[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004271965A - Illuminator, and projection device - Google Patents

Illuminator, and projection device Download PDF

Info

Publication number
JP2004271965A
JP2004271965A JP2003063360A JP2003063360A JP2004271965A JP 2004271965 A JP2004271965 A JP 2004271965A JP 2003063360 A JP2003063360 A JP 2003063360A JP 2003063360 A JP2003063360 A JP 2003063360A JP 2004271965 A JP2004271965 A JP 2004271965A
Authority
JP
Japan
Prior art keywords
light
conversion element
polarization conversion
illumination
lighting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003063360A
Other languages
Japanese (ja)
Other versions
JP3975948B2 (en
Inventor
Susumu Ariga
進 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003063360A priority Critical patent/JP3975948B2/en
Publication of JP2004271965A publication Critical patent/JP2004271965A/en
Application granted granted Critical
Publication of JP3975948B2 publication Critical patent/JP3975948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Projection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illuminator capable of generating uniform polarized light with high polarized light changing efficiency by a simple optical system. <P>SOLUTION: A concave reflection mirror 21b and a rod integrator 21d thoroughly make illuminating light emitted from a light source 21a incident on a polarized light changing element 21e, and also make returning reflected light LR which is not changed to P polarized light by the element 21e incident on the element 21e again in a state where the light is superposed while it is divided in terms of wave surface with low loss. Since a scattering member 21g properly scatters the light made incident on the element 21e or reflected by the element 21e, the uniformity of the illumination of the element 21e is enhanced. That means, the uniformity of the intensity distribution and the emitting angle of the illuminating light emitted from the element 21e is enhanced to realize uniform and efficient illumination for a liquid crystal light valve or the like. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示素子その他の空間光変調装置を照明するための照明装置、並びに、これら空間光変調装置及び照明装置を用いて画像を投射する投射装置に関する。
【0002】
【従来の技術】
液晶プロジェクタ用の照明装置として、ランプ光源からの照明光をグリッド型の偏光子を用いて所望の直線偏光にして射出させるものが知られている(例えば、特許文献1等参照)。この照明装置では、射出側に設けた偏光子からのS偏光の反射光を、光源側に戻すことによって光源側との間で往復させて射出側の偏光子に再入射させる。この際、この偏光子に対向するように4分の1波長板を配置しているので、偏光子からの反射光は、4分の1波長板を2度通過することになり、S偏光からP偏光に変換されて偏光子をほとんど透過することになる。このような照明装置では、4分の1波長板の存在によって照明光の偏光変換効率的を高めることができる。
【0003】
【特許文献1】
特開平11−6989号公報
【発明が解決しようとする課題】
しかし、上記照明装置では、光源や反射鏡を精密に配置する必要があり、光源の構造の複雑化、コスト増加をまねく。また、このような照明装置では、光源からの光を十分に均一化することができない。特に光源としてLED等を用いた場合、放射角度分布において偏りが生じやすく均一な照明光を形成することが容易でない。
【0004】
そこで、本発明は、簡易な光学系によって高い偏光変換効率で均一な偏光光を発生させることができる照明装置を提供することを目的とする。
【0005】
また、本発明は、このような照明装置を組み込むことにより、簡易に効率的で均一な照明が可能であり高品質の画像を投射することができる投射装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明に係る照明装置は、照明光を発生する光源と、光源からの照明光のうち一部を反射するとともに、残りを透過させて特定方向の偏光光に変換する偏光変換素子と、偏光変換素子の入射面側に設けられて、通過する光を散乱させる散乱部材と、偏光変換素子で反射された照明光を、散乱部材を介して再度偏光変換素子に戻す光帰還手段とを備える。
【0007】
上記照明装置では、偏光変換素子の入射面側に設けられた散乱部材がこれを通過する光を散乱させるので、偏光変換素子で反射された光が光帰還手段によって再度偏光変換素子に入射するまでの間に、照明光の均一性を高めることができる。よって、偏光変換素子から射出される照明光の強度分布や射出角の均一性が高まり、照明対象である液晶ライトバルブ等に対する均一で効率的な照明が可能になる。
【0008】
上記照明装置の具体的態様では、偏光変換素子が透明基板上にストライプ状に導体線を形成したグリッド型偏光子である。この場合、構造が簡単で耐久性を有するとともに入射角の条件が比較的緩やかなグリッド型偏光子によって安定した偏光が可能になるので、偏光変換素子から射出される照明光を長期に亘って安定させることができる。
【0009】
また、上記照明装置の別の具体的態様では、散乱部材が透明基板の裏面に形成された表面凹凸パターンを有する。この場合、散乱部材の加工が簡単であり、散乱部材を個別に設ける場合に比較して照明装置の製造が簡単になる。
【0010】
また、上記照明装置の別の具体的態様では、表面凹凸パターンがレンズ状の突起及び陥凹部の少なくとも一方を含む集合体である。この場合、レンズ状の突起又は陥凹部の配置や形状を調節することによって、所望の散乱状態を簡易に実現することができ、液晶ライトバルブ等に対する照明の制御性を高めることができる。
【0011】
また、上記照明装置の別の具体的態様では、表面凹凸パターンが錘状の突起及び陥凹部の少なくとも一方を含む集合体である。この場合、錘状の突起又は陥凹部の配置や形状を調節することによって、所望の散乱状態を簡易に実現することができ、液晶ライトバルブ等に対する照明の制御性を高めることができる。
【0012】
また、上記照明装置の別の具体的態様では、偏光変換素子と光帰還手段との間に、偏光変換素子からの反射光の偏光状態を変更する波長板をさらに備える。この場合、偏光変換素子で反射された光を、光帰還手段によって偏光変換素子に戻す際に、偏光変換素子を効率的に透過する偏光光に変換することができるので、特定方向の偏光光の効率的な取り出しが可能になる。
【0013】
また、上記照明装置の別の具体的態様では、光帰還手段が光源から射出した照明光を集光する凹面反射鏡である。この場合、照明光を集光しつつ偏光変換素子からの反射光を再度偏光変換素子に戻すので、照明光の射出角等の分布を一定範囲内にそろえることができる。
【0014】
また、上記照明装置の別の具体的態様では、光源からの照明光を波面分割して重畳させた状態で散乱部材を介して偏光変換素子に入射させるオプティカル・インテグレータをさらに備える。この場合、オプティカル・インテグレータによって光源からの光を波面分割して重畳させるので、この装置から射出させる照明光の強度分布や射出角の分布の均一性を高めることができる。
【0015】
また、本発明に係る第1の投射装置は、上述の照明装置と、照明装置からの照明光によって照明される空間光変調装置と、空間光変調装置からの像光を投射する投射光学系とを備える。ここで、「空間光変調装置」とは、例えば液晶ライトバルブに代表される光デバイスである。
【0016】
上記第1の投射装置では、上述の照明装置を用いて空間光変調装置を照明するので、均一な偏光光を効率良く発生することができ、高品質の画像を安価な装置によって投射することができる。
【0017】
また、本発明に係る第2の投射装置は、上述の照明装置とこの照明装置からの照明光によって照明される空間光変調装置とをそれぞれ有する各色ごとの複数の画像形成ユニットと、複数の画像形成ユニットからの像光を合成して射出する光合成部材と、光合成部材を経て合成された像光を投射する投射光学系とを備える。
【0018】
上記第2の投射装置では、上述の照明装置を用いて空間光変調装置を照明するので、均一な偏光光を各色ごとに効率良く発生することができ、高品質のカラー画像を安価な装置によって投射することができる。
【0019】
【発明の実施の形態】
〔第1実施形態〕
図1は、第1実施形態に係る投射装置の構造を概念的に説明するブロック図である。この投射装置、すなわちプロジェクタ10は、照明装置20と、光変調装置30と、投射レンズ40と、制御装置50とを備える。ここで、照明装置20は、R光照明装置21と、G光照明装置23と、B光照明装置25と、光源駆動装置27とを有する。また、光変調装置30は、空間光変調装置である3つの液晶ライトバルブ31,33,35と、光合成部材であるクロスダイクロイックプリズム37と、各液晶ライトバルブ31,33,35に駆動信号を出力する素子駆動装置38とを有する。なお、R光照明装置21と液晶ライトバルブ31は、これらを一組として画像形成ユニットと呼ぶ。同様に、G光照明装置23及び液晶ライトバルブ33のユニット、並びに、B光照明装置25及び液晶ライトバルブ35のユニットも、それぞれ画像形成ユニットと呼ぶ。
【0020】
図2は、照明装置20のうちR光照明装置21の構造を説明する図である。このR光照明装置21は、3原色のうちR光を発生する光源21aと、光源21aから側方に射出される照明光を集光する凹面反射鏡21bと、凹面反射鏡21bの開口に固定された波長板である(λ/4)板21cと、(λ/4)板21cを挟んで凹面反射鏡21bと対向した状態で固定されているロッドインテグレータ21dと、ロッドインテグレータ21dの射出端に接続されている偏光変換素子21eとを備える。このうち、凹面反射鏡21bは、偏光変換素子21eからの反射光を再度偏光変換素子21eに戻す光帰還手段として機能し、ロッドインテグレータ21dは、光源21aからの照明光を分割して混合するオプティカル・インテグレータとして機能する。
【0021】
ここで、光源21aは、固体光源とも呼ばれるLEDパッケージであり、発光部すなわちダイオードチップPCを内蔵する。ダイオードチップPCから正面方向に発散しつつ射出された光束LFは、光源21aのレンズ部分LPによって一定の広がりを有する光束に変換され、(λ/4)板21cを介してロッドインテグレータ21dにその入射端IPから入射する。なお、ダイオードチップPCから側面方向に発散しつつ射出された光束LSも、凹面反射鏡21bによって一定の広がりを有する光束に変換されて、(λ/4)板21cを介してロッドインテグレータ21dに入射する。
【0022】
ロッドインテグレータ21dは、四角柱状の筒内面を反射面に形成した構造を有し、入射端IPから入射した照明光をその角度に応じた内面反射によって波面分割するとともに、このように波面分割された照明光を重畳的に合成して射出端EPに内側から入射させる。これにより、均一な分布の照明光を、所望の角度範囲内において比較的均一な角度分布で射出端EPから射出させることができる。この際、凹面反射鏡21bの開口APの寸法と、ロッドインテグレータ21dの入射端IPの寸法とを一致させ、入射端IPの四隅に補助的な光帰還手段として機能する反射面(不図示)を形成してあるので、ダイオードチップPCから射出した照明光を漏れなくロッドインテグレータ21dに結合することができ、偏光変換素子21eから戻って来た戻り反射光LRがロッドインテグレータ21dと凹面反射鏡21bや(λ/4)板21cとのつなぎ目で外部に漏れ出すことを確実に防止できる。
【0023】
偏光変換素子21eは、偏光されなかった光をほとんど吸収することなく反射する反射型偏光板の一種であるグリッド型偏光子からなる。この偏光変換素子21eは、透明基板TPの表面上に、等間隔で形成された等しい幅の導体パターンからなりワイヤグリッドとも呼ばれるストライプ導線SCを有する。ストライプ導線SCの幅や間隔は、R光の波長以下に設定されているので、この偏光変換素子21eに入射した光のうち、ストライプ導線SCが延びる特定方向に垂直の偏光光(以下では便宜上P偏光と呼ぶものとする)のみが選択的にこの偏光変換素子21eを通過する。
【0024】
この偏光変換素子21eの入射面側、すなわち透明基板TPの裏面側には、レンズ状の微小突起PPを適当な密度でランダムに配置した散乱部材21gが形成されている。散乱部材21gは、この散乱部材21gを通過する光をランダムな方向に散乱させるためのものである。このため、散乱部材21gを通過して偏光変換素子21eに入射する光は、一定の入射角範囲内において比較的均一な角度分布を有するものとなる。また、散乱部材21gを逆方向に通過してロッドインテグレータ21dに入射する光も、一定の入射角範囲内において比較的均一な角度分布を有するものとなり、ロッドインテグレータ21dを逆行する際に、ロッドインテグレータ21dの軸に垂直な面内において照明光の輝度の2次元分布がさらに均一化される。特に光源21aとしてLED等の固体光源を用いた場合、これから射出される照明光が一定のパターンを有する場合が多いので、偏光変換素子21eの前に散乱部材21gを配置することで、偏光変換素子21eに入射する照明光を効果的に均一化することができる。なお、偏光変換素子21eは、ワイヤグリッド偏光素子であるので、偏光変換素子21eに入射する照明光の入射角の許容範囲が広い。よって、このような偏光変換素子21eによれば、照明光がある程度様々な角度を有していても、S偏光の漏れが少なく偏光変換効率が高い状態でP偏光を取り出すことができる。
【0025】
散乱部材21gは、例えば以下のようにして形成することができる。まず、偏光変換素子21eの透明基板TPの裏面側にレジスト膜を塗布し、ランダムに配置された円形遮蔽部を有するマスクの像を、ピントを適宜外した状態でレジスト膜上に投影する。現像後のレジスト膜には、マスクの円形遮蔽部の配置に対応してランダムに配列された凸部が形成される。このように加工されたレジスト膜をドライエッチングで除去することにより、レジスト膜の凸部に対応する凸レンズ状の微小突起PPが所望の密度でランダムに形成される。
【0026】
また、別の方法として、透明基板TPとなるべきガラス基板又はプラスチック基板を適当な軟化温度まで加熱し、微小突起PPのパターンに対応する多数の微小な凹部からなる転写面を有する型をこのガラス基板又はプラスチック基板に押し付けて、この基板表面に散乱部材21gとなるべき微小突起PPを型押し成形することもできる。なお、ストライプ導線SCは、例えば透明基板TPの裏面側で微小突起PPを型押し形成した後に、その表面側に形成される。ストライプ導線SCは、例えば、透明基板TPの表面側に金属膜を蒸着し、その上にレジスト膜のストライプパターンを形成し、このようなストライプパターンをマスクとしてエッチングを行って金属膜を多数の細線に加工することによって形成される。
【0027】
図2に示すR光照明装置21の動作について説明すると、光源21aに内蔵されたダイオードチップPCから正面方向や側面方向に発散しつつ射出された光束LF,LSは、適当な発散角に絞られて(λ/4)板21cを通過し、ロッドインテグレータ21d中を直進し或いは内面で1回以上反射されることによって均一化された状態で偏光変換素子21eに入射する。この結果、偏光変換素子21eが光源21aからの照明光によってほぼ一様に照明される。偏光変換素子21eに入射した光束LF,LSのうち偏光変換素子21eを通過したものは、ほぼP偏光のみの出力光となっている。一方、偏光変換素子21eに入射した照明光のうち偏光変換素子21eで反射されたものは、ほぼS偏光のみからなるが、このような反射光は、ロッドインテグレータ21dの入射端IPに配置された(λ/4)板21cを通過して円偏光に変換される。この(λ/4)板21cを通過した円偏光状態の反射光は、凹面反射鏡21bに戻される。凹面反射鏡21bは、偏光変換素子21eからのこのような戻り反射光LRを、1回以上反射することによって偏光変換素子21eに再入射させる。この際、凹面反射鏡21bで反射される円偏光は、回転方向が逆転するが円偏光のまま維持され、ロッドインテグレータ21dを介して偏光変換素子21eに再入射する際に通過する(λ/4)板21cによって、円偏光からP偏光に変換される。これにより、偏光変換素子21eに再入射した戻り反射光LRは、効率的に偏光変換素子21eを通過することになる。この結果、光源21aから射出された照明光は、ほぼ完全にP偏光に変換されて偏光変換素子21eの射出側から出力光として射出される。
【0028】
この場合、凹面反射鏡21bやロッドインテグレータ21dは、光閉じ込め容器として機能し、光源21aから射出された照明光を漏れなく偏光変換素子21eに入射させるとともに、偏光変換素子21eでP偏光に変換されなかった戻り反射光LRを低損失で波面分割しつつ重畳させて偏光変換素子21eに再入射させる。また、散乱部材21gは、偏光変換素子21eに入射したりこの偏光変換素子21eで反射されたりする光を適宜散乱させるので、偏光変換素子21eの照明の均一性を一層高めることができる。つまり、偏光変換素子21eから射出される照明光の強度分布や射出角の均一性が高まり、液晶ライトバルブ31に対する均一で効率的な照明が可能になる。
【0029】
以上の説明から明らかなように、このR光照明装置21によれば、光源21aから射出された照明光が、極めて均一で高輝度のP偏光の出力光に変換され射出される。これにより、後段の液晶ライトバルブ31を均一に照明できるだけでなく、その周辺に配置される偏光板等の発熱を低減することができる。
【0030】
なお、光源21aの配置、凹面反射鏡21bの焦点距離、ロッドインテグレータ21dの長さ等を適宜調節することにより、出力光の均一性や液晶ライトバルブ31への入射角範囲を適宜調節することができる。また、散乱部材21gを構成する微小突起PPの曲率半径等を適宜調節することによっても、偏光変換素子21eに入射する照明光の入射角度範囲を適宜調節することができる。
【0031】
以上の説明では、図1の照明装置20のうち、R光照明装置21の構造のみについて説明したが、G光照明装置23やB光照明装置25も、発光波長に合わせて設計的仕様が多少変更されるだけで、R光照明装置21と基本的に同一の構造を有する。
【0032】
つまり、G光照明装置23からのG光によってG光用の液晶ライトバルブ33が極めて均一に照明されるが、この際の照明光は、固体光源であるLEDパッケージからのG光をほぼ完全にP偏光に効率良く変換したものとなっている。また、B光照明装置25からのB光によってB光用の液晶ライトバルブ35が極めて均一に照明されるが、この際の照明光は、固体光源であるLEDパッケージからのB光をほぼ完全にP偏光に効率良く変換したものとなっている。
【0033】
各液晶ライトバルブ31,33,35にそれぞれ入射した各色の照明装置21,23,25からの光は、これら液晶ライトバルブ31,33,35によってそれぞれ2次元的に変調される。各液晶ライトバルブ31,33,35を通過した各色の光は、光合成部材であるクロスダイクロイックプリズム37で合成されて、その一側面から射出される。クロスダイクロイックプリズム37から射出された合成光の像は、投射光学系である投射レンズ40に入射してプロジェクタ10外部に設けたスクリーン(不図示)に適当な拡大率で投影される。つまり、プロジェクタ10によって、各液晶ライトバルブ31,33,35に適宜形成した各色R,G,Bの画像を合成したカラー画像がスクリーン上に投射される。なお、図示を省略しているが、各液晶ライトバルブ31,33,35の近辺の適所には、これらの液晶ライトバルブ31,33,35を偏光光で照明し読み出すため、偏光板が配置されている。
【0034】
制御装置50は、マイクロコンピュータ等からなり、光源駆動装置27や素子駆動装置38に制御信号を出力することによって、各色の光照明装置21,23,25や液晶ライトバルブ31,33,35の動作を間接的に制御している。これにより、例えば外部から制御装置50を介してプロジェクタ10に入力された画像信号に応じて、カラーの動画又は静止画がスクリーン上に高輝度で投影・表示される。
【0035】
〔第2実施形態〕
以下、第2実施形態のプロジェクタについて説明する。第2実施形態のプロジェクタは、第1実施形態のプロジェクタの照明装置21,23,25を変形したものである。
【0036】
図3は、第2実施形態のプロジェクタに組み込まれるR光照明装置の一部を説明する図である。このR光照明装置は、偏光変換素子21eの入射面側に散乱部材121gを備えているが、図2に示す第1実施形態の場合と異なり、円錐状の微小突起PP’を適当な密度でランダムに配置したものとなっている。この散乱部材121gを通過して偏光変換素子21eに入射する光は、所望の入射角範囲内において比較的均一な入射角分布を有するものとなる。また、散乱部材121gを通過してロッドインテグレータ21d(図2参照)に戻る光も、一定の入射角範囲内において比較的均一な入射角分布を有するものとなる。この結果、偏光変換素子21eの照明の均一性を高めることができ、偏光変換素子21eから射出される照明光の強度分布や射出角の均一性が高まり、液晶ライトバルブ31に対する均一で効率的な照明が可能になる。
【0037】
以上実施形態に即して本発明を説明したが、本発明は、上記実施形態に限定されるものではない。例えば、第1実施形態や第2実施形態では、偏光変換素子21eとしてグリッド型偏光子を用いているが、これに代えて偏光ビームスプリッタのアレイからなる偏光変換素子その他の反射型偏光板を用いることができる。
【0038】
また、上記実施形態では、凹面反射鏡21bと偏光変換素子21eとの間にロッドインテグレータ21dを設けているが、ロッドインテグレータ21dを省略て凹面反射鏡21bと偏光変換素子21eとを直結した構成とすることもできる。この場合、各色の照明装置を小型化することができる。この際、凹面反射鏡21bは、光閉じ込め容器若しくはオプティカル・インテグレータとして機能し、光源21aから射出された照明光を漏れなく偏光変換素子21eに入射させるとともに、偏光変換素子21eでP偏光に変換されなかった戻り反射光LRを低損失で波面分割しつつ重畳させて偏光変換素子21eに再入射させる。なお、ロッドインテグレータ21dを残す構成とした場合、散乱部材21g,121gの存在によって、照明の均一性を保ちながらロッドインテグレータ21dを短くすることができるので、照明装置ひいては投射装置を小型化することができる。
【0039】
また、上記実施形態では、偏光変換素子21eからの出力光を液晶ライトバルブ31に直接入射させているが、これらの間に適当なリレーレンズを挿入することができる。
【0040】
また、上記実施形態のプロジェクタ10では、光変調装置30を透過型の液晶ライトバルブ31,33,35で構成しているが、反射型の液晶素子でこれを構成することもできる。また、液晶ライトバルブは、光書き込み型の液晶ライトバルブ等とすることができる。
【0041】
また、上記実施形態では、LEDを用いて光源を構成しているが、LEDに代えてEL発光素子、LD等の他の固体発光源を使用することもできる。
【0042】
また、第1実施形態の装置に組み込まれた散乱部材21gは、レンズ状の微小突起PPに代えてレンズ状の微小陥凹部すなわち微小凹面を有するものとするすることができ、また、第2実施形態における散乱部材121gも、円錐状の微小突起PP’に代えて円錐又は角錐の微小陥凹部を有するものとすることができる。また、散乱部材は、様々な形状及びサイズの凹凸を混在させた集合体からなるものとすることができる。さらに、半球状の断面やくさび状の断面を有する大小のリッジをその短手方向にランダムに配列したストライプ状のパターンによって散乱部材を構成することができる。
【0043】
また、散乱部材21g,121gは、上記の方法に限らず、様々な方法で作製することができる。例えば、透明基板TPの裏面を化学薬品によって処理したり、研磨材によって機械的に加工することによって、ここにランダムで微小な突起を形成することができる。さらに、多数のランダムな微小突起PP,PP’を設けた散乱板を別個準備し、この散乱板を偏光変換素子21eの透明基板TPの裏面に貼り付けることもできる。
【図面の簡単な説明】
【図1】第1実施形態に係るプロジェクタの構造を示す図である。
【図2】図1の装置のうち光照明装置の構造を説明する図である。
【図3】第2実施形態を説明する図である。
【符号の説明】
10 プロジェクタ
20 照明装置
21 R光照明装置
23 G光照明装置
25 B光照明装置
21a 光源
21b 凹面反射鏡
21c (λ/4)板
21d ロッドインテグレータ
21e 偏光変換素子
21g 散乱部材
31,33,35 液晶ライトバルブ
37 クロスダイクロイックプリズム
40 投射レンズ
50 制御装置
PP 微小突起
SC ストライプ導線
TP 透明基板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an illumination device for illuminating a liquid crystal display element and other spatial light modulation devices, and a projection device that projects an image using the spatial light modulation device and the illumination device.
[0002]
[Prior art]
2. Related Art As a lighting device for a liquid crystal projector, there is known a lighting device that emits illumination light from a lamp light source into desired linearly polarized light using a grid-type polarizer (for example, see Patent Document 1). In this illumination device, the reflected light of the S-polarized light from the polarizer provided on the emission side is returned to the light source side, reciprocates with the light source side, and reenters the polarizer on the emission side. At this time, since the quarter-wave plate is disposed so as to face the polarizer, the reflected light from the polarizer passes twice through the quarter-wave plate, and It is converted to P-polarized light and almost passes through the polarizer. In such an illuminating device, the polarization conversion efficiency of the illuminating light can be enhanced by the presence of the quarter-wave plate.
[0003]
[Patent Document 1]
JP-A-11-6989 [Problems to be Solved by the Invention]
However, in the above-described lighting device, it is necessary to precisely arrange the light source and the reflecting mirror, which leads to a complicated structure of the light source and an increase in cost. Further, in such a lighting device, the light from the light source cannot be sufficiently uniformized. In particular, when an LED or the like is used as a light source, bias is likely to occur in the radiation angle distribution, and it is not easy to form uniform illumination light.
[0004]
Therefore, an object of the present invention is to provide an illumination device that can generate uniform polarized light with high polarization conversion efficiency by a simple optical system.
[0005]
Another object of the present invention is to provide a projection device that can easily, efficiently and uniformly illuminate and project a high-quality image by incorporating such a lighting device.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, a lighting device according to the present invention includes a light source that generates illumination light, and reflects a part of the illumination light from the light source, transmits the remaining light, and converts the light into polarized light in a specific direction. A polarization conversion element, a scattering member provided on the incident surface side of the polarization conversion element to scatter the passing light, and a light returning the illumination light reflected by the polarization conversion element to the polarization conversion element again via the scattering member. Return means.
[0007]
In the above illumination device, since the scattering member provided on the incident surface side of the polarization conversion element scatters light passing therethrough, the light reflected by the polarization conversion element is incident on the polarization conversion element again by the light feedback means. During this time, the uniformity of the illumination light can be improved. Therefore, the uniformity of the intensity distribution and the exit angle of the illumination light emitted from the polarization conversion element is enhanced, and uniform and efficient illumination of a liquid crystal light valve or the like to be illuminated becomes possible.
[0008]
In a specific embodiment of the illumination device, the polarization conversion element is a grid-type polarizer in which conductive lines are formed in a stripe shape on a transparent substrate. In this case, the grid-type polarizer having a simple structure and durability and having relatively moderate incident angle conditions enables stable polarization, so that the illumination light emitted from the polarization conversion element can be stabilized for a long time. Can be done.
[0009]
In another specific aspect of the lighting device, the scattering member has a surface uneven pattern formed on the back surface of the transparent substrate. In this case, the processing of the scattering member is simple, and the manufacture of the lighting device is simplified as compared with the case where the scattering members are individually provided.
[0010]
In another specific aspect of the lighting device, the surface uneven pattern is an aggregate including at least one of a lens-shaped protrusion and a recess. In this case, a desired scattering state can be easily realized by adjusting the arrangement and shape of the lens-shaped projections or recesses, and the controllability of illumination of the liquid crystal light valve and the like can be improved.
[0011]
In another specific aspect of the lighting device, the surface uneven pattern is an aggregate including at least one of a cone-shaped protrusion and a concave portion. In this case, a desired scattering state can be easily realized by adjusting the arrangement and the shape of the conical protrusions or recesses, and the controllability of illumination of the liquid crystal light valve or the like can be improved.
[0012]
In another specific mode of the above-mentioned lighting device, a wavelength plate for changing a polarization state of light reflected from the polarization conversion element is further provided between the polarization conversion element and the light feedback unit. In this case, when the light reflected by the polarization conversion element is returned to the polarization conversion element by the light feedback means, the light can be converted into polarized light that efficiently transmits through the polarization conversion element. Efficient extraction is possible.
[0013]
In another specific aspect of the illumination device, the light feedback unit is a concave reflecting mirror that collects illumination light emitted from the light source. In this case, since the reflected light from the polarization conversion element is returned to the polarization conversion element again while condensing the illumination light, the distribution of the emission angle of the illumination light and the like can be aligned within a certain range.
[0014]
In another specific aspect of the illumination device, the illumination device further includes an optical integrator that causes the illumination light from the light source to be split into wavefronts and superimposed and incident on the polarization conversion element via the scattering member. In this case, since the light from the light source is divided into wavefronts and superimposed by the optical integrator, the uniformity of the intensity distribution and the distribution of the emission angle of the illumination light emitted from the device can be improved.
[0015]
Further, the first projection device according to the present invention includes the illumination device described above, a spatial light modulation device that is illuminated by illumination light from the illumination device, and a projection optical system that projects image light from the spatial light modulation device. Is provided. Here, the "spatial light modulator" is an optical device represented by, for example, a liquid crystal light valve.
[0016]
In the first projection device, since the spatial light modulator is illuminated using the above-described illumination device, uniform polarized light can be efficiently generated, and a high-quality image can be projected by an inexpensive device. it can.
[0017]
In addition, a second projection device according to the present invention includes a plurality of image forming units for each color, each including the above-described illumination device and a spatial light modulation device illuminated by illumination light from the illumination device, and a plurality of images. A light combining member that combines and emits the image light from the forming unit, and a projection optical system that projects the image light combined through the light combining member.
[0018]
In the second projection device, since the spatial light modulator is illuminated using the above-described illumination device, uniform polarized light can be efficiently generated for each color, and a high-quality color image can be obtained by an inexpensive device. Can be projected.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
[First Embodiment]
FIG. 1 is a block diagram conceptually illustrating the structure of the projection device according to the first embodiment. The projection device, that is, the projector 10 includes an illumination device 20, a light modulation device 30, a projection lens 40, and a control device 50. Here, the lighting device 20 includes an R light lighting device 21, a G light lighting device 23, a B light lighting device 25, and a light source driving device 27. The light modulator 30 outputs drive signals to the three liquid crystal light valves 31, 33, and 35 that are spatial light modulators, the cross dichroic prism 37 that is a photosynthetic member, and the liquid crystal light valves 31, 33 and 35. And an element driving device 38 that performs the operation. The R light illumination device 21 and the liquid crystal light valve 31 are referred to as an image forming unit as a set. Similarly, the unit of the G light illumination device 23 and the liquid crystal light valve 33 and the unit of the B light illumination device 25 and the liquid crystal light valve 35 are also called image forming units.
[0020]
FIG. 2 is a diagram illustrating the structure of the R light illumination device 21 of the illumination device 20. The R light illuminating device 21 includes a light source 21a that generates R light of the three primary colors, a concave reflecting mirror 21b that collects illumination light emitted from the light source 21a to the side, and fixed to an opening of the concave reflecting mirror 21b. (Λ / 4) plate 21c which is the divided wavelength plate, a rod integrator 21d fixed in a state of facing the concave reflecting mirror 21b with the (λ / 4) plate 21c interposed therebetween, and an emission end of the rod integrator 21d. And a polarization conversion element 21e connected thereto. Among them, the concave reflecting mirror 21b functions as a light feedback unit that returns the reflected light from the polarization conversion element 21e to the polarization conversion element 21e again, and the rod integrator 21d splits and mixes the illumination light from the light source 21a. -Functions as an integrator.
[0021]
Here, the light source 21a is an LED package also called a solid-state light source, and incorporates a light emitting unit, that is, a diode chip PC. The light beam LF emitted from the diode chip PC while diverging in the front direction is converted into a light beam having a certain spread by the lens portion LP of the light source 21a, and is incident on the rod integrator 21d via the (λ / 4) plate 21c. Light enters from end IP. The light beam LS emitted from the diode chip PC while diverging in the side direction is also converted into a light beam having a certain spread by the concave reflecting mirror 21b, and enters the rod integrator 21d via the (λ / 4) plate 21c. I do.
[0022]
The rod integrator 21d has a structure in which a quadrangular prism-shaped cylindrical inner surface is formed on a reflecting surface, and divides the illumination light incident from the incident end IP into a wavefront by internal reflection according to the angle, and is thus divided into wavefronts. The illuminating light is superimposedly synthesized and is incident on the emission end EP from inside. Thus, illumination light having a uniform distribution can be emitted from the emission end EP with a relatively uniform angular distribution within a desired angle range. At this time, the size of the opening AP of the concave reflecting mirror 21b and the size of the incident end IP of the rod integrator 21d are matched, and reflection surfaces (not shown) functioning as auxiliary light feedback means are provided at the four corners of the incident end IP. Since it is formed, the illumination light emitted from the diode chip PC can be coupled to the rod integrator 21d without leakage, and the return reflected light LR returned from the polarization conversion element 21e is reflected by the rod integrator 21d and the concave reflecting mirror 21b. (Λ / 4) Leakage to the outside at the joint with the plate 21c can be reliably prevented.
[0023]
The polarization conversion element 21e is formed of a grid polarizer that is a type of a reflective polarizer that reflects light that has not been polarized without absorbing it. The polarization conversion element 21e has a stripe conductive line SC made of a conductor pattern of equal width formed at equal intervals and also called a wire grid on the surface of the transparent substrate TP. Since the width and interval of the stripe conductor SC are set to be equal to or less than the wavelength of the R light, of the light incident on the polarization conversion element 21e, polarized light perpendicular to a specific direction in which the stripe conductor SC extends (hereinafter referred to as P for convenience). Only polarized light) selectively passes through the polarization conversion element 21e.
[0024]
On the incident surface side of the polarization conversion element 21e, that is, on the back surface side of the transparent substrate TP, a scattering member 21g in which lens-shaped minute protrusions PP are randomly arranged at an appropriate density is formed. The scattering member 21g is for scattering light passing through the scattering member 21g in random directions. Therefore, the light passing through the scattering member 21g and entering the polarization conversion element 21e has a relatively uniform angular distribution within a certain incident angle range. Also, light that passes through the scattering member 21g in the opposite direction and enters the rod integrator 21d also has a relatively uniform angular distribution within a certain incident angle range, and when the light travels backward through the rod integrator 21d, The two-dimensional distribution of the luminance of the illumination light is further uniformed in a plane perpendicular to the axis of 21d. In particular, when a solid-state light source such as an LED is used as the light source 21a, the illuminating light emitted from the solid-state light source often has a fixed pattern. Therefore, by disposing the scattering member 21g in front of the polarization conversion element 21e, the polarization conversion element Illumination light incident on 21e can be effectively uniformized. Since the polarization conversion element 21e is a wire grid polarization element, the allowable range of the incident angle of the illumination light incident on the polarization conversion element 21e is wide. Therefore, according to such a polarization conversion element 21e, even if the illumination light has various angles to some extent, it is possible to extract the P-polarized light in a state where the leakage of the S-polarized light is small and the polarization conversion efficiency is high.
[0025]
The scattering member 21g can be formed, for example, as follows. First, a resist film is applied to the rear surface side of the transparent substrate TP of the polarization conversion element 21e, and an image of a mask having randomly arranged circular shielding portions is projected onto the resist film in a state where the focus is appropriately removed. On the resist film after the development, convex portions randomly arranged corresponding to the arrangement of the circular shielding portions of the mask are formed. By removing the processed resist film by dry etching, convex lens-shaped microprojections PP corresponding to the convex portions of the resist film are formed at random at a desired density.
[0026]
As another method, a glass substrate or a plastic substrate to be a transparent substrate TP is heated to an appropriate softening temperature, and a mold having a transfer surface including a large number of minute concave portions corresponding to the pattern of the minute projections PP is formed on the glass substrate. It is also possible to press a substrate or a plastic substrate and emboss the minute projections PP to be the scattering members 21g on the surface of the substrate. Note that, for example, the stripe conducting wire SC is formed on the front surface side of the transparent substrate TP after the minute projection PP is formed by embossing on the rear surface side. For example, the stripe conducting wire SC is formed by depositing a metal film on the surface side of the transparent substrate TP, forming a stripe pattern of a resist film thereon, and etching the metal film by using such a stripe pattern as a mask to form a large number of thin wires. It is formed by processing.
[0027]
The operation of the R light illumination device 21 shown in FIG. 2 will be described. The light beams LF and LS emitted from the diode chip PC incorporated in the light source 21a while diverging in the front direction and the side direction are narrowed down to an appropriate divergence angle. Then, the light passes through the (λ / 4) plate 21c, goes straight through the rod integrator 21d, or enters the polarization conversion element 21e in a uniform state by being reflected once or more on the inner surface. As a result, the polarization conversion element 21e is almost uniformly illuminated by the illumination light from the light source 21a. Of the light beams LF and LS that have entered the polarization conversion element 21e, those that have passed through the polarization conversion element 21e are almost P-polarized light only. On the other hand, of the illumination light incident on the polarization conversion element 21e, the light reflected by the polarization conversion element 21e substantially consists only of S-polarized light, and such reflected light is disposed at the incident end IP of the rod integrator 21d. The light passes through the (λ / 4) plate 21c and is converted into circularly polarized light. The reflected light in a circularly polarized state that has passed through the (λ / 4) plate 21c is returned to the concave reflecting mirror 21b. The concave reflecting mirror 21b reflects such return reflected light LR from the polarization conversion element 21e one or more times so as to be incident again on the polarization conversion element 21e. At this time, the circularly polarized light reflected by the concave reflecting mirror 21b has its rotation direction reversed but is maintained as circularly polarized light, and passes when re-entering the polarization conversion element 21e via the rod integrator 21d (λ / 4). ) Plate 21c converts circularly polarized light into P-polarized light. As a result, the return reflected light LR re-entering the polarization conversion element 21e efficiently passes through the polarization conversion element 21e. As a result, the illumination light emitted from the light source 21a is almost completely converted into P-polarized light and emitted as output light from the emission side of the polarization conversion element 21e.
[0028]
In this case, the concave reflecting mirror 21b and the rod integrator 21d function as a light confinement container, and the illumination light emitted from the light source 21a is incident on the polarization conversion element 21e without leakage, and is converted into P-polarized light by the polarization conversion element 21e. The returned reflected light LR that has not been superimposed is split into wavefronts with low loss and superimposed, and is incident again on the polarization conversion element 21e. Further, the scattering member 21g appropriately scatters light that enters the polarization conversion element 21e or is reflected by the polarization conversion element 21e, so that the uniformity of illumination of the polarization conversion element 21e can be further improved. That is, the uniformity of the intensity distribution and the emission angle of the illumination light emitted from the polarization conversion element 21e is improved, and uniform and efficient illumination of the liquid crystal light valve 31 is enabled.
[0029]
As is clear from the above description, according to the R light illuminating device 21, the illuminating light emitted from the light source 21a is converted into an extremely uniform and high-luminance P-polarized output light and emitted. As a result, not only can the liquid crystal light valve 31 in the subsequent stage be uniformly illuminated, but also the heat generated by the polarizing plate and the like disposed around the liquid crystal light valve 31 can be reduced.
[0030]
The uniformity of the output light and the range of the incident angle to the liquid crystal light valve 31 can be appropriately adjusted by appropriately adjusting the arrangement of the light source 21a, the focal length of the concave reflecting mirror 21b, the length of the rod integrator 21d, and the like. it can. Also, by appropriately adjusting the radius of curvature and the like of the minute projections PP constituting the scattering member 21g, the incident angle range of the illumination light incident on the polarization conversion element 21e can be appropriately adjusted.
[0031]
In the above description, only the structure of the R light illuminating device 21 of the illuminating device 20 of FIG. 1 has been described. The structure is basically the same as that of the R light illumination device 21 only by being changed.
[0032]
In other words, the liquid crystal light valve 33 for G light is illuminated extremely uniformly by the G light from the G light illuminating device 23. At this time, the illuminating light almost completely illuminates the G light from the LED package which is a solid light source. It is efficiently converted to P-polarized light. The liquid crystal light valve 35 for B light is extremely uniformly illuminated by the B light from the B light illuminating device 25, and the illuminating light at this time almost completely eliminates the B light from the LED package which is a solid light source. It is efficiently converted to P-polarized light.
[0033]
Light from the illumination devices 21, 23, and 25 of the respective colors incident on the liquid crystal light valves 31, 33, and 35 is two-dimensionally modulated by the liquid crystal light valves 31, 33, and 35, respectively. The light of each color having passed through each of the liquid crystal light valves 31, 33, 35 is synthesized by a cross dichroic prism 37, which is a light synthesizing member, and emitted from one side thereof. The image of the combined light emitted from the cross dichroic prism 37 is incident on a projection lens 40 which is a projection optical system, and is projected on a screen (not shown) provided outside the projector 10 at an appropriate magnification. That is, the projector 10 projects a color image obtained by combining the images of the respective colors R, G, and B appropriately formed on the liquid crystal light valves 31, 33, and 35 on the screen. Although not shown, a polarizing plate is disposed at an appropriate position near each of the liquid crystal light valves 31, 33, and 35 to illuminate and read the liquid crystal light valves 31, 33, and 35 with polarized light. ing.
[0034]
The control device 50 includes a microcomputer or the like, and outputs control signals to the light source driving device 27 and the element driving device 38 to operate the light illumination devices 21, 23, 25 of each color and the liquid crystal light valves 31, 33, 35. Is controlled indirectly. Thereby, for example, a color moving image or a still image is projected and displayed on the screen with high luminance in accordance with an image signal input from outside to the projector 10 via the control device 50.
[0035]
[Second embodiment]
Hereinafter, a projector according to the second embodiment will be described. The projector according to the second embodiment is obtained by modifying the illumination devices 21, 23, and 25 of the projector according to the first embodiment.
[0036]
FIG. 3 is a diagram illustrating a part of the R light illumination device incorporated in the projector according to the second embodiment. This R-light illuminating device includes a scattering member 121g on the incident surface side of the polarization conversion element 21e. However, unlike the first embodiment shown in FIG. 2, the conical microprojections PP 'are formed with an appropriate density. They are arranged randomly. Light that passes through the scattering member 121g and enters the polarization conversion element 21e has a relatively uniform incident angle distribution within a desired incident angle range. The light that passes through the scattering member 121g and returns to the rod integrator 21d (see FIG. 2) also has a relatively uniform incident angle distribution within a certain incident angle range. As a result, the uniformity of illumination of the polarization conversion element 21e can be improved, the intensity distribution and the emission angle of the illumination light emitted from the polarization conversion element 21e can be increased, and the uniformity and efficiency of the liquid crystal light valve 31 can be improved. Lighting becomes possible.
[0037]
Although the present invention has been described with reference to the embodiment, the present invention is not limited to the above embodiment. For example, in the first and second embodiments, a grid type polarizer is used as the polarization conversion element 21e, but instead, a polarization conversion element including an array of polarization beam splitters and other reflection type polarizing plates are used. be able to.
[0038]
Further, in the above embodiment, the rod integrator 21d is provided between the concave reflecting mirror 21b and the polarization conversion element 21e, but the rod integrator 21d is omitted and the concave reflection mirror 21b and the polarization conversion element 21e are directly connected. You can also. In this case, the size of the lighting device for each color can be reduced. At this time, the concave reflecting mirror 21b functions as a light confinement container or an optical integrator, and allows the illumination light emitted from the light source 21a to enter the polarization conversion element 21e without leakage, and is converted into P-polarized light by the polarization conversion element 21e. The returned reflected light LR that has not been superimposed is split into wavefronts with low loss and superimposed, and is incident again on the polarization conversion element 21e. In the case where the rod integrator 21d is left, the rod integrator 21d can be shortened while maintaining the uniformity of illumination due to the presence of the scattering members 21g and 121g. Therefore, the illumination device and the projection device can be downsized. it can.
[0039]
In the above embodiment, the output light from the polarization conversion element 21e is directly incident on the liquid crystal light valve 31, but an appropriate relay lens can be inserted between them.
[0040]
In the projector 10 of the above embodiment, the light modulation device 30 is configured by the transmission type liquid crystal light valves 31, 33, and 35, but may be configured by a reflection type liquid crystal element. Further, the liquid crystal light valve can be a light-writing type liquid crystal light valve or the like.
[0041]
Further, in the above embodiment, the light source is configured using the LED, but another solid state light source such as an EL light emitting element and an LD can be used instead of the LED.
[0042]
Further, the scattering member 21g incorporated in the device of the first embodiment may have a lens-shaped minute concave portion, that is, a minute concave surface instead of the lens-shaped minute protrusion PP. The scattering member 121g in the embodiment may also have a conical or pyramidal minute concave portion instead of the conical minute projection PP '. In addition, the scattering member can be formed of an aggregate in which irregularities of various shapes and sizes are mixed. Further, the scattering member can be constituted by a stripe-like pattern in which large and small ridges having a hemispherical cross section or a wedge-shaped cross section are randomly arranged in the short direction.
[0043]
Further, the scattering members 21g and 121g are not limited to the above-described method, and can be manufactured by various methods. For example, by processing the back surface of the transparent substrate TP with a chemical agent or mechanically processing with a polishing material, random minute protrusions can be formed here. Further, it is also possible to separately prepare a scattering plate provided with a large number of random minute projections PP and PP ', and to attach this scattering plate to the back surface of the transparent substrate TP of the polarization conversion element 21e.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a structure of a projector according to a first embodiment.
FIG. 2 is a diagram illustrating a structure of a light illumination device in the device of FIG.
FIG. 3 is a diagram illustrating a second embodiment.
[Explanation of symbols]
10 Projector 20 Illumination device 21 R light illumination device 23 G light illumination device 25 B light illumination device 21a Light source 21b Concave reflector 21c (λ / 4) plate 21d Rod integrator 21e Polarization conversion element 21g Scattering members 31, 33, 35 Liquid crystal light Valve 37 Cross dichroic prism 40 Projection lens 50 Control device PP Micro projection SC Stripe conductor TP Transparent substrate

Claims (10)

照明光を発生する光源と、
前記光源からの照明光のうち一部を反射するとともに、残りを透過させて特定方向の偏光光に変換する偏光変換素子と、
前記偏光変換素子の入射面側に設けられて、通過する光を散乱させる散乱部材と、
前記偏光変換素子で反射された照明光を、前記散乱部材を介して再度前記偏光変換素子に戻す光帰還手段と
を備える照明装置。
A light source for generating illumination light,
A polarization conversion element that reflects a part of the illumination light from the light source, transmits the remaining light, and converts the light into polarized light in a specific direction.
A scattering member that is provided on the incident surface side of the polarization conversion element and scatters passing light,
A light feedback unit that returns the illumination light reflected by the polarization conversion element to the polarization conversion element again via the scattering member.
前記偏光変換素子は、透明基板上にストライプ状に導体線を形成したグリッド型偏光子であることを特徴とする請求項1記載の照明装置。The lighting device according to claim 1, wherein the polarization conversion element is a grid-type polarizer in which conductive lines are formed in a stripe shape on a transparent substrate. 前記散乱部材は、前記透明基板の裏面に形成された表面凹凸パターンを有することを特徴とする請求項2記載の照明装置。The lighting device according to claim 2, wherein the scattering member has a surface uneven pattern formed on a back surface of the transparent substrate. 前記表面凹凸パターンは、レンズ状の突起及び陥凹部の少なくとも一方を含む集合体であることを特徴とする請求項3記載の照明装置。The lighting device according to claim 3, wherein the surface uneven pattern is an aggregate including at least one of a lens-shaped protrusion and a concave portion. 前記表面凹凸パターンは、錘状の突起及び陥凹部の少なくとも一方を含む集合体であることを特徴とする請求項3記載の照明装置。The lighting device according to claim 3, wherein the surface uneven pattern is an aggregate including at least one of a cone-shaped protrusion and a concave portion. 前記偏光変換素子と前記光帰還手段との間に、前記偏光変換素子からの反射光の偏光状態を変更する波長板をさらに備えることを特徴とする請求項1から請求項5のいずれか一項記載の照明装置。The wavelength conversion device according to claim 1, further comprising a wavelength plate that changes a polarization state of light reflected from the polarization conversion element, between the polarization conversion element and the light feedback unit. The lighting device according to any one of the preceding claims. 前記光帰還手段は、前記光源から射出した照明光を集光する凹面反射鏡であることを特徴とする請求項1から請求項6のいずれか一項記載の照明装置。The lighting device according to claim 1, wherein the light feedback unit is a concave reflecting mirror that collects illumination light emitted from the light source. 前記光源からの照明光を波面分割して重畳させた状態で前記散乱部材を介して前記偏光変換素子に入射させるオプティカル・インテグレータをさらに備えることを特徴とする請求項1から請求項7のいずれか一項記載の照明装置。8. The optical integrator according to claim 1, further comprising an optical integrator that causes the illumination light from the light source to be incident on the polarization conversion element via the scattering member in a state where the illumination light is divided into wavefronts and superimposed. The lighting device according to claim 1. 請求項1から請求項8のいずれか一項記載の照明装置と、
前記照明装置からの照明光によって照明される空間光変調装置と、
前記空間光変調装置からの像光を投射する投射光学系と
を備える投射装置。
The lighting device according to any one of claims 1 to 8,
A spatial light modulator illuminated by illumination light from the illumination device,
A projection optical system for projecting image light from the spatial light modulator.
請求項1から請求項8のいずれか一項記載の照明装置と、当該照明装置からの照明光によって照明される空間光変調装置とをそれぞれ有する各色ごとの複数の画像形成ユニットと、
前記複数の画像形成ユニットからの像光を合成して射出する光合成部材と、
前記光合成部材を経て合成された像光を投射する投射光学系と
を備える投射装置。
A plurality of image forming units for each color, each including the lighting device according to any one of claims 1 to 8, and a spatial light modulator illuminated by illumination light from the lighting device,
A light combining member that combines and emits image light from the plurality of image forming units,
A projection optical system for projecting image light synthesized through the light synthesizing member.
JP2003063360A 2003-03-10 2003-03-10 Illumination device and projection device Expired - Fee Related JP3975948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063360A JP3975948B2 (en) 2003-03-10 2003-03-10 Illumination device and projection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063360A JP3975948B2 (en) 2003-03-10 2003-03-10 Illumination device and projection device

Publications (2)

Publication Number Publication Date
JP2004271965A true JP2004271965A (en) 2004-09-30
JP3975948B2 JP3975948B2 (en) 2007-09-12

Family

ID=33124959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063360A Expired - Fee Related JP3975948B2 (en) 2003-03-10 2003-03-10 Illumination device and projection device

Country Status (1)

Country Link
JP (1) JP3975948B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154834A (en) * 2004-11-30 2006-06-15 Barco Nv Display system and method for displaying image
JP2007065425A (en) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd Illuminating device and projection type video display device using same
US7758971B2 (en) 2005-04-25 2010-07-20 Fujifilm Corporation Organic electroluminescent device
JP2013068923A (en) * 2011-09-07 2013-04-18 Seiko Epson Corp Projector
JP2013130647A (en) * 2011-12-20 2013-07-04 Asahi Kasei E-Materials Corp Polarization conversion element and projection device using the same
EP4028825A1 (en) * 2019-09-13 2022-07-20 Facebook Technologies, LLC Short distance illumination of a spatial light modulator using an optical element with an aperture

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249012A (en) * 1986-04-21 1987-10-30 Toyoda Gosei Co Ltd Surface light emitting display device
JPS63304398A (en) * 1987-06-04 1988-12-12 Nippon Steel Corp Led display lamp
JPH0572525A (en) * 1991-09-18 1993-03-26 Sony Corp Brightness information output device as well as camera device and video display device using this device
JPH06324333A (en) * 1993-01-11 1994-11-25 Philips Electron Nv Illumination system and display device including said illumination system
JPH0996789A (en) * 1995-03-14 1997-04-08 Matsushita Electric Ind Co Ltd Light emitting element, its driving circuit, view finder and video camera
JPH10197951A (en) * 1997-01-13 1998-07-31 Kyowa Denki Kagaku Kk Screen board for projection television
JPH116989A (en) * 1997-06-16 1999-01-12 So Fukada Irradiation device for liquid crystal projector
JP2001264877A (en) * 2000-03-17 2001-09-26 Fujitsu Ltd Projection type display device
JP2001281455A (en) * 2000-03-31 2001-10-10 Sony Corp Optical element and optical device
JP2002514781A (en) * 1998-05-14 2002-05-21 モックステク Polarizer device for producing a generally polarized light beam
JP2002329575A (en) * 2001-04-27 2002-11-15 Semiconductor Energy Lab Co Ltd Light emitting device
WO2003019246A1 (en) * 2001-07-04 2003-03-06 Unaxis Balzers Aktiengesellschaft Method for producing light having a given state of polarization

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249012A (en) * 1986-04-21 1987-10-30 Toyoda Gosei Co Ltd Surface light emitting display device
JPS63304398A (en) * 1987-06-04 1988-12-12 Nippon Steel Corp Led display lamp
JPH0572525A (en) * 1991-09-18 1993-03-26 Sony Corp Brightness information output device as well as camera device and video display device using this device
JPH06324333A (en) * 1993-01-11 1994-11-25 Philips Electron Nv Illumination system and display device including said illumination system
JPH0996789A (en) * 1995-03-14 1997-04-08 Matsushita Electric Ind Co Ltd Light emitting element, its driving circuit, view finder and video camera
JPH10197951A (en) * 1997-01-13 1998-07-31 Kyowa Denki Kagaku Kk Screen board for projection television
JPH116989A (en) * 1997-06-16 1999-01-12 So Fukada Irradiation device for liquid crystal projector
JP2002514781A (en) * 1998-05-14 2002-05-21 モックステク Polarizer device for producing a generally polarized light beam
JP2001264877A (en) * 2000-03-17 2001-09-26 Fujitsu Ltd Projection type display device
JP2001281455A (en) * 2000-03-31 2001-10-10 Sony Corp Optical element and optical device
JP2002329575A (en) * 2001-04-27 2002-11-15 Semiconductor Energy Lab Co Ltd Light emitting device
WO2003019246A1 (en) * 2001-07-04 2003-03-06 Unaxis Balzers Aktiengesellschaft Method for producing light having a given state of polarization
JP2005500582A (en) * 2001-07-04 2005-01-06 ユナキス・バルツェルス・アクチェンゲゼルシャフト A method for the generation of light of a predetermined polarization state.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154834A (en) * 2004-11-30 2006-06-15 Barco Nv Display system and method for displaying image
US7758971B2 (en) 2005-04-25 2010-07-20 Fujifilm Corporation Organic electroluminescent device
JP2007065425A (en) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd Illuminating device and projection type video display device using same
JP2013068923A (en) * 2011-09-07 2013-04-18 Seiko Epson Corp Projector
JP2013130647A (en) * 2011-12-20 2013-07-04 Asahi Kasei E-Materials Corp Polarization conversion element and projection device using the same
EP4028825A1 (en) * 2019-09-13 2022-07-20 Facebook Technologies, LLC Short distance illumination of a spatial light modulator using an optical element with an aperture

Also Published As

Publication number Publication date
JP3975948B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
CN107577112B (en) Illumination device, projection type image display device, and optical device
US7784949B2 (en) Illuminator with switching and diffusing elements
US9188709B2 (en) Optical multiplexing apparatus and projector
EP2703886B1 (en) Projection device and projection control device
JP7065273B2 (en) Light source device and projection type display device
US7101049B2 (en) Projector optics and projector with light source of LEDs
JPWO2005008330A1 (en) Two-dimensional image forming apparatus
CN110431482A (en) Light supply apparatus, projector and speckle reduction method
JP2004045684A (en) Illumination optical device in image display device and image display device
CN101263421A (en) Image forming device
JP7071101B2 (en) Light source device and image projection device
JP2004184612A (en) Optical element, lighting device, and projection display apparatus
JP2008041513A (en) Lighting apparatus and projector
JPH11502040A (en) Image display device having two microlens arrays
JP5207013B2 (en) Illumination device and optical device
JP4082083B2 (en) Illumination device and projection display device
JP4214656B2 (en) Projection display
KR100636089B1 (en) Reflection type color projector
JP3975948B2 (en) Illumination device and projection device
US7950809B2 (en) Hologram element, illumination device, projector, and method of manufacturing hologram element
KR20050028393A (en) Projection display
JP2002131689A (en) Illumination optical device and projector using the same
JP5515200B2 (en) Illumination optical system and projector apparatus
JP2008268465A (en) Illuminating device, monitoring device and projector
JP4273789B2 (en) Illumination device and projection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees