[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004269924A - High efficient producing method of steel sheet excellent in strength and toughness - Google Patents

High efficient producing method of steel sheet excellent in strength and toughness Download PDF

Info

Publication number
JP2004269924A
JP2004269924A JP2003059495A JP2003059495A JP2004269924A JP 2004269924 A JP2004269924 A JP 2004269924A JP 2003059495 A JP2003059495 A JP 2003059495A JP 2003059495 A JP2003059495 A JP 2003059495A JP 2004269924 A JP2004269924 A JP 2004269924A
Authority
JP
Japan
Prior art keywords
rolling
temperature
thickness
toughness
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003059495A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shirahata
浩幸 白幡
Masanori Minagawa
昌紀 皆川
Toshinaga Hasegawa
俊永 長谷川
Akira Shishibori
明 獅々堀
Takayuki Honda
貴之 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003059495A priority Critical patent/JP2004269924A/en
Publication of JP2004269924A publication Critical patent/JP2004269924A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing a steel sheet excellent in strength and toughness by making fine of metallurgical structure. <P>SOLUTION: This steel sheet having excellent strength and toughness can efficiently be obtained, with which a rolling condition is set so as to satisfy a relation between a prescribed rolling temperature and rolling reduction in each rolling pass, and accelerated cooling after rolling is combined according to the addition of Nb into this steel slab or no and the temperature zones in the hot-rolling, and thus, γ grain is efficiently made to fine by repeating perfect recrystallization in the hot temperature zone and the good effect of rolling in non-crystallized zone is maximumly received in the low temperature zone and the last structure after cooling is made to fine. For satisfying the relation between the prescribed rolling temperature and rolling reduction, it is desirable to cool between the high temperature zone rolling and the low temperature zone rolling in each pass interval. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱間圧延鋼板、特に船舶、橋梁、中高層建築物、海洋構造物などに使用される強度・靭性に優れた鋼板の効率的な製造方法に関するものである。
【0002】
【従来の技術】
近年、船舶、橋梁、中高層建築物、海洋構造物などの大型化にともない、使用される鋼材の厚手化、強靭化への要求が厳しさを増している。同時に、需要化の短納期化に対する要望も年々大きくなり、鋼材製造における生産性向上が強く望まれている。
【0003】
強度・靭性向上のための手段としては、TMCP(Thermo−Mechanical Control Process) がよく知られている。これは適切な加熱、圧延、冷却、熱処理工程の組み合わせにより鋼材の組織を微細化する方法である。一般的な手段としては、高温域においてオーステナイト(以下γと略す)を圧延再結晶により微細化し、さらに低温域においてγを未再結晶状態のまま十分に延伸、歪を蓄積せしめ、その後の変態過程で微細なフェライト(以下αと略す)を得る方法がとられている。
【0004】
しかしこれまでの圧延法では、下記特許文献1〜4に記載されているように、圧延中に温度制御をする方法はあったものの、圧延中の金属組織の逐次変化に基づいて、圧延温度と圧下率を圧延パス毎に制御する手法がなかった。そのため、高温域の圧延においては、温度と圧下率が適切でなければ、γの再結晶が部分的にしか進行しなかったり、再結晶により微細化したγが引き続き生じる粒成長により粗大化してしまったりして、圧延再結晶による微細化効果を十分享受できないことがあった。
【0005】
また、γ未再結晶状態で圧延する場合にも、条件が適切でなければ、累積歪により部分的に再結晶が生じて最終的に強度・靭性が劣化してしまったり、強度・靭性は良好であっても著しく生産性が低下してしまうといった問題点があった。圧延後に引き続いて冷却を行う加速冷却法の場合でも、これらの問題点は基本的に解消されることはない。
【0006】
その他の手段として、低温加熱、低温大圧下圧延などが行われることもある。しかし、加熱温度は加熱時に十分γ化を図る必要からAc3 以上の温度を確保する必要があり、低温加熱による微細化には限界があるとともに、合金元素の偏析に起因した靭性劣化が顕在化することもある。また低温圧延では、しばしば二相温度域における圧延が行われるが、過度の低温圧延は材質を劣化させることに加え、圧延効率(単位時間当たりの圧延重量:Ton/h )も低下させ、さらには圧延形状にも悪影響を及ぼし、精整負荷を増大させる可能性もある。
【0007】
鋼材の結晶粒を微細化する特殊な方法としては、下記特許文献5に記載のように、加熱・冷却を繰り返すことにより最終組織に至るまでの変態の回数を多くする方法がある。しかし、単なる温度制御により変態の回数を増しても結晶粒の微細化効果は飽和するばかりでなく、生産性が著しく低下するため、実プロセスへの適用の可能性は極めて低い。
【0008】
さらに、圧延前または粗圧延終了後に鋼片表面を冷却し、表面復熱過程で内部との温度差をつけたまま圧延することにより表層に細粒αを生成させる方法が、下記特許文献6,7等に記載されている。しかし、これらは必然的にα域または二相域での圧延となるため、1パス当たりの圧下率を低くせざるを得ず、生産性を大きく阻害するものであった。
【0009】
【特許文献1】
特開昭53−40620号公報
【特許文献2】
特開昭53−40621号公報
【特許文献3】
特開昭59−182916号公報
【特許文献4】
特開昭60−56017号公報
【特許文献5】
特公昭49−7293号公報
【特許文献6】
特公平6−4903号公報
【特許文献7】
特開平5−271860号公報
【0010】
上述のように、組織微細化を目的としたTMCPは種々提案されているが、材質を向上させようとすると通常生産効率の低下を引き起こすとともに、精整工程の負荷も増大する。すなわち、材質と生産性向上を両立させることは非常に困難な課題であった。
【0011】
【発明が解決しようとする課題】
本発明は、生産性の低い複雑な熱間圧延工程、熱処理工程を必要とせずに、優れた強度・靭性を有する鋼材を効率的に製造する方法を提供するものである。
【0012】
【課題を解決するための手段】
本発明の特徴は、圧延工程における各パスの圧延温度と圧下率を適切に制御することによりγの均一微細化を達成するとともに、冷却工程との組み合わせにより最終組織の微細化を図り、生産性を極度に阻害することなく強度・靭性に優れた鋼板の製造を可能とした点にある。
その要旨とするところは以下の通りである。
【0013】
(1) 質量%で、
C :0.03〜0.20%、 Si:0.05〜1.0%、
Mn:0.40〜2.0%、 P :≦0.025%、
S :≦0.020%、 Al:0.005〜0.10%、
N :0.0005〜0.0080%
を含み、残部がFeおよび不可避的不純物からなる鋼を、鋳造後Ar3 点以下の温度まで冷却することなくそのまま、あるいはAc3 点以上の温度域に加熱してから、各圧延パスにおいて下式を満たす圧延温度と圧下率の関係で再結晶域圧延した後、板厚方向の平均冷却速度が2〜30℃/sで水冷することを特徴とする強度・靭性に優れた鋼板の高効率製造方法。
72200/{72.4+8.1×ln(−ln (1−Rj) )}≦Tj
≦106000/{85.6+8.1×ln(−ln (1−Rj) )}
ただし、Tj:j番目の圧延パスの圧延温度(K)、
Rj:j番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚。
【0014】
(2) 質量%で、
C :0.03〜0.20%、 Si:0.05〜1.0%、
Mn:0.40〜2.0%、 P :≦0.025%、
S :≦0.020%、 Al:0.005〜0.10%、
N :0.0005〜0.0080%
を含み、残部がFeおよび不可避的不純物からなる鋼を、鋳造後Ar3 点以下の温度まで冷却することなくそのまま、あるいはAc3 点以上の温度域に加熱してから、各圧延パスにおいて下記▲1▼式を満たす圧延温度と圧下率の関係で再結晶域圧延し、その後引き続いて▲2▼、▲3▼式または▲2▼、▲4▼式を満たす圧延温度と圧下率の関係で未再結晶域圧延を行った後、板厚方向の平均冷却速度が2〜30℃/sで水冷することを特徴とする強度・靭性に優れた鋼板の高効率製造方法。
72200/{72.4+8.1×ln(−ln(1−Rj))}≦Tj
≦106000/{85.6+8.1×ln(−ln (1−Rj) )}…▲1▼
61400/{75.3+8.1×ln(−ln (1−Rk) )}≦Tk
≦72000/{75.3+8.1×ln(−ln (1−Rk) )} …▲2▼
0<ΣRk≦3h/5 [h≦40] …▲3▼
h/2−20≦ΣRk≦3h/5 [40<h] …▲4▼
ただし、Tj:j番目の圧延パスの圧延温度(K)、
Rj:j番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、
Tk:k番目の圧延パスの圧延温度(K)、
Rk:k番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、j<k、
h:製品厚(mm)、
ΣRk:未再結晶域圧延の累積圧下率=(移送厚−製品厚)/移送厚×100(%)。
【0015】
(3) 質量%で、
C :0.03〜0.20%、 Si:0.05〜1.0%、
Mn:0.40〜2.0%、 Nb:0.003〜0.050%、
P :≦0.025%、 S :≦0.020%、
Al:0.005〜0.10%、 N :0.0005〜0.0080%
を含み、残部がFeおよび不可避的不純物からなる鋼を、鋳造後Ar3 点以下の温度まで冷却することなくそのまま、あるいはAc3 点以上の温度域に加熱してから、各圧延パスにおいて下式を満たす圧延温度と圧下率の関係で再結晶域圧延した後、板厚方向の平均冷却速度が2〜30℃/sで水冷することを特徴とする強度・靭性に優れた鋼板の高効率製造方法。
72200/{74.4+Aj×ln(−ln (1−Rj) )}≦Tj
≦106000/{85.6+8.1×ln(−ln (1−Rj) )}
ただし、Tj:j番目の圧延パスの圧延温度(K)、
Rj:j番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、
Aj=8+{25×(Rj−0.2)+5}×{1−exp(−160×Nb) }、
Nb:Nb添加量(質量%)。
【0016】
(4) 質量%で、
C :0.03〜0.20%、 Si:0.05〜1.0%、
Mn:0.40〜2.0%、 Nb:0.003〜0.050%、
P :≦0.025%、 S :≦0.020%、
Al:0.005〜0.10%、 N :0.0005〜0.0080%
を含み、残部がFeおよび不可避的不純物からなる鋼を、鋳造後Ar3 点以下の温度まで冷却することなくそのまま、あるいはAc3 点以上の温度域に加熱してから、各圧延パスにおいて下記▲1▼式を満たす圧延温度と圧下率の関係で再結晶域圧延し、その後引き続いて▲2▼、▲3▼式または▲2▼、▲4▼式を満たす圧延温度と圧下率の関係で未再結晶域圧延を行った後、板厚方向の平均冷却速度が2〜30℃/sで水冷することを特徴とする強度・靭性に優れた鋼板の高効率製造方法。
72200/{74.4+Aj×ln(−ln (1−Rj) )}≦Tj
≦106000/{85.6+8.1×ln(−ln (1−Rj) )}…▲1▼
61400/{75.3+8.1×ln(−ln (1−Rk) )}≦Tk
≦72000/{77.3+Ak×ln(−ln (1−Rk) )} …▲2▼
0<ΣRk≦3h/5 [h≦40] …▲3▼
h/2−20≦ΣRk≦3h/5 [40<h] …▲4▼
ただし、Tj:j番目の圧延パスの圧延温度(K)、
Rj:j番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、
Tk:k番目の圧延パスの圧延温度(K)、
Rk:k番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、j<k、
Aj=8+{25×(Rj−0.2)+5}×{1−exp(−160×Nb) }、
Ak=8+{25×(Rk−0.2)+5}×{1−exp(−160×Nb) }、
Nb:Nb添加量(質量%)、
h:製品厚(mm)、
ΣRk:未再結晶域圧延の累積圧下率=(移送厚−製品厚)/移送厚×100(%)。
【0017】
(5) 再結晶域圧延終了後、未再結晶域圧延開始までの間において水冷することを特徴とする前記(2)〜(4)のいずれか1項に記載の強度・靭性に優れた鋼板の高効率製造方法。
(6) 再結晶域圧延、または未再結晶域圧延の各圧延パス間において水冷することを特徴とする前記(1)〜(5)のいずれか1項に記載の強度・靭性に優れた鋼板の高効率製造方法。
(7) 前記組成に加えて、
Cu:0.05〜1.5%、 Cr:0.05〜1.0%、
Mo:0.05〜0.5%、 Ni:0.05〜3.5%、
Ti:0.003〜0.10%、 V :0.005〜0.10%、
B :0.0002〜0.0030%、
Ca:0.0005〜0.0030%、
REM:0.0005〜0.0060%
の1種または2種以上を含有する鋼片を用いることを特徴とする前記(1)〜 (6)のいずれか1項に記載の強度・靭性に優れた鋼板の高効率製造方法。
【0018】
【発明の実施の形態】
以下、本発明について詳細に説明する。まず、本発明の成分限定理由について説明する。
Cは鋼の強度を向上させる有効な成分として下限を0.03%とし、また過剰の添加は、鋼材の溶接性やHAZ靭性などを著しく低下させるので、上限を0.20%とした。
【0019】
Siは溶製時の脱酸に必要な元素であり、適量添加するとマトリクスを固溶強化するため、0.05%以上添加する。一方、1.0%超添加するとHAZの硬化により靭性が低下するため、上限を1.0%とした。
【0020】
Mnは母材の強度、靭性の確保に有効な成分として0.40%以上の添加が必要であるが、溶接部の靭性、割れ性などの許容できる範囲で上限を2.0%とした。
【0021】
P,Sは含有量が少ないほど望ましいが、これを工業的に低減させるためには多大なコストがかかることから、それぞれ0.025%、0.020%を上限とした。
【0022】
Alは重要な脱酸元素であるため下限値を0.005%とした。また、Alが多量に存在すると鋳片の表面品位が劣化するため、上限を0.10%とした。
【0023】
NはTiNとして析出することでHAZ靭性の向上効果があるが、過剰添加で固溶Nが増大するとHAZ靭性の低下を招くことから、0.0005〜0.0080%の範囲に制限する。
【0024】
選択添加元素は以下の理由により限定する。
Nbは微量でγの再結晶を抑制し、未再結晶域圧延(以下CRと略す)による組織微細化に大きく寄与するとともに、焼き入れ性向上や析出強化にも有効な元素であることから0.003%以上添加するが、過剰な添加はHAZ靭性を著しく低下させるため0.050%を上限とした。
【0025】
Cu,Cr,Moは鋼材の強度を向上させるために有効であることから0.05%以上添加するが、多量に添加すると溶接性、HAZ靭性を低下させるため、それぞれ1.5%、1.0%、0.5%を上限とした。
【0026】
Niは鋼材の強度および靭性を向上させることから0.05%以上添加するが、Ni量の増加はコストを上昇させるので3.5%を上限とした。
【0027】
Tiは脱酸元素であると同時に、Nと結合してTi窒化物を形成することで加熱γとHAZの細粒化に一定の効果を及ぼすため、0.003%以上添加する。しかし、固溶Ti量が増加するとHAZ靭性が低下するため、0.10%を上限とした。
【0028】
Vは焼入れ性を向上させるとともに炭窒化物を形成して高強度化に寄与するため0.005%以上添加するが、多量の添加はHAZ靭性を劣化させるため0.10%を上限とした。
【0029】
BはHAZ靭性に有害な粒界フェライト、フェライトサイドプレートの成長抑制と高強度化に有効であることから0.0002%以上添加するが、過剰の添加は靭性を劣化させることから0.0030%を上限とした。
【0030】
Caは硫化物の形態制御に有効であるとともに、Ca系酸化物生成によりHAZ組織を微細化し、靭性を向上させるために0.0005%以上の添加が必要である。しかしながら、過剰の添加は粗大介在物を生成させるため、0.0030%を上限とした。
【0031】
REMはHAZ組織を微細化し、靭性を高めるのに有効な元素であるが、過剰の添加は靭性を劣化させるので、0.0005〜0.0060%の範囲に限定した。
【0032】
次に、本発明の根幹をなす技術思想について述べる。
本発明者らは、γ域での圧延およびその後の加速冷却によって組織微細化を図り、強度・靭性に優れた鋼板を効率的に得ることを目的に、通常の熱間圧延のパス間時間、圧下率、および圧延温度と、金属組織との関係を詳細に調査した。
その結果、通常の圧延パス間時間内にγの再結晶を完了させ、かつ、次パス噛み込みまでの顕著なγ粗大化を抑制し、再結晶域圧延(以下ORと略す)完了後のγを効率的に微細化するための条件として、Nb添加の有無により、圧延温度と圧下率の関係が下記▲1▼、▲2▼式で表されることを見出した。
[Nb無]72200/{72.4+8.1×ln(−ln (1−R) )}≦T
≦106000/{85.6+8.1×ln(−ln (1−R) )}…▲1▼
[Nb有]72200/{74.4+A×ln(−ln (1−R) )}≦T
≦106000/{85.6+8.1×ln(−ln (1−R) )}…▲2▼
【0033】
また、通常の圧延パス間時間内では再結晶が開始しないための条件として、圧延温度と圧下率の関係が下記▲3▼、▲4▼式で表されることを見出した。
[Nb無]61400/{75.3+8.1×ln(−ln (1−R) )}≦T
≦72000/{75.3+8.1×ln(−ln (1−R) )} …▲3▼
[Nb有]61400/{75.3+8.1×ln(−ln (1−R) )}≦T
≦72000/{77.3+A×ln(−ln (1−R) )} …▲4▼
ただし、
T:圧延温度(K)、
R:各パス圧下率=(入側板厚−出側板厚)/入側板厚、
A=8+{25×(R−0.2)+5}×{1−exp(−160×Nb) }、
Nb:Nb添加量(質量%)。
【0034】
すなわち、圧延再結晶によるγ微細化を狙う場合には、▲1▼、▲2▼式の圧延温度と圧下率の関係を満たす条件を選定することにより、γはパス間時間内に再結晶を完了し、次パスまでの粒成長を実質的に回避でき、OR完了時のγ粒径を効率的に微細化できる。一方、CRによるγ延伸を狙う場合には、▲3▼、▲4▼式の圧延温度と圧下率の関係を満たす条件を選定することにより、γを未再結晶状態に保ちつつ、効率的に圧延することができる。こうした各パス毎の圧延温度、圧下率制御によって、強度・靭性を低下させることなく、圧延パス数を削減できるとともに、CRを行う場合にはその温度待ち時間をも低減することができる。
【0035】
続いて、本発明の製造条件の限定理由を詳細に説明する。
本発明においては鋳造後冷片にすることなく鋳片を直接圧延してもよいし、また鋳造後冷片としたものを再加熱して圧延してもよい。加熱温度はAc3 点以上とし、特に上限を定める必要はない。高温域の圧延では、再結晶によるγの微細化を狙うため、▲1▼、▲2▼式の圧延温度と圧下率の関係を満たす条件を選定する。この領域を図1に示す。
【0036】
圧延温度と圧下率が▲1▼、▲2▼式の下限を外れるとパス間でγの再結晶が完了せず、未再結晶γが一部残存してしまい、上限を外れるとγが過度に細粒化する結果、パス間で顕著に粒成長してしまい、いずれの場合も最終的に均一かつ微細な組織が得られず、強度・靭性が低下してしまう。ORに引き続いてCRを行う場合は、▲3▼、▲4▼式の圧延温度と圧下率の関係を満たす条件を選定する。この領域を図2に示す。
圧延温度と圧下率が▲3▼、▲4▼式の上限を外れると、パス間で一部再結晶が生じて混粒組織となり、下限を外れると、効果的にγを延伸させ、歪を蓄積させることができないばかりか、生産性も大幅に低下してしまう。また、強度・靭性を確保しつつ圧延効率の向上を図るためには、▲5▼、▲6▼式をも満たす必要がある。
0<ΣR≦3h/5 [h≦40] …▲5▼
h/2−20≦ΣR≦3h/5 [40<h] …▲6▼
ただし、
ΣR:未再結晶域圧延の累積圧下率=(移送厚−製品厚)/移送厚×100(%)
h:製品厚(mm)。
【0037】
この領域を図3に示す。製品厚と累積圧下率の関係が、この領域の下方に外れると、厚手材の歪蓄積が不十分となり靭性が低下し、上方に外れると、強度・靭性は向上するが、生産性が顕著に低下し、圧延形状も劣化してしまう。
▲1▼〜▲4▼式を満足させるに当たっては、圧延パス間、およびORとCRの間において適宜冷却することが望ましいが、金属組織制御の観点から冷却手段を限定する必要はない。
【0038】
本発明においては圧延後の加速冷却が必須である。これは圧延によってγ細粒化、延伸化させたとしても、その後空冷ままであれば組織微細化効果が大きく損なわれるからである。冷却開始までの時間については特に規定しないが、ORの場合には再結晶完了後、またCRの場合には圧延終了後、できるだけ速やかに冷却開始することが望ましい。
加速冷却における板厚方向の平均冷却速度は2〜30℃/sとする必要がある。冷却速度が2℃/s未満であるとα変態の駆動力が増加せず、組織が十分微細化されない。冷却速度が30℃/s超であると、表層部の硬さが顕著に上昇し伸びが低下するとともに、靭性も劣化してしまう。冷却停止温度については、本発明では限定する必要はなく、鋼材の要求特性に応じて決定すればよい。
【0039】
以上のように、本発明範囲の条件で製造することにより、極度に生産性の低い低温圧延工程や熱処理工程に頼ることなく組織微細化が達成され、強度・靭性と生産性向上が可能となる。
【0040】
【実施例】
表1に示した化学成分を有する綱片を用いて試作を行った。表2,3に鋼板の製造条件、母材の機械的性質、生産性を示す。YP,TSは全厚引張試験片(板厚≦50mm)による値、またはJIS4号丸棒試験片による1/4t、1/2t部の平均値とした。vTrsは1/4t、1/2t部から採取したJIS4号衝撃試験片(2mmVノッチシャルピー)による平均値とした。試験片採取方向は圧延方向と直角とした。
【0041】
表3から明らかなように、本発明例1〜8は所定の条件で製造したため、強度・靭性が良好であり、生産性も高い。
一方、比較例1〜8は、同一鋼種である本発明例1〜8とそれぞれ比較すると、以下の理由により強度、靭性、生産性のいずれかが劣っている。
【0042】
比較例1は5パス目以降の温度・圧下率が、請求項1に示す条件の上限から逸脱していたために、γが再結晶後顕著に粒成長してしまい、最終組織の微細化が達成されず、強度・靭性が低下してしまった。
比較例2は9パス目以降の温度・圧下率が、請求項3の下限から逸脱していたため、γが部分再結晶となって混粒組織化して、強度・靭性が劣化した。
比較例3は7、8パス目の温度・圧下率が低く、請求項2のCR条件の下限を外れたために、材質は発明例とほぼ同等であったが、生産性が大きく低下した。
【0043】
比較例4は請求項4で示されるCR累積圧下率の条件を満たさず、ORで製造したため、靭性が顕著に劣化した。
比較例5は5パス目のCRの温度・圧下率が高く、請求項4に示す条件の上限から外れたために、一部再結晶が進行して混粒組織となり、靭性が劣化してしまった。
比較例6、7は、圧延後空冷、または過度の水冷によって、冷却速度が所定の範囲から逸脱したために、強度・靭性が低下してしまった。
比較例8は請求項2のCR累積圧下率の上限から外れたために、温度待ち時間、およびパス数が増加して、生産性が著しく低下してしまった。
【0044】
【表1】

Figure 2004269924
【0045】
【表2】
Figure 2004269924
【0046】
【表3】
Figure 2004269924
【0047】
【発明の効果】
本発明によれば、生産性を極度に阻害することなく強度・靭性の良好な鋼板を製造することが可能であり、製造コスト低減、工期短縮等、産業上の効果は極めて大きい。
【図面の簡単な説明】
【図1】再結晶域圧延における各パスの圧延温度と圧下率の関係を示す図。
【図2】未再結晶域圧延における各パスの圧延温度と圧下率の関係を示す図。
【図3】未再結晶域圧延における製品厚と累積圧下率の関係を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for efficiently producing a hot-rolled steel sheet, particularly a steel sheet having excellent strength and toughness used for ships, bridges, middle- and high-rise buildings, marine structures, and the like.
[0002]
[Prior art]
In recent years, as ships, bridges, middle and high-rise buildings, marine structures, and the like have become larger, demands for thicker and tougher steel materials have been increasing. At the same time, demands for shorter delivery times for demand have been increasing year by year, and there is a strong demand for improvement in productivity in steel material production.
[0003]
As a means for improving strength and toughness, TMCP (Thermo-Mechanical Control Process) is well known. This is a method of refining the structure of a steel material by a suitable combination of heating, rolling, cooling, and heat treatment steps. As a general measure, austenite (hereinafter abbreviated as γ) is refined by rolling and recrystallizing in a high-temperature region, and γ is sufficiently stretched in an unrecrystallized state in a low-temperature region, and strain is accumulated. To obtain fine ferrite (hereinafter abbreviated as α).
[0004]
However, in conventional rolling methods, as described in Patent Literatures 1 to 4 below, although there was a method of controlling the temperature during rolling, the rolling temperature and the rolling temperature were changed based on the sequential change of the metal structure during rolling. There was no method for controlling the rolling reduction for each rolling pass. Therefore, if the temperature and the rolling reduction are not appropriate in the high-temperature rolling, the recrystallization of γ will only partially proceed, or γ that has been refined by recrystallization will continue to be coarsened by grain growth. In some cases, the refining effect by rolling recrystallization cannot be sufficiently enjoyed.
[0005]
Also, when rolling in the γ non-recrystallized state, if the conditions are not appropriate, partial recrystallization occurs due to cumulative strain and ultimately the strength and toughness are deteriorated, and the strength and toughness are good. However, there is a problem that productivity is significantly reduced. Even in the case of the accelerated cooling method in which cooling is performed after rolling, these problems are not basically solved.
[0006]
As other means, low-temperature heating, low-temperature large rolling and the like may be performed. However, it is necessary to secure a temperature of Ac3 or higher because the heating temperature is required to sufficiently increase γ during heating, and there is a limit to miniaturization by low-temperature heating, and toughness deterioration due to segregation of alloy elements becomes apparent. Sometimes. In low-temperature rolling, rolling is often performed in a two-phase temperature range. Excessive low-temperature rolling not only deteriorates the material, but also reduces the rolling efficiency (rolling weight per unit time: Ton / h 2). It also has an adverse effect on the rolling shape and may increase the refining load.
[0007]
As a special method for refining the crystal grains of a steel material, there is a method of increasing the number of times of transformation until reaching a final structure by repeating heating and cooling as described in Patent Document 5 below. However, even if the number of transformations is increased simply by controlling the temperature, the effect of refining the crystal grains is not only saturated, but also the productivity is significantly reduced, so that the possibility of application to an actual process is extremely low.
[0008]
Further, a method of cooling the slab surface before rolling or after the end of rough rolling and producing fine grains α in the surface layer by rolling while maintaining a temperature difference from the inside in the surface recuperation process, the following Patent Document 6, 7 etc. However, since these rolls are necessarily rolled in the α region or the two-phase region, the rolling reduction per pass must be reduced, which greatly impairs productivity.
[0009]
[Patent Document 1]
JP-A-53-40620 [Patent Document 2]
JP-A-53-40621 [Patent Document 3]
JP-A-59-182916 [Patent Document 4]
JP-A-60-56017 [Patent Document 5]
JP-B-49-7293 [Patent Document 6]
Japanese Patent Publication No. 6-4903 [Patent Document 7]
JP-A-5-271860 [0010]
As described above, various TMCPs aimed at miniaturization of the structure have been proposed. However, an attempt to improve the material usually causes a decrease in production efficiency and also increases the load of the refining process. That is, it has been a very difficult task to achieve both improvement in material quality and improvement in productivity.
[0011]
[Problems to be solved by the invention]
The present invention provides a method for efficiently producing a steel material having excellent strength and toughness without requiring a complicated hot rolling step and a heat treatment step with low productivity.
[0012]
[Means for Solving the Problems]
The feature of the present invention is to achieve uniform miniaturization of γ by appropriately controlling the rolling temperature and rolling reduction of each pass in the rolling process, and to achieve a finer final structure by combining with a cooling process, thereby improving productivity. This makes it possible to manufacture a steel sheet having excellent strength and toughness without extremely hindering the steel sheet.
The summary is as follows.
[0013]
(1) In mass%,
C: 0.03 to 0.20%, Si: 0.05 to 1.0%,
Mn: 0.40 to 2.0%, P: ≦ 0.025%,
S: ≦ 0.020%, Al: 0.005 to 0.10%,
N: 0.0005 to 0.0080%
After casting, the steel consisting of Fe and unavoidable impurities is heated without cooling to a temperature of not more than the Ar3 point after casting, or after being heated to a temperature range of not less than the Ac3 point, and the following formula is satisfied in each rolling pass. A high-efficiency production method of a steel sheet having excellent strength and toughness, characterized in that after rolling in a recrystallization zone in a relationship between a rolling temperature and a rolling reduction, the steel sheet is water-cooled at an average cooling rate in a thickness direction of 2 to 30 ° C./s.
72200 / {72.4 + 8.1 × ln (−ln (1-Rj))} ≦ Tj
≦ 106000 / {85.6 + 8.1 × ln (−ln (1-Rj))}
Here, Tj: the rolling temperature (K) of the j-th rolling pass,
Rj: rolling reduction of the j-th rolling pass = (incoming plate thickness-outgoing plate thickness) / incoming plate thickness.
[0014]
(2) In mass%,
C: 0.03 to 0.20%, Si: 0.05 to 1.0%,
Mn: 0.40 to 2.0%, P: ≦ 0.025%,
S: ≦ 0.020%, Al: 0.005 to 0.10%,
N: 0.0005 to 0.0080%
After the casting, the steel consisting of Fe and unavoidable impurities is heated without cooling to a temperature of not more than the Ar3 point after casting or after being heated to a temperature range of not less than the Ac3 point. Rolling in the recrystallization zone according to the relationship between the rolling temperature and the rolling reduction that satisfies the formula, followed by unrecrystallization in the relationship between the rolling temperature and the rolling reduction that satisfies the formulas (2) and (3) or (2) and (4). A high-efficiency production method of a steel sheet having excellent strength and toughness, characterized in that after the zone rolling, the steel sheet is water-cooled at an average cooling rate in a thickness direction of 2 to 30 ° C./s.
72200 / {72.4 + 8.1 × ln (−ln (1-Rj))} ≦ Tj
≦ 106000 / {85.6 + 8.1 × ln (−ln (1-Rj))}...
61400 / {75.3 + 8.1 × ln (−ln (1-Rk))} ≦ Tk
≦ 72000 / {75.3 + 8.1 × ln (−ln (1-Rk))} ▲▲ 2 ▼
0 <ΣRk ≦ 3h / 5 [h ≦ 40] ... ▲ 3 ▼
h / 2-20 ≦ ΣRk ≦ 3h / 5 [40 <h]… ▲ 4 ▼
Here, Tj: the rolling temperature (K) of the j-th rolling pass,
Rj: rolling reduction of the j-th rolling pass = (inlet-side sheet thickness-outlet-side sheet thickness) / inlet-side sheet thickness,
Tk: rolling temperature (K) of the k-th rolling pass,
Rk: rolling reduction of k-th rolling pass = (incoming plate thickness-outgoing plate thickness) / incoming plate thickness, j <k,
h: Product thickness (mm)
ΣRk: Cumulative rolling reduction in non-recrystallization zone rolling = (transfer thickness−product thickness) / transfer thickness × 100 (%).
[0015]
(3) In mass%,
C: 0.03 to 0.20%, Si: 0.05 to 1.0%,
Mn: 0.40 to 2.0%, Nb: 0.003 to 0.050%,
P: ≦ 0.025%, S: ≦ 0.020%,
Al: 0.005 to 0.10%, N: 0.0005 to 0.0080%
After casting, the steel consisting of Fe and unavoidable impurities is heated without cooling to a temperature of not more than the Ar3 point after casting, or after being heated to a temperature range of not less than the Ac3 point, and the following formula is satisfied in each rolling pass. A high-efficiency production method of a steel sheet having excellent strength and toughness, characterized in that after rolling in a recrystallization zone in a relationship between a rolling temperature and a rolling reduction, the steel sheet is water-cooled at an average cooling rate in a thickness direction of 2 to 30 ° C./s.
72200 / {74.4 + Aj × ln (−ln (1-Rj))} ≦ Tj
≦ 106000 / {85.6 + 8.1 × ln (−ln (1-Rj))}
Here, Tj: the rolling temperature (K) of the j-th rolling pass,
Rj: rolling reduction of the j-th rolling pass = (inlet-side sheet thickness-outlet-side sheet thickness) / inlet-side sheet thickness,
Aj = 8 + {25 × (Rj−0.2) +5} × {1-exp (−160 × Nb)},
Nb: Nb addition amount (% by mass).
[0016]
(4) In mass%,
C: 0.03 to 0.20%, Si: 0.05 to 1.0%,
Mn: 0.40 to 2.0%, Nb: 0.003 to 0.050%,
P: ≦ 0.025%, S: ≦ 0.020%,
Al: 0.005 to 0.10%, N: 0.0005 to 0.0080%
After the casting, the steel consisting of Fe and unavoidable impurities is heated without cooling to a temperature of not more than the Ar3 point after casting or after being heated to a temperature range of not less than the Ac3 point. Rolling in the recrystallization zone according to the relationship between the rolling temperature and the rolling reduction that satisfies the formula, followed by unrecrystallization in the relationship between the rolling temperature and the rolling reduction that satisfies the formulas (2) and (3) or (2) and (4). A high-efficiency production method of a steel sheet having excellent strength and toughness, characterized in that after the zone rolling, the steel sheet is water-cooled at an average cooling rate in a thickness direction of 2 to 30 ° C./s.
72200 / {74.4 + Aj × ln (−ln (1-Rj))} ≦ Tj
≦ 106000 / {85.6 + 8.1 × ln (−ln (1-Rj))}...
61400 / {75.3 + 8.1 × ln (−ln (1-Rk))} ≦ Tk
≦ 72000 / {77.3 + Ak × ln (−ln (1-Rk))}.
0 <ΣRk ≦ 3h / 5 [h ≦ 40] ... ▲ 3 ▼
h / 2-20 ≦ ΣRk ≦ 3h / 5 [40 <h]… ▲ 4 ▼
Here, Tj: the rolling temperature (K) of the j-th rolling pass,
Rj: rolling reduction of the j-th rolling pass = (inlet-side sheet thickness-outlet-side sheet thickness) / inlet-side sheet thickness,
Tk: rolling temperature (K) of the k-th rolling pass,
Rk: rolling reduction of k-th rolling pass = (incoming plate thickness-outgoing plate thickness) / incoming plate thickness, j <k,
Aj = 8 + {25 × (Rj−0.2) +5} × {1-exp (−160 × Nb)},
Ak = 8 + {25 × (Rk−0.2) +5} × {1-exp (−160 × Nb)},
Nb: Nb addition amount (% by mass),
h: Product thickness (mm)
ΣRk: Cumulative rolling reduction in non-recrystallization zone rolling = (transfer thickness−product thickness) / transfer thickness × 100 (%).
[0017]
(5) The steel sheet having excellent strength and toughness according to any one of the above (2) to (4), wherein the steel sheet is water-cooled after the end of the recrystallization zone rolling and before the start of the non-recrystallization zone rolling. High efficiency manufacturing method.
(6) The steel sheet having excellent strength and toughness according to any one of the above (1) to (5), wherein the steel sheet is water-cooled between rolling passes of recrystallization zone rolling or unrecrystallization zone rolling. High efficiency manufacturing method.
(7) In addition to the above composition,
Cu: 0.05 to 1.5%, Cr: 0.05 to 1.0%,
Mo: 0.05-0.5%, Ni: 0.05-3.5%,
Ti: 0.003 to 0.10%, V: 0.005 to 0.10%,
B: 0.0002 to 0.0030%,
Ca: 0.0005 to 0.0030%,
REM: 0.0005-0.0060%
The method for producing a steel sheet having excellent strength and toughness according to any one of the above (1) to (6), wherein a steel slab containing one or more of the following is used.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. First, the reasons for limiting the components of the present invention will be described.
C has a lower limit of 0.03% as an effective component for improving the strength of the steel, and an excessive addition significantly lowers the weldability and HAZ toughness of the steel material, so the upper limit is 0.20%.
[0019]
Si is an element necessary for deoxidation at the time of smelting, and is added in an amount of 0.05% or more in order to strengthen the matrix by solid solution when added in an appropriate amount. On the other hand, if more than 1.0% is added, the toughness decreases due to the hardening of the HAZ, so the upper limit was made 1.0%.
[0020]
Mn needs to be added in an amount of 0.40% or more as an effective component for securing the strength and toughness of the base material, but the upper limit is set to 2.0% within an allowable range of the toughness and cracking property of the welded portion.
[0021]
It is desirable that the contents of P and S are as small as possible. However, since it costs a great deal to reduce them industrially, the upper limits are set to 0.025% and 0.020%, respectively.
[0022]
Since Al is an important deoxidizing element, the lower limit is set to 0.005%. In addition, if a large amount of Al is present, the surface quality of the slab is deteriorated, so the upper limit is set to 0.10%.
[0023]
N has an effect of improving HAZ toughness by precipitating as TiN. However, an increase in solute N due to excessive addition leads to a decrease in HAZ toughness. Therefore, N is limited to the range of 0.0005 to 0.0080%.
[0024]
The selective additive elements are limited for the following reasons.
Nb is a small element that suppresses the recrystallization of γ in a trace amount, greatly contributes to the refinement of the structure by rolling in the non-recrystallized region (hereinafter abbreviated as CR), and is an element effective for improving hardenability and strengthening precipitation. Although 0.003% or more is added, excessive addition significantly lowers the HAZ toughness, so the upper limit is 0.050%.
[0025]
Cu, Cr, and Mo are added in an amount of 0.05% or more because they are effective for improving the strength of the steel material. However, when added in large amounts, the weldability and the HAZ toughness are reduced. The upper limits were 0% and 0.5%.
[0026]
Ni is added in an amount of 0.05% or more to improve the strength and toughness of the steel material. However, since an increase in the amount of Ni increases the cost, the upper limit is 3.5%.
[0027]
Ti is a deoxidizing element and, at the same time, is added with N in an amount of 0.003% or more because it combines with N to form a Ti nitride, which has a certain effect on the heating γ and the grain refinement of HAZ. However, when the amount of solid solution Ti increases, the HAZ toughness decreases, so the upper limit is 0.10%.
[0028]
V is added in an amount of 0.005% or more to improve hardenability and form carbonitrides to contribute to high strength. However, a large amount of V deteriorates HAZ toughness, so the upper limit is 0.10%.
[0029]
B is added in an amount of 0.0002% or more because it is effective in suppressing the growth of grain boundary ferrite and ferrite side plates and increasing the strength, which is detrimental to HAZ toughness, but 0.0030% because excessive addition deteriorates toughness. Was set as the upper limit.
[0030]
Ca is effective in controlling the form of sulfides, and it is necessary to add 0.0005% or more in order to refine the HAZ structure by generating Ca-based oxides and improve toughness. However, since excessive addition generates coarse inclusions, the upper limit is 0.0030%.
[0031]
REM is an element effective for refining the HAZ structure and increasing the toughness, but since the excessive addition deteriorates the toughness, the content was limited to the range of 0.0005 to 0.0060%.
[0032]
Next, the technical concept forming the basis of the present invention will be described.
The present inventors aim at microstructure refinement by rolling in the γ region and subsequent accelerated cooling, with the aim of efficiently obtaining a steel sheet excellent in strength and toughness, the time between normal hot rolling passes, The relationship between the reduction ratio, the rolling temperature, and the metal structure was investigated in detail.
As a result, the recrystallization of γ is completed within the normal time between rolling passes, remarkable coarsening until the next pass is engaged is suppressed, and γ after recrystallization zone rolling (hereinafter abbreviated as OR) is completed. It has been found that the relationship between the rolling temperature and the rolling reduction is expressed by the following formulas (1) and (2) depending on the presence or absence of Nb as a condition for efficiently reducing the size of Nb.
[No Nb] 72200 / {72.4 + 8.1 × ln (-ln (1-R))} ≦ T
≦ 106000 / {85.6 + 8.1 × ln (−ln (1-R))}} 1
[With Nb] 72200 / {74.4 + A × ln (−ln (1-R))} ≦ T
≦ 106000 / {85.6 + 8.1 × ln (−ln (1-R))}} 2
[0033]
Further, they found that the relationship between the rolling temperature and the rolling reduction is expressed by the following formulas (3) and (4) as conditions for preventing recrystallization from starting within the normal time between rolling passes.
[No Nb] 61400 / {75.3 + 8.1 × ln (-ln (1-R))} ≦ T
≦ 72000 / {75.3 + 8.1 × ln (−ln (1-R))} ▲▲ 3 ▼
[With Nb] 61400 / {75.3 + 8.1 × ln (-ln (1-R))} ≦ T
≦ 72000 / {77.3 + A × ln (−ln (1-R))} ▲▲ 4 ▼
However,
T: rolling temperature (K),
R: reduction rate of each pass = (inlet side thickness-outside thickness) / inlet side thickness,
A = 8 + {25 × (R−0.2) +5} × {1-exp (−160 × Nb)},
Nb: Nb addition amount (% by mass).
[0034]
That is, in the case of aiming at γ refinement by rolling recrystallization, by selecting conditions satisfying the relationship between the rolling temperature and the rolling reduction in the formulas (1) and (2), γ can be recrystallized within the time between passes. After completion, grain growth until the next pass can be substantially avoided, and the γ grain size at the time of completion of OR can be efficiently reduced. On the other hand, when aiming for γ stretching by CR, by selecting conditions that satisfy the relationship between the rolling temperature and the rolling reduction in the formulas (3) and (4), it is possible to efficiently maintain γ in an unrecrystallized state and efficiently Can be rolled. By controlling the rolling temperature and rolling reduction for each pass, the number of rolling passes can be reduced without lowering the strength and toughness, and the temperature waiting time when performing CR can be reduced.
[0035]
Subsequently, the reasons for limiting the manufacturing conditions of the present invention will be described in detail.
In the present invention, the cast slab may be directly rolled without casting, and the cast slab may be reheated and rolled. The heating temperature is set to the Ac3 point or higher, and there is no particular need to set an upper limit. In the high-temperature rolling, conditions satisfying the relationship between the rolling temperature and the rolling reduction in the expressions (1) and (2) are selected in order to reduce the γ by recrystallization. This region is shown in FIG.
[0036]
If the rolling temperature and the rolling reduction fall outside the lower limits of the formulas (1) and (2), recrystallization of γ will not be completed between passes, and some unrecrystallized γ will remain. As a result, the grains grow remarkably between passes, and in any case, a uniform and fine structure is not finally obtained, and the strength and toughness are reduced. When performing CR following OR, conditions that satisfy the relationship between the rolling temperature and the rolling reduction in the equations (3) and (4) are selected. This region is shown in FIG.
If the rolling temperature and the rolling reduction fall outside the upper limits of the formulas (3) and (4), partial recrystallization occurs between the passes, resulting in a mixed grain structure. Not only can they not be accumulated, but productivity also drops significantly. Further, in order to improve the rolling efficiency while securing the strength and toughness, it is necessary to satisfy the expressions (5) and (6).
0 <ΣR ≦ 3h / 5 [h ≦ 40]… ▲ 5 ▼
h / 2−20 ≦ ΔR ≦ 3h / 5 [40 <h] ... [6]
However,
ΣR: Cumulative rolling reduction in unrecrystallized zone rolling = (transfer thickness−product thickness) / transfer thickness × 100 (%)
h: Product thickness (mm).
[0037]
This region is shown in FIG. If the relationship between the product thickness and the cumulative rolling reduction deviates below this area, the strain accumulation of the thick material will be insufficient and the toughness will decrease, and if it deviates upward, the strength and toughness will improve, but the productivity will be remarkable. And the rolling shape also deteriorates.
In order to satisfy the expressions (1) to (4), it is desirable to appropriately cool between rolling passes and between OR and CR, but it is not necessary to limit the cooling means from the viewpoint of controlling the metallographic structure.
[0038]
In the present invention, accelerated cooling after rolling is essential. This is because, even if γ-graining and elongation are performed by rolling, if air cooling is thereafter performed, the structure-refining effect is greatly impaired. The time until the start of cooling is not particularly limited, but it is desirable to start cooling as soon as possible after recrystallization in the case of OR and after rolling in the case of CR.
The average cooling rate in the thickness direction in the accelerated cooling needs to be 2 to 30 ° C./s. When the cooling rate is less than 2 ° C./s, the driving force for α transformation does not increase, and the structure is not sufficiently refined. If the cooling rate is more than 30 ° C./s, the hardness of the surface layer portion increases significantly, the elongation decreases, and the toughness also deteriorates. The cooling stop temperature need not be limited in the present invention, and may be determined according to the required characteristics of the steel material.
[0039]
As described above, by manufacturing under the conditions within the scope of the present invention, microstructure refinement is achieved without relying on extremely low-productivity low-temperature rolling and heat treatment steps, and strength / toughness and productivity can be improved. .
[0040]
【Example】
Trial production was performed using ropes having the chemical components shown in Table 1. Tables 2 and 3 show the manufacturing conditions of the steel sheet, the mechanical properties of the base material, and the productivity. YP and TS were values based on a total thickness tensile test piece (plate thickness ≦ 50 mm) or average values of 1 / t and tt parts of a JIS No. 4 round bar test piece. vTrs was an average value of JIS No. 4 impact test pieces (2 mm V notch Charpy) taken from 1/4 t and 1/2 t parts. The specimen sampling direction was perpendicular to the rolling direction.
[0041]
As is clear from Table 3, Examples 1 to 8 of the present invention were manufactured under predetermined conditions, so that strength and toughness were good and productivity was high.
On the other hand, Comparative Examples 1 to 8 are inferior in any of strength, toughness, and productivity for the following reasons, as compared with Inventive Examples 1 to 8 of the same steel type.
[0042]
In Comparative Example 1, since the temperature and rolling reduction after the fifth pass deviated from the upper limits of the conditions described in claim 1, γ remarkably grew after recrystallization, and the final structure was refined. However, the strength and toughness were reduced.
In Comparative Example 2, since the temperature and rolling reduction after the ninth pass deviated from the lower limit of Claim 3, γ was partially recrystallized to form a mixed grain structure, and the strength and toughness were deteriorated.
In Comparative Example 3, the temperature and rolling reduction in the 7th and 8th passes were low, and the lower limit of the CR condition of Claim 2 was exceeded, so that the material was almost the same as that of the invention example, but the productivity was greatly reduced.
[0043]
Comparative Example 4 did not satisfy the condition of the CR cumulative rolling reduction shown in claim 4 and was manufactured by OR, so that the toughness was significantly deteriorated.
In Comparative Example 5, since the temperature and rolling reduction of the CR in the fifth pass were high and deviated from the upper limit of the condition set forth in claim 4, partial recrystallization proceeded to form a mixed grain structure and the toughness was deteriorated. .
In Comparative Examples 6 and 7, since the cooling rate deviated from a predetermined range due to air cooling after rolling or excessive water cooling, strength and toughness were reduced.
In Comparative Example 8, because the temperature was outside the upper limit of the CR cumulative rolling reduction in claim 2, the temperature waiting time and the number of passes increased, and the productivity was significantly reduced.
[0044]
[Table 1]
Figure 2004269924
[0045]
[Table 2]
Figure 2004269924
[0046]
[Table 3]
Figure 2004269924
[0047]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it is possible to manufacture a steel plate with good strength and toughness without extremely impairing the productivity, and the industrial effects such as reduction of production cost and shortening of the construction period are extremely large.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a rolling temperature and a rolling reduction of each pass in recrystallization zone rolling.
FIG. 2 is a view showing a relationship between a rolling temperature and a rolling reduction of each pass in a non-recrystallization region rolling.
FIG. 3 is a diagram showing a relationship between a product thickness and a cumulative rolling reduction in unrecrystallized region rolling.

Claims (7)

質量%で、
C :0.03〜0.20%、
Si:0.05〜1.0%、
Mn:0.40〜2.0%、
P :≦0.025%、
S :≦0.020%、
Al:0.005〜0.10%、
N :0.0005〜0.0080%
を含み、残部がFeおよび不可避的不純物からなる鋼を、鋳造後Ar3 点以下の温度まで冷却することなくそのまま、あるいはAc3 点以上の温度域に加熱してから、各圧延パスにおいて下式を満たす圧延温度と圧下率の関係で再結晶域圧延した後、板厚方向の平均冷却速度が2〜30℃/sで水冷することを特徴とする強度・靭性に優れた鋼板の高効率製造方法。
72200/{72.4+8.1×ln(−ln (1−Rj) )}≦Tj
≦106000/{85.6+8.1×ln(−ln (1−Rj) )}
ただし、Tj:j番目の圧延パスの圧延温度(K)、
Rj:j番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚。
In mass%,
C: 0.03 to 0.20%,
Si: 0.05 to 1.0%,
Mn: 0.40-2.0%,
P: ≦ 0.025%,
S: ≦ 0.020%,
Al: 0.005 to 0.10%,
N: 0.0005 to 0.0080%
After casting, the steel consisting of Fe and unavoidable impurities is heated without cooling to a temperature of not more than the Ar3 point after casting, or after being heated to a temperature range of not less than the Ac3 point, and the following formula is satisfied in each rolling pass. A high-efficiency production method of a steel sheet having excellent strength and toughness, characterized in that after rolling in a recrystallization zone in a relationship between a rolling temperature and a rolling reduction, the steel sheet is water-cooled at an average cooling rate in a thickness direction of 2 to 30 ° C./s.
72200 / {72.4 + 8.1 × ln (−ln (1-Rj))} ≦ Tj
≦ 106000 / {85.6 + 8.1 × ln (−ln (1-Rj))}
Here, Tj: the rolling temperature (K) of the j-th rolling pass,
Rj: rolling reduction of the j-th rolling pass = (incoming plate thickness-outgoing plate thickness) / incoming plate thickness.
質量%で、
C :0.03〜0.20%、
Si:0.05〜1.0%、
Mn:0.40〜2.0%、
P :≦0.025%、
S :≦0.020%、
Al:0.005〜0.10%、
N :0.0005〜0.0080%
を含み、残部がFeおよび不可避的不純物からなる鋼を、鋳造後Ar3 点以下の温度まで冷却することなくそのまま、あるいはAc3 点以上の温度域に加熱してから、各圧延パスにおいて下記▲1▼式を満たす圧延温度と圧下率の関係で再結晶域圧延し、その後引き続いて▲2▼、▲3▼式または▲2▼、▲4▼式を満たす圧延温度と圧下率の関係で未再結晶域圧延を行った後、板厚方向の平均冷却速度が2〜30℃/sで水冷することを特徴とする強度・靭性に優れた鋼板の高効率製造方法。
72200/{72.4+8.1×ln(−ln (1−Rj) )}≦Tj
≦106000/{85.6+8.1×ln(−ln (1−Rj) )}…▲1▼
61400/{75.3+8.1×ln(−ln (1−Rk) )}≦Tk
≦72000/{75.3+8.1×ln(−ln (1−Rk) )} …▲2▼
0<ΣRk≦3h/5 [h≦40] …▲3▼
h/2−20≦ΣRk≦3h/5 [40<h] …▲4▼
ただし、Tj:j番目の圧延パスの圧延温度(K)、
Rj:j番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、
Tk:k番目の圧延パスの圧延温度(K)、
Rk:k番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、j<k、
h :製品厚(mm)、
ΣRk:未再結晶域圧延の累積圧下率=(移送厚−製品厚)/移送厚×100(%)。
In mass%,
C: 0.03 to 0.20%,
Si: 0.05 to 1.0%,
Mn: 0.40-2.0%,
P: ≦ 0.025%,
S: ≦ 0.020%,
Al: 0.005 to 0.10%,
N: 0.0005 to 0.0080%
After the casting, the steel consisting of Fe and unavoidable impurities is heated without cooling to a temperature of not more than the Ar3 point after casting or after being heated to a temperature range of not less than the Ac3 point. Rolling in the recrystallization zone according to the relationship between the rolling temperature and the rolling reduction that satisfies the formula, followed by unrecrystallization in the relationship between the rolling temperature and the rolling reduction that satisfies the formulas (2) and (3) or (2) and (4). A high-efficiency production method of a steel sheet having excellent strength and toughness, characterized in that after the zone rolling, the steel sheet is water-cooled at an average cooling rate in a thickness direction of 2 to 30 ° C./s.
72200 / {72.4 + 8.1 × ln (−ln (1-Rj))} ≦ Tj
≦ 106000 / {85.6 + 8.1 × ln (−ln (1-Rj))}...
61400 / {75.3 + 8.1 × ln (−ln (1-Rk))} ≦ Tk
≦ 72000 / {75.3 + 8.1 × ln (−ln (1-Rk))} ▲▲ 2 ▼
0 <ΣRk ≦ 3h / 5 [h ≦ 40] ... ▲ 3 ▼
h / 2-20 ≦ ΣRk ≦ 3h / 5 [40 <h]… ▲ 4 ▼
Here, Tj: the rolling temperature (K) of the j-th rolling pass,
Rj: rolling reduction of the j-th rolling pass = (inlet-side sheet thickness-outlet-side sheet thickness) / inlet-side sheet thickness,
Tk: rolling temperature (K) of the k-th rolling pass,
Rk: rolling reduction of k-th rolling pass = (incoming plate thickness-outgoing plate thickness) / incoming plate thickness, j <k,
h: Product thickness (mm)
ΣRk: Cumulative rolling reduction in non-recrystallization zone rolling = (transfer thickness−product thickness) / transfer thickness × 100 (%).
質量%で、
C :0.03〜0.20%、
Si:0.05〜1.0%、
Mn:0.40〜2.0%、
Nb:0.003〜0.050%、
P :≦0.025%、
S :≦0.020%、
Al:0.005〜0.10%、
N :0.0005〜0.0080%
を含み、残部がFeおよび不可避的不純物からなる鋼を、鋳造後Ar3 点以下の温度まで冷却することなくそのまま、あるいはAc3 点以上の温度域に加熱してから、各圧延パスにおいて下式を満たす圧延温度と圧下率の関係で再結晶域圧延した後、板厚方向の平均冷却速度が2〜30℃/sで水冷することを特徴とする強度・靭性に優れた鋼板の高効率製造方法。
72200/{74.4+Aj×ln(−ln (1−Rj) )}≦Tj
≦106000/{85.6+8.1×ln(−ln (1−Rj) )}
ただし、Tj:j番目の圧延パスの圧延温度(K)、
Rj:j番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、
Aj=8+{25× (Rj−0.2) +5}×{1−exp(−160×Nb) }、
Nb:Nb添加量(質量%)。
In mass%,
C: 0.03 to 0.20%,
Si: 0.05 to 1.0%,
Mn: 0.40-2.0%,
Nb: 0.003 to 0.050%,
P: ≦ 0.025%,
S: ≦ 0.020%,
Al: 0.005 to 0.10%,
N: 0.0005 to 0.0080%
After casting, the steel consisting of Fe and unavoidable impurities is heated without cooling to a temperature of not more than the Ar3 point after casting, or after being heated to a temperature range of not less than the Ac3 point, and the following formula is satisfied in each rolling pass. A high-efficiency production method of a steel sheet having excellent strength and toughness, characterized in that after rolling in a recrystallization zone in a relationship between a rolling temperature and a rolling reduction, the steel sheet is water-cooled at an average cooling rate in a thickness direction of 2 to 30 ° C./s.
72200 / {74.4 + Aj × ln (−ln (1-Rj))} ≦ Tj
≦ 106000 / {85.6 + 8.1 × ln (−ln (1-Rj))}
Here, Tj: the rolling temperature (K) of the j-th rolling pass,
Rj: rolling reduction of the j-th rolling pass = (inlet-side sheet thickness-outlet-side sheet thickness) / inlet-side sheet thickness,
Aj = 8 + {25 × (Rj−0.2) +5} × {1-exp (−160 × Nb)},
Nb: Nb addition amount (% by mass).
質量%で、
C :0.03〜0.20%、
Si:0.05〜1.0%、
Mn:0.40〜2.0%、
Nb:0.003〜0.050%、
P :≦0.025%、
S :≦0.020%、
Al:0.005〜0.10%、
N :0.0005〜0.0080%
を含み、残部がFeおよび不可避的不純物からなる鋼を、鋳造後Ar3 点以下の温度まで冷却することなくそのまま、あるいはAc3 点以上の温度域に加熱してから、各圧延パスにおいて下記▲1▼式を満たす圧延温度と圧下率の関係で再結晶域圧延し、その後引き続いて▲2▼、▲3▼式または▲2▼、▲4▼式を満たす圧延温度と圧下率の関係で未再結晶域圧延を行った後、板厚方向の平均冷却速度が2〜30℃/sで水冷することを特徴とする強度・靭性に優れた鋼板の高効率製造方法。
72200/{74.4+Aj×ln(−ln (1−Rj) )}≦Tj
≦106000/{85.6+8.1×ln(−ln (1−Rj) )}…▲1▼
61400/{75.3+8.1×ln(−ln (1−Rk))}≦Tk
≦72000/{77.3+Ak×ln(−ln(1−Rk))} …▲2▼
0<ΣRk≦3h/5 [h≦40] …▲3▼
h/2−20≦ΣRk≦3h/5 [40<h] …▲4▼
ただし、Tj:j番目の圧延パスの圧延温度(K)、
Rj:j番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、
Tk:k番目の圧延パスの圧延温度(K)、
Rk:k番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、j<k、
Aj=8+{25× (Rj−0.2) +5}×{1−exp(−160×Nb) }、
Ak=8+{25× (Rk−0.2) +5}×{1−exp(−160×Nb) }、
Nb:Nb添加量(質量%)、
h:製品厚(mm)、
ΣRk:未再結晶域圧延の累積圧下率=(移送厚−製品厚)/移送厚×100(%)。
In mass%,
C: 0.03 to 0.20%,
Si: 0.05 to 1.0%,
Mn: 0.40-2.0%,
Nb: 0.003 to 0.050%,
P: ≦ 0.025%,
S: ≦ 0.020%,
Al: 0.005 to 0.10%,
N: 0.0005 to 0.0080%
After the casting, the steel consisting of Fe and unavoidable impurities is heated without cooling to a temperature of not more than the Ar3 point after casting or after being heated to a temperature range of not less than the Ac3 point. Rolling in the recrystallization zone according to the relationship between the rolling temperature and the rolling reduction that satisfies the formula, followed by unrecrystallization in the relationship between the rolling temperature and the rolling reduction that satisfies the formulas (2) and (3) or (2) and (4). A high-efficiency production method of a steel sheet having excellent strength and toughness, characterized in that after the zone rolling, the steel sheet is water-cooled at an average cooling rate in a thickness direction of 2 to 30 ° C./s.
72200 / {74.4 + Aj × ln (−ln (1-Rj))} ≦ Tj
≦ 106000 / {85.6 + 8.1 × ln (−ln (1-Rj))}...
61400 / {75.3 + 8.1 × ln (−ln (1-Rk))} ≦ Tk
≦ 72000 / {77.3 + Ak × ln (−ln (1-Rk))}.
0 <ΣRk ≦ 3h / 5 [h ≦ 40] ... ▲ 3 ▼
h / 2-20 ≦ ΣRk ≦ 3h / 5 [40 <h]… ▲ 4 ▼
Here, Tj: the rolling temperature (K) of the j-th rolling pass,
Rj: rolling reduction of the j-th rolling pass = (inlet-side sheet thickness-outlet-side sheet thickness) / inlet-side sheet thickness,
Tk: rolling temperature (K) of the k-th rolling pass,
Rk: rolling reduction of k-th rolling pass = (incoming plate thickness-outgoing plate thickness) / incoming plate thickness, j <k,
Aj = 8 + {25 × (Rj−0.2) +5} × {1-exp (−160 × Nb)},
Ak = 8 + {25 × (Rk−0.2) +5} × {1-exp (−160 × Nb)},
Nb: Nb addition amount (% by mass),
h: Product thickness (mm)
ΣRk: Cumulative rolling reduction in non-recrystallization zone rolling = (transfer thickness−product thickness) / transfer thickness × 100 (%).
再結晶域圧延終了後、未再結晶域圧延開始までの間において水冷することを特徴とする請求項2〜4のいずれか1項に記載の強度・靭性に優れた鋼板の高効率製造方法。The high-efficiency method for producing a steel sheet having excellent strength and toughness according to any one of claims 2 to 4, wherein water cooling is performed after the recrystallization zone rolling is completed and before the unrecrystallization zone rolling is started. 再結晶域圧延、または未再結晶域圧延の各圧延パス間において水冷することを特徴とする請求項1〜5のいずれか1項に記載の強度・靭性に優れた鋼板の高効率製造方法。The high-efficiency method for producing a steel sheet excellent in strength and toughness according to any one of claims 1 to 5, wherein water cooling is performed between each rolling pass of recrystallization zone rolling or unrecrystallization zone rolling. 前記組成に加えて、
Cu:0.05〜1.5%、
Cr:0.05〜1.0%、
Mo:0.05〜0.5%、
Ni:0.05〜3.5%、
Ti:0.003〜0.10%、
V :0.005〜0.10%、
B :0.0002〜0.0030%、
Ca:0.0005〜0.0030%、
REM:0.0005〜0.0060%
の1種または2種以上を含有する鋼片を用いることを特徴とする請求項1〜6のいずれか1項に記載の強度・靭性に優れた鋼板の高効率製造方法。
In addition to the above composition,
Cu: 0.05-1.5%,
Cr: 0.05 to 1.0%,
Mo: 0.05-0.5%,
Ni: 0.05 to 3.5%,
Ti: 0.003 to 0.10%,
V: 0.005 to 0.10%,
B: 0.0002 to 0.0030%,
Ca: 0.0005 to 0.0030%,
REM: 0.0005-0.0060%
The method for producing a steel sheet having excellent strength and toughness according to any one of claims 1 to 6, wherein a steel slab containing one or more of the following is used.
JP2003059495A 2003-03-06 2003-03-06 High efficient producing method of steel sheet excellent in strength and toughness Withdrawn JP2004269924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059495A JP2004269924A (en) 2003-03-06 2003-03-06 High efficient producing method of steel sheet excellent in strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059495A JP2004269924A (en) 2003-03-06 2003-03-06 High efficient producing method of steel sheet excellent in strength and toughness

Publications (1)

Publication Number Publication Date
JP2004269924A true JP2004269924A (en) 2004-09-30

Family

ID=33122292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059495A Withdrawn JP2004269924A (en) 2003-03-06 2003-03-06 High efficient producing method of steel sheet excellent in strength and toughness

Country Status (1)

Country Link
JP (1) JP2004269924A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174332A (en) * 2009-01-29 2010-08-12 Jfe Steel Corp Non-heat-treated low yield ratio high tensile thick steel plate, and method for producing the same
WO2011096456A1 (en) * 2010-02-08 2011-08-11 新日本製鐵株式会社 Production method for thick steel plate
WO2011099408A1 (en) * 2010-02-15 2011-08-18 新日本製鐵株式会社 Production method for thick steel plate
CN104011250A (en) * 2011-12-27 2014-08-27 杰富意钢铁株式会社 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
JP2015214724A (en) * 2014-05-09 2015-12-03 Jfeスチール株式会社 Highly efficient production method of steel plate with excellent collision resistance
CN105908095A (en) * 2016-06-02 2016-08-31 湖北汽车工业学院 High-plasticity cast steel and preparation method thereof
CN106694600A (en) * 2015-11-17 2017-05-24 鞍钢股份有限公司 Production method of stainless steel ultra-thick composite board
CN106694549A (en) * 2015-11-17 2017-05-24 鞍钢股份有限公司 Production method of super-thick carbon die steel plate
WO2022145061A1 (en) 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174332A (en) * 2009-01-29 2010-08-12 Jfe Steel Corp Non-heat-treated low yield ratio high tensile thick steel plate, and method for producing the same
WO2011096456A1 (en) * 2010-02-08 2011-08-11 新日本製鐵株式会社 Production method for thick steel plate
JP4874435B2 (en) * 2010-02-08 2012-02-15 新日本製鐵株式会社 Thick steel plate manufacturing method
CN102666884A (en) * 2010-02-08 2012-09-12 新日本制铁株式会社 Production method for thick steel plate
CN102666884B (en) * 2010-02-08 2013-07-31 新日铁住金株式会社 Production method for thick steel plate
WO2011099408A1 (en) * 2010-02-15 2011-08-18 新日本製鐵株式会社 Production method for thick steel plate
JP4874434B1 (en) * 2010-02-15 2012-02-15 新日本製鐵株式会社 Thick steel plate manufacturing method
CN102666885A (en) * 2010-02-15 2012-09-12 新日本制铁株式会社 Production method for thick steel plate
CN102666885B (en) * 2010-02-15 2013-08-07 新日铁住金株式会社 Production method for thick steel plate
EP2799585A1 (en) * 2011-12-27 2014-11-05 JFE Steel Corporation High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
CN104011250A (en) * 2011-12-27 2014-08-27 杰富意钢铁株式会社 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
EP2799585A4 (en) * 2011-12-27 2015-01-14 Jfe Steel Corp High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
JP2015214724A (en) * 2014-05-09 2015-12-03 Jfeスチール株式会社 Highly efficient production method of steel plate with excellent collision resistance
CN106694600A (en) * 2015-11-17 2017-05-24 鞍钢股份有限公司 Production method of stainless steel ultra-thick composite board
CN106694549A (en) * 2015-11-17 2017-05-24 鞍钢股份有限公司 Production method of super-thick carbon die steel plate
CN106694549B (en) * 2015-11-17 2018-06-26 鞍钢股份有限公司 Production method of super-thick carbon die steel plate
CN106694600B (en) * 2015-11-17 2018-06-26 鞍钢股份有限公司 Production method of stainless steel ultra-thick composite board
CN105908095A (en) * 2016-06-02 2016-08-31 湖北汽车工业学院 High-plasticity cast steel and preparation method thereof
WO2022145061A1 (en) 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
KR20230110325A (en) 2020-12-28 2023-07-21 닛폰세이테츠 가부시키가이샤 steel

Similar Documents

Publication Publication Date Title
JP5233020B2 (en) Yield strength 800 MPa class low weld crack sensitive steel plate and method for producing the same
KR100868423B1 (en) High strength api-x80 grade steels for spiral pipes with less strength changes and method for manufacturing the same
JP2005240172A (en) High strength thin steel sheet having excellent workability and surface property and method for manufacturing the same
JP2010229528A (en) High tensile strength steel sheet having excellent ductility and method for producing the same
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP6682988B2 (en) High-tensile steel plate with excellent ductility and method of manufacturing the same
JPH11229079A (en) Ultrahigh strength steel plate for line pipe and its production
JP2011052295A (en) High-strength cold-rolled steel sheet superior in balance between elongation and formability for extension flange
JP2006002186A (en) Method for producing high strength cold-rolled steel sheet excellent in ductility and pore-expandability
JP4277405B2 (en) Manufacturing method of hot-rolled steel sheet for high-strength ERW steel pipe excellent in low temperature toughness and weldability
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
CN111542621B (en) High-strength high-toughness hot-rolled steel sheet and method for producing same
JP7569928B2 (en) High strength thick hot rolled steel sheet with excellent elongation ratio and its manufacturing method
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP2004269924A (en) High efficient producing method of steel sheet excellent in strength and toughness
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP2007191785A (en) Method for manufacturing high-tensile steel material superior in weld cracking resistance
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JP2004010971A (en) Method for producing steel sheet having excellent strength and toughness and satisfactory flatness at high efficiency
JPH07224351A (en) Hot rolled high strength steel plate excellent in uniform elongation after cold working and its production
JP2009242849A (en) Method for producing high toughness steel
EP4265795A1 (en) Ultrathick steel plate having excellent low-temperature impact toughness and method for manufacturing same
JP3916113B2 (en) High strength Ti-added hot-rolled steel sheet for processing and manufacturing method thereof
JP2003129133A (en) Method for manufacturing thick steel plate with high strength and high toughness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509