【0001】
【発明の属する技術分野】
本発明は磁気測定装置に関し、特に非開削工法における地下掘削体の位置と姿勢の検出に用いられる磁気測定装置に係わるものである。
【0002】
【従来の技術】
新たに民地へガスを供給する場合には、車道や側道など公共道路の地下に埋設されたガス本支管(以下本支管と称する。)にガス供給管(以下供給管と称する。)を接続し、民地側へ供給管を引込むことが必要となる。従来の供給管を敷設する工法は、民地側の供給管引出し予定部から本支管の接続部までの間の公共道路の地盤に地表面に開口した敷設路を開削し、敷設路に供給管を敷設し、供給管を本支管に接続し、開口した敷設路を埋戻す、いわゆる開削工法であった。開削工法によれば、前記敷設路が、例えば公共道路を横断するように設けられた場合、供給管の敷設工事の間は公共道路の交通を阻害するという問題があった。
【0003】
その問題を解決する工法として、近年、非開削工法が注目されている。非開削工法は、供給管を引込む民地側の地盤或いは本支管を接続部の地盤のみを開削し、供給管を敷設する敷設路は地中部にのみ掘削して形成する工法であり、公共道路を大規模に開削する必要がない。もって、公共道路の交通を阻害せず、さらに供給管の敷設工事を短期間で出来る利点があり、特に交通量の多い都市部では多用される傾向にある。
【0004】
非開削工法では、常に地中部で掘削が行われるため掘削を行う地下掘削体(以下掘削体と称する。)の掘削中の位置と姿勢を正確に検出する必要がある。
掘削体の検出には、取り扱いが容易で構造が簡単な磁気測定装置を用いることが多く、その一例が下記特許文献1に開示されている。特許文献1の磁気測定装置は、「同軸上に間隔をあけて配置され電気的に接続された一対のコイルを有する3組の検出コイル対を備え、前記3組の検出コイル対の中心軸が互いに直交する3軸方向に配置され、前記中心軸同士がそれぞれの一対のコイルの間で互いに直交して配置され、隣接して配置された異なる検出コイル対のコイル同士が互いに間隔をあけて配置されている」ものである。
【0005】
さらに、下記特許文献1には、上記磁気測定装置を使用した地下物体検出方法が開示されている。その地下物体検出方法は、「地下に配置された物体を地上で検出する方法であって、地下に物体とともに配置された磁界発生手段で鉛直方法に磁束軸を有する磁界を発生させる工程と、前記地上で前記磁界中に磁気測定装置を配置する工程と、前記磁界の作用で前記磁気測定装置の各検出コイル対に発生する検出信号を得る工程と、前記3軸方向の検出コイル対のうちの少なくとも2軸方向の検出コイル対で得られる検出信号が一致するように磁気測定装置を旋回する工程と、前記磁気測定装置の旋回姿勢から前記磁気測定装置の位置における前記磁界の磁束方向を得る工程と、前記磁束方向が鉛直方向に近づく方向に前記磁気測定装置を移動させる工程と、前記磁束方向が鉛直方向である位置を、その地下に前記物体が存在する位置であると判断する工程とを備える」ものである。
【0006】
【特許文献1】
特開平8−233601号公報
【0007】
【発明が解決しようとする課題】
特許文献1の磁気測定装置は、上記構成により、3軸方向のコイル同士が重なったり干渉したりすることを防止でき、その結果、3軸方向の検出コイル対の磁気特性が極めて揃ったものとなり磁界の情報を正確に得ることができるので、掘削体の位置を正確に検出可能であるとしている。しかしながら、本願発明者らが特許文献1の磁気測定装置を実際に作成し確認したところによると、特に磁界発生源である磁界発生手段と磁気測定装置の距離が離れた場合には、磁気測定装置が検出した検出信号を増幅する電気回路の不可避の雑音や、地磁気など外来の磁界又は電界を起因とした不可避の雑音に、各軸の検出コイル対で発生した検出信号が埋もれ、磁界発生源の位置を正確に測定できないという問題があった。この問題は、原理的には、磁気測定装置を構成するコイルの断面積が有限であることに起因するものである。
【0008】
さらに、特許文献1の地下物体検出方法では、地中物体、すなわち掘削体に内蔵した磁界発生手段で発生する磁界の磁束軸の方向を鉛直方向とし、磁界の地表面での強度を高くして旋回自在な磁気測定装置での磁界検出を容易とし、正確に地中にある掘削体の位置を検出可能としている。非開削工法、特に一般家庭に接続される程度の口径の供給管を民地へ引込む場合には、直径が30〜50mm程度と径小な敷設路が掘削される。そのような径小の敷設路を掘削する掘削体はおのずと径小なものとなり、地表面において検出可能な程度の鉛直方向の磁界を発生できる磁界発生手段を、そのような掘削体に内蔵させることは極めて困難であった。
【0009】
さらに、特許文献1の地下物体検出方法では、地中部を移動する掘削体の位置を検出し特定するため、掘削体の上方の地表面を磁気測定装置で走査する、或いは複数の磁気測定装置を地表面に配置する必要がある。もって、掘削体の位置を特定する際には、磁気測定装置自体が公共道路を占有することとなり、交通を阻害するという問題があった。
【0010】
本発明は、本願発明者らが上記問題を鋭意検討してなされたものであり、磁界発生源の位置が遠距離にあってもその発生する磁界の情報を正確に得ることができる磁気測定装置と、その磁気測定装置を使用した地表面を大きく占有する必要がない地下掘削体の位置検出装置を提供することである。
【0011】
【課題を解決するための手段】
本発明の磁気測定装置は、所定の間隔を隔てて同軸上に配設するとともに互いに電気的に接続された一対のコイルからなる第1乃至第3の検出部を有している。前記第1乃至第3の検出部は、そのコイルの軸心が互いに直交する3軸方向に配置されるとともに前記軸心が一対のコイル間で直交して配設されている。隣接して配置された前記コイル同士は、互いに間隔をあけて配置されている。前記コイルには軟磁性体が内挿されている。
【0012】
本発明の掘削体の位置と姿勢を検出する掘削体の位置検出装置は、前記地下掘削体に内蔵され磁界を発生する磁界発生手段と、少なくとも一組の前記磁気測定装置を備えている。
【0013】
【発明の実施の形態】
まず、本発明の磁気測定装置について図面を参照して説明する。
図1は、本発明の磁気測定装置の概略構成を示す斜視図である。図2は、図1の磁気測定装置による位置測定の実験例を説明するための図である。図3は、図1の磁気測定装置による位置測定の実験例の結果を示した図である。
【0014】
本発明の磁気測定手段1は、図1に示すように、所定の間隔を隔てて同軸上に配設するとともに互いに電気的に接続された一対のコイル11x1〜11z2からなる第1乃至第3の検出部11x〜11zを有している。前記第1乃至第311x〜11zの検出部は、そのコイル11x1〜11z2の軸心が互いに直交する3軸方向に配置されるとともに前記軸心が一対のコイル11x1〜11z2の間で直交して配設されている。隣接して配置された前記コイル11x1〜11z2同士が互いに間隔をあけて配置されている。前記コイル11x1〜11z2には、軟磁性体12が内挿されている。ここで、第1の検出部11xの軸心a、すなわちコイル11x1、11x2の軸心aを、以下第1の軸心aと称する。同様に、第2の検出部11yの軸心bを第2の軸心b、第3の検出部11zの軸心cを第3の軸心cと称する。
【0015】
磁気測定装置1は、図1に示すように、前記第1〜第3の検出部11x〜11zを構成するコイル11x1〜11z2の姿勢を正確に保持するため、非磁性材料からなる立方形状の支持体13と、前記支持体13の中心Pに対し対称に該支持体13の各面に密設するとともに、前記コイル11x1〜11z2を巻回し、さらに内部に略円柱形状の軟磁性体12が嵌入される、非磁性材料からなる略円筒形状の巻回部材14を有していれば望ましい。もって、第1〜第3の軸心a〜cの交点と前記支持体13の中心Pとは一致することとなる。上記構成の磁気測定装置1は、その中心Pに作用する磁界のベクトルを、第1〜第3の軸心a〜cに沿う成分として測定するものである。
【0016】
上記磁界測定装置1の製造方法について説明する。例えば樹脂を加工して形成した支持体13と巻回部材14を準備する。支持体13の各面に巻回部材14を接着する。それぞれの巻回部材14の外周面に導線を巻回し、第1〜第3の検出部11x〜11zを形成する。巻回部材14の内部に軟磁性体12を嵌挿する。
【0017】
上記構成の磁気測定装置1によれば、第1〜第3の検出部11x〜11zのコイル11x1〜11z2は間隔を隔てて配設されているので互いに干渉することを防止でき磁界の情報を正確に得ることが可能となる。さらに、コイル11x1〜11z2には、軟磁性体14が内挿されているので微弱な磁気を増幅することができ、磁界発生源が遠距離にあってもその発生する磁界の情報を正確に得ることが可能となる。以下、その効果を実験例を参照して説明する。
【0018】
[実験例]
下記に示す構成の磁気測定装置1により、磁気測定装置1の検出特性を確認した。
1)支持体13の一辺の長さ :30mm
2)コイル11x1〜11z2の長さ :25mm
3)コイル11x1〜11z2の内径 :16mm
4)コイル導線の線径 :0.14mm
5)コイル導線の巻数 :250回
6)軟磁性体12の材質 :NiZnフェライト
7)軟磁性体12の比透磁率 :75
8)軟磁性体12の飽和磁束密度 :0.27T
【0019】
本実験例において、磁気測定装置1は、図2に示すように、その第1の軸心aをX軸に沿い、第2の軸心bをY軸に沿い固定した。磁界発生源である磁界発生手段2は、その発生する磁界の磁束軸がX−Y平面にあって、前記第2の軸心bと平行になるよう移動自在に配置した。第2の軸心bと磁束軸との距離、すなわち磁気測定装置1の中心PからみたX軸方向の磁界発生手段2の位置をxとした。また、第1の軸心aと磁界発生手段2の中心との距離、すなわち前記中心PからみたY軸方向の磁界発生手段2の位置をyとした。磁界発生手段2を0.5〜2mの間移動させて、磁界発生手段2の位置x、yと磁気測定装置1から出力される検出信号の関係を確認した。
【0020】
[比較例]
上記磁気測定装置1と基本的には同一の構成であって、軟磁性体のない磁気測定装置を製作し、上記と同様に磁界発生手段2の位置x、yとその磁気測定装置から出力される検出信号の関係を確認した。
【0021】
上記実験例と比較例の結果を図3に示す。図3は、磁界発生手段2の位置x、yと磁気測定装置1から出力された検出信号の電圧の関係を示したものである。実験例では、磁界発生手段2の位置x、yが遠い2mの位置でも、磁気測定装置1が発生した検出信号の強度は前記した不可避の雑音の強度より高くさらに全体としてS/Nが高く、磁気測定装置1は磁界の情報を正確に捉えている。比較例では、全体としてS/Nが低く、特に磁界発生手段2が遠距離となった場合検出信号の強度は雑音の強度以下となった。
【0022】
以下、非開削工法において本支管の所定接続点まで敷設路を掘削する掘削体の位置と姿勢を検出する前記磁気測定装置を用いた位置検出装置について図面を参照し説明する。図4は、本発明の位置検出装置の実施態様を示す概略構成図である。図5は、その位置検出装置による掘削体の位置検出方法を説明する図である。図6、7は、掘削体の位置検出方法の別の態様を示す図である。
【0023】
[実施態様1]
本発明の位置検出装置3は、掘削体に内蔵した磁界発生手段と、図4に示すように、前記磁界発生手段が発生する磁界を検出する少なくとも1組の前記磁気測定装置1a、1bとを有している。さらに、位置検出装置3は、その磁気測定装置1a、1bの各コイル11x1〜11z2に電気的に接続され、該コイル11x1〜11z2で発生した検出信号を増幅する増幅器と、前記増幅器が接続し、増幅された検出信号を処理して掘削体の位置と姿勢を演算する演算手段(共に図示せず)を有している。
【0024】
本実施態様の位置検出装置3は、図4に示すように、第1の磁気測定装置1aと第2の磁気測定装置1bの第1の軸心aを一致させ、それぞれの第2及び第3の軸心b、cを平行に配置するとともに、それぞれの第2の軸心bの距離がLとなるよう相互位置関係を規定して配設したものである。このように、磁気測定装置1a、1bの相互位置関係を規定すれば、位置検出装置3のセッティングや、セッティング後の磁気測定装置1a、1bの位置確認の手間が少なく好ましい。さらに、位置検出装置3は、磁気測定装置1a、1bの姿勢を保持するため、磁気測定装置1a、bを付勢するとともに磁気測定装置1a、1bを支持する支持部材31と、前記支持部材31を立設する基板32とを備えていれば望ましい。
【0025】
磁気測定装置1a、1bの相互位置関係は、上記位置関係に限定されることなく、それぞれの相互位置関係が一意的に規定されていればよい。すなわち、磁気測定装置1a、1bは、それぞれ任意の位置に、任意の姿勢で配置すればよく、それぞれの中心Pa、Pbの距離と第1〜第3の軸心a〜cの方向の関係が一意的に規定されていればよい
【0026】
上記説明した位置検出装置3によれば、非開削工法において地中を掘削する掘削体の位置と姿勢を検出し、本支管の所定接続点に該掘削体を誘導し、所望の敷設路を形成することが可能となる。以下、位置検出装置3による掘削体の位置と姿勢の検出方法について図5を参照し説明する。
【0027】
図5において、4は地下に埋設された半径がRの本支管、Ptは前記本支管4と供給管との接続予定点である。ここで、本支管4の埋設位置(平面方向及び深さ方向の位置)及び接続予定点Ptの位置は予め図面や事前調査により既知のものであり、本支管4の軸心に沿う方向をX軸とし、該X軸に直交するとともに水平な方向をY軸とし、該X、Y軸に直交する方向をZ軸とし、前記接続予定点Ptの近傍を原点Oとした(x,y,z)座標系を設定する。もって、接続予定部Ptは、座標(0,R,0)に位置するものと考えることができる。
【0028】
非開削装置5は、磁界を発生する磁界発生手段2を内蔵した先端に傾斜面を備えた略丸棒状の掘削体51と、掘削体51に推進力と回転力を伝達して掘削体51を誘導する可撓性を備えた誘導手段52を有し、民地から接続予定点Ptまで直線状或いは曲線状の敷設路を非開削で形成するものである。前記磁界発生手段2は、前記掘削体51に内蔵可能な略丸棒状の外形をなし、その軸心を掘削体51の軸心と一致させて掘削体51に内蔵している。ここで、掘削体51の位置は、前記磁界発生手段2の中点、詳しくは図に示すように掘削体51の軸心上にあって、掘削体51の先端からsの距離の点(以下掘削点と称する。)Psの位置で表すこととする。もって、該掘削体51を水平な姿勢で座標(0,R+s,0)の位置まで誘導すれば、民地から前記接続予定点Ptへ供給管を敷設する敷設路が形成されることとなる。
【0029】
位置検出装置3の配置位置は、その位置と本支管4の位置関係、具体的には、前記設定した(x,y,z)座標系の原点Oに対する磁気測定装置1a、1bの中心点Pa、Pbの位置関係が規定されたものであればよい。なお、図4に示すように、本支管4の上方の地表面に位置検出装置3を配置すれば、配置作業を簡便に行うことができるので望ましい。
【0030】
上記したように配置された位置検出装置3による掘削体51の位置及び姿勢の検出原理について詳述する。
図5に示すように、掘削体51の位置する掘削点Psの座標を(xs,ys,zs)とする。第1の磁気測定装置1aの中心が位置する点(以下第1の点と称する場合もある。)Paの座標を(xoa,yoa,zoa)とし、第2の磁気測定装置1bの中心が位置する点(以下第2の点と称する場合もある。)Pbの座標を(xob,yob,zob)とする。第1の点Paから掘削点Psまでの距離をra、第2の点Pbから掘削点Psまでの距離をrbとする。ここで、掘削体51の姿勢を示す磁界発生手段2の磁気モーメントを(Mx、My、Mz)とし、第1及び第2の点Pa、Pbにおけるその磁界の磁束密度の各成分を(Bxa,Bya,Bza)及び(Bxb,Byb,Bzb)とする。上記磁気モーメントの各成分と点Pa、Pbにおける磁束密度の各成分の間には、下記数1の非線形連立方程式で表される関係が成り立つ。
【0031】
【数1】
ここで xa:第1の点Paから掘削点Psまでの距離raのX成分
ya:第1の点Paから掘削点Psまでの距離raのY成分
za:第1の点Paから掘削点Psまでの距離raのZ成分
xb:第2の点Pbから掘削点Psまでの距離rbのX成分
yb:第2の点Pbから掘削点Psまでの距離rbのY成分
zb:第2の点Pbから掘削点Psまでの距離rbのZ成分
【0032】
上記、第1の点Paから掘削点Psまでの距離raの各成分xa〜za、及び第2の点Pbから掘削点Psまでの距離rbの各成分xb〜zbは、磁気測定装置1a、1bの位置する点Pa、Pb及び掘削体51の位置する点Psの関係から数2、3で示す式で表すことができる。
【0033】
【数2】
【0034】
【数3】
【0035】
上記数1において、点Pa、bの座標(xoa,yoa,zoa)及び(xob,yob,zob)は既知である。また、数1における磁束密度の各成分Bxa、Bya、Bza及びBxb、Byb、Bzbは、磁気測定装置1a、1bで測定された各成分の検出信号を演算手段で処理して算出することができる。もって、例えばニュートン法、あるいはニュートン−ラプソン法など非線形の連立方程式から近似解を得る適宜な手法に基づいて上記数式1を解き、未知数xs、ys、zs及びMx、My、Mzを算出し、掘削体51の位置する掘削点Psの座標(xs,ys,zs)と掘削体51の姿勢を示す磁気モーメント(Mx,My,Mz)を得ることが可能となる。
【0036】
位置検出装置3は、上記した検出原理に基づいて掘削体51の位置と姿勢を時々刻々に検出する。非開削装置5は、位置検出装置3が検出した掘削体51の位置と姿勢に基づいて誘導手段52を制御して掘削体51を本支管4の接続予定点Ptへ誘導し、敷設路を形成する。このように、本発明の位置検出装置3によれば、位置検出装置3は地表面の所定位置に固定した状態で掘削体51の位置と姿勢を検出することができ、公共道路の占有が少なく交通の阻害を防止することが可能となる。
【0037】
[実施態様2]
上記位置検出装置3は、図6に示すように、本支管4の軸心に対し本支管4の上方に略鉛直に開削された立孔の中に、例えばその磁気測定装置1a、1bの第1の軸心aを鉛直方向に配置してもよい。このようにすれば、位置検出装置3は地表面に配置されないので、公共道路の交通を阻害することがさらに少なくなり望ましい。
【0038】
[実施態様3]
上記位置検出装置3は、本支管4が新設されたものでガスの流通のない場合には、図7に示すように、本支管4の内部に配置してもよい。このようにすれば、上記と同様に位置検出装置3は地表面に配置されないので、公共道路の交通を阻害することが少なくなり望ましい。
【0039】
【発明の効果】
上記説明のように、本発明の磁気測定装置よれば、所定の間隔を隔てて同軸上に配設するとともに互いに電気的に接続された一対のコイルからなる第1乃至第3の検出部を有し、前記第1乃至第3の検出部は、そのコイルの軸心が互いに直交する3軸方向に配置されるとともに前記軸心が一対のコイル間で直交して配設され、隣接して配置された前記コイル同士が互いに間隔をあけて配置された磁気測定装置において、微弱な磁気を増幅するため前記コイルに軟磁性体を内挿したので、磁気発生源が遠距離にあってもその発生する磁界の情報を正確に得ることが可能となる。
【図面の簡単な説明】
【図1】本発明の磁気測定装置の概略構成図である。
【図2】図1の磁気測定装置の実験例を説明する図である。
【図3】図2の実験例の結果を説明する図である。
【図4】本発明の位置検出装置の概略構成図である。
【図5】図4の位置検出装置による掘削体の位置と姿勢の検出の実施態様の一例を示す図である。
【図6】図4の位置検出装置による掘削体の位置と姿勢の検出の実施態様の別の例を示す図である。
【図7】図4の位置検出装置による掘削体の位置と姿勢の検出の実施態様のさらに別の例を示す図である。
【符号の説明】
1(1a、1b):磁気測定装置、11x:第1の検出部
11y:第2の検出部
11z:第3の検出部
11x1〜11z2:コイル
12:軟磁性体、13:支持体
14:巻回部材
2:磁界発生手段
3:位置検出装置、31:支持部材、32:基板
5:非開削装置、51:地下掘削体、52:誘導手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic measuring device, and more particularly to a magnetic measuring device used for detecting the position and orientation of an underground excavated body in a non-cutting method.
[0002]
[Prior art]
When newly supplying gas to a private area, a gas supply pipe (hereinafter, referred to as a supply pipe) is installed in a main gas pipe (hereinafter, referred to as a main pipe) buried under a public road such as a roadway or a side road. It is necessary to connect and draw the supply pipe to the private side. The conventional method of laying supply pipes is to cut open laying roads that open to the ground surface on the ground of public roads from the planned supply pipe draw-out section on the private side to the connecting section of the main pipe, and supply pipes to the laying paths. Laying, connecting the supply pipe to the main pipe, and burying the open laying path, so-called open-cutting method. According to the excavation method, when the laying road is provided, for example, so as to cross a public road, there is a problem that traffic on the public road is hindered during the laying work of the supply pipe.
[0003]
In recent years, a non-cutting method has attracted attention as a method of solving the problem. The non-digging method is a method in which only the ground on the private side where the supply pipe is drawn or the ground where the main pipe is connected is cut, and the laying path for laying the supply pipe is excavated and formed only in the underground part. It is not necessary to dig a large scale. Therefore, there is an advantage that the traffic on public roads is not hindered and the laying work of the supply pipe can be performed in a short period of time.
[0004]
In the non-digging method, since the excavation is always performed in the underground, it is necessary to accurately detect the position and orientation of the underground excavated body (hereinafter referred to as excavated body) to be excavated during excavation.
For detecting an excavated body, a magnetic measuring device that is easy to handle and has a simple structure is often used, and an example thereof is disclosed in Patent Document 1 below. The magnetic measurement device disclosed in Patent Document 1 includes “three detection coil pairs having a pair of coils that are coaxially disposed at intervals and electrically connected to each other. The central axes are arranged orthogonally to each other between a pair of coils, and the coils of different detection coil pairs arranged adjacent to each other are arranged at intervals from each other. Has been ".
[0005]
Further, Patent Document 1 below discloses a method of detecting underground objects using the above-described magnetic measurement device. The underground object detection method is, `` a method of detecting an object placed underground on the ground, a step of generating a magnetic field having a magnetic flux axis in a vertical method by magnetic field generating means arranged together with the object underground, Arranging a magnetometer in the magnetic field on the ground; obtaining a detection signal generated in each detection coil pair of the magnetometer by the action of the magnetic field; Turning the magnetic measuring device so that the detection signals obtained by the detection coil pairs in at least two axial directions coincide with each other, and obtaining the magnetic flux direction of the magnetic field at the position of the magnetic measuring device from the turning posture of the magnetic measuring device Moving the magnetic measuring device in a direction in which the magnetic flux direction approaches the vertical direction, and a position in which the magnetic flux direction is a vertical direction, where the object exists underground. And a step of determining "is intended.
[0006]
[Patent Document 1]
JP-A-8-233601
[Problems to be solved by the invention]
The magnetic measurement device of Patent Document 1 can prevent the coils in the three axial directions from overlapping or interfering with each other due to the above configuration. As a result, the magnetic characteristics of the detection coil pairs in the three axial directions are extremely uniform. It is stated that the information on the magnetic field can be obtained accurately, so that the position of the excavated body can be accurately detected. However, the inventors of the present application actually created and confirmed the magnetic measurement device of Patent Document 1, and found that the magnetic measurement device was particularly difficult when the distance between the magnetic field generation means as the magnetic field generation source and the magnetic measurement device was large. The detection signal generated by the detection coil pair of each axis is buried in the unavoidable noise of the electric circuit that amplifies the detection signal detected by, and the unavoidable noise caused by an external magnetic field or electric field such as terrestrial magnetism. There was a problem that the position could not be measured accurately. This problem is caused in principle by the fact that the cross-sectional area of the coil constituting the magnetic measuring device is finite.
[0008]
Further, in the underground object detection method of Patent Document 1, the direction of the magnetic flux axis of the underground object, that is, the magnetic field generated by the magnetic field generating means built in the excavation body is set to the vertical direction, and the strength of the magnetic field on the ground surface is increased. This makes it easy to detect a magnetic field with a rotatable magnetic measuring device, and makes it possible to accurately detect the position of an excavated body underground. In the case of a non-cutting method, especially when a supply pipe having a diameter enough to be connected to a general home is drawn into a private land, a laying path having a small diameter of about 30 to 50 mm is excavated. The excavated body for excavating such a small diameter laying path is naturally small in diameter, and magnetic field generating means capable of generating a magnetic field in the vertical direction that can be detected on the ground surface is incorporated in such excavated body. Was extremely difficult.
[0009]
Furthermore, in the underground object detection method of Patent Document 1, in order to detect and specify the position of an excavated body moving in the underground part, the ground surface above the excavated body is scanned with a magnetic measurement device, or a plurality of magnetic measurement devices are used. It must be placed on the ground surface. Therefore, when specifying the position of the excavated body, the magnetic measuring device itself occupies a public road, and there is a problem that traffic is hindered.
[0010]
The present invention has been made by the inventors of the present application in earnest and has studied the above problem, and a magnetic measuring apparatus capable of accurately obtaining information on a magnetic field generated even when a magnetic field source is located at a long distance. Another object of the present invention is to provide an underground excavated body position detecting device that does not need to occupy a large area of the ground surface using the magnetic measuring device.
[0011]
[Means for Solving the Problems]
The magnetic measurement device of the present invention includes first to third detection units each including a pair of coils that are coaxially arranged at predetermined intervals and electrically connected to each other. The first to third detectors are arranged in three axial directions in which the axes of the coils are orthogonal to each other, and the axes are orthogonally arranged between a pair of coils. The coils arranged adjacent to each other are arranged at an interval from each other. A soft magnetic material is inserted in the coil.
[0012]
An excavation body position detection device for detecting the position and orientation of an excavation body according to the present invention includes a magnetic field generating unit that is built in the underground excavation body and generates a magnetic field, and at least one set of the magnetic measurement device.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the magnetic measurement device of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a schematic configuration of the magnetic measurement device of the present invention. FIG. 2 is a diagram for explaining an experimental example of position measurement by the magnetic measurement device of FIG. FIG. 3 is a diagram showing the results of an experimental example of position measurement using the magnetometer of FIG.
[0014]
As shown in FIG. 1, the magnetism measuring means 1 of the present invention includes a first to a third coils 11x1 to 11z2 which are coaxially arranged at predetermined intervals and electrically connected to each other. It has detectors 11x to 11z. The first to 311x to 11z detection units are arranged in three axial directions in which the axes of the coils 11x1 to 11z2 are orthogonal to each other, and the axes are orthogonally arranged between a pair of coils 11x1 to 11z2. Is established. The coils 11x1 to 11z2 arranged adjacent to each other are arranged at an interval from each other. A soft magnetic body 12 is inserted between the coils 11x1 to 11z2. Here, the axis a of the first detection unit 11x, that is, the axis a of the coils 11x1 and 11x2 is hereinafter referred to as a first axis a. Similarly, the axis b of the second detector 11y is referred to as a second axis b, and the axis c of the third detector 11z is referred to as a third axis c.
[0015]
As shown in FIG. 1, the magnetism measuring device 1 has a cubic support made of a non-magnetic material in order to accurately hold the postures of the coils 11 x 1 to 11 z 2 constituting the first to third detection units 11 x to 11 z. The body 13 and the coils 11x1 to 11z2 are wound closely around the surface of the support 13 symmetrically with respect to the center P of the support 13, and a substantially columnar soft magnetic body 12 is fitted therein. It is desirable to have a substantially cylindrical winding member 14 made of a nonmagnetic material. Thus, the intersection of the first to third axes a to c coincides with the center P of the support 13. The magnetic measurement device 1 having the above configuration measures the vector of the magnetic field acting on the center P as components along the first to third axes a to c.
[0016]
A method for manufacturing the magnetic field measuring device 1 will be described. For example, a support 13 and a winding member 14 formed by processing a resin are prepared. The winding member 14 is bonded to each surface of the support 13. A conductive wire is wound around the outer peripheral surface of each winding member 14 to form first to third detection units 11x to 11z. The soft magnetic body 12 is inserted into the inside of the winding member 14.
[0017]
According to the magnetic measurement apparatus 1 having the above-described configuration, the coils 11x1 to 11z2 of the first to third detection units 11x to 11z are arranged at intervals, so that they can be prevented from interfering with each other, and the information of the magnetic field can be accurately obtained. Can be obtained. Further, since the soft magnetic body 14 is inserted in the coils 11x1 to 11z2, weak magnetism can be amplified, and even when the magnetic field source is located at a long distance, information on the generated magnetic field can be accurately obtained. It becomes possible. Hereinafter, the effect will be described with reference to experimental examples.
[0018]
[Example of experiment]
The detection characteristics of the magnetometer 1 were confirmed by the magnetometer 1 having the following configuration.
1) Length of one side of the support 13: 30 mm
2) Length of coils 11x1 to 11z2: 25 mm
3) Inner diameter of coils 11x1 to 11z2: 16 mm
4) Wire diameter of coil conductor: 0.14 mm
5) Number of turns of coil conductor: 250 turns 6) Material of soft magnetic body 12: NiZn ferrite 7) Relative magnetic permeability of soft magnetic body 12: 75
8) Saturation magnetic flux density of soft magnetic body 12: 0.27T
[0019]
In this experimental example, as shown in FIG. 2, the magnetic measurement device 1 has a first axis a fixed along the X axis and a second axis b fixed along the Y axis. The magnetic field generating means 2, which is a magnetic field generating source, is movably arranged such that the magnetic flux axis of the generated magnetic field is on the XY plane and is parallel to the second axis b. The distance between the second axis b and the magnetic flux axis, that is, the position of the magnetic field generating means 2 in the X-axis direction as viewed from the center P of the magnetometer 1 is defined as x. The distance between the first axis a and the center of the magnetic field generating means 2, that is, the position of the magnetic field generating means 2 in the Y-axis direction as viewed from the center P is defined as y. The relationship between the position x, y of the magnetic field generating means 2 and the detection signal output from the magnetism measuring device 1 was confirmed by moving the magnetic field generating means 2 for 0.5 to 2 m.
[0020]
[Comparative example]
A magnetometer having the same configuration as that of the magnetometer 1 and having no soft magnetic material is manufactured, and the positions x and y of the magnetic field generating means 2 and the output from the magnetometer are produced in the same manner as described above. The relationship between the detected signals was confirmed.
[0021]
FIG. 3 shows the results of the experimental example and the comparative example. FIG. 3 shows the relationship between the positions x and y of the magnetic field generating means 2 and the voltage of the detection signal output from the magnetism measuring device 1. In the experimental example, even when the positions x and y of the magnetic field generating means 2 are distant 2 m, the intensity of the detection signal generated by the magnetometer 1 is higher than the intensity of the inevitable noise described above, and the S / N is higher as a whole. The magnetic measuring device 1 accurately captures information on the magnetic field. In the comparative example, the S / N was low as a whole, and particularly when the magnetic field generating means 2 was at a long distance, the intensity of the detection signal was lower than the intensity of the noise.
[0022]
Hereinafter, a position detecting device using the magnetic measuring device for detecting the position and posture of an excavated body for excavating a laid road to a predetermined connection point of the main pipe in a non-cutting method will be described with reference to the drawings. FIG. 4 is a schematic configuration diagram showing an embodiment of the position detection device of the present invention. FIG. 5 is a diagram illustrating a method of detecting the position of an excavated body by the position detection device. 6 and 7 are diagrams showing another aspect of the excavation body position detection method.
[0023]
[Embodiment 1]
The position detecting device 3 of the present invention includes a magnetic field generating means built in an excavated body and, as shown in FIG. 4, at least one set of the magnetic measuring devices 1a and 1b for detecting a magnetic field generated by the magnetic field generating means. Have. Further, the position detecting device 3 is electrically connected to each of the coils 11x1 to 11z2 of the magnetic measuring devices 1a and 1b, and the amplifier is connected to an amplifier that amplifies a detection signal generated in the coils 11x1 to 11z2; There is a calculating means (both not shown) for processing the amplified detection signal to calculate the position and posture of the excavated body.
[0024]
As shown in FIG. 4, the position detecting device 3 of the present embodiment matches the first axis a of the first magnetic measuring device 1a with the first axis a of the second magnetic measuring device 1b, and Are arranged in parallel, and the mutual positional relationship is defined so that the distance between the respective second axes b is L. In this way, if the mutual positional relationship between the magnetic measuring devices 1a and 1b is defined, it is preferable that the setting of the position detecting device 3 and the time for confirming the positions of the magnetic measuring devices 1a and 1b after the setting are reduced. Further, the position detecting device 3 urges the magnetic measuring devices 1a and 1b and holds the magnetic measuring devices 1a and 1b in order to maintain the posture of the magnetic measuring devices 1a and 1b. It is desirable to have the substrate 32 on which the erection is made.
[0025]
The mutual positional relationship between the magnetism measuring devices 1a and 1b is not limited to the above positional relationship, and it is sufficient that each mutual positional relationship is uniquely defined. That is, the magnetometers 1a and 1b may be arranged at arbitrary positions and in arbitrary postures, respectively, and the relationship between the distance between the centers Pa and Pb and the directions of the first to third axes a to c is different. It suffices if it is uniquely specified.
According to the position detection device 3 described above, the position and orientation of the excavated body excavating in the ground in the non-cutting method is detected, the excavated body is guided to a predetermined connection point of the main pipe, and a desired laying path is formed. It is possible to do. Hereinafter, a method of detecting the position and posture of the excavated body by the position detection device 3 will be described with reference to FIG.
[0027]
In FIG. 5, reference numeral 4 denotes a main branch pipe buried underground and having a radius of R, and Pt denotes a planned connection point between the main branch pipe 4 and a supply pipe. Here, the embedding position (the position in the plane direction and the depth direction) of the main pipe 4 and the position of the planned connection point Pt are known in advance by a drawing or a preliminary investigation, and the direction along the axis of the main pipe 4 is X. The axis orthogonal to the X-axis and the horizontal direction is the Y-axis, the direction orthogonal to the X- and Y-axes is the Z-axis, and the vicinity of the planned connection point Pt is the origin O (x, y, z ) Set the coordinate system. Thus, the connection scheduled portion Pt can be considered to be located at the coordinates (0, R, 0).
[0028]
The non-cutting device 5 includes a substantially round bar-shaped excavated body 51 having an inclined surface at a tip end and a built-in magnetic field generating means 2 for generating a magnetic field, and transmits the propulsion force and the rotating force to the excavated body 51 to form the excavated body 51. It has a guiding means 52 having flexibility for guiding, and forms a straight or curved laying path from the private land to the planned connection point Pt without cutting. The magnetic field generating means 2 has a substantially round bar-like outer shape that can be built in the excavation body 51, and its axis is aligned with the axis of the excavation body 51 and is built in the excavation body 51. Here, the position of the excavated body 51 is located at the midpoint of the magnetic field generating means 2, more specifically, at a point on the axis of the excavated body 51 as shown in FIG. It will be referred to as the excavation point.) Thus, if the excavated body 51 is guided in a horizontal posture to the position of the coordinates (0, R + s, 0), a laying path for laying a supply pipe from a private land to the planned connection point Pt will be formed.
[0029]
The position of the position detecting device 3 is determined by the positional relationship between the position and the main pipe 4, specifically, the center point Pa of the magnetic measuring devices 1a and 1b with respect to the origin O of the set (x, y, z) coordinate system. , Pb may be defined as long as the positional relationship is defined. In addition, as shown in FIG. 4, it is desirable to dispose the position detecting device 3 on the ground surface above the main pipe 4 because the disposing work can be performed easily.
[0030]
The principle of detecting the position and posture of the excavated body 51 by the position detection device 3 arranged as described above will be described in detail.
As shown in FIG. 5, the coordinates of the excavation point Ps where the excavation body 51 is located are (xs, ys, zs). The coordinates of the point where the center of the first magnetic measuring device 1a is located (hereinafter also referred to as the first point) Pa are (xoa, yoa, zoa), and the center of the second magnetic measuring device 1b is the position. The coordinates of a point (hereinafter, also referred to as a second point) Pb are (xob, yob, zob). The distance from the first point Pa to the excavation point Ps is ra, and the distance from the second point Pb to the excavation point Ps is rb. Here, the magnetic moment of the magnetic field generating means 2 indicating the posture of the excavation body 51 is (Mx, My, Mz), and each component of the magnetic flux density of the magnetic field at the first and second points Pa and Pb is (Bxa, Bya, Bza) and (Bxb, Byb, Bzb). The relationship expressed by the following non-linear simultaneous equations is established between each component of the magnetic moment and each component of the magnetic flux density at the points Pa and Pb.
[0031]
(Equation 1)
Xa: X component of distance ra from first point Pa to excavation point Ps ya: Y component of distance ra from first point Pa to excavation point Ps za: from first point Pa to excavation point Ps X component yb of the distance rb from the second point Pb to the excavation point Ps: Y component zb of the distance rb from the second point Pb to the excavation point Ps: zb from the second point Pb Z component of distance rb to excavation point Ps
The components xa to za of the distance ra from the first point Pa to the excavation point Ps and the components xb to zb of the distance rb from the second point Pb to the excavation point Ps are determined by the magnetic measurement devices 1a and 1b. Can be expressed by Expressions 2 and 3 based on the relationship between the points Pa and Pb where is located and the point Ps where the excavated body 51 is located.
[0033]
(Equation 2)
[0034]
[Equation 3]
[0035]
In the above equation 1, the coordinates (xoa, yoa, zoa) and (xob, yob, zob) of the points Pa and b are known. The components Bxa, Bya, Bza and Bxb, Byb, Bzb of the magnetic flux density in Equation 1 can be calculated by processing the detection signals of the respective components measured by the magnetic measuring devices 1a, 1b by the arithmetic means. . Therefore, based on an appropriate method of obtaining an approximate solution from a non-linear simultaneous equation such as Newton's method or Newton-Raphson method, the above equation 1 is solved, and unknowns xs, ys, zs and Mx, My, Mz are calculated. The coordinates (xs, ys, zs) of the excavation point Ps where the body 51 is located and the magnetic moment (Mx, My, Mz) indicating the posture of the excavation body 51 can be obtained.
[0036]
The position detecting device 3 detects the position and the posture of the excavated body 51 every moment based on the above-described detection principle. The uncutting device 5 controls the guiding means 52 based on the position and the posture of the excavated body 51 detected by the position detection device 3 to guide the excavated body 51 to the planned connection point Pt of the main branch pipe 4 to form a laying path. I do. As described above, according to the position detecting device 3 of the present invention, the position detecting device 3 can detect the position and the posture of the excavated body 51 in a state where the excavated body 51 is fixed at the predetermined position on the ground surface, and the occupation of the public road is small. It is possible to prevent traffic obstruction.
[0037]
[Embodiment 2]
As shown in FIG. 6, the position detecting device 3 is provided, for example, in a vertical hole that is cut substantially vertically above the main pipe 4 with respect to the axis of the main pipe 4, for example, the first of the magnetic measuring devices 1 a and 1 b. One axis a may be arranged in the vertical direction. In this case, since the position detecting device 3 is not disposed on the ground surface, it is preferable that the traffic on public roads is further reduced.
[0038]
[Embodiment 3]
The position detecting device 3 may be disposed inside the main pipe 4 as shown in FIG. 7 when the main pipe 4 is newly provided and there is no gas flow. By doing so, the position detecting device 3 is not disposed on the ground surface as in the above case, so that it is less likely to hinder traffic on public roads.
[0039]
【The invention's effect】
As described above, according to the magnetic measurement device of the present invention, the first to third detection units each including a pair of coils that are coaxially arranged at a predetermined interval and electrically connected to each other are provided. The first to third detection units are arranged in three axial directions in which the axes of the coils are orthogonal to each other, and the axes are orthogonally arranged between the pair of coils, and are arranged adjacent to each other. In a magnetometer in which the separated coils are arranged at an interval from each other, a soft magnetic material is inserted into the coil in order to amplify weak magnetism. It is possible to accurately obtain information on the magnetic field to be generated.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a magnetometer according to the present invention.
FIG. 2 is a diagram illustrating an experimental example of the magnetometer of FIG. 1;
FIG. 3 is a diagram illustrating the results of the experimental example of FIG.
FIG. 4 is a schematic configuration diagram of a position detection device of the present invention.
5 is a diagram showing an example of an embodiment of detection of the position and posture of an excavated body by the position detection device of FIG.
6 is a diagram showing another example of the embodiment of the detection of the position and orientation of the excavated body by the position detection device of FIG.
7 is a diagram showing still another example of an embodiment of detection of the position and orientation of the excavated body by the position detection device of FIG.
[Explanation of symbols]
1 (1a, 1b): magnetic measurement device, 11x: first detector 11y: second detector 11z: third detector 11x1 to 11z2: coil 12, soft magnetic material, 13: supporter 14, winding Turning member 2: magnetic field generating means 3: position detecting device, 31: supporting member, 32: substrate 5, non-cutting device, 51: underground excavation body, 52: guiding means