due to application of a magnetic field by a magnetic force microscope without performing a complicated positioning procedure of an observation point. As shown in FIG. 4, as shown in FIG. 4, an arrangement portion of an extremely small magnetic domain observation sample, a probe 1 of a magnetic force microscope arranged to face the sample surface, and An external magnetic field applying means 6 for applying an external magnetic field is provided, and observation of a very small magnetic domain on a sample surface is performed based on the principle of a magnetic force microscope. According to this device, the direction and magnitude of the magnetic field applied to the sample can be changed as appropriate, so that, for example, a dynamic observation of a magnetic domain generation state and a magnetization reversal state can be performed. It is described in the specification that changes before and after the application of a magnetic field to a sample can be statically observed.
By the way, in next-generation magnetic application elements such as patterned media, MRAM, and spin transistors, there is a need to quantitatively measure magnetization at a locally formed pattern. Also in the development of magnetic recording media, it is necessary to know the dynamic characteristics of a local external magnetic field. However, when measuring the characteristics of such a sample using the apparatus disclosed in Patent Document 1, the operator must perform the measurement while manually adjusting the magnetic field generated by the magnetic field applying unit as appropriate, and the data collection is also performed. Data processing and analysis can be a daunting task.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-218213, "Micro-microdomain observation method and micro-microdomain observation apparatus" Published on August 19, 1997 [Non-Patent Document 1]
http: // mswebs. aist-nara. ac. jp / LABs / sharp / vsm. html
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide an operator with a quantitative measurement of local magnetization of a next-generation magnetic application element with high density without troublesome setting operation and data collection and troublesome processing and analysis of the data. Another object of the present invention is to provide a magnetic force microscope capable of knowing dynamic characteristics of a local external magnetic field.
[0006]
[Means for Solving the Problems]
The magnetic force microscope according to the present invention includes a cantilever having a minute probe having a coercive force larger than the maximum external magnetic field at the tip, a means for detecting displacement of the cantilever, and a desired distance between the cantilever and the sample at a constant period. Means for vibrating with the amplitude, moving means for moving the sample relative to the probe, an external magnetic field device comprising an electromagnet capable of applying a magnetic field perpendicularly or parallel to the sample, and adjusting the direction and magnitude of the magnetic field A sweeping means and a synchronous amplifier for outputting an MFM signal in synchronization with an external magnetic field are provided.
A means for driving and scanning the probe from a predetermined position to another predetermined position so that dynamic characteristics can be more easily measured; a means for calculating a difference between MFM signals of a magnetic portion and a non-magnetic portion of the sample; A means for sweeping an external magnetic field over a predetermined inverted value from a value and a means for storing the value of the MFM signal difference corresponding to the external magnetic field value are provided.
[0007]
The magnetic force microscope of the present invention has a function of compensating and removing the characteristic component inherent in the apparatus. Therefore, means for sweeping an external magnetic field from a predetermined value to a predetermined reversal value, and a response MFM from a probe set at a fixed point of a standard sample Means are provided for storing the signal in association with the external magnetic field value, and means for calculating the difference between the stored value corresponding to the same external magnetic field value from the detected MFM signal.
Further, the magnetic force microscope of the present invention includes a means for changing the external magnetic field into a pulse having a sharp rise and a sharp fall so as to measure the switching characteristics of the sample locally, and a probe installed at a predetermined position of the sample. A means for storing the response MFM signal from the needle together with the elapsed time and a means for displaying the external magnetic field and the MFM signal on the time axis are provided.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention has been developed for inspecting the magnetic characteristics of a magnetic application element such as a magnetic recording medium that has been miniaturized as described above. In consideration of detecting the magnetic characteristics of an extremely small area, the sensor has been sharpened. It is conceived to use a magnetic force microscope which is a kind of a probe microscope for detecting a magnetic force acting between a probe tip and a sample surface facing the same. The basic configuration of the magnetic force microscope device is the same as that of a conventional device such as Patent Document 1. That is, as shown in FIG. 1, a
[0009]
Embodiment 1
Next, an embodiment of the present invention suitable for measuring the magnetization hysteresis characteristic of a specific minute region will be described. The magnetic force microscope apparatus of this embodiment includes a means for repeatedly driving and scanning the probe from a predetermined position on the sample surface to another predetermined position in addition to the above-described basic configuration of the present invention, and a magnetic part and a non-magnetic part of the sample. , A means for sweeping an external magnetic field from a predetermined value to an inverted predetermined value, and a means for storing the value of the MFM signal difference corresponding to the external magnetic field value.
The means for driving and scanning the probe from a predetermined position on the sample surface to another predetermined position is, for example, a means for transmitting a drive signal to the moving means 5 so that the probe 1 performs linear scanning repeatedly between two points. Move the tip relatively. In the illustrated example, the
[0010]
Next, means for calculating and storing the difference between the MFM signals of the magnetic portion and the non-magnetic portion of the sample will be described. In this embodiment, when the value H of the external magnetic field is swept as if it changes in the range of ± K, the frequency is repeated a plurality of times while the probe 1 passes through one region of the magnetic portion and the non-magnetic portion. Will be. When the probe 1 faces the magnetic part, the MFM signal changes beyond positive and negative in response to a change in the external magnetic field. On the other hand, when the probe 1 faces the non-magnetic portion, the MFM signal keeps 0 value regardless of the change of the external magnetic field. In the present invention, the MFM signal is taken out in synchronization with the external magnetic field sweep signal via the
The sample of this device is not limited to a memory chip having a magnetic portion and a non-magnetic portion arranged, but even a uniform magnetic member can be obtained by placing a dummy of non-magnetic material next to the sample. It can be measured using an apparatus.
[0011]
An embodiment of the present invention having a function of compensating and removing the characteristic component unique to the device will be described. The apparatus of this embodiment has, in addition to the basic configuration of the present invention described above, means for sweeping an external magnetic field from a predetermined value to an inverted predetermined value, and a response MFM signal from a probe set at a fixed point of a standard sample to an external magnetic field value. Means for storing the values in association with each other, and means for calculating the difference between the stored values corresponding to the same external magnetic field value from the detected MFM signal. A non-magnetic material is generally used for the standard sample, and the probe 1 is made to face the fixed point, and an external magnetic field is swept to acquire an MFM signal. Since the sample is a non-magnetic material, the MFM signal should have a value of 0 regardless of the value of the external magnetic field. However, noise may be superimposed on the signal depending on conditions such as the structure of the device itself. Therefore, if the MFM signal is acquired by sweeping the external magnetic field with respect to the non-magnetic sample using the apparatus of the present embodiment, the MFM signal can be obtained as noise itself. When this value is stored and the actual sample is measured, subtracting this value from the obtained MFM signal makes it possible to compensate and remove the characteristic characteristic of the apparatus.
[0012]
Embodiment 3
Next, a description will be given of an embodiment of the present invention capable of measuring a switching characteristic at a local portion of a sample. The apparatus of this embodiment has, in addition to the basic configuration of the present invention described above, means for changing the external magnetic field into a pulse having a steep rising and a steep falling, and a response MFM signal from a probe installed at a predetermined position of the sample. An external magnetic field sweeping magnetic force microscope comprising means for storing the elapsed time and an external magnetic field and a means for displaying the MFM signal along the time axis. The means for changing the external magnetic field into a pulse having a steep rise and a steep fall is provided by the external magnetic field applying means 6 as shown in FIG. The intensity acts to rise sharply from the value a to the value b, and to fall sharply from the value b to the value a after a certain time. This can be realized by setting the a value and the b value in the
【The invention's effect】
[0013]
An external magnetic field sweeping magnetic force microscope according to the present invention includes a cantilever having a minute probe having a coercive force larger than the maximum external magnetic field at the tip, a unit for detecting displacement of the cantilever, and a distance between the cantilever and the sample surface which is constant. Excitation means for oscillating at a desired amplitude amount, moving means for moving the sample relative to the probe, external magnetic field applying means comprising an electromagnet capable of applying a magnetic field perpendicular or parallel to the sample, and external magnetic field And a synchronous amplifier that outputs an MFM signal in synchronization with the external magnetic field. Therefore, the MFM signal is detected in synchronization with the external magnetic field while sweeping the external magnetic field, and the local magnetization of the sample is detected. The measurement can be easily performed without requiring the troublesome work of the operator.
A means for driving and scanning the probe from a predetermined position to another predetermined position; a means for calculating a difference between MFM signals of a magnetic portion and a non-magnetic portion of the sample; and a sweeping of an external magnetic field from a predetermined value to an inverted predetermined value. And further comprising means for storing the value of the MFM signal difference corresponding to the external magnetic field value, so that the magnetization characteristics in the local part of the sample can be easily measured without requiring a troublesome operation of the operator. . Based on the accumulated information, for example, plotting the strength of the external magnetic field on the horizontal axis and the corresponding MFM signal value on the vertical axis and displaying the plotted value on the display 12, the sample shown in the center of FIG. The magnetization hysteresis characteristics of the portion can be directly displayed on a graph.
[0014]
The external magnetic field sweeping magnetic force microscope of the present invention is a means for sweeping an external magnetic field from a predetermined value to an inverted predetermined value, and stores a response MFM signal from a probe set at a fixed point of a standard sample in association with the external magnetic field value. Means, and a means for calculating the difference between the stored values corresponding to the same external magnetic field value from the detected MFM signal, thereby providing a function of compensating and removing a characteristic component unique to the device during normal MFM operation. .
A means for changing the external magnetic field into a pulse having a sharp rise and a sharp fall; a means for storing a response MFM signal from a probe installed at a predetermined position of the sample along with an elapsed time; and a means for storing the external magnetic field and the MFM signal. The external magnetic field sweeping magnetic force microscope according to the present invention, further comprising means for displaying the images in alignment with the time axis, makes it possible to clearly display the switching characteristics of the local portion of the sample at a glance, and measures, for example, the storage speed of the magnetic memory. can do.
[Brief description of the drawings]
FIG. 1 is a diagram showing a basic configuration of an external magnetic field sweeping magnetic force microscope according to the present invention.
FIG. 2 is a diagram illustrating the operation of one embodiment of the present invention.
FIG. 3 is a diagram illustrating the operation of another embodiment of the present invention.
FIG. 4 is a diagram showing a basic configuration of a conventional magnetic force microscope.
FIG. 5 is a diagram showing a basic configuration of a conventional VSM.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003068082A JP2004279099A (en) | 2003-03-13 | 2003-03-13 | External magnetic field sweep magnetic force microscope and measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003068082A JP2004279099A (en) | 2003-03-13 | 2003-03-13 | External magnetic field sweep magnetic force microscope and measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004279099A true JP2004279099A (en) | 2004-10-07 |
Family
ID=33285515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003068082A Pending JP2004279099A (en) | 2003-03-13 | 2003-03-13 | External magnetic field sweep magnetic force microscope and measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004279099A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006003789A1 (en) * | 2004-06-30 | 2006-01-12 | Japan Science And Technology Agency | Method and device for analyzing distribution of coercive force in vertical magnetic recording medium using magnetic force microscope |
CN101915652A (en) * | 2010-08-13 | 2010-12-15 | 中南大学 | Electromagnetic drive method and device for concrete pump truck arm fatigue tests |
JP2013002970A (en) * | 2011-06-16 | 2013-01-07 | Hitachi Ltd | Magnetic force microscope and magnetic field observation method using the same |
-
2003
- 2003-03-13 JP JP2003068082A patent/JP2004279099A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006003789A1 (en) * | 2004-06-30 | 2006-01-12 | Japan Science And Technology Agency | Method and device for analyzing distribution of coercive force in vertical magnetic recording medium using magnetic force microscope |
JP2006017557A (en) * | 2004-06-30 | 2006-01-19 | Japan Science & Technology Agency | Method for analyzing coercive force distribution in vertical magnetic recording medium using magnetic force microscope and analyzer therefor |
US7560921B2 (en) | 2004-06-30 | 2009-07-14 | Japan Science And Technology Agency | Method and device for analyzing distribution of coercive force in vertical magnetic recording medium using magnetic force microscope |
CN101915652A (en) * | 2010-08-13 | 2010-12-15 | 中南大学 | Electromagnetic drive method and device for concrete pump truck arm fatigue tests |
JP2013002970A (en) * | 2011-06-16 | 2013-01-07 | Hitachi Ltd | Magnetic force microscope and magnetic field observation method using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8359661B2 (en) | Magnetic device inspection apparatus and magnetic device inspection method | |
JP4769918B1 (en) | Magnetic field observation apparatus and magnetic field observation method | |
Grütter et al. | Magnetic dissipation force microscopy | |
KR100961571B1 (en) | Scanning probe microscope | |
US8448501B2 (en) | Multiple frequency atomic force microscopy | |
US6605941B2 (en) | Method and apparatus for measuring characteristic of specimen and its application to high frequency response measurement with scanning probe microscopes | |
JP2010210636A5 (en) | ||
Rogers et al. | Tapping mode atomic force microscopy in liquid with an insulated piezoelectric microactuator | |
JP2764102B2 (en) | Magnetic property measuring device | |
JP2002230728A (en) | Measuring device for magnetic head and measuring method applied to the device | |
JP3141555B2 (en) | Scanning surface magnetic microscope | |
JP2004279099A (en) | External magnetic field sweep magnetic force microscope and measuring method | |
JP6167265B2 (en) | Apparatus for evaluating magnetic properties of magnetic fine particles and method for evaluating magnetic properties | |
JP3522222B2 (en) | Scanning AC Hall microscope and its measuring method | |
JP2001108601A (en) | Scanning-type probe microscope | |
JP6528334B2 (en) | Evaluation apparatus and evaluation method for probe for magnetic force microscope, and magnetic force adjustment method for control of magnetic force microscope and magnetic force microscope | |
CN105102989A (en) | Magnetic field value measurement device and magnetic field value measurement method | |
JP6358788B2 (en) | AC magnetic field measuring apparatus and AC magnetic field measuring method | |
JP4050194B2 (en) | Magnetic field detection method, magnetic field detection device, and information storage | |
JP3376374B2 (en) | Method of creating image of sample surface in probe microscope | |
JP3597787B2 (en) | Magnetic recording head measuring device and magnetic recording head measuring method | |
JP4344812B2 (en) | Scanning probe microscope and measurement method | |
JP4673446B2 (en) | Ultra-sensitive displacement measurement method using a scanning nonlinear dielectric microscope | |
JP3084924B2 (en) | Atomic force microscope | |
JP2012053956A (en) | Magnetic head element evaluation device and magnetic head element evaluation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070817 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070828 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071025 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080819 |