[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004269922A - Photochromophoric member presenting visible chromatic color as structural color, manufacturing method therefor, and process for manufacturing electrodeposited color sheet using the method - Google Patents

Photochromophoric member presenting visible chromatic color as structural color, manufacturing method therefor, and process for manufacturing electrodeposited color sheet using the method Download PDF

Info

Publication number
JP2004269922A
JP2004269922A JP2003059210A JP2003059210A JP2004269922A JP 2004269922 A JP2004269922 A JP 2004269922A JP 2003059210 A JP2003059210 A JP 2003059210A JP 2003059210 A JP2003059210 A JP 2003059210A JP 2004269922 A JP2004269922 A JP 2004269922A
Authority
JP
Japan
Prior art keywords
color
light
fine particles
black
chromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003059210A
Other languages
Japanese (ja)
Other versions
JP3995242B2 (en
Inventor
Shinichi Nakayama
進一 中山
Tetsuya Yoshida
哲也 吉田
Yuka Okuda
有香 奥田
Yuko Tsunoda
祐子 角田
Junji Watanabe
順次 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Kagaku KK
Soken Chemical and Engineering Co Ltd
Original Assignee
Soken Kagaku KK
Soken Chemical and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soken Kagaku KK, Soken Chemical and Engineering Co Ltd filed Critical Soken Kagaku KK
Priority to JP2003059210A priority Critical patent/JP3995242B2/en
Publication of JP2004269922A publication Critical patent/JP2004269922A/en
Application granted granted Critical
Publication of JP3995242B2 publication Critical patent/JP3995242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photochromophoric member that is constituted by monodispersed particles of an organic or inorganic polymer which is not colored with a dye or pigment having a chromatic color, and presents a chromatic color such as red (R), blue (B), green (G) and yellow (Y) as a structural color, when a perpendicularly reflected light from an incident visible light is visually appreciated. <P>SOLUTION: The photochromophoric member presents a chromatic color having a chroma saturation of at least 3 or more expressed by Munsell color indicator as a structural color, when a perpendicularly reflected light from an incident light having wavelengths in a range of the visible light of sunlight (or white light) onto the surface formed of the monodispersed spherical particles of the organic or inorganic polymer, is visually appreciated, wherein the spherical particles of the organic or inorganic polymer are a black-based achromatic color monodispersed particles, and have a particular particle sizes of which the average particle diameter expressed by volume base is in a range of 100 to 500 nm, and the black-based achromatic color monodispersed spherical particles align regularly toward longitudinal and transverse directions to form a multilayer. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、構造色として有彩光色を呈する光発色部材に関し、より詳細には、染料及び/又は顔料等の彩色性染顔料で着色されていない有機ポリマー又は無機の球状微粒子で構成されている光発色部材であって、可視光領域の光が照射されて視感される垂直反射光色が、赤(R)、青(B)、緑(G)及び黄(Y)等の色みの構造色を視感させる光発色部材に関する。
また、本発明は、電気泳動下にこのような光発色部材を形成させる光発色部材の製造方法及びこの製造方法を用いてなる電着カラー板の製造方法にも関する。
【0002】
【従来の技術】
従来から、我々が色を視感する場合に、カラーテレビのように、電子ビームの照射を受けて生じたR、G、Bの三種の蛍光物質が光源として放出する光が、我々に有彩光色を視感させる光源色と、物に色をつける染料又は顔料なる染顔料物質(又は着色材)が、可視光線の特定の波長を強く吸収することで、反射又は透過する特定波長を、色みの有る有彩色として視感させる物体色とがある。
更には、我々は物資系に太陽光又は白色光が照射されて、光の屈折(虹)、回折(液晶)、散乱(青空、夕焼け)及び干渉(水面の油膜、シャボン玉、オパール)等の光の方向変更によって分光された色光を視感することができる。これらは、光が照射された物質系が、特定波長領域の可視光を吸収するか、透過するか、反射するかして、透過色、吸収色及び反射色の何れかが優先されて、その物質系の特定有彩発色(又は着色)として我々の目に視感されるものである。
【0003】
そこで、可視光波長領域(380〜780nm)において、太陽光又は白色光が物質に照射された後、分光反射されて我々の目に入る特定波長領域(nm)とその物質系の色光として発色する色との関係を反射率曲線で表すと、例えば、赤色系は600nm以上の全波長領域の反射光で、黄色系は490nm以上の全波長領域の反射光で、緑色系は460〜590nm内の全波長領域の反射光で、青色系は510nm以下の全波長領域の反射光で、また、紫色系は緑色系の丁度逆の460〜590nm内全波長領域が吸収されて、それ以外の全波長領域の反射光等であって、可視光が照射されて我々が視感する特定色の反射発色(又は反射光色)とは、対応するこの特定波長領域の反射光色である。
【0004】
そこで、
【特許文献1】には、顔料等の着色材を用いない単分散酸化チタン粒子を基材上に堆積させた薄膜において、その粒子の粒径に応じて、その外観色調が、赤色系から青色系の干渉色調になる単分散酸化チタンの単層及び多層薄膜が記載されている。
【0005】
また、
【特許文献2】には、干渉による着色光が明瞭に見えるために、標準色立体において明度が6以下で、彩度が8以下の黒色或いは暗色である合成樹脂等の撥液性の下地層表面上に、無着色の単分散の固体微粒子が凝集配列されている規則的周期構造物なる付着物が、光干渉発色の明瞭な単色光を呈することが記載されている。これらの発色物を例えば、ドットとしてインクジェット記録の発色表示物(記録物)に用いることができる。この付着記録物を構成する無着色の固体微粒子の粒径分布は単分散であって、このような固体微粒子としては、シリカ、アルミナ、チタニア、シリカ・アルミナ、チタニア・セレン、チタニア・セレン・シリカ等の無機酸化物微粒子や、(メタ)アクリル系樹脂、スチレン系樹脂、オレフィン系樹脂等の有機ポリマー微粒子が挙げられ、その数平均粒子径が100〜1000nmの範囲にあると記載されている。
【0006】
また、従来から、その発色が顔料に由来せずに鮮やかな群青色や、青空のオパール様回折発色を視認させるモルフォ蝶は、その羽のリン粉の表面構造としてサイズが、0.65μmの光の波長程度の規則的な線状回折格子が存在していることが知られている。そこで、【特許文献3】には、ポリスチレンや、シリカ等の0.1〜10μmオーダー微粒子(球)が最密充填された六方格子単層微粒子膜を有する角度異存のないオパール様回折発色膜について記載されている。両者の回折発色を比較すると、モルフォ蝶のきらきら光る美しオパール様回折光は、極めて規則的な線状回折格子から生まれるのに対して、【特許文献3】では極めて規則的な点状回折格子が係わっていると記載されている。しかしながら、【特許文献3】に記載されている回折発色は、何れの粒子も無色なので、通常の光照射下では発色が視感されず、暗視野下での回折光で鮮やかな回折発色が見られると記載されている。
【0007】
また、【非特許文献1】に開示されている孔雀の羽の微細構造に係わる輝く構造色は、眺める角度を変化させることで黄色から緑色に色が変わって見える光の干渉色である。また、その羽の表面のSEM写真から、粒状物が規則的に数層にわたって配列されていて、その粒径は140nm程度の光の波長より小さいものであって、その粒状物は、メラミン色素の顆粒で、このメラミン色調の顆粒が光を吸収させる作用を果たしていると記載されている。
【0008】
また、【特許文献4】には、粒径0.05〜1μmのアクリル樹脂微粒子を分散含有するメッキ浴中に浸漬させる金属板陰極上に、樹脂微粒子と金属を同時に析出させる電気泳動メッキ法が記載されている。
【0009】
また、【特許文献5】には、有機顔料微粒子をアクリル樹脂でコートさせて易泳動性にし、この顔料微粒子を含有するアニオン系電着塗料浴中に漬かるステンレス又はアルミニウム製の陰極板上に、この有機顔料微粒子を電気泳動させてなる電着塗装法が記載されている。
【0010】
【特許文献1】特開2001−206719号公報
【特許文献2】特開2001−239661号公報
【特許文献3】特開平08−234007号公報
【特許文献4】特開昭62−99498号公報
【特許文献5】特開平04−154999号公報
【非特許文献1】吉岡,OplusE,vol.23,No.3,323(2001)
【0011】
【発明が解決しようとする課題】
以上のような状況下にあって、従来から染顔料を用いない粒径が一様な透明材料からなる微粒子すなわち単分散微粒子を規則的に配列させることで、その微粒子配列による光の干渉が起こる。このような積層構造体に係わる特有の干渉色調(反射光色)を呈する光色部材が多く報告されている。
既に上述した【特許文献1】に記載する単分散酸化チタンに関しては、粒径を制御することでその大きさに準じて、その外観干渉光色調が、赤色系から青色系に自在に調製できる単分散酸化チタンの薄膜であると記載されている。しかしながら、このような色みになるように粒径を制御すると記載されているものの、具体的に粒径と色み(又は色調)が、どのような係わりにあるのか全く開示も示唆もされていなく、単に粒径によって色みが変化すると記載されているものである。また、シリカ等の各種の無機質粒子や有機高分子粒子からなるこのような成膜も可能であると記載されているが、これらについても全く具体的な開示も示唆もなされていない。
【0012】
また、【特許文献2】に記載する光透過性の単分散の固体微粒子を凝集配列させた規則的周期構造物が、光干渉発色の明瞭な単色光を呈するのは、明度が6以下で、彩度が8以下の黒色或いは暗色の基板上(下地層表面上)に、この規則的周期構造物が形成されることで発色が視感されるものである。これは、【特許文献2】に記載されている如く、明瞭な干渉色光を視感するには、微粒子配列凝集物から反射される干渉光に比べて、下地を上記する特定の明度及び彩度の黒色或いは暗色にすることで、下地面からの散乱反射光が充分に弱められるからである。また、このような固体微粒子の数平均粒径は、100〜1000nmの範囲にあって、その具体的に開示されているシリカ微粒子の上記配列凝集物のSEM観測から、粒子径と干渉反射光の色みは、粒子径280nmで赤色、粒子径250nmで緑色、また粒子径205nmで青色と記載されている。
【0013】
また、既に上述した如く、【特許文献3】に記載する、ポリスチレンや、シリカ等の0.1〜10μmオーダーの微粒子を最密充填させた六方格子単層微粒子膜の光発色は、極めて規則的な点状回折格子に係わる回折発色である。これらの回折発色は、何れの粒子も無色なので、通常の光照射下では発色せず着色を視感されず、暗視野下の回折光で見られる回折発色として視感されるものである。
【0014】
そこで、本発明の目的は、所定の平均粒子径を有する有機ポリマー又は無機の単分散球状微粒子を用いて形成された構造物表面に、自然光(又は白色光)可視光波長領域光の照射下に視感される垂直反射光色が、色み(又は色調)に深み感のある明確な有彩光色で、しかも、視感される有彩光色種と、その表面を形成する有機ポリマー又は無機の単分散球状微粒子の平均粒子径とが、明確な係わりを有している光発色部材を提供することにある。
【0015】
また、本発明の他の目的は、有機ポリマー又は無機の単分散球状微粒子がサスペンドするサスペンジョン中での電気泳動下に、浸漬電極板上にこのような光発色部材を効率的に泳動堆積させてなる光発色部材の製造方法を提供することである。
【0016】
更に、本発明の他の目的は、このような電気泳動下に電極である鋼板、ステンレス板、アムミニウム板及びアルミ合金板等の下地金属板上に、このような光発色部材を一様に泳動堆積させてなるカラーが構造色として視感される有彩光色である電着カラー板の製造方法を提供することである。
【0017】
【課題を解決するための手段】
本発明者らは、上記課題を鋭意検討した結果、鮮やかな光の干渉色を呈する孔雀の羽の表面には、メラミン質の顆粒状物が規則的に数層に配列されていることに着目して、粒径が数百nmのアクリル系ポリマーの単分散微粒子に、予め黒色染料で着色させた黒色系無彩色粒子の水性分散体を調製し、これを透明基材面上に乾燥積層物として形成させたところ、その積層物表面が、自然光の照射下に色み(又は色調) に深み感のある赤色の有彩色を呈していた。その表面構造をSEM写真像で観察したところ、全く色みの無い黒色系無彩色の球状粒子が規則的に整合されている粒子状積層物であることを見出して、本発明を完成させた。
【0018】
本発明によれば、SEM写真画像から、有機ポリマー又は無機の黒色系無彩色の単分散球状粒子が、縦及び横方向に密に規則的に整合(又は配列)されてなる粒子状積層物の表面に、波長領域380〜780nmの可視光線を照射させると、目に視感される垂直反射光色が、このポリマー微粒子の明確な特定粒子径との係わりを有し、しかも、明確な赤、緑、青等の色みの有彩光色を呈することを特徴とする光発色部材を提供する。
【0019】
すなわち、本発明による光発色部材は、その表面で太陽光(又は白色光)可視光波長領域光線が照射されて視感される垂直反射光色が、明確な赤、青、緑等の色みの有る有彩色を視感させるものである。
その表面は、上述する如く特定の有機ポリマー又は無機の黒色系無彩色の単分散球状粒子が、縦及び横方向に規則的に整合されている粒子状積層物であることが特徴である。マンセル色票における明度が5以下の無彩色の単分散粒子であることが特徴である。
また、このような表面を形成する有機ポリマー又は無機の単分散球状微粒子は、少なくとも色みの無い灰色、黒褐色、黒色等から選ばれる何れか1種の黒色系無彩色の単分散球状粒子であることが特徴である。
更には、この単分散球状粒子は、体積基準で表す平均粒子径(d)が100〜500nmの範囲にある特定の粒子径を有していることが特徴である。
【0020】
また、本発明によれば、コロイド状黒色系無彩色の有機ポリマー又は無機の単分散球状粒子が分散するサスペンジョン中に、対向する一対の電極板を浸漬させ、所定の印加電圧下に泳動させて、電極板上に構造色を発色する粒子状積層物を泳動堆積(又は電着)させる。この堆積粒子状積層物に自然光(又は白色光)可視光波長領域光を照射させて視感される垂直反射光色が、明確な有彩光色を呈していることを特徴とする構造色なる光発色部材の製造方法を提供する。
【0021】
すなわち、このサスペンジョン中には、少なくとも色みの無い灰色、黒褐色、黒色から選ばれる何れか1種の黒色系無彩色で、且つ体積基準で表す平均粒子径(d)が100〜500nmの範囲にある特定粒子径を有する有機ポリマー又は無機の単分散球状粒子が5〜50重量%濃度でサスペンドされている。
このサスペンジョン中に、対向する一対の電極板を浸漬させ、電極間に1.5V以上の電圧を印加させ、サスペンドする黒色系無彩色の単分散球状粒子を泳動させ、対向する何れか一方の電極板上に泳動堆積させる。この堆積物は、有機ポリマー又は無機の単分散球状粒子が縦及び横方向に規則的に整合された数層の粒子状積層物として形成され、構造色として明確な有彩光色を呈する光発色部材である。
【0022】
更には、本発明によれば、有機ポリマー又は無機の単分散球状粒子がサスペンドするサスペンジョン中で、電気泳動下に電極板上に泳動堆積させてなる光発色部材の製造方法を用いて、視感されるカラーが構造色としての有彩光色であることを特徴とする電着カラー板の製造方法を提供する。
【0023】
すなわち、少なくとも色みの無い灰色、黒褐色、黒色から選ばれる何れか1種の黒色系無彩色で、且つ体積基準で表す平均粒子径(d)が100〜500nmの範囲にある特定粒子径を有する有機ポリマー又は無機の単分散球状粒子が5〜50重量%濃度でサスペンドするサスペンジョンを調製する。
このサスペンジョン中に、鋼板、ステンレス板、アルミニウム板及びアルミニウム合金板から選ばれる何れか一種の金属板を、対向する一対の電極板として浸漬させる。
次いで、電気泳動下に構造色なる光発色部材を製造する方法を用いて、上記する一対の何れか一方の電極板上に、サスペンド粒子である有機ポリマー又は無機の単分散球状粒子を縦及び横方向に規則的に泳動堆積させてなる粒子状積層物が構造色としての有彩光色を視感させる電着カラー板である。
【0024】
(作用)
このような本発明による光発色部材は、後述する図1又は図2に示すSEM写真像から明らかなように、平均粒子径の分布が単分散である球状微粒子が、規則的に整合されている粒子状積層構造である。しかも、その平均粒子径が100〜500nmの範囲にあって、その粒子サイズが可視光波長領域内(380〜780nm)にあることにより、照射された可視光がこの粒子状積層構造物の表面において、効果的に回折干渉されて、この粒子径100〜500nmの範囲における特定の粒子径に係わって、回折干渉されて赤、青、緑等の特定の有彩色を発色する波長領域光として分光反射される。また、本発明においては、この球状微粒子が、マンセル色票における明度が5以下の色みの無い黒色系の無彩色単分散粒子である。これによって、照射された可視光の一部が、その粒子の周辺で発生すると思われる本発明が目的とする反射光以外の散乱、透過等の迷光を、適宜に効果的に吸収して削減させるのであろう。その結果、効果的に回折干渉した反射光色が、より色みが鮮明な有彩色として視感させるものと思われる。
【0025】
【発明の実施の形態】
以下に、本発明による光発色部材の実施形態に基づいて、光発色部材が発揮する特徴について更に説明する。
【0026】
既に上述した如く、本発明による光発色部材は、少なくとも有機ポリマー又は無機の黒色系無彩色の単分散球状粒子が、縦及び横方向に規則的に整合(又は配列形成)された粒子状積層物である。その粒子状積層物の表面は、図1又は図2に示すSEM写真像から明らかなように、縦及び横方向に規則的に整合された粒子が、恰も粒子状の結晶格子のような表面を呈している。本発明においては、このような粒子状積層物面に自然光(又は白色光)の可視光波長領域光(380〜780nm)が照射されると、視感されるその垂直反射光色は、少なくとも色みの有る明確な赤、緑、青等の有彩光色として明確に視感されることが特徴である。
【0027】
また、このような特徴を有する本発明の光発色部材が発色する有彩光色種が、この単分散微粒子の明確な所定の粒子径との係わりを有し、しかも、恰も光源色のように発色する構造色であることが顕著な特徴である。
【0028】
また、本発明による光発色部材が、このような明確な有彩光色を発揮するためには、この単分散性の有機ポリマー又は無機の球状粒子が、少なくとも無彩色で、灰色、黒褐色及び黒色等の無彩色(マンセル色票で表される明度が7以下の無彩色)の黒色系無彩色単分散球状粒子であることが特徴である。
【0029】
すなわち、既に上述したように、照射された可視光の一部が、この光発色部材の表面である粒子状積層物面で、その粒子の周辺で生ずる本発明が目的とする反射光以外に生じる散乱、透過等による迷光を適宜効果的に吸収し、削減させる効果を発揮させる。そこで、本発明においては、この反射光色の色みをより鮮明にさせることから、好ましくは、この明度が5以下、更に好ましくは3以下の色みの無い無彩色であることがよい。従って、本発明においては、このような無彩色粒子として、マンセル色票で表される明度及び彩度が、略ゼロである黒褐色、更には、黒色系無彩色の有機ポリマー又は無機単分散球状粒子であることが、より好適に用いられる。
【0030】
また、このような特徴を有する本発明による光発色部材を形成させている有機ポリマー又は無機の単分散球状粒子は、体積基準で表される平均粒子径(d)が100〜500nmの範囲にある特定の粒子径を有している。その有彩光色をより鮮明に発色させる観点から、好ましくは、この平均粒子径が150〜350nmの範囲にあることが好適である。
【0031】
また、既に上述する如く、図1に示すSEM写真像から明らかなように、このような特徴を有する本発明による粒子状積層物としての光発色部材は、恰も規則的整合した粒子によって、結晶格子面を形成しているように観察される。従って、その表面に照射される可視光が、この粒子状格子面(粒子状積層物面)に係わって回折干渉して反射される反射効率が、光発色部材の発色する色みに及ぼすことから、好ましくは、この有機ポリマー及び無機ポリマー球状粒子が単分散粒子であることが好適である。そこで、本発明においては、その単分散性を表す粒子径の均斉度であるCv値が、5%以下であって、反射光色の色みの濃さ、鮮明さから、より好ましくは3%以下の単分散粒子であることが好適である。また、本発明においては、この粒子状積層物面は、好ましくは縦方向の規則配列が、少なくとも2配列以上であることが、垂直反射光色をより鮮明に、より深みのある色めの構造色を呈する。
【0032】
そこで、本発明による光発色部材の粒子状積層物を形成する、例えば、有機ポリマー微粒子に係わる表面に、可視光線が照射されて視感されるその垂直反射光色は、例えば、紫色系、青色系、緑色系、黄色系及び赤色系等の色みの垂直反射光色である。既に上述する如く、これらの垂直反射光色は、以下に記載する如く特定の平均粒子径(d)なる係わりを有している。すなわち、(イ)d=160〜170nmの範囲においては、発色する有彩光色が紫色系(P)である。(ロ)d=180〜195nmの範囲においては、発色する有彩光色が青色系(B)である。(ハ)d=200〜230nmの範囲においては、発色する有彩光色が緑色系(G)である。(ニ)d=240〜260nmの範囲においては、発色する有彩光色が黄色系(Y)である。(ホ)d=270〜290nmの範囲においては、発色する有彩光色が赤色系(R)である。
【0033】
そこで、以上のような特徴を発揮する本発明の光発色部材である粒子状積層物に係わって、この有機ポリマー単分散球状粒子として、必ずしも以下に記載するポリマー種に特定されないが、例えば、ポリ(メタ)アクリル酸メチル、テトラフルオロエチレンン、ポリ−4−メチルペンテン−1、ポリベンジルメタアクリレート、ポリフェニレンメタクリレート、ポリシクロヘキシルメタクリレート、ポリエチレンテレフタレート、ポリスチレン、スチレン・アクリロニトリル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール等を挙げることができる。本発明においては、既に上述した如く太陽光等の自然光又は白色光の照射下に、その可視光波長領域光に係わる光発色部材の反射光色を視感することから、そのポリマー樹脂は、特に耐候性に優れて樹脂自体が、光劣化変色を起こし難い耐候性に優れていることも重要である。このような観点から、好ましくは、従来から周知の事実である耐候性に優れる(メタ)アクリル系、(メタ)アクリル−スチレン系、フッ素置換(メタ)アクリル系及びフッ素置換(メタ)アクリル−スチレン系から選ばれる何れかのアクリル系の有機ポリマー微粒子が適宜好適に使用される。
【0034】
そこで、モノマー種で表すアクリル系樹脂としては、例えば、(メタ)アクリル酸メチル,(メタ)アクリル酸エチル,(メタ)アクリル酸プロピル,(メタ)アクリル酸イソプロピル,(メタ)アクリル酸ブチル,(メタ)アクリル酸イソブチル,(メタ)アクリル酸ペンチル,(メタ)アクリル酸ヘキシル,(メタ)アクリル酸2−エチルヘキシル,(メタ)アクリル酸オクチル,(メタ)アクリル酸ラウリル,(メタ)アクリル酸ノニル,(メタ)アクリル酸デシル,(メタ)アクリル酸ドデシル,(メタ)アクリル酸フェニル,(メタ)アクリル酸メトキシエチル,(メタ)アクリル酸エトキシエチル,(メタ)アクリル酸プロポキシエチル,(メタ)アクリル酸ブトキシエチル,(メタ)アクリル酸エトキシプロピル等の(メタ)アクリル酸アルキルエステル;ジエチルアミノエチル(メタ)アクリレート等のジアルキルアミノアルキル(メタ)アクリレート;(メタ)アクリルアミド,N−メチロール(メタ)アクリルアミド及びジアセトンアクリルアミド等の(メタ)アクリルアミド類並びにグリシジル(メタ)アクリレート;エチレングリコールのジ(メタ)アクリル酸エステル,ジエチルグリコールのジ(メタ)アクリル酸エステル,トリエチレングリコールのジ(メタ)アクリル酸エステル,ポリエチレングリコールのジ(メタ)アクリル酸エステル,ジプロピレングリコールのジ(メタ)アクリル酸エステル,トリプロピレングリコールのジ(メタ)アクリル酸エステル等の(ポリ)アルキレングリコールのジ(メタ)アクリル酸エステル類等を挙げることができる。また、上述する(メタ)アクリル系モノマー以外のその他のモノマーとしては、例えば、スチレン,メチルスチレン,ジメチルスチレン,トリメチルスチレン,エチルスチレン,ジエチルスチレン,トリエチルスチレン,プロピルスチレン,ブチルスチレン,ヘキシルスチレン,ヘプチルスチレン及びオクチルスチレン等のアルキルスチレン;フロロスチレン,クロルスチレン,ブロモスチレン,ジブロモスチレン,クロルメチルスチレン等のハロゲン化スチレン;ニトロスチレン,アセチルスチレン,メトキシスチレン等のスチレン系モノマーを挙げることができる。更に、スチレン系モノマー以外の他のモノマーとして、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;酢酸ビニル,プロピオン酸ビニル,n−酪酸ビニル,イソ酪酸ビニル,ピバリン酸ビニル,カプロン酸ビニル,パーサティック酸ビニル,ラウリル酸ビニル,ステアリン酸ビニル,安息香酸ビニル,p−t−ブチル安息香酸ビニル、サリチル酸ビニル等のビニルエステル類;塩化ビニリデン、クロロヘキサンカルボン酸ビニル等が挙げられる。更にはまた、必要に応じて、官能基を有するモノマーとして、例えば、(メタ)アクリル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、ビシクロ[2,2,1]ヘプト−2−エン−5,6−ジカルボン酸等の不飽和カルボン酸が挙げられ、また、これらの誘導体として、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1]ヘプト−2−エン−5,6−ジカルボン酸無水物、また、例えば、水酸基(OH;ヒドロキシル基)を有するモノマーとしては、1,1,1−トリヒドロキシメチルエタントリ(メタ)アクリレート,1,1,1−トリスヒドロキシメチルメチルエタントリ(メタ)アクリレート,1,1,1−トリスヒドロキシメチルプロパントリ(メタ)アクリレート,ヒドロキシビニルエーテル,ヒドロキシプロピルビニルエーテル,ヒドロキシブチルビニルエーテル等のヒドロキシアルキルビニルエーテル,2−ヒドロキシエチル(メタ)アクリレート,2−ヒドロキシプロピル(メタ)アクリレート,ジエチレングリコールモノ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート等が挙げられ、これらの単独又は2種以上の複合モノマーを適宜好適に使用することができる。更にはまた、(メタ)アクリル酸の部分又は完全フッ素置換系モノマーとして、例えば、(メタ)アクリル酸トリフルオロメチルメチル,(メタ)アクリル酸−2−トリフルオロメチルエチル,(メタ)アクリル酸−2−パ−フルオロメチルエチル,(メタ)アクリル酸−2−パ−フルオロエチル−2−パ−フルオロブチルエチル,(メタ)アクリル酸−2−パ−フルオロエチル,(メタ)アクリル酸パ−フルオロメチル,(メタ)アクリル酸ジパ−フルオロメチルメチル等のフッ素置換(メタ)アクリル酸モノマー(又はフルオロ(メタ)アルキルアクリレート)が挙げられ、また、フルオロエチレン、ビニリデンフルオリド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等のフロオロオレフィンが挙げられる。本発明においては、これらの単独重合体、又は他の重合性モノマーとの共重合体であってもよい。
【0035】
また、本発明に用いる単分散球状粒子は、上述する如く、黒色系無彩色に着色されている以外に、必要に応じて予め他の添加剤として、例えば、滑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、帯電付与剤、界面活性剤、分散安定剤、消泡剤、安定剤、等を目的用途等に応じて適宜添加させることができる。
【0036】
そこで、これらの重合性モノマーを用いて本発明による光発色部材を調製させる平均粒子径(d)が100〜500nmの範囲にある有機ポリマーの黒色系無彩色の単分散球状粒子は、通常、一般的に用いられているソープフリー乳化重合、乳化重合、懸濁重合等で適宜調製することができる。
【0037】
例えば、ソープフリー乳化重合では、通常、用いる重合開始剤として、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩が重合時に水性媒体に可溶であればよい。通常、重合単量体100重量部に対して、重合開始剤を0.1〜10重量部、好ましくは0.2〜2重量部の範囲で添加すればよい。また、乳化重合法の場合では、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、ポリエチレングリコールノニルフェニルエーテル等のポリエチレングリコールアルキルエーテル等の乳化剤を重合単量体100重量部に対して、通常、0.01〜5重量部、好ましくは0.1〜2重量部で水性媒体に混合させて乳化状態にし、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩の重合開始剤を、重合単量体100重量部に対して、0.1〜10重量部、好ましくは0.2〜2重量部で添加すればよい。また、懸濁重合を含め、上記する乳化剤も特に特定する必要がなく、通常に使用されているアニオン系界面活性剤、カチオン系界面活性剤又は必要に応じてノニオン系界面活性剤等から選んで、その単独又は組合わせて使用することができる。例えば、アニオン系界面活性剤としてはドデシルベンゼンスルホネート、ウンデシルベンゼンスルホネート、トリデシルベンゼンスルホネート、ノニルベンゼンスルホネート、これらのナトリウム、カリウム塩等が挙げられ、また、カチオン系界面活性剤としてはセチルトリメチルアンモニウムプロミド、塩化ヘキサデシルピリジニウム、塩化ヘキサデシルトリメチルアンモニウム等が挙げられ、また、ノニオン系界面活性剤としては、リピリジニウム等が挙げられる。また、反応性乳化剤(例えば、アクリロイル基、メタクロイル基等の重合性基を有する乳化剤)としては、例えば、アニオン性、カチオン性又はノニオン性の反応性乳化剤が挙げられ、特に限定することなく使用される。また、乳化剤に係わって従来から、分散性や、着色粒子の粒子径が大きくなる傾向からアニオン性の反応性乳化剤が好適に使用され、例えば、スルホン酸(塩)型、カルボン酸(塩)型、リン酸エステル型等が挙げられ、具体的には、例えば、ポリオキシエチレンアリルグリシジルノニルフェニルエーテルの硫酸塩、ポリオキシエチレンノニルプロペニルエーテルの硫酸エステル塩等が挙げられる。また、本発明に用いる黒色系樹脂粒子にするために、例えば、重合単量体、乳化剤及び水との混合系に着色剤である黒色系の油溶性染料又はカーボンブラックを含む黒色系の顔料を適宜分散混合又は懸濁混合させる。
【0038】
そこで、上述する重合性モノマーから適宜選んだ単量体100重量部当たり、水200〜350重量部の範囲にある水を含む系に、例えば、C.Iソルベントブラック27のような黒色系染料の5〜10重量部を、攪拌下に加温し、次いで、乳化剤の0.05〜0.7とを添加させて、充分に攪拌混合後、窒素パージ下に攪拌しながら60〜80℃に昇温させる。次いで、0.3〜0.6重量部の範囲で過硫酸カリウム等の重合開始剤を添加させて、70〜90℃で4〜8時間重合反応を行う。このようなソープフリー乳化重合で得られる反応分散液中には、体積基準で表して平均粒子径が100〜500nmの範囲にある単分散の黒色球状ポリマー粒子が、固形分濃度として20〜40重量%で調製される。なお、本発明においては、後述する実施例の事実からも明らかなように、この単分散の黒色系球状粒子は、その黒色系染料又は顔料が、粒子内に内包着色及び/又は粒子表層に被覆着色されてなる何れの黒色系無彩色の球状粒子を適宜好適に用いることができる。
【0039】
また、本発明において、本発明による光発色部材である粒子状積層物を形成する無機単分散球状粒子として、必ずしも以下の無機ポリマーに限定されないが、本発明において、例えば、シリカ、アルミナ、シリカ−アルミナ、ジルコニヤ、チタニヤ及びチタニヤ−シリカ、炭化珪素、窒化珪素等を挙げることができる。特に、シリカ、アムミニウム、チタニウム等の金属アルコキシドのゾル−ゲル法で調製した無機ポリマー粒子は比較的着色が容易であり好適に使用できる。その金属アルコキシドとしては、例えば、メチルトリメトキシシラン、ビニルトリメトキシシラン、テトラエチルシリケート、テトライソプロピルシリケート、テトラブチルシリケート;アルミニウムエトキシド,アルミニウムトリエトキシド,イソブチルアルミニウムメトキシド,イソブチルアルミニウムエトキシド,アルミニウムイソプロポキシド,イソブチルアルミニウムイソプロポキシド,アルミニウムブトキシド,アルミニウムt−ブトキサイド,スズt−ブトキサイド;アルミニウムトリ−n−プロポキシド,アルミニウムトリ−n−ブトキシド;テトラエトキシチタン,テトラ−n−プロポキシチタン,テトラ−n−ブトキシチタン,テトラ−i−プロポキシチタン,チタンメトキサイド,チタンエトキサイド,チタン−n−プロポキサイド,チタンイソプロポキサイド,チタン−n−ブトキサイド,チタンイソブトキサイド;ジルコニウムエトキサイド,ジルコニウム−n−プロポキサイド,ジルコニウムイソプロポキサイド,ジルコニウム−n−ブトキサイド,エトキサイドテトラ−n−プロポキシジルコニウム等が挙げられる。
【0040】
このように調製される100〜500nmの範囲にある黒色系無彩色の単分散球状粒子が分散するサスペンジョンを平底透明ガラス容器に移して、40℃以上、好ましくは50℃以上、80℃以下で乾燥処理を行う。その乾燥された表面が、図1に示すSEM写真像のように、縦、横方向に規則的に整合された粒子状積層物が形成されている。この粒子状積層物面は可視光照射下に、その垂直反射光色が鮮やかな色みのある有彩光色を視感させる。以上から、このような有彩光色は、既に上述した本発明による粒子状積層物が、従来の物体色としての染顔料着色材とは異なる新規な構造色として有彩光色を呈する光発色部材を提供することができる。
【0041】
また、本発明によれば、このような光発色部材の製造方法として、コロイド状黒色系無彩色の有機ポリマー又は無機の単分散微粒子が分散するサスペンジョン中に、対向する一対の電極板を浸漬させ、所定の印加電圧下に泳動させて、電極面上に構造色を発色する粒子状積層物を泳動堆積(又は電着)させる。この堆積粒子状積層物に自然光(又は白色光)可視光波長領域光を照射させて視感される垂直反射光色が、明確な有彩光色を呈する構造色なる光発色部材を製造することができる。
【0042】
すなわち、このサスペンジョン中には、少なくとも色みの無い灰色、黒褐色、黒色から選ばれる黒色系無彩色で、且つ体積基準で表す平均粒子径が100〜500nmの範囲にある特定粒子径を有する有機ポリマー又は無機の球状単分散微粒子を5〜50重量%濃度で、好ましくは、10〜30重量%濃度でサスペンドされている。このサスペンジョン中に、対向する一対の電極板を浸漬させ、電極間に1.5V以上の電圧を印加させ、サスペンドする黒色系無彩色の単分散球状微粒子を泳動させて、対向する何れか一方の電極板上に泳動堆積させる。この堆積物は、有機ポリマー又は無機の単分散球状微粒子が縦及び横方向に規則的に整合された数層の粒子状積層物として形成され、本発明による構造色として明確な有彩光色を呈する光発色部材である。また、このようにして電極板に形成された粒子状積層物は、必要に応じて40℃以下で乾燥させ、好ましくは、10〜30℃で適宜風乾させる。その泳動堆積物の粒子状積層構造を図2にSEM写真像として示す。
【0043】
また、本発明によれば、上記する光発色部材の製造方法を用いることで、カラーが従来の染顔料の着色材とは異なる構造色としての有彩光色を呈する電着カラー板を製造することができる。
【0044】
すなわち、少なくとも色みの無い灰色、黒褐色、黒色から選ばれる黒色系無彩色で、且つ体積基準で表す平均粒子径が100〜500nmの範囲にある特定粒子径を有する有機ポリマー又は無機の単分散球状粒子が5〜50重量%濃度でサスペンドするサスペンジョンを調製する。このサスペンジョン中に、鋼板、ステンレス板、アルミニウム板及びアルミニウム合金板から選ばれる何れかを一種の板を、対向する一対の電極板として浸漬させる。次いで、既に上述した電気泳動下に構造色なる光発色部材を製造する方法を用いて、上記一対の何れか一方の電極板上に、サスペンド粒子である有機ポリマー又は無機の球状微粒子を泳動させて、図2に示す如く、縦及び横方向に規則的に整合する粒子状積層物として泳動堆積(又は電着)されている。この泳動堆積物は、構造色として色みの深い有彩光色を視感させることから、この電極板は電着カラー板として提供することができる。
また、このようにして得られる電着カラー板は、40℃以下で乾燥させた後、必要に応じてその表面に、適宜透明樹脂を塗布させるか、又は、この電着カラー板に適宜透明樹脂を電着塗装することができる。
【0045】
以上から、本発明によって提供される光発色部材は、従来の染顔料の着色材又はその着色材によるカラーが光退色され易い傾向にあるのとは異なり、その有彩光色を呈する構造色は、全く光退色のない耐光性に優れることから、各種の用途に着色材として好適に用いられる。従って、この光発色部材を単独又は二次加工材として、例えば、電着カラー板、カラーシート、カラーフィルター、偏光フィルム、インクジェット記録用インク、グラビア印刷用インク、ホログラム部材、顔料として用いることができる。
【0046】
【実施例】
以下に、本発明を実施例により説明するが、本発明は以下の実施例にいささ
かも限定されるものではない。
【0047】
(実施例1)
容量1リットルの四つ口フラスコに、モノマーのメチルメタクリレート(MMA)の100重量部と黒色染料のC.Iソルベントブラック27の8重量部、ドデシルベンゼンスルホン酸ナトリウムの0.6重量部、水300重量部とを入れて攪拌混合後、窒素パージ下に攪拌しながら80℃に昇温させた。次いで、過硫酸カリウム0.5重量部を加えて80℃で約6時間重合反応を行った。このソープフリー乳化重合で得られた分散液(S−1)中には、体積基準で表す平均粒子径210nmの略一定の粒子径を有する球状の黒色重合体粒子が調製され、その固形分量は28.2%であった。なお、このスラリー又はこの80℃乾燥物は鮮やかな緑色を呈していた。
【0048】
(実施例2)
次いで、容量1リットルの四つ口フラスコにMMAの80重量部と過酸化ベンゾイル1.0重量部とを入れて溶解させた後、水200重量部と、乳化剤のポリオキシエチレン多環フェニルエーテル硫酸エステル塩の3.3重量部、黒色染料のC.Iソルベントブラック27の6重量部とを加えて強攪拌下に混合させた。次いで、実施例1でえられた分散液(S−1)の28.6重量部を添加し、50℃×0.5時間穏やかに攪拌後、75℃×1.5時間反応させて重合粒子の分散液(S−2)を得た。得られた分散液(S−2)中には、電子顕微鏡法で測定した体積基準で表す平均粒子径290nmの略真球状の単分散の重合体粒子が調製された。その固形分量は29.8%で、このスラリー又はその70℃乾燥物は鮮やかな赤色を呈していた。
【0049】
(実施例3)
実施例1においては、MMA/HEMA系の共重合体である本発明による帯電性着色樹脂微粒子を調製した。
容量1リットルの四つ口フラスコにMMAの78重量部と、エチレングリコールジメタクリレートの2重量部と、2−ヒドロキシエチルメタクリレートの15重量部とを加え、次いで過酸化ベンゾイルの0.5重量部とジメチル−2,2、−アゾビス2−メチルプロピオネートの1.0重量部と、C.Iソルベントブラック27の8重量部を加えて溶解させた後、水250重量部、乳化剤のポリオキシエチレン多環フェニルエーテル硫酸エステル塩の10重量部とUNA−Naの0.1重量とを加えて強攪拌下に混合させた。次いで、実施例1でえられた分散液(S−1)の40重量部を添加し、50℃×0.5時間穏やかに攪拌後、78℃×1.5時間反応させた後、90℃×1.5時間熟成させて、重合粒子の分散液を得た。得られた分散液中には、平均粒子径260nmの黒色樹脂粒子が調製された。その固形分量は31%で、このスラリー又は50℃乾燥物は鮮やかな黄色を呈していた。また、このスラリーにサスペンドする黒色系無彩色の単分散ポリマー球状粒子は、ブローオフ法による帯電量は(−)59(μC/g)であった。
【0050】
(実施例4)
実施例3で調製した(−)帯電性の黒色系無彩色の単分散ポリマー球状粒子を25重量%濃度にサスペンドする水性サスペンジョンを調製した。このサスペンジョン中にステンレス板を対向する一対の電極板として浸漬させ、電極間に1.6Vの電圧を印荷させて電気泳動処理を行った。次いで、(+)極板上に一様に泳動堆積させた後、この電極板を取り出し室温にて放置乾燥させたところ、その泳動堆積面の垂直反射光色は、鮮やかな黄色を視感させた。また、この泳動堆積厚は約1.5μmで、その表面には目視できるクラック(亀裂)が見られなかった。
【0051】
【発明の効果】
以上から、本発明による光発色部材は、SEM写真像から明らかなように、平均粒子径100〜500nmの粒子サイズが可視光波長領域内(380〜780nm)にある単分散球状微粒子が、規則的に整合された粒子状積層物で、その粒子が色みのない黒色系無彩色の球状粒子である。
これによって、照射された可視光が本発明による結晶格子のような粒子状積層物面を有する光発色部材の表面では、効果的に回折干渉されて、この粒子径100〜500nmの範囲における特定の粒子径に係わって、回折干渉されて赤、青、緑等の特定の有彩光色を鮮明に発色させる構造色に基づく光発色部材を提供できる。
また、この光発色部材の電気泳動法による製造方法を用いることで、カラー材が従来の染顔料(量着色材)とは異なる、耐光退色の恐れのない構造色をカラー材とする鋼板、ステンレス板又はアルミニウム板等の電着カラー板を提供することができる。
【0052】
【図面の簡単な説明】
【図1】本発明による構造色なる光発色部材のSEM写真像を示す。
【図2】本発明による他の実施例による構造色なる光発色部材のSEM写真像を示す。
【図3】本発明による光発色部材から外れる、通常、非整合下にランダムに集合するSEM写真像を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photochromic member that exhibits a chromatic light color as a structural color, and more specifically, is composed of an organic polymer or inorganic spherical fine particles that are not colored with a chromatic dye or pigment such as a dye and / or a pigment. The vertical reflection light color perceived by being irradiated with light in the visible light region, such as red (R), blue (B), green (G), and yellow (Y). The present invention relates to a light-coloring member that makes the structural color visible.
The present invention also relates to a method for manufacturing a light-coloring member for forming such a light-coloring member under electrophoresis, and a method for manufacturing an electrodeposited color plate using the method.
[0002]
[Prior art]
Conventionally, when we perceive a color, light emitted by three types of fluorescent substances of R, G, and B generated by irradiation of an electron beam, such as a color television, emits chromatic light to us. A light source color for visualizing the light color, and a dye or pigment substance (or coloring material), which is a dye or pigment for coloring an object, strongly absorbs a specific wavelength of visible light, and thereby reflects or transmits a specific wavelength, There is an object color to be perceived as a chromatic color having a color.
In addition, we irradiate materials or systems with sunlight or white light, such as light refraction (rainbow), diffraction (liquid crystal), scattering (blue sky, sunset) and interference (water surface oil film, soap bubbles, opal), etc. The color light separated by the change of the light direction can be visually recognized. In these, the material system irradiated with light absorbs, transmits, or reflects visible light in a specific wavelength region, and any one of a transmission color, an absorption color, and a reflection color is prioritized. It is what our eyes perceive as a specific chromatic coloring (or coloring) of the material system.
[0003]
Therefore, in the visible light wavelength region (380 to 780 nm), sunlight or white light is applied to a substance, and then spectrally reflected and colored as a specific wavelength area (nm) that enters our eyes and color light of the substance. When the relationship with the color is represented by a reflectance curve, for example, the red system is the reflected light in the entire wavelength region of 600 nm or more, the yellow system is the reflected light in the entire wavelength region of 490 nm or more, and the green system is the reflected light in the range of 460 to 590 nm. In the reflected light in all wavelength regions, the blue light is reflected light in the entire wavelength region of 510 nm or less, and the purple light is absorbed in the entire wavelength range of 460 to 590 nm, which is just the reverse of the green light, and all other wavelengths are absorbed. The reflected light (or reflected light color) of a specific color that is visible light, such as reflected light of a region, which is illuminated by visible light, is the corresponding reflected light color of this specific wavelength region.
[0004]
Therefore,
Patent Document 1 discloses a thin film in which monodisperse titanium oxide particles without using a coloring material such as a pigment are deposited on a base material, and the appearance color of the thin film is changed from red to blue depending on the particle size of the particles. Mono- and multi-layer thin films of monodispersed titanium oxide which result in interference colors of the system are described.
[0005]
Also,
Patent Literature 2 discloses a liquid-repellent base layer of a synthetic resin or the like having a lightness of 6 or less and a saturation of 8 or less in a standard color solid in black or dark so that colored light due to interference can be clearly seen. It is described that an adhered substance having a regular periodic structure in which uncolored monodispersed solid fine particles are aggregated and arranged on the surface exhibits monochromatic light with a clear light interference color. These colored materials can be used, for example, as colored dots (colored materials) for inkjet recording. The particle size distribution of the uncolored solid fine particles constituting the adhered recorded matter is monodisperse, and such solid fine particles include silica, alumina, titania, silica-alumina, titania-selenium, titania-selenium-silica. And organic polymer particles such as (meth) acrylic resin, styrene resin, and olefin resin, and the number average particle diameter is described as being in the range of 100 to 1000 nm.
[0006]
Conventionally, morpho butterflies, which have a vivid ultra-blue color and an opal-like diffraction color in the blue sky without being derived from pigments, have a surface structure of 0.65 μm in size as the surface structure of the phosphor powder of their wings. It is known that a regular linear diffraction grating having a wavelength of about Thus, Patent Document 3 discloses an opal-like diffraction coloring film having no hexagonal lattice single-layer fine particle film in which fine particles (spheres) of 0.1 to 10 μm order such as polystyrene and silica are packed in a close-packed manner. Has been described. Comparing the two colors, the beautiful opal-like diffracted light of the morpho butterfly shines from a very regular linear diffraction grating, whereas [Patent Document 3] discloses a very regular point-like diffraction grating. Is described as being involved. However, in the diffraction coloring described in Patent Document 3, since all particles are colorless, the coloring is not perceived under normal light irradiation, and a vivid diffraction coloring is observed with the diffracted light under a dark field. It is stated that it will be.
[0007]
The brilliant structural color related to the fine structure of the peacock feather disclosed in [Non-Patent Document 1] is an interference color of light that appears to change from yellow to green by changing the viewing angle. Also, from the SEM photograph of the surface of the wing, the granular material is regularly arranged in several layers, the particle size is smaller than the wavelength of light of about 140 nm, and the granular material is a melamine pigment. In granules, it is described that the granules having a melamine tone act to absorb light.
[0008]
Further, Patent Document 4 discloses an electrophoretic plating method in which resin fine particles and metal are simultaneously precipitated on a metal plate cathode immersed in a plating bath containing acrylic resin fine particles having a particle size of 0.05 to 1 μm dispersed therein. Has been described.
[0009]
Also, in [Patent Document 5], an organic pigment fine particle is coated with an acrylic resin so as to be easily electrophoresed, and a stainless or aluminum cathode plate immersed in an anionic electrodeposition coating bath containing the pigment fine particle, An electrodeposition coating method in which the organic pigment fine particles are electrophoresed is described.
[0010]
[Patent Document 1] JP-A-2001-206719
[Patent Document 2] JP-A-2001-239661
[Patent Document 3] Japanese Patent Application Laid-Open No. 08-234007
[Patent Document 4] JP-A-62-99498
[Patent Document 5] JP-A-04-154999
[Non-Patent Document 1] Yoshioka, OpplusE, vol. 23, no. 3,323 (2001)
[0011]
[Problems to be solved by the invention]
Under the above circumstances, by regularly arranging fine particles made of a transparent material having a uniform particle size without using a dye or pigment, that is, monodisperse fine particles, light interference due to the fine particle arrangement occurs. . Many light color members exhibiting a specific interference color tone (reflected light color) relating to such a laminated structure have been reported.
Regarding the monodisperse titanium oxide described in the above-mentioned [Patent Document 1], by controlling the particle size, the appearance interference light color tone can be freely adjusted from reddish to bluedish according to its size. It is described as a thin film of dispersed titanium oxide. However, although it is described that the particle size is controlled so as to obtain such a color, there is no disclosure or suggestion of the relationship between the particle size and the color (or color tone). It is simply described that the color changes depending on the particle size. Further, it is described that such a film formed of various inorganic particles such as silica or organic polymer particles is also possible, but no specific disclosure or suggestion is made about these.
[0012]
Further, a regular periodic structure in which light-transmitting monodisperse solid fine particles described in Patent Document 2 are aggregated and arranged exhibits monochromatic light with a clear light interference color at a brightness of 6 or less, By forming this regular periodic structure on a black or dark substrate having a saturation of 8 or less (on the surface of the underlayer), color development is perceived. This is because, as described in Patent Document 2, in order to view clear interference color light, the specific lightness and saturation of the underlayer are compared with the interference light reflected from the fine particle array aggregates. This is because by making the color black or dark, the scattered reflected light from the ground surface is sufficiently weakened. Further, the number average particle diameter of such solid fine particles is in the range of 100 to 1000 nm, and from the SEM observation of the above-mentioned array aggregates of silica fine particles specifically disclosed, the particle diameter and interference reflected light The color is described as red at a particle diameter of 280 nm, green at a particle diameter of 250 nm, and blue at a particle diameter of 205 nm.
[0013]
Further, as described above, the light coloring of a hexagonal lattice single-layer fine particle film in which fine particles of the order of 0.1 to 10 μm, such as polystyrene and silica, described in Patent Document 3 are closest packed is extremely regular. This is diffraction color development related to a simple point diffraction grating. Since all of these particles are colorless, they do not form a color under normal light irradiation and are not visually perceived as colored, but are perceived as diffracted colors seen with diffracted light in a dark field.
[0014]
Therefore, an object of the present invention is to provide a structure formed using organic polymer or inorganic monodispersed spherical fine particles having a predetermined average particle diameter under the irradiation of natural light (or white light) in the visible light wavelength region. The perceived vertical reflected light color is a clear chromatic light color with a deep sense of color (or color tone), and furthermore, the perceived chromatic light color type and the organic polymer or An object of the present invention is to provide a light-coloring member in which the average particle diameter of the inorganic monodisperse spherical fine particles has a clear relationship.
[0015]
Another object of the present invention is to efficiently electrophoretically deposit such a photochromic member on an immersion electrode plate during electrophoresis in a suspension in which organic polymer or inorganic monodispersed spherical fine particles are suspended. It is an object of the present invention to provide a method for producing a light-coloring member.
[0016]
Further, another object of the present invention is to uniformly migrate such a light-coloring member on an underlying metal plate such as a steel plate, a stainless steel plate, an aluminum plate and an aluminum alloy plate under the electrophoresis. An object of the present invention is to provide a method for manufacturing an electrodeposited color plate in which a deposited color is a chromatic light color that is perceived as a structural color.
[0017]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the above-described problems, and as a result, have noticed that melamine-like granular materials are regularly arranged in several layers on the surface of a peacock feather exhibiting a vivid interference color of light. Then, an aqueous dispersion of black achromatic particles previously colored with a black dye was prepared into monodisperse fine particles of an acrylic polymer having a particle size of several hundred nm, and this was dried on a transparent substrate surface to form a dry laminate. As a result, the surface of the laminate showed a red chromatic color with a deep color (or color tone) under natural light irradiation. Observation of the surface structure with an SEM photographic image revealed that the black achromatic spherical particles having no coloration were a particulate laminate in which they were regularly aligned, and the present invention was completed.
[0018]
According to the present invention, from a SEM photographic image, an organic polymer or an inorganic black achromatic monodispersed spherical particle is closely and regularly aligned (or arranged) in the vertical and horizontal directions. When the surface is irradiated with visible light in a wavelength range of 380 to 780 nm, the vertical reflected light color perceived by the eyes has a relationship with a specific particle size of the polymer fine particles, and furthermore, a clear red, Provided is a light-coloring member that exhibits a chromatic light color such as green or blue.
[0019]
In other words, the light-coloring member according to the present invention has a vertical reflection light color that is perceived by irradiating sunlight (or white light) in the visible light wavelength region on the surface thereof, and has a distinct color such as red, blue, and green. This is to make a chromatic color with a sight.
The surface is characterized in that it is a particulate laminate in which specific organic polymers or inorganic black achromatic monodisperse spherical particles are regularly aligned in the vertical and horizontal directions as described above. It is characterized by achromatic monodisperse particles having a lightness of 5 or less in the Munsell color chart.
Further, the organic polymer or inorganic monodisperse spherical fine particles forming such a surface are at least one kind of black achromatic monodisperse spherical particles selected from gray, blackish brown, black and the like without color. It is characteristic.
Further, the monodisperse spherical particles are characterized in that they have a specific particle size in which the average particle size (d) expressed on a volume basis is in the range of 100 to 500 nm.
[0020]
Further, according to the present invention, a pair of opposing electrode plates is immersed in a suspension in which a colloidal black achromatic organic polymer or inorganic monodispersed spherical particles are dispersed, and migrated under a predetermined applied voltage. Then, a particulate laminate that develops a structural color is electrophoretically deposited (or electrodeposited) on the electrode plate. A vertical reflection light color that is perceived by irradiating the deposited particulate laminate with natural light (or white light) visible light wavelength region light is a structural color characterized by exhibiting a clear chromatic light color. Provided is a method for manufacturing a light-coloring member.
[0021]
That is, in this suspension, at least one kind of black achromatic color selected from gray, black-brown, and black having no color and an average particle diameter (d) expressed on a volume basis in a range of 100 to 500 nm. Organic polymer or inorganic monodispersed spherical particles having a specific particle size are suspended at a concentration of 5 to 50% by weight.
In this suspension, a pair of opposing electrode plates is immersed, a voltage of 1.5 V or more is applied between the electrodes, and the black achromatic monodisperse spherical particles to be suspended are migrated. Electrophoretically deposit on plate. This deposit is formed as a layer of several layers of organic polymer or inorganic monodispersed spherical particles regularly aligned in the vertical and horizontal directions, and exhibits a clear chromatic light color as a structural color. It is a member.
[0022]
Furthermore, according to the present invention, in a suspension in which an organic polymer or inorganic monodisperse spherical particles are suspended, a method for producing a photochromic member formed by electrophoretic deposition on an electrode plate under electrophoresis is used. The present invention provides a method for manufacturing an electrodeposited color plate, wherein the color to be formed is a chromatic light color as a structural color.
[0023]
That is, it is at least one kind of black achromatic color selected from gray, black-brown, and black without color, and has a specific particle diameter in which the average particle diameter (d) expressed on a volume basis is in the range of 100 to 500 nm. A suspension is prepared in which the organic polymer or inorganic monodispersed spherical particles are suspended at a concentration of 5 to 50% by weight.
In the suspension, any one kind of metal plate selected from a steel plate, a stainless steel plate, an aluminum plate, and an aluminum alloy plate is immersed as a pair of opposed electrode plates.
Next, using a method for producing a photochromic member having a structural color under electrophoresis, organic polymer or inorganic monodispersed spherical particles as suspended particles are vertically and horizontally placed on one of the above-mentioned pair of electrode plates. A particulate laminate formed by regularly electrophoretically depositing in a direction is an electrodeposited color plate that gives a chromatic light color as a structural color.
[0024]
(Action)
In such a photochromic member according to the present invention, spherical fine particles having a monodisperse average particle diameter distribution are regularly aligned, as is apparent from an SEM photograph image shown in FIG. 1 or FIG. It is a particulate laminated structure. Moreover, since the average particle diameter is in the range of 100 to 500 nm and the particle size is in the visible light wavelength region (380 to 780 nm), the irradiated visible light is irradiated on the surface of the particulate laminated structure. Spectral reflection as wavelength region light that is effectively diffracted and interfered and diffracted and interferes with a specific chromatic color such as red, blue, or green due to a specific particle size in the range of 100 to 500 nm. Is done. In the present invention, the spherical fine particles are non-colored black achromatic monodisperse particles having a lightness of 5 or less in the Munsell color chart. As a result, a part of the irradiated visible light can be appropriately and effectively absorbed and reduced as to stray light such as scattering and transmission other than the reflected light intended for the present invention, which is considered to be generated around the particle. Will be. As a result, it is considered that the reflected light color that has been effectively diffracted and interfered makes the chromatic color more vivid.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the characteristics exhibited by the light-coloring member based on the embodiment of the light-coloring member according to the present invention will be further described.
[0026]
As already described above, the photochromic member according to the present invention is a particulate laminate in which at least organic polymer or inorganic black achromatic monodisperse spherical particles are regularly aligned (or formed in the vertical and horizontal directions). It is. As is clear from the SEM photographic images shown in FIG. 1 or FIG. 2, the surface of the particulate laminate has particles regularly aligned in the vertical and horizontal directions. Present. In the present invention, when the surface of such a particulate laminate is irradiated with natural light (or white light) in the visible light wavelength region (380 to 780 nm), at least the vertical reflected light color perceived is at least a color. It is characterized by being clearly perceived as chromatic light colors such as clear red, green, and blue.
[0027]
In addition, the chromatic light color type that the light-coloring member of the present invention having such characteristics develops has a relationship with a clear predetermined particle diameter of the monodisperse fine particles, and moreover, just like the light source color. A distinctive feature is that it is a structural color that develops color.
[0028]
In order for the photochromic member according to the present invention to exhibit such a clear chromatic light color, the monodisperse organic polymer or inorganic spherical particles must be at least achromatic, gray, black-brown and black. (Achromatic color having a lightness of 7 or less as represented by a Munsell color chart).
[0029]
That is, as already described above, a part of the irradiated visible light is generated on the surface of the particulate laminate, which is the surface of the light-coloring member, other than the reflected light which is generated around the particles and which is the object of the present invention. An effect of appropriately absorbing and reducing stray light due to scattering, transmission and the like is exhibited. Therefore, in the present invention, in order to make the color of the reflected light color more vivid, it is preferable that the lightness be 5 or less, more preferably 3 or less and achromatic color without color. Therefore, in the present invention, as such achromatic particles, the lightness and chroma represented by the Munsell color chart are black-brown, which is almost zero, and further, a black achromatic organic polymer or inorganic monodisperse spherical particles. Is more preferably used.
[0030]
Further, the organic polymer or inorganic monodispersed spherical particles forming the photochromic member according to the present invention having such characteristics have an average particle diameter (d) expressed on a volume basis in the range of 100 to 500 nm. It has a specific particle size. From the viewpoint of making the chromatic light color more vivid, preferably, the average particle diameter is preferably in the range of 150 to 350 nm.
[0031]
Further, as already described above, as is apparent from the SEM photograph image shown in FIG. 1, the photochromic member as a particulate laminate according to the present invention having such features is provided by a crystal lattice formed by regularly aligned particles. Observed to form a surface. Therefore, the reflection efficiency at which the visible light applied to the surface is diffracted and interfered with and related to the particulate lattice surface (the particulate laminate surface) affects the color of the light-coloring member. Preferably, the organic polymer and inorganic polymer spherical particles are monodisperse particles. Therefore, in the present invention, the Cv value, which is the degree of uniformity of the particle diameter representing the monodispersity, is 5% or less, and is preferably 3% from the viewpoint of the tint and clarity of the reflected light color. The following monodisperse particles are preferred. Further, in the present invention, the surface of the particulate laminate preferably has at least two or more vertical regular arrangements, so that the vertical reflected light color can be more clearly and deeply colored. It takes on a color.
[0032]
Therefore, forming the particulate laminate of the photochromic member according to the present invention, for example, the surface related to the organic polymer fine particles, the vertical reflected light color that can be seen by being irradiated with visible light, for example, purple, blue It is a vertically reflected light color such as a system, green, yellow, and red. As already mentioned above, these vertically reflected light colors have a specific average particle diameter (d) relationship as described below. That is, (a) in the range of d = 160 to 170 nm, the chromatic light color to be generated is purple (P). (B) In the range of d = 180 to 195 nm, the chromatic light color to be generated is blue (B). (C) In the range of d = 200 to 230 nm, the chromatic light color to be generated is green (G). (D) In the range of d = 240 to 260 nm, the chromatic light color to be generated is yellow (Y). (E) In the range of d = 270 to 290 nm, the chromatic light color to be generated is red (R).
[0033]
Therefore, the present invention relates to a particulate laminate which is a photochromic member of the present invention exhibiting the above-described characteristics, and is not necessarily specified as a polymer type described below as the organic polymer monodispersed spherical particles. Methyl (meth) acrylate, tetrafluoroethylene, poly-4-methylpentene-1, polybenzyl methacrylate, polyphenylene methacrylate, polycyclohexyl methacrylate, polyethylene terephthalate, polystyrene, styrene / acrylonitrile copolymer, polyvinyl chloride, poly Examples thereof include vinylidene chloride, polyvinyl acetate, and polyvinyl alcohol. In the present invention, as already described above, under irradiation of natural light such as sunlight or white light, since the reflected light color of the light-coloring member relating to the visible light wavelength region light is visually perceived, the polymer resin is particularly It is also important that the resin itself is excellent in weather resistance and is excellent in weather resistance, which is unlikely to cause light deterioration and discoloration. From such a viewpoint, preferably, (meth) acrylic, (meth) acryl-styrene, fluorine-substituted (meth) acryl-based, and fluorine-substituted (meth) acryl-styrene which are excellent in weather resistance, which are well-known facts, have been conventionally known. Any of the acrylic organic polymer fine particles selected from the system is suitably used as appropriate.
[0034]
Therefore, as the acrylic resin represented by the monomer type, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, ( Isobutyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, nonyl (meth) acrylate, Decyl (meth) acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate, (meth) acrylic acid (Meth) such as butoxyethyl and ethoxypropyl (meth) acrylate Alkyl acrylate; dialkylaminoalkyl (meth) acrylate such as diethylaminoethyl (meth) acrylate; (meth) acrylamides such as (meth) acrylamide, N-methylol (meth) acrylamide and diacetone acrylamide; and glycidyl (meth) acrylate A di (meth) acrylate of ethylene glycol, a di (meth) acrylate of diethyl glycol, a di (meth) acrylate of triethylene glycol, a di (meth) acrylate of polyethylene glycol and a di (meth) acrylate of dipropylene glycol; Di (meth) acrylates of (poly) alkylene glycol such as di (meth) acrylate and di (meth) acrylate of tripropylene glycol It can be. Other monomers other than the above-mentioned (meth) acrylic monomers include, for example, styrene, methylstyrene, dimethylstyrene, trimethylstyrene, ethylstyrene, diethylstyrene, triethylstyrene, propylstyrene, butylstyrene, hexylstyrene, heptyl Examples include alkylstyrenes such as styrene and octylstyrene; halogenated styrenes such as fluorostyrene, chlorostyrene, bromostyrene, dibromostyrene, and chloromethylstyrene; and styrene-based monomers such as nitrostyrene, acetylstyrene, and methoxystyrene. Further, other monomers other than the styrene monomer include, for example, silicon-containing vinyl monomers such as vinyltrimethoxysilane and vinyltriethoxysilane; vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl isobutyrate, and vinyl pivalate. Vinyl esters such as, vinyl caproate, vinyl persatic, vinyl laurate, vinyl stearate, vinyl benzoate, pt-butyl benzoate, vinyl salicylate, and the like; vinylidene chloride, vinyl chlorohexanecarboxylate, and the like. Can be Furthermore, if necessary, as a monomer having a functional group, for example, (meth) acrylic acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, norbornene dicarboxylic acid, bicyclo [2,2, 1] Unsaturated carboxylic acids such as hept-2-ene-5,6-dicarboxylic acid, and derivatives thereof such as maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, and bicyclo [ 2,2,1] Hept-2-ene-5,6-dicarboxylic anhydride and, for example, monomers having a hydroxyl group (OH; hydroxyl group) include 1,1,1-trihydroxymethylethanetri ( (Meth) acrylate, 1,1,1-trishydroxymethylmethylethanetri (meth) acrylate, 1,1,1 Hydroxyalkyl vinyl ethers such as trishydroxymethylpropane tri (meth) acrylate, hydroxyvinyl ether, hydroxypropyl vinyl ether, hydroxybutyl vinyl ether, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, diethylene glycol mono (meth) acrylate And the like, and these alone or two or more kinds of composite monomers can be suitably used as appropriate. Further, as the (meth) acrylic acid partial or perfluorinated monomer, for example, trifluoromethylmethyl (meth) acrylate, 2-trifluoromethylethyl (meth) acrylate, (meth) acrylic acid- 2-perfluoromethylethyl, 2-perfluoroethyl-2- (meth) acrylate-2-perfluorobutylethyl, 2-perfluoroethyl (meth) acrylate, perfluoro (meth) acrylate Fluorine-substituted (meth) acrylic acid monomers (or fluoro (meth) alkyl acrylate) such as methyl and dipa-fluoromethylmethyl (meth) acrylate; and fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoro Ethylene, hexafluoropropylene, perfluoro-2,2-dimethyl Fluoroalkyl olefins such le-1,3-dioxole and the like. In the present invention, these homopolymers or copolymers with other polymerizable monomers may be used.
[0035]
In addition, the monodisperse spherical particles used in the present invention are, as described above, besides being colored in a black achromatic color, if necessary, as other additives in advance, for example, a lubricant, an ultraviolet absorber, an antioxidant. , An antistatic agent, a charge imparting agent, a surfactant, a dispersion stabilizer, an antifoaming agent, a stabilizer, and the like can be appropriately added according to the intended use.
[0036]
Therefore, black achromatic monodisperse spherical particles of an organic polymer having an average particle diameter (d) in the range of 100 to 500 nm for preparing the photochromic member according to the present invention using these polymerizable monomers are generally used. It can be appropriately prepared by soap-free emulsion polymerization, emulsion polymerization, suspension polymerization, and the like, which are commonly used.
[0037]
For example, in soap-free emulsion polymerization, it is sufficient that a persulfate such as potassium persulfate or ammonium persulfate is usually soluble in an aqueous medium during polymerization as a polymerization initiator to be used. Usually, the polymerization initiator may be added in an amount of 0.1 to 10 parts by weight, preferably 0.2 to 2 parts by weight, based on 100 parts by weight of the polymerization monomer. In the case of the emulsion polymerization method, an emulsifier such as an alkylbenzene sulfonate such as sodium dodecylbenzenesulfonate or a polyethylene glycol alkyl ether such as polyethylene glycol nonylphenyl ether is usually added in an amount of 0 to 100 parts by weight of the polymerizable monomer. 0.1 to 5 parts by weight, preferably 0.1 to 2 parts by weight, is mixed with an aqueous medium to form an emulsified state, and a polymerization initiator of a persulfate such as potassium persulfate or ammonium persulfate is added to 100 parts by weight of a polymerization monomer. 0.1 to 10 parts by weight, preferably 0.2 to 2 parts by weight, per part by weight. In addition, including the suspension polymerization, the emulsifier described above does not need to be particularly specified, and may be selected from commonly used anionic surfactants, cationic surfactants, or nonionic surfactants as needed. , Alone or in combination. For example, examples of the anionic surfactant include dodecylbenzenesulfonate, undecylbenzenesulfonate, tridecylbenzenesulfonate, nonylbenzenesulfonate, sodium and potassium salts thereof, and examples of the cationic surfactant include cetyltrimethylammonium. Promide, hexadecylpyridinium chloride, hexadecyltrimethylammonium chloride and the like can be mentioned, and as the nonionic surfactant, lipidinium and the like can be mentioned. Examples of the reactive emulsifier (e.g., an emulsifier having a polymerizable group such as an acryloyl group or a methacryloyl group) include, for example, an anionic, cationic, or nonionic reactive emulsifier, and are used without any particular limitation. You. In addition, in connection with emulsifiers, anionic reactive emulsifiers have been preferably used in view of the tendency to increase dispersibility and the particle size of the colored particles. For example, sulfonic acid (salt) type and carboxylic acid (salt) type And a phosphoric acid ester type, and specific examples thereof include a sulfate of polyoxyethylene allyl glycidyl nonyl phenyl ether and a sulfate of polyoxyethylene nonyl propenyl ether. Further, in order to make the black resin particles used in the present invention, for example, a black pigment containing a black oil-soluble dye or carbon black as a colorant in a mixed system with a polymerizable monomer, an emulsifier and water. Appropriately disperse or mix.
[0038]
Therefore, a system containing water in the range of 200 to 350 parts by weight of water per 100 parts by weight of a monomer appropriately selected from the above-mentioned polymerizable monomers, for example, C.I. 5 to 10 parts by weight of a black dye such as Solvent Black 27 is heated with stirring, and then 0.05 to 0.7 of an emulsifier is added. The temperature is raised to 60-80 ° C. while stirring below. Next, a polymerization initiator such as potassium persulfate is added in a range of 0.3 to 0.6 parts by weight, and a polymerization reaction is performed at 70 to 90 ° C. for 4 to 8 hours. In the reaction dispersion obtained by such a soap-free emulsion polymerization, monodisperse black spherical polymer particles having an average particle diameter in a range of 100 to 500 nm expressed on a volume basis have a solid content of 20 to 40% by weight. %. In the present invention, as will be apparent from the facts of the examples described later, the monodisperse black spherical particles are formed by coating the black dye or pigment with the internal coloring and / or coating the particle surface layer. Any colored black achromatic spherical particles can be suitably used as appropriate.
[0039]
Further, in the present invention, the inorganic monodispersed spherical particles forming the particulate laminate as the photochromic member according to the present invention are not necessarily limited to the following inorganic polymers, but in the present invention, for example, silica, alumina, silica- Alumina, zirconia, titania and titania-silica, silicon carbide, silicon nitride and the like can be mentioned. In particular, inorganic polymer particles prepared by a sol-gel method of a metal alkoxide such as silica, aminium and titanium are relatively easy to color and can be suitably used. Examples of the metal alkoxide include methyltrimethoxysilane, vinyltrimethoxysilane, tetraethylsilicate, tetraisopropylsilicate, and tetrabutylsilicate; aluminum ethoxide, aluminum triethoxide, isobutylaluminum methoxide, isobutylaluminum ethoxide, and aluminum isoalkoxide. Propoxide, isobutylaluminum isopropoxide, aluminum butoxide, aluminum t-butoxide, tin t-butoxide; aluminum tri-n-propoxide, aluminum tri-n-butoxide; tetraethoxytitanium, tetra-n-propoxytitanium, tetra-titanium n-butoxytitanium, tetra-i-propoxytitanium, titanium methoxide, titanium ethoxide, titanium-n- Lopoxide, titanium isopropoxide, titanium-n-butoxide, titanium isobutoxide; zirconium ethoxide, zirconium-n-propoxide, zirconium isopropoxide, zirconium-n-butoxide, ethoxide tetra-n-propoxyzirconium and the like. No.
[0040]
The suspension prepared by dispersing the black achromatic monodispersed spherical particles in the range of 100 to 500 nm thus prepared is transferred to a flat-bottomed transparent glass container and dried at 40 ° C or higher, preferably 50 ° C or higher and 80 ° C or lower. Perform processing. The dried surface forms a particulate laminate regularly aligned in the vertical and horizontal directions as shown in the SEM photograph image shown in FIG. On the surface of the particulate laminate, a chromatic light color whose vertical reflected light color has a vivid color tone can be seen under irradiation of visible light. From the above, such a chromatic light color is a light coloring in which the particulate laminate according to the present invention described above exhibits a chromatic light color as a novel structural color different from the conventional dye colorant as an object color. A member can be provided.
[0041]
Further, according to the present invention, as a method for producing such a photochromic member, a pair of opposed electrode plates is immersed in a suspension in which a colloidal black achromatic organic polymer or inorganic monodispersed fine particles are dispersed. Then, the particles are electrophoresed under a predetermined applied voltage to cause electrophoretic deposition (or electrodeposition) of a particulate laminate that develops a structural color on the electrode surface. By irradiating the natural light (or white light) visible light wavelength region light to the deposited particulate laminate, a light-colored member having a structural color in which a vertically reflected light color that is perceived as a visible chromatic light color is produced. Can be.
[0042]
That is, in this suspension, there is at least an organic polymer having a specific color with a colorless black color selected from gray, black-brown, and black, and having an average particle size represented by volume in the range of 100 to 500 nm. Alternatively, the inorganic spherical monodispersed fine particles are suspended at a concentration of 5 to 50% by weight, preferably 10 to 30% by weight. In this suspension, a pair of opposing electrode plates is immersed, a voltage of 1.5 V or more is applied between the electrodes, and the black achromatic monodisperse spherical fine particles to be suspended are migrated. Electrophoretically deposited on the electrode plate. This deposit is formed as a several-layered particulate laminate in which organic polymer or inorganic monodispersed spherical fine particles are regularly aligned in the vertical and horizontal directions, and provides a clear chromatic light color as a structural color according to the present invention. It is a light-coloring member to be presented. The particulate laminate thus formed on the electrode plate is dried at 40 ° C. or lower, if necessary, and preferably air-dried at 10 to 30 ° C. as necessary. FIG. 2 shows a SEM photograph image of the particulate lamination structure of the electrophoretic deposit.
[0043]
Further, according to the present invention, by using the above-described method for producing a light-coloring member, an electrodeposited color plate having a chromatic light color as a structural color different from the colorant of a conventional dye / pigment is produced. be able to.
[0044]
That is, at least grey without color, black-brown, black achromatic color selected from black, and an organic polymer or inorganic monodisperse sphere having a specific particle diameter in the range of 100 to 500 nm represented by a volume-based average particle diameter. A suspension is prepared in which the particles are suspended at a concentration of 5 to 50% by weight. In this suspension, one kind of plate selected from a steel plate, a stainless plate, an aluminum plate and an aluminum alloy plate is immersed as a pair of opposed electrode plates. Then, using the method of manufacturing a photochromic member having a structural color under electrophoresis already described above, on either one of the pair of electrode plates, the organic polymer or inorganic spherical fine particles as the suspended particles are electrophoresed. As shown in FIG. 2, they are electrophoretically deposited (or electrodeposited) as a particulate stack that is regularly aligned in the vertical and horizontal directions. Since this electrophoretic deposit causes a deep chromatic light color to be seen as a structural color, the electrode plate can be provided as an electrodeposition color plate.
Further, the electrodeposited color plate thus obtained is dried at 40 ° C. or lower, and then, if necessary, a transparent resin is applied to the surface thereof, or the electrodeposited color plate is appropriately coated with a transparent resin. Can be electrodeposited.
[0045]
From the above, the light-coloring member provided by the present invention is different from a conventional coloring material of a dye or pigment or a color by the coloring material in that the color of the coloring material tends to be easily faded. Since it has excellent light resistance without any light fading, it is suitably used as a coloring material in various applications. Therefore, this photochromic member can be used alone or as a secondary processing material, for example, as an electrodeposition color plate, a color sheet, a color filter, a polarizing film, an ink jet recording ink, a gravure printing ink, a hologram member, and a pigment. .
[0046]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the following examples.
It is not limited.
[0047]
(Example 1)
In a four-necked flask having a capacity of 1 liter, 100 parts by weight of methyl methacrylate (MMA) and C.I. 8 parts by weight of I Solvent Black 27, 0.6 parts by weight of sodium dodecylbenzenesulfonate, and 300 parts by weight of water were added and mixed with stirring, and then heated to 80 ° C. while stirring under a nitrogen purge. Next, 0.5 parts by weight of potassium persulfate was added to carry out a polymerization reaction at 80 ° C. for about 6 hours. In the dispersion liquid (S-1) obtained by this soap-free emulsion polymerization, spherical black polymer particles having a substantially constant average particle diameter of 210 nm expressed on a volume basis are prepared, and the solid content thereof is as follows. 28.2%. The slurry or the dried product at 80 ° C. had a bright green color.
[0048]
(Example 2)
Next, 80 parts by weight of MMA and 1.0 part by weight of benzoyl peroxide were put into a 1-liter four-necked flask and dissolved, and then 200 parts by weight of water and polyoxyethylene polycyclic phenyl ether sulfate as an emulsifier were added. 3.3 parts by weight of ester salt, C.I. 6 parts by weight of I Solvent Black 27 were added and mixed under vigorous stirring. Next, 28.6 parts by weight of the dispersion liquid (S-1) obtained in Example 1 was added, and the mixture was gently stirred at 50 ° C. for 0.5 hour and reacted at 75 ° C. for 1.5 hours to produce polymer particles. (S-2) was obtained. In the obtained dispersion (S-2), substantially spherical monodisperse polymer particles having an average particle diameter of 290 nm expressed by volume based on electron microscopy were prepared. The solid content was 29.8%, and the slurry or the dried product at 70 ° C. had a bright red color.
[0049]
(Example 3)
In Example 1, chargeable colored resin fine particles according to the present invention, which are MMA / HEMA copolymers, were prepared.
78 parts by weight of MMA, 2 parts by weight of ethylene glycol dimethacrylate, 15 parts by weight of 2-hydroxyethyl methacrylate are added to a four-neck flask having a capacity of 1 liter, and then 0.5 parts by weight of benzoyl peroxide are added. 1.0 part by weight of dimethyl-2,2, -azobis-2-methylpropionate; After adding and dissolving 8 parts by weight of I Solvent Black 27, 250 parts by weight of water, 10 parts by weight of polyoxyethylene polycyclic phenyl ether sulfate as an emulsifier and 0.1 part by weight of UNA-Na were added. Mix under vigorous stirring. Next, 40 parts by weight of the dispersion liquid (S-1) obtained in Example 1 was added, and the mixture was gently stirred at 50 ° C for 0.5 hour, reacted at 78 ° C for 1.5 hours, and then reacted at 90 ° C. After aging for 1.5 hours, a dispersion of polymer particles was obtained. Black resin particles having an average particle diameter of 260 nm were prepared in the obtained dispersion. The solid content was 31%, and the slurry or the dried product at 50 ° C. had a bright yellow color. The black achromatic monodispersed polymer spherical particles suspended in the slurry had a charge amount of (−) 59 (μC / g) measured by a blow-off method.
[0050]
(Example 4)
An aqueous suspension was prepared in which the (-) chargeable black achromatic monodisperse polymer spherical particles prepared in Example 3 were suspended to a concentration of 25% by weight. A stainless steel plate was immersed in the suspension as a pair of electrode plates facing each other, and a voltage of 1.6 V was applied between the electrodes to perform electrophoresis. Next, after the electrophoretic deposition was uniformly performed on the (+) electrode plate, the electrode plate was taken out and left to dry at room temperature. Was. The electrophoretic deposition thickness was about 1.5 μm, and no visible cracks were observed on the surface.
[0051]
【The invention's effect】
As described above, in the photochromic member according to the present invention, the monodisperse spherical fine particles having an average particle diameter of 100 to 500 nm within the visible light wavelength region (380 to 780 nm) are regularly arranged as apparent from the SEM photograph image. , And the particles are black achromatic spherical particles having no color.
As a result, the irradiated visible light is effectively diffracted and interfered on the surface of the photochromic member having a particulate laminate surface such as a crystal lattice according to the present invention, and a specific particle diameter in the range of 100 to 500 nm is obtained. It is possible to provide a light-coloring member based on a structural color that causes a specific chromatic light color, such as red, blue, or green, to be generated clearly by diffraction interference in relation to the particle diameter.
Also, by using the electrophoretic manufacturing method of the photochromic member, the color material is different from the conventional dyes and pigments (quantity colorant), and the color material is a structural material having no fear of light fading. An electrodeposited color plate such as a plate or an aluminum plate can be provided.
[0052]
[Brief description of the drawings]
FIG. 1 shows an SEM photographic image of a photochromic member having a structural color according to the present invention.
FIG. 2 is a SEM image of a photochromic member having a structural color according to another embodiment of the present invention.
FIG. 3 shows a SEM photographic image of a photochromic member according to the present invention, which is usually randomly assembled with no alignment.

Claims (12)

球状の有機ポリマー微粒子で形成されている粒子状構造物表面に、自然光(又は白色光)可視光波長領域光が照射されて、視感される垂直反射光色が、構造色として明確な有彩光色を呈する光発色部材において、
前記有機ポリマー球状微粒子が、少なくとも色みの無い灰色、黒褐色、黒色から選ばれる何れか1種の黒色系無彩色で、
且つ前記有機ポリマー球状微粒子の体積基準で表す平均粒子径(d)が、100〜500nmの範囲にある特定粒子径を有し、
前記粒子状構造物表面は、前記有機ポリマー球状微粒子を縦及び横方向に規則的に整合されて構造色としての有彩光色を呈することを特徴とする光発色部材。
The surface of the particulate structure formed by the spherical organic polymer fine particles is irradiated with natural light (or white light) in the visible wavelength region, and the vertical reflected light color perceived is chromatic as a clear structural color. In a light-coloring member that exhibits light color,
The organic polymer spherical fine particles are at least one of a black colorless achromatic color selected from gray, blackish brown, and black without color,
And an average particle diameter (d) expressed on a volume basis of the organic polymer spherical fine particles has a specific particle diameter in a range of 100 to 500 nm,
A light-coloring member, wherein the surface of the particulate structure regularly aligns the organic polymer spherical fine particles in the vertical and horizontal directions to exhibit a chromatic light color as a structural color.
前記有機ポリマー球状微粒子が、(メタ)アクリル系、(メタ)アクリル−スチレン系、フッ素置換(メタ)アクリル系及びフッ素置換(メタ)アクリル−スチレン系から選ばれる少なくとも一種であることを特徴とする請求項1に記載の光発色部材。The organic polymer spherical fine particles are at least one selected from (meth) acrylic, (meth) acryl-styrene, fluorine-substituted (meth) acryl-based, and fluorine-substituted (meth) acryl-styrene-based. The light-coloring member according to claim 1. 前記有機ポリマー球状微粒子の粒子径の均斉度を表すCv値が、5%以下の単分散粒子であることを特徴とする請求項1〜2の何れかに記載の光発色部材。The light-coloring member according to claim 1, wherein the organic polymer spherical fine particles are monodisperse particles having a Cv value representing a degree of uniformity of particle diameter of 5% or less. 前記ポリマー球状微粒子の体積基準で表す平均粒子径が150〜350nmの範囲にあることを特徴とする請求項1〜3の何れかに記載の光発色部材。The photochromic member according to any one of claims 1 to 3, wherein the polymer spherical fine particles have an average particle diameter expressed in a volume range of 150 to 350 nm. 球状の無機微粒子で形成されている粒子状構造物表面に、自然光(又は白色光)可視光波長領域光が照射されて、視感される垂直反射光色が、構造色として明確な有彩光色を呈する光発色部材において、
前記無機球状微粒子が、少なくとも色みの無い灰色、黒褐色、黒色から選ばれる何れか1種の黒色系無彩色で、
且つ前記無機球状微粒子の体積基準で表す平均粒子径(d)が、100〜500nmの範囲にある特定粒子径を有し、
前記粒子状構造物表面は、前記無機球状微粒子を縦及び横方向に規則的に整合されて構造色としての有彩光色を呈することを特徴とする光発色部材。
The surface of a particulate structure formed of spherical inorganic fine particles is irradiated with natural light (or white light) in the visible light wavelength region, and the vertically reflected light color perceived is a chromatic light with a clear structural color. In a light-coloring member that exhibits color,
The inorganic spherical microparticles are at least one of a black colorless achromatic color selected from gray, blackish brown, and black without color,
And an average particle diameter (d) represented by volume of the inorganic spherical fine particles has a specific particle diameter in a range of 100 to 500 nm,
A light-coloring member, wherein the surface of the particulate structure regularly aligns the inorganic spherical fine particles in the vertical and horizontal directions to exhibit a chromatic light color as a structural color.
前記無機球状微粒子が、ゾル−ゲル法で調製されたシリカ、アルミナ、シリカ−アルミナ、チタニヤ及びチタニア−シリカから選ばれる少なくとも一種であることを特徴とする請求項5に記載の光発色部材。The photochromic member according to claim 5, wherein the inorganic spherical fine particles are at least one selected from silica, alumina, silica-alumina, titania and titania-silica prepared by a sol-gel method. 前記ポリマー球状微粒子の粒子径の均斉度を表すCv値が、5%以下の単分散粒子であることを特徴とする請求項5〜6の何れかに記載の光発色部材。The photochromic member according to any one of claims 5 to 6, wherein the polymer spherical fine particles are monodisperse particles having a Cv value representing a degree of uniformity of the particle diameter of 5% or less. 前記ポリマー球状微粒子の体積基準で表す平均粒子径が150〜350nmの範囲にあることを特徴とする請求項5〜7の何れかに記載の光発色部材。The photochromic member according to any one of claims 5 to 7, wherein the polymer spherical fine particles have an average particle size expressed by volume based on the range of 150 to 350 nm. 視感される前記有彩光色が、前記ポリマー球状微粒子の下記平均粒子径(d)との係わりを有し、
(イ)d=160〜170nmの範囲にあって有彩光色が紫色系(P)で、
(ロ)d=180〜195nmの範囲にあって有彩光色が青色系(B)で、
(ハ)d=200〜230nmの範囲にあって有彩光色が緑色系(G)で、
(ニ)d=240〜260nmの範囲にあって有彩光色が黄色系(Y)で、
(ホ)d=270〜290nmの範囲にあって有彩光色が赤色系(R)で、
あることを特徴とする請求項1〜8の何れかに記載の光発色部材。
The chromatic light color perceived has a relationship with the following average particle diameter (d) of the polymer spherical fine particles,
(A) d = 160-170 nm and the chromatic light color is purple (P),
(B) d = 180 to 195 nm and the chromatic color is blue (B);
(C) d = 200 to 230 nm and the chromatic light color is green (G);
(D) d = 240-260 nm and the chromatic color is yellow (Y);
(E) d = 270-290 nm and the chromatic color is red (R);
The light-coloring member according to any one of claims 1 to 8, wherein:
前記ポリマー球状微粒子の縦方向の規則配列が、少なくとも2配列以上であることを特徴とする請求項1〜9の何れかに記載の光発色部材。The photochromic member according to any one of claims 1 to 9, wherein the longitudinal arrangement of the polymer spherical fine particles is at least two or more. コロイド状黒色系無彩色の有機ポリマー又は無機の単分散球状微粒子が分散するサスペンジョン中に浸漬する一対の対向電極板上に自然光(又は白色光)可視光波長領域光の照射下に、視感される垂直反射光色が、構造色として明確な有彩光色を呈する光発色部材の製造方法において、
前記サスペンジョン中に、少なくとも色みの無い灰色、黒褐色、黒色から選ばれる何れか1種の黒色系無彩色で、且つ体積基準で表す平均粒子径(d)が、100〜500nmの範囲にある特定粒子径を有する有機ポリマー又は無機の単分散球状微粒子を5〜50重量%濃度でサスペンドさせ、
前記対向電極板間に1.5V以上の電圧を印加させ、サスペンドする前記黒色系無彩色の単分散球状微粒子を泳動させ、対向する何れか一方の電極板上に、縦及び横方向に規則的に泳動整合させて構造色としての有彩光色を呈する粒子状積層物を形成させることを特徴とする光発色部材の製造方法。
A colloidal black achromatic organic polymer or inorganic monodispersed spherical fine particles are perceived under natural light (or white light) visible light wavelength range light irradiation on a pair of opposed electrode plates immersed in a suspension in which the particles are dispersed. Vertical reflected light color, the manufacturing method of a light-coloring member exhibiting a clear chromatic light color as a structural color,
In the suspension, at least one kind of black achromatic color selected from gray, black-brown, and black having no color and an average particle diameter (d) expressed on a volume basis in a range of 100 to 500 nm. Suspending an organic polymer or inorganic monodispersed spherical fine particles having a particle diameter at a concentration of 5 to 50% by weight,
A voltage of 1.5 V or more is applied between the opposing electrode plates, and the black achromatic monodisperse spherical fine particles to be suspended are caused to migrate, and on either one of the opposing electrode plates, the particles are regularly arranged in the vertical and horizontal directions. And producing a particulate laminate exhibiting a chromatic light color as a structural color by electrophoretic matching.
視感されるカラーが構造色としての有彩光色である電着カラー板の製造方法において、
少なくとも色みの無い灰色、黒褐色、黒色から選ばれる何れか1種の黒色系無彩色で、且つ体積基準で表す平均粒子径(d)が、100〜500nmの範囲にある特定粒子径を有する有機ポリマー又は無機の単分散球状微粒子が5〜50重量%濃度でサスペンドするサスペンジョンを調製し、
前記サスペンジョン中に、鋼板、ステンレス板、アルミニウム板及びアルミニウム合金板から選ばれる何れかを一種の板を、対向する一対の電極板として浸漬させ、
次いで、請求項11に記載する光発色部材の製造方法を用いて、サスペンド粒子である前記有機ポリマー又は無機の球状微粒子を、前記一対の何れか一方の電極板上に泳動堆積させて、構造色としての有彩光色を呈する縦及び横方向に規則的に整合する粒子状積層物を形成させることを特徴とする電着カラー板の製造方法。
In the method for producing an electrodeposited color plate, in which the color perceived is a chromatic light color as a structural color,
An organic material having at least one kind of black achromatic color selected from gray, black-brown, and black without color, and having a specific particle diameter in a range of 100 to 500 nm in terms of volume-based average particle diameter (d). Preparing a suspension in which the polymer or inorganic monodispersed spherical fine particles are suspended at a concentration of 5 to 50% by weight,
In the suspension, a steel plate, a stainless steel plate, an aluminum plate and an aluminum alloy plate are immersed as one kind of plate as a pair of opposed electrode plates,
Next, the organic polymer or inorganic spherical fine particles, which are suspended particles, are electrophoretically deposited on one of the pair of electrode plates by using the method for manufacturing a photochromic member according to claim 11, and the structural color is obtained. A method for producing an electrodeposited color plate, comprising forming a particulate laminate regularly aligned in the vertical and horizontal directions exhibiting a chromatic light color.
JP2003059210A 2003-03-05 2003-03-05 Photochromic member whose chromatic color to be perceived is structural color, method for producing the same, and method for producing electrodeposited color plate using the method Expired - Fee Related JP3995242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059210A JP3995242B2 (en) 2003-03-05 2003-03-05 Photochromic member whose chromatic color to be perceived is structural color, method for producing the same, and method for producing electrodeposited color plate using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059210A JP3995242B2 (en) 2003-03-05 2003-03-05 Photochromic member whose chromatic color to be perceived is structural color, method for producing the same, and method for producing electrodeposited color plate using the method

Publications (2)

Publication Number Publication Date
JP2004269922A true JP2004269922A (en) 2004-09-30
JP3995242B2 JP3995242B2 (en) 2007-10-24

Family

ID=33122082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059210A Expired - Fee Related JP3995242B2 (en) 2003-03-05 2003-03-05 Photochromic member whose chromatic color to be perceived is structural color, method for producing the same, and method for producing electrodeposited color plate using the method

Country Status (1)

Country Link
JP (1) JP3995242B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012961A1 (en) 2003-07-31 2005-02-10 Soken Chemical & Engineering Co., Ltd. Fluid colloid crystal and process for producing three-dimensional aligned particle mass therefrom
JP2007261249A (en) * 2005-09-29 2007-10-11 Sk Kaken Co Ltd Laminate
JP2007289939A (en) * 2006-03-31 2007-11-08 Sk Kaken Co Ltd Manufacturing method of laminated body
JP2009516036A (en) * 2005-11-19 2009-04-16 ユニリーバー・ナームローゼ・ベンノートシヤープ Colorant composition
JP2010019976A (en) * 2008-07-09 2010-01-28 Toppan Printing Co Ltd Forgery prevention structure and forgery prevention sheet using the same, and its validity determination method
JP2010025974A (en) * 2008-07-15 2010-02-04 Toppan Printing Co Ltd Forgery prevention structure and counterfeit prevention medium using the same
JP2010527342A (en) * 2007-05-18 2010-08-12 ユニリーバー・ナームローゼ・ベンノートシヤープ Monodisperse particles
US8049965B2 (en) 2008-03-18 2011-11-01 Konica Minolta Business Technologies, Inc. Display member
WO2011135924A1 (en) * 2010-04-27 2011-11-03 独立行政法人物質・材料研究機構 Metal nanoparticle array structure, device for producing same, and method for producing same
JP2012523323A (en) * 2009-04-09 2012-10-04 インダストリー−ユニバーシティ コオペレーション ファウンデーション ソギャン ユニバーシティ Method for producing printed matter on which aligned fine particles are printed
KR101570685B1 (en) 2013-07-19 2015-11-23 연세대학교 산학협력단 Method of preparing single crystal colloidal monolayer on substrate and display device comprising the substrate
JP2016172821A (en) * 2015-03-17 2016-09-29 東洋インキScホールディングス株式会社 Production method of dispersion of acidic functional group-containing acrylic organic polymer spherical particle which develops structural color
WO2016157741A1 (en) * 2015-03-31 2016-10-06 Canon Kabushiki Kaisha Particle assembly
WO2016157742A1 (en) * 2015-03-31 2016-10-06 Canon Kabushiki Kaisha Particle assembly
CN113637362A (en) * 2021-09-09 2021-11-12 浙江理工大学 Photocurable liquid photonic crystal color paste, preparation method and application thereof in construction of structural color generation film
EP4130102A4 (en) * 2020-03-25 2023-08-23 Mitsubishi Chemical Corporation Polymer fine particles having structural coloration properties

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012961A1 (en) 2003-07-31 2005-02-10 Soken Chemical & Engineering Co., Ltd. Fluid colloid crystal and process for producing three-dimensional aligned particle mass therefrom
US7527829B2 (en) * 2003-07-31 2009-05-05 Soken Chemical & Engineering Co., Ltd. Fluid colloid crystal and process for producing three-dimensional aligned particle mass therefrom
JP2007261249A (en) * 2005-09-29 2007-10-11 Sk Kaken Co Ltd Laminate
JP2009516036A (en) * 2005-11-19 2009-04-16 ユニリーバー・ナームローゼ・ベンノートシヤープ Colorant composition
JP2007289939A (en) * 2006-03-31 2007-11-08 Sk Kaken Co Ltd Manufacturing method of laminated body
JP2010527342A (en) * 2007-05-18 2010-08-12 ユニリーバー・ナームローゼ・ベンノートシヤープ Monodisperse particles
US8049965B2 (en) 2008-03-18 2011-11-01 Konica Minolta Business Technologies, Inc. Display member
JP2010019976A (en) * 2008-07-09 2010-01-28 Toppan Printing Co Ltd Forgery prevention structure and forgery prevention sheet using the same, and its validity determination method
JP2010025974A (en) * 2008-07-15 2010-02-04 Toppan Printing Co Ltd Forgery prevention structure and counterfeit prevention medium using the same
JP2012523323A (en) * 2009-04-09 2012-10-04 インダストリー−ユニバーシティ コオペレーション ファウンデーション ソギャン ユニバーシティ Method for producing printed matter on which aligned fine particles are printed
US9181085B2 (en) 2009-04-09 2015-11-10 Industry-University Cooperation Foundation Sogang Univeristy Method for manufacturing printed product by aligning and printing fine particles
US9994442B2 (en) 2009-04-09 2018-06-12 Industry-University Cooperation Foundation Sogang University Method for arranging fine particles on substrate by physical pressure
WO2011135924A1 (en) * 2010-04-27 2011-11-03 独立行政法人物質・材料研究機構 Metal nanoparticle array structure, device for producing same, and method for producing same
JP5669276B2 (en) * 2010-04-27 2015-02-12 独立行政法人物質・材料研究機構 Metal nanoparticle array structure, manufacturing apparatus thereof, and manufacturing method thereof
US9096954B2 (en) 2010-04-27 2015-08-04 National Institute For Materials Science Metal nanoparticle array structure, device for producing same, and method for producing same
KR101570685B1 (en) 2013-07-19 2015-11-23 연세대학교 산학협력단 Method of preparing single crystal colloidal monolayer on substrate and display device comprising the substrate
JP2016172821A (en) * 2015-03-17 2016-09-29 東洋インキScホールディングス株式会社 Production method of dispersion of acidic functional group-containing acrylic organic polymer spherical particle which develops structural color
WO2016157741A1 (en) * 2015-03-31 2016-10-06 Canon Kabushiki Kaisha Particle assembly
WO2016157742A1 (en) * 2015-03-31 2016-10-06 Canon Kabushiki Kaisha Particle assembly
EP4130102A4 (en) * 2020-03-25 2023-08-23 Mitsubishi Chemical Corporation Polymer fine particles having structural coloration properties
CN113637362A (en) * 2021-09-09 2021-11-12 浙江理工大学 Photocurable liquid photonic crystal color paste, preparation method and application thereof in construction of structural color generation film

Also Published As

Publication number Publication date
JP3995242B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
US7527829B2 (en) Fluid colloid crystal and process for producing three-dimensional aligned particle mass therefrom
JP2004269922A (en) Photochromophoric member presenting visible chromatic color as structural color, manufacturing method therefor, and process for manufacturing electrodeposited color sheet using the method
EP2071395B1 (en) Display device having a structural colour filter
EP2623520A1 (en) Resin particles and process for producing same, antiglare film, light-diffusing resin composition, and external preparation
JP5439102B2 (en) Hollow particles, production method and use thereof
US7848008B2 (en) Structural color display
JP2013083722A (en) Light reflection film, method for manufacturing light reflection film and light reflector using the same
JP4663990B2 (en) A manufacturing method of a three-dimensional particle matching body of spherical fine particles, a three-dimensional particle matching body, and a manufacturing method of the three-dimensional particle matching body coating film.
JP4318935B2 (en) Manufacturing method of color display member and reflective color image display device using the manufacturing method
JP2008250129A (en) Light diffusion film
JP2010024289A (en) Structural color flake pigment and method for producing structural color flake pigment
JP4586125B2 (en) Novel flowable colloidal crystal composed of solid-liquid colloidal dispersion
JP2004276492A (en) Color sheet using structural color member
JPWO2013002386A1 (en) Oval shaped resin particles, production method thereof, and use thereof
JP4300549B2 (en) Hydrophilic colored resin fine particles, colored aqueous emulsion composition and production method thereof
JP6597291B2 (en) Chromatic colored member with structural color
JP5452978B2 (en) Method for producing light diffusing organic fine particles and light diffusing film or molded body
CN100456056C (en) Fluid colloid crystal and process for producing three-dimensional aligned particle mass thereof
TW201706340A (en) Polymeric beads, process for preparing polymeric beads, and optical film using the same
JP6589330B2 (en) Method for producing colored film exhibiting structural color
JP6511886B2 (en) Method for producing acidic functional group-containing acrylic organic polymer spherical fine particle dispersion exhibiting a structural color
JP2007286208A (en) Micro channel type manufacturing method of two-hue electrostatically charged spherical particle and image display device using the particle
JP6511915B2 (en) Method of manufacturing fine particle film
TW201315745A (en) Resin particles and method for making resin particles, anti-glare film, and optical dispersion resin composition and external agent
JP2009079130A (en) Monodispersed polymer particle, method for producing the same, light diffusive molded product and light-diffusive coating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees