[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004266272A - Field effect transistor and liquid crystal display apparatus employing the same - Google Patents

Field effect transistor and liquid crystal display apparatus employing the same Download PDF

Info

Publication number
JP2004266272A
JP2004266272A JP2004030307A JP2004030307A JP2004266272A JP 2004266272 A JP2004266272 A JP 2004266272A JP 2004030307 A JP2004030307 A JP 2004030307A JP 2004030307 A JP2004030307 A JP 2004030307A JP 2004266272 A JP2004266272 A JP 2004266272A
Authority
JP
Japan
Prior art keywords
effect transistor
organic polymer
semiconductor layer
electrode
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004030307A
Other languages
Japanese (ja)
Other versions
JP4572543B2 (en
Inventor
Takeshi Saito
毅 齋藤
Jun Tsukamoto
遵 塚本
Junji Sanada
淳二 真多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004030307A priority Critical patent/JP4572543B2/en
Publication of JP2004266272A publication Critical patent/JP2004266272A/en
Application granted granted Critical
Publication of JP4572543B2 publication Critical patent/JP4572543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a field effect transistor having high performance both in the carrier mobility and in the on/off ratio and the semiconductor layer of which employs an organic polymer semiconductor with highly general versatility and a crystal liquid display apparatus employing the field effect transistors. <P>SOLUTION: The field effect transistor controls the conductivity of the semiconductor layer provided between a source electrode and a drain electrode by a gate electrode provided via an insulating layer and the semiconductor layer is formed by the organic polymer semiconductor in which carbon nano-tubes are dispersed and the current is controlled in the depletion mode. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は有機高分子半導体を半導体層とする電界効果型トランジスタ、特にカーボンナノチューブを半導体層に分散した電界効果型トランジスタに関する。   The present invention relates to a field effect transistor using an organic polymer semiconductor as a semiconductor layer, and particularly to a field effect transistor in which carbon nanotubes are dispersed in a semiconductor layer.

従来、電界効果型トランジスタ(以下、FET素子と言う)は、シリコンやゲルマニウム等の無機半導体を用いており、回路パターンを形成するのに、フォトリソグラフィーや真空蒸着等の製造コストのかかるプロセスが何段階もわたって必要だった。このような製造方法を採用してきた半導体産業では製造コスト削減や、主要な用途のうちの一つである液晶表示装置における大面積化の要請が高まりつつある。しかし、製造装置の制約から無機半導体でのさらなる低コスト化や大面積化は困難と考えられる。   Conventionally, a field-effect transistor (hereinafter referred to as an FET element) uses an inorganic semiconductor such as silicon or germanium. It was necessary throughout the stages. In the semiconductor industry which has adopted such a manufacturing method, there is an increasing demand for a reduction in manufacturing cost and an increase in the area of a liquid crystal display device which is one of the main applications. However, it is considered that it is difficult to further reduce the cost and increase the area of the inorganic semiconductor due to the limitation of the manufacturing apparatus.

このため、成形性に優れた有機高分子半導体を半導体層として用いたFET素子が提案されている。有機高分子半導体や導電性高分子をインクとして利用することで、インクジェット技術やスクリーニング技術等により、基板上に直接回路パターンを形成することが可能になりつつある。   For this reason, an FET device using an organic polymer semiconductor having excellent moldability as a semiconductor layer has been proposed. By using an organic polymer semiconductor or a conductive polymer as an ink, a circuit pattern can be directly formed on a substrate by an ink-jet technique, a screening technique, or the like.

有機高分子半導体を半導体層としたFET素子の技術としては、ポリアセチレン、ポリチエニレンビニレン、ポリフラニレンビニレンおよびそれらの置換誘導体から選択されるFET素子(例えば特許文献1参照)や半導体層が第一のπ共役系高分子からなり、ソース電極が第二のπ共役系高分子から、ドレイン電極が第三のπ共役系高分子から、ゲート電極が第四のπ共役系高分子からなるFET素子(例えば特許文献2参照)が開示されている。   As a technology of an FET device using an organic polymer semiconductor as a semiconductor layer, an FET device selected from polyacetylene, polythienylenevinylene, polyfuranylenevinylene, and their substituted derivatives (for example, see Patent Document 1) and a semiconductor layer are described. An FET composed of one π-conjugated polymer, a source electrode made of a second π-conjugated polymer, a drain electrode made of a third π-conjugated polymer, and a gate electrode made of a fourth π-conjugated polymer An element (for example, see Patent Document 2) is disclosed.

FET素子の性能を示す指標としてキャリア移動度とオンオフ比が挙げられる。キャリア移動度の向上は、すなわち、オン電流を増加させることを意味する。一方、オンオフ比の向上は、オン電流を増加させるとともにオフ電流を減少させることを意味する。これらはどちらもFET素子のスイッチング特性が向上することであり、具体的には、例えば液晶表示装置における高コントラスト、高解像度を実現させることにつながる。液晶表示装置の場合においてこれらの値はソース−ドレイン間の電圧数V、ゲート電圧範囲20V程度の条件で少なくともキャリア移動度10-3 cm2/V・sec以上、オンオフ比104以上が求められる。 Indices indicating the performance of the FET element include a carrier mobility and an on / off ratio. The improvement of the carrier mobility means that the on-current is increased. On the other hand, the improvement of the on / off ratio means that the on-current is increased and the off-current is decreased. Both of these are to improve the switching characteristics of the FET element, and specifically to realize high contrast and high resolution in, for example, a liquid crystal display device. In the case of a liquid crystal display device, these values are required to have a carrier mobility of at least 10 −3 cm 2 / V · sec and an on / off ratio of at least 10 4 under the conditions of a source-drain voltage of several V and a gate voltage range of about 20 V. .

従来の技術では有機高分子半導体を半導体層に用いるFET素子はこのキャリア移動度とオンオフ比の点で工業的要求に答えられる性能を達成することができなかった。例えば、キャリア移動度に関して上記の有機高分子半導体を用いたFET素子よりも性能の高いものとして、ポリチオフェンおよびその置換誘導体から選択されるFET素子が開示されており(特許文献3参照)、示されているキャリア移動度は2.2×10-5cm2/V・secと非常に低い値であった。 In the prior art, an FET device using an organic polymer semiconductor for a semiconductor layer has not been able to achieve performance that meets industrial requirements in terms of the carrier mobility and the on / off ratio. For example, an FET device selected from polythiophene and a substituted derivative thereof is disclosed as having higher performance than an FET device using the organic polymer semiconductor in terms of carrier mobility (see Patent Document 3). The carrier mobility has a very low value of 2.2 × 10 −5 cm 2 / V · sec.

また、異なる溶媒によるポリ−3−ヘキシルチオフェン溶液で半導体層を形成して作製したFET素子の溶媒とオンオフ比の関係の検討がなされている(非特許文献1参照)が、その値はエンハンスモードで104未満と不十分なものであった。さらに、ポリ−3−ヘキシルチオフェンの半導体層上面を酸化シリコン膜とポリフェニレンビニレン誘導体膜を覆った構成のFET素子においてキャリア移動度約0.05cm2/V・sec、オンオフ比106以上の報告がなされている(非特許文献2参照)が、このときのゲート電圧の範囲は60V以上であり一般的なFET素子を制御するときのゲート電圧範囲20〜30Vを大幅に越えており、ゲート電圧が0Vから−20Vに変化させたときのオンオフ比は103以下と低い。加えて上記のような特殊な構成でのみ可能であり、しかも素子作製過程を窒素雰囲気下で行わなくてはいけない等の制約により作製について様々な点で問題があった。 In addition, the relationship between the solvent and the on / off ratio of an FET device manufactured by forming a semiconductor layer with a poly-3-hexylthiophene solution using a different solvent has been studied (see Non-Patent Document 1), but the value is enhanced mode. Was less than 10 4 , which was insufficient. Furthermore, in a FET device in which a semiconductor layer of poly-3-hexylthiophene is covered with a silicon oxide film and a polyphenylene vinylene derivative film, a carrier mobility of about 0.05 cm 2 / V · sec and an on / off ratio of 10 6 or more have been reported. (See Non-Patent Document 2), but the range of the gate voltage at this time is 60 V or more, which greatly exceeds the gate voltage range of 20 to 30 V when controlling a general FET element. The on / off ratio when changing from 0V to -20V is as low as 10 3 or less. In addition, it is possible only with the special configuration as described above, and furthermore, there are various problems in the production due to restrictions such as that the element production process must be performed in a nitrogen atmosphere.

また、上記はポリ−3−ヘキシルチオフェンを半導体層として用いたFET素子をエンハンスモードで使用する例であるが、ディプレッションモードで使用する例についても開示されており(非特許文献1参照)、キャリア移動度は0.01cm2/V・secであるが、オンオフ比は101と非常に低い。 Although the above is an example in which an FET element using poly-3-hexylthiophene as a semiconductor layer is used in an enhancement mode, an example in which the FET element is used in a depletion mode is also disclosed (see Non-Patent Document 1). The mobility is 0.01 cm 2 / V · sec, but the on / off ratio is very low at 10 1 .

他方、素子間の半導体層のアイソレーションは通常、フォトリソグラフィーによるパターニング技術を用いて行われるが、有機半導体は一般に有機溶媒に溶解しやすく、パターニングによる選択的除去が難しいという課題がある。現在、素子間の半導体層部にゲート電極を設けることによって空乏層を形成して絶縁化(アイソレーション)を図る技術が開示されている(特許文献4参照)。
特開昭64−36076号公報(特許請求の範囲) 特開平1−259563号公報(特許請求の範囲) 特開平6−177380号公報(特許請求の範囲) 特表2003−508797号公報(特許請求の範囲) 「Applied Physics Letters」誌,vol.69,1998(1998年10月2日発行),p4108 「Science」誌,vol.280,1998(1998年6月12日発行),p1741
On the other hand, isolation of a semiconductor layer between elements is usually performed using a patterning technique by photolithography. However, an organic semiconductor is generally easily dissolved in an organic solvent, and has a problem that it is difficult to selectively remove the semiconductor by patterning. At present, a technique is disclosed in which a gate electrode is provided in a semiconductor layer portion between elements to form a depletion layer to achieve insulation (isolation) (see Patent Document 4).
JP-A-64-36076 (Claims) JP-A-1-259563 (Claims) JP-A-6-177380 (Claims) JP-T-2003-508797 (Claims) Applied Physics Letters, vol. 69, 1998 (October 2, 1998), p4108 "Science", vol. 280, 1998 (issued on June 12, 1998), p1741

上述のように従来の有機高分子半導体を半導体層として用いた電界効果トランジスタはいずれも性能、作製方法、構成等の点で問題点があった。本発明の目的は、キャリア移動度とオンオフ比が高性能であり汎用性の高い有機高分子半導体を半導体層とするFET素子、および、そのFET素子を用いた液晶表示装置を開発することを目的とする。   As described above, all of the conventional field effect transistors using an organic polymer semiconductor as a semiconductor layer have problems in performance, manufacturing method, configuration, and the like. An object of the present invention is to develop an FET device using a high-versatility organic polymer semiconductor as a semiconductor layer with high carrier mobility and on / off ratio, and a liquid crystal display device using the FET device. And

本発明は上記本発明の目的を達成するために、以下の構成からなる。
(1)ソース電極とドレイン電極間に設けた半導体層の導電性を絶縁層を介して設けられたゲート電極によって制御する電界効果型トランジスタであって、半導体層がカーボンナノチューブを分散した有機高分子半導体で形成され、ディプレッションモードで電流を制御することを特徴とする電界効果型トランジスタ。
(2)ソース電極とドレイン電極間に設けたカーボンナノチューブが分散した有機高分子半導体層の導電性を、絶縁層を介して設けられたゲート電極によって制御する電界効果型トランジスタであって、カーボンナノチューブの重量分率が有機高分子半導体に対し0.1重量%以上1重量%以下であり、有機高分子半導体層の膜厚が10nm以上100nm以下である(1)記載の電界効果型トランジスタ。
(3)カーボンナノチューブの長さがソース電極とドレイン電極間の距離よりも小さいことを特徴とする(1)または(2)記載の電界効果型トランジスタ。
(4)有機高分子半導体がポリチオフェン系重合体を有する有機高分子半導体である(1)〜(3)のいずれか記載の電界効果型トランジスタ。
(5)一対の対向する基板上に複数のアドレス線と複数のデータ線とが対向してマトリックス状に設けられており、このマトリックス配線の交点に配置された電界効果型トランジスタと、この電界効果型トランジスタを介して前記データ線と接続された画素電極と、この画素電極に対向した対向電極とによって液晶層を挟持したアクティブマトリックス型の液晶表示装置であって、電界効果型トランジスタが(1)〜(4)のいずれか記載の電界効果型トランジスタである液晶表示装置。
The present invention has the following configuration in order to achieve the object of the present invention.
(1) A field-effect transistor in which the conductivity of a semiconductor layer provided between a source electrode and a drain electrode is controlled by a gate electrode provided via an insulating layer, wherein the semiconductor layer is an organic polymer in which carbon nanotubes are dispersed. A field-effect transistor formed of a semiconductor and controlling current in a depletion mode.
(2) A field effect transistor in which the conductivity of an organic polymer semiconductor layer in which carbon nanotubes are provided between a source electrode and a drain electrode is dispersed is controlled by a gate electrode provided through an insulating layer. The field effect transistor according to (1), wherein the weight fraction of the organic polymer semiconductor is 0.1% by weight or more and 1% by weight or less, and the thickness of the organic polymer semiconductor layer is 10 nm or more and 100 nm or less.
(3) The field effect transistor according to (1) or (2), wherein the length of the carbon nanotube is smaller than the distance between the source electrode and the drain electrode.
(4) The field effect transistor according to any one of (1) to (3), wherein the organic polymer semiconductor is an organic polymer semiconductor having a polythiophene-based polymer.
(5) A plurality of address lines and a plurality of data lines are provided on a pair of opposed substrates in a matrix so as to face each other, and a field-effect transistor arranged at an intersection of the matrix wiring; An active matrix liquid crystal display device in which a liquid crystal layer is sandwiched between a pixel electrode connected to the data line via a type transistor and a counter electrode facing the pixel electrode, wherein the field effect transistor is (1) A liquid crystal display device which is the field-effect transistor according to any one of (1) to (4).

本発明によれば、キャリア移動度とオンオフ比について高性能な有機高分子半導体を半導体層として用いた電界効果型トランジスタおよびその電界効果型トランジスタを駆動素子として利用した液晶表示装置を提供できる。   According to the present invention, it is possible to provide a field-effect transistor using an organic polymer semiconductor having a high performance in carrier mobility and on-off ratio as a semiconductor layer, and a liquid crystal display device using the field-effect transistor as a driving element.

本発明は、FET素子の有機高分子半導体層をポリチオフェン系重合体で形成し、その半導体層に単層または多層カーボンナノチューブを分散させることによって得られた高性能のFET素子であり、さらにポリチオフェン系重合体とカーボンナノチューブ(以下、CNTと言う)のコンポジットを用いることによって、ディプレッションモードで用いる高性能FET素子を容易に製造する方法である。具体的なFET素子の構成と製造方法を以下に述べる。   The present invention is a high-performance FET device obtained by forming an organic polymer semiconductor layer of a FET device from a polythiophene-based polymer and dispersing a single-walled or multi-walled carbon nanotube in the semiconductor layer. This is a method for easily manufacturing a high-performance FET device used in a depletion mode by using a composite of a polymer and a carbon nanotube (hereinafter, referred to as CNT). The specific configuration and manufacturing method of the FET device will be described below.

図1は、本発明のFET素子の一例を示す模式断面図である。絶縁層3で覆われたゲート電極2を有する基板1上に、(A)では通常のフォトリソグラフィ技術および真空蒸着法やスパッタリング法を用いて金等のソース電極5およびドレイン電極6が形成された後、スピンコート法によってCNTが分散している有機高分子半導体の半導体層4が形成されている。また(B)では前記基板上にスピンコート法によってCNTが分散している有機高分子半導体の半導体層4が形成された後、マスク蒸着法等によって金等のソース電極5およびドレイン電極6が形成されている。   FIG. 1 is a schematic sectional view showing an example of the FET device of the present invention. On the substrate 1 having the gate electrode 2 covered with the insulating layer 3, a source electrode 5 and a drain electrode 6 made of gold or the like were formed by using a normal photolithography technique, a vacuum evaporation method, or a sputtering method in FIG. After that, the semiconductor layer 4 of the organic polymer semiconductor in which the CNTs are dispersed is formed by spin coating. In (B), after a semiconductor layer 4 of an organic polymer semiconductor in which CNTs are dispersed is formed on the substrate by spin coating, a source electrode 5 and a drain electrode 6 of gold or the like are formed by mask evaporation or the like. Have been.

基板1としては、例えば、シリコンウエハー、ガラス、アルミナ焼結体等の無機材料、ポリイミド、ポリエステル、ポリエチレン、ポリフェニレンスルフィド、ポリパラキシレン等の有機材料が使用可能である。ここで基板洗浄以外の基板表面を改善する処理は特に行なわなくとも本発明のFET素子は従来のFET素子よりも高性能となるが、例えばシリコンウエハー、ガラス基板等の酸化シリコン系基板の場合、シランカップリング剤に代表されるような表面改質剤で処理することによってFET素子の性能を上げる効果があることが知られており、本発明においてももちろんそのような表面処理を行うことも可能である。   As the substrate 1, for example, an inorganic material such as a silicon wafer, glass, or a sintered body of alumina, or an organic material such as polyimide, polyester, polyethylene, polyphenylene sulfide, or polyparaxylene can be used. Here, the FET device of the present invention has higher performance than the conventional FET device without performing any process for improving the substrate surface other than the substrate cleaning.For example, in the case of a silicon oxide-based substrate such as a silicon wafer or a glass substrate, It is known that treatment with a surface modifier, such as a silane coupling agent, has the effect of improving the performance of FET devices, and such a surface treatment is of course possible in the present invention. It is.

ゲート電極2、ソース電極5およびドレイン電極6としては、金、白金、銀、銅、クロム、パラジウム、アルミニウム、インジウム、モリブデン、低抵抗ポリシリコン、低抵抗アモルファスシリコン等の金属や錫酸化物、酸化インジウム、インジウム錫酸化物(ITO)、白金シリサイド、インジウムシリサイド等の金属性無機化合物、ポリ−3,4−エチレンジオキシチオフェン/ポリスチレンスルホネート(PEDOT/PSS)等の金属性有機化合物が使用できる。これらの材料を2種以上併用しても差し支えないが、好ましくは導電率が高く化学的に安定な金属がよく、中でも特に金、白金がよい。   As the gate electrode 2, the source electrode 5 and the drain electrode 6, metals such as gold, platinum, silver, copper, chromium, palladium, aluminum, indium, molybdenum, low-resistance polysilicon, low-resistance amorphous silicon, tin oxide, and oxide Metallic inorganic compounds such as indium, indium tin oxide (ITO), platinum silicide and indium silicide, and metallic organic compounds such as poly-3,4-ethylenedioxythiophene / polystyrene sulfonate (PEDOT / PSS) can be used. Two or more of these materials may be used in combination, but a metal having high conductivity and being chemically stable is preferred, and gold and platinum are particularly preferred.

上記ゲート電極2、ソース電極5およびドレイン電極6は蒸着、スパッタリング、めっき、各種CVD成長、スピンコート法とフォトリソグラフィ技術やエッチング等のいわゆる半導体プロセス技術、クラスタイオンビーム蒸着等により形成することができる。   The gate electrode 2, the source electrode 5, and the drain electrode 6 can be formed by vapor deposition, sputtering, plating, various types of CVD growth, a spin coating method, a so-called semiconductor process technology such as photolithography technology or etching, cluster ion beam deposition, or the like. .

前記の絶縁層3(ゲート絶縁膜)に用いる材料として、具体的には酸化シリコン、アルミナ等の無機材料、ポリイミド、ポリビニルアルコール、ポリビニルクロライド、ポリエチレンテレフタレート、ポリフッ化ビニリデン等の有機高分子材料、あるいは無機材料粉末と有機高分子材料の混合物を用いることができる。上記絶縁層は、スパッタリング、蒸着、スピンコート法等により形成することができる。   Specific examples of the material used for the insulating layer 3 (gate insulating film) include inorganic materials such as silicon oxide and alumina; organic polymer materials such as polyimide, polyvinyl alcohol, polyvinyl chloride, polyethylene terephthalate, and polyvinylidene fluoride; A mixture of an inorganic material powder and an organic polymer material can be used. The insulating layer can be formed by sputtering, vapor deposition, spin coating, or the like.

本発明のFET素子の半導体性を担う有機高分子半導体の種類は特に限定されないが、膜形成の容易さから溶媒に可溶なものが好ましく、中でもポリチオフェン系重合体が好ましい。ポリチオフェン系重合体とはポリチオフェン構造の骨格を持つ重合体に側鎖が付いた構造を有するものである。具体例としては、ポリ−3−メチルチオフェン、ポリ−3−ブチルチオフェン、ポリ−3−ヘキシルチオフェン、ポリ−3−オクチルチオフェン、ポリ−3−ドデシルチオフェン等のポリ−3−アルキルチオフェン(アルキル基の炭素数は特に制限はないが好ましくは1〜12)、ポリ−3−メトキシチオフェン、ポリ−3−エトキシチオフェン、ポリ−3−ドデシルオキシチオフェン等のポリ−3−アルコキシチオフェン(アルコキシ基の炭素数はとくに制限はないが好ましくは1〜12)、ポリ−3−メトキシ−4−メチルチオフェン、ポリ−3−ドデシルオキシ−4−メチルチオフェン等のポリ−3−アルコキシ−4−アルキルチオフェン(アルコキシ基およびアルキル基の炭素数は特に制限はないが好ましくは1〜12)、ポリ−3−チオヘキシルチオフェンやポリ−3−チオドデシルチオフェン等のポリ−3−チオアルキルチオフェン(アルキル基の炭素数は特に制限はないが好ましくは1〜12)が挙げられ、1種もしくは2種以上を用いることができる。中でも、ポリ−3−アルキルチオフェン、ポリ−3−アルコキシチオフェンが好ましく、前者としては特にポリ−3−ヘキシルチオフェンが好ましい。好ましい分子量は重量平均分子量で800〜100000である。また、上記重合体は必ずしも高分子量である必要はなく、オリゴマーであってもよい。   The kind of the organic polymer semiconductor that plays a semiconducting role in the FET device of the present invention is not particularly limited, but those that are soluble in a solvent are preferable because of ease of film formation, and among them, a polythiophene-based polymer is preferable. The polythiophene-based polymer has a structure in which a side chain is attached to a polymer having a skeleton of a polythiophene structure. Specific examples include poly-3-alkylthiophene (alkyl group) such as poly-3-methylthiophene, poly-3-butylthiophene, poly-3-hexylthiophene, poly-3-octylthiophene, and poly-3-dodecylthiophene. Is not particularly limited, but is preferably 1 to 12), and poly-3-alkoxythiophenes such as poly-3-methoxythiophene, poly-3-ethoxythiophene, poly-3-dodecyloxythiophene (carbon of alkoxy group) Although the number is not particularly limited, preferably 1 to 12), poly-3-alkoxy-4-alkylthiophene (alkoxy) such as poly-3-methoxy-4-methylthiophene and poly-3-dodecyloxy-4-methylthiophene The carbon number of the group and the alkyl group is not particularly limited, but is preferably 1 to 12), and poly-3 Poly-3-thioalkylthiophenes (the number of carbon atoms of the alkyl group is not particularly limited, but preferably 1 to 12) such as thiohexylthiophene and poly-3-thiododecylthiophene, and one or more kinds are used. be able to. Among them, poly-3-alkylthiophene and poly-3-alkoxythiophene are preferable, and as the former, poly-3-hexylthiophene is particularly preferable. The preferred molecular weight is 800 to 100,000 in terms of weight average molecular weight. The polymer does not necessarily have to have a high molecular weight, but may be an oligomer.

本発明において用いられる上記のポリチオフェン系重合体の側鎖の結合様式は上記のようなレジオレギュラーな構造を有するものが好ましく、少なくとも80%以上のレジオレギュラリティーを有するポリチオフェン系重合体について好ましく適応される。   The bonding mode of the side chain of the polythiophene polymer used in the present invention is preferably one having a regioregular structure as described above, and is preferably applied to a polythiophene polymer having a regioregularity of at least 80% or more. You.

本発明のポイントである半導体層4にCNTを分散する方法は特に限定されないが、例えば(i)CNTを溶媒に分散した分散液をスピンコート法等で所定の基板上に塗布した後、上記方法で有機高分子半導体の薄膜を形成し、有機高分子半導体のガラス転移温度程度で熱処理して薄膜中にCNTを分散させる方法、(ii)有機高分子半導体薄膜を形成した後、薄膜が溶解しない溶媒にCNTを分散した分散液を塗布し、熱処理により形成する方法、あるいは、(iii)有機高分子半導体とCNTを成分とするコンポジット(以下、半導体性コンポジットと言う)を作製した後、上記方法にて薄膜を形成する方法が挙げられる。中でも(iii)の半導体性コンポジットを半導体層として用いる方法が好ましい。   The method of dispersing CNTs in the semiconductor layer 4, which is a point of the present invention, is not particularly limited. For example, (i) a method in which a dispersion of CNTs dispersed in a solvent is applied on a predetermined substrate by spin coating or the like, and A method of forming a thin film of an organic polymer semiconductor by a method and heat-treating the organic polymer semiconductor at about the glass transition temperature to disperse the CNTs in the thin film; A method in which a dispersion liquid in which CNTs are dispersed in a solvent is applied and formed by heat treatment, or (iii) a method in which a composite containing an organic polymer semiconductor and CNTs (hereinafter referred to as a semiconductive composite) is prepared, In which a thin film is formed. Among them, the method of using the semiconductor composite (iii) as the semiconductor layer is preferable.

上記半導体性コンポジットの作製方法としては、例えば、(I)溶融した有機高分子半導体の中にCNTを添加して混合させる方法、(II)有機高分子半導体を溶媒中に溶解させこの中にCNTを添加して混合させる方法、(III)CNTを溶媒中で予め超音波等で予備分散しておいた所に有機高分子半導体を添加し混合させる方法、(IV)溶媒中に有機高分子半導体とCNTを入れ、この混合系に超音波を照射して混合させる方法等が挙げられる。本発明では、何れの方法を単独で用いるか、あるいは何れの方法を組み合わせても良く、特に限定されない。   Examples of the method for producing the above-mentioned semiconductive composite include (I) a method in which CNT is added to a molten organic polymer semiconductor and mixed, and (II) a method in which the organic polymer semiconductor is dissolved in a solvent and CNT is added thereto. (III) a method in which CNTs are preliminarily dispersed in a solvent by ultrasonic waves or the like, and an organic polymer semiconductor is added and mixed, and (IV) an organic polymer semiconductor in a solvent. And CNTs, and irradiating the mixed system with ultrasonic waves to mix them. In the present invention, any method may be used alone or any method may be combined, and there is no particular limitation.

上記半導体性コンポジットに含まれるCNTの重量分率は特に限定されないが、超音波照射によるCNTの分散方法を用いた場合、半導体性を損なわない様にするために0.1〜1重量%が好ましい。具体的な例を挙げると、ポリ−3−ヘキシルチオフェンと単層CNTを用いて作製した半導体性コンポジットの場合にはカーボンナノチューブの重量分率は0.1〜0.6重量%が好ましい。これより高い重量分率ではコンポジットの導電率が過剰に増加するため半導体層として用いるには不適当となる。このような詳しい重量分率の範囲を求めるためには、コンポジットの導電率を重量分率に対してプロットすることで複合材料の導電現象を説明するパーコレーション理論における臨界含有率を求め、この臨界含有率よりも小さくなるように重量分率を決定することが好ましい。例として図2に上記の方法で超音波を照射することによって作製したポリ−3−ヘキシルチオフェンと単層CNTの半導体性コンポジットの導電率をCNTの重量分率に対してプロットしたものを示した。この場合臨界含有率は約0.6重量%であったため、CNTの重量分率は有機高分子半導体に対して0.6重量%以下であることが好ましい。このようにして最適なCNTの重量分率を決定することによってFET素子特性の向上を図ることができる。   The weight fraction of the CNTs contained in the semiconductive composite is not particularly limited, but is preferably 0.1 to 1 wt% in order to not impair the semiconductivity when using a method of dispersing the CNTs by ultrasonic irradiation. . To give a specific example, in the case of a semiconductor composite prepared using poly-3-hexylthiophene and single-walled CNT, the weight fraction of carbon nanotubes is preferably 0.1 to 0.6% by weight. If the weight fraction is higher than this, the conductivity of the composite excessively increases, so that the composite is not suitable for use as a semiconductor layer. In order to determine such a detailed range of the weight fraction, the critical content in percolation theory that explains the conductivity phenomenon of the composite material is obtained by plotting the conductivity of the composite against the weight fraction, and this critical content is determined. It is preferable to determine the weight fraction so as to be smaller than the ratio. As an example, FIG. 2 shows a plot of the conductivity of a semiconducting composite of poly-3-hexylthiophene and single-walled CNT prepared by irradiating ultrasonic waves by the above method with respect to the weight fraction of CNT. . In this case, the critical content was about 0.6% by weight, so that the weight fraction of CNT is preferably 0.6% by weight or less based on the organic polymer semiconductor. By determining the optimal CNT weight fraction in this manner, the FET element characteristics can be improved.

本発明において用いられるCNTは、長さが少なくともソース電極とドレイン電極間の距離(チャネル長)よりも短いことが必要である。これよりも長い場合、電極間を短絡させる原因となり、FET素子作製には不適当である。他方、一般に市販されているCNTは長さに分布があり、チャネル長よりも長いCNTが含まれることがある。そこでCNTをチャネル長よりも短くする工程を加えたほうがよく、電極間の短絡を確実に防ぐことができる。   The CNT used in the present invention needs to have a length shorter than at least the distance (channel length) between the source electrode and the drain electrode. If the length is longer than this, the electrodes may be short-circuited, which is unsuitable for fabricating FET devices. On the other hand, generally commercially available CNTs have a distribution in length, and may include CNTs longer than the channel length. Therefore, it is better to add a step of making the CNT shorter than the channel length, and a short circuit between the electrodes can be reliably prevented.

本発明では、CNTを溶媒中に均一分散させ、CNT分散液をフィルターを用いて濾過する工程を設けることが好ましい。フィルター孔径よりも小さいCNTを濾液から得ることで、ソース電極とドレイン電極間の距離よりも小さくしたカーボンナノチューブを効率よく得られることができる。   In the present invention, it is preferable to provide a step of uniformly dispersing the CNTs in a solvent and filtering the CNT dispersion using a filter. By obtaining CNTs smaller than the filter pore diameter from the filtrate, carbon nanotubes smaller than the distance between the source electrode and the drain electrode can be efficiently obtained.

CNTを溶液中に均一分散させるには、溶媒中にCNTと共にドデシルスルホン酸ナトリウムなどの界面活性剤、またはコイル状構造を有する高分子、または共役系重合体を加え、超音波照射または加熱環流する方法が好ましく用いられる。FET素子の特性を向上させることを考慮すれば、より半導体特性の優れた物質を用いることが好ましく、共役系重合体を用いることが特に好ましい。中でも直鎖状の共役系重合体が好ましく用いられ、ポリ−3−アルキルチオフェンなどを用いることができる。   In order to uniformly disperse CNTs in a solution, a surfactant such as sodium dodecylsulfonate, or a polymer having a coil-like structure, or a conjugated polymer is added together with CNTs in a solvent, and ultrasonic irradiation or heat reflux is performed. The method is preferably used. In consideration of improving the characteristics of the FET element, it is preferable to use a substance having more excellent semiconductor characteristics, and it is particularly preferable to use a conjugated polymer. Among them, a linear conjugated polymer is preferably used, and poly-3-alkylthiophene and the like can be used.

濾過に用いるフィルターは、チャネル長よりも小さい孔径を有するフィルターであれば、メンブレンフィルター、セルロース濾紙、ガラス繊維濾紙など何れの種類のフィルターも用いることができる。中でもメンブレンフィルターは、濾紙内部で吸着されるCNTの量を減らすことができるので、濾液から収率よくCNTを回収できるので好ましく用いることができる。   Any type of filter, such as a membrane filter, a cellulose filter paper, or a glass fiber filter paper, may be used as long as the filter used for filtration has a pore size smaller than the channel length. Above all, a membrane filter can be preferably used because it can reduce the amount of CNT adsorbed inside the filter paper and can recover CNT from the filtrate in good yield.

濾過に用いるフィルターの孔径は、チャネル長よりも小さければ良く、例えばチャネル長が20μmの場合は、孔径10μmのフィルターを用いることで電極間の短絡を確実に防ぐことができる。実際には孔径0.5〜10μmのフィルターを好ましく用いることができ、チャネル長に応じて使い分けることができる。   The pore size of the filter used for filtration only needs to be smaller than the channel length. For example, when the channel length is 20 μm, a short circuit between the electrodes can be reliably prevented by using a filter having a pore size of 10 μm. Actually, a filter having a pore size of 0.5 to 10 μm can be preferably used, and can be used properly according to the channel length.

他にCNTを短小化する方法として、酸処理によってCNTそのものを短くする方法が知られており、本発明に用いることができる。この場合、CNTを硫酸と硝酸との混酸の中に加え、超音波照射するか、100℃以上の熱処理をすることで短小化されたCNTを得ることができる。また、過酸化水素水中で加熱する方法も用いることができる。これらの方法を行った場合は、後処理として孔径0.1〜1μmのフィルターを用いて処理されたCNTを濾別し、水洗することで、ソース電極とドレイン電極間の距離よりも小さくしたカーボンナノチューブを得ることができる。   As another method for shortening CNT, a method of shortening CNT itself by acid treatment is known, and can be used in the present invention. In this case, shortened CNTs can be obtained by adding CNTs to a mixed acid of sulfuric acid and nitric acid and irradiating with ultrasonic waves or performing heat treatment at 100 ° C. or more. Further, a method of heating in a hydrogen peroxide solution can also be used. When these methods are performed, the CNTs treated as a post-treatment using a filter having a pore size of 0.1 to 1 μm are separated by filtration and washed with water, so that the carbon having a distance smaller than the distance between the source electrode and the drain electrode is obtained. Nanotubes can be obtained.

CNTには1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNTと、2枚のグラフェン・シートが同心円状に巻かれた2層CNTと、複数のグラフェン・シートが同心円状に巻かれた多層CNTとがあり、本発明においてそれぞれ単体で、もしくは単層、2層、多層のうちの2種類または3種類を同時に使用できる。またその作製方法はアーク放電法、化学気相成長法(以下CVD法とする)、レーザー・アブレーション法等によって作製されるが、本発明に使用されるCNTはいずれの方法によって得られたものであってもよい。   The CNT includes a single-layer CNT in which one carbon film (graphene sheet) is wound in a cylindrical shape, a two-layer CNT in which two graphene sheets are wound concentrically, and a plurality of graphene sheets in a concentric circle. There is a multilayer CNT wound in a shape, and in the present invention, each of them can be used alone, or two or three of a single layer, a double layer, and a multilayer can be used simultaneously. In addition, the CNT used in the present invention is obtained by any method, such as an arc discharge method, a chemical vapor deposition method (hereinafter, referred to as a CVD method), or a laser ablation method. There may be.

上記有機高分子半導体および半導体性コンポジットの薄膜は、溶媒に溶解して溶液とし、浸漬法、印刷転写法、スピンコート法、ブレードによるキャスト法等で所定の基板上に形成し、溶媒を除去することで得られる。   The organic polymer semiconductor and the thin film of the semiconductor composite are dissolved in a solvent to form a solution, formed on a predetermined substrate by a dipping method, a printing transfer method, a spin coating method, a casting method using a blade, or the like, and removing the solvent. It can be obtained by:

その際の溶液濃度としては0.1〜10重量%、好ましくは0.1〜1重量%である。例えば、ポリ−3−ヘキシルチオフェンを用いて上記の方法で作製した半導体性コンポジットのクロロホルム溶液(濃度0.34重量%)をシリコンウエハーに1000rpmでスピンコートすることによって膜厚40nmの薄膜を形成することができる。   The concentration of the solution at that time is 0.1 to 10% by weight, preferably 0.1 to 1% by weight. For example, a 40 nm-thick thin film is formed by spin-coating a chloroform solution (concentration: 0.34% by weight) of a semiconductor composite prepared by the above method using poly-3-hexylthiophene on a silicon wafer at 1000 rpm. be able to.

半導体層の膜厚は特に限定されないが、中でも好ましくは10nm以上100nm以下がよい。この範囲以内であれば103以上のオンオフ比を実現することが可能である(実施例1、3、4)が、この範囲以上に膜厚が大きいとゲート電圧によって制御できないソース・ドレイン間電流が増加してしまい、FET素子のオンオフ比を低下させる。またこの範囲以下ではキャリア移動度が減少してしまう問題がある。 The thickness of the semiconductor layer is not particularly limited, but is preferably 10 nm or more and 100 nm or less. Within this range, it is possible to realize an on / off ratio of 10 3 or more (Examples 1, 3, and 4), but if the film thickness is larger than this range, the source-drain current that cannot be controlled by the gate voltage Increases, and the on / off ratio of the FET element decreases. Further, below this range, there is a problem that the carrier mobility decreases.

本発明のFET素子は種々のデバイスに使用されうるが、特に液晶表示装置、エレクトロルミネッセンス表示装置等の表示装置の駆動素子としての利用が可能である。   The FET device of the present invention can be used for various devices, and can be used particularly as a driving device for a display device such as a liquid crystal display device and an electroluminescence display device.

図3は、本発明のFET素子を用いた液晶表示装置の一例を示す模式断面図である。複数のアドレス配線7と複数のデータ配線8とからなるマトリックス表示型の液晶表示装置で、マトリックス配線の交点に本発明のFET素子が形成されている。このFET素子を介して前記データ配線8と接続された画素電極9とこの電極に対向する対向電極13とによって挟持された液晶分子11からなる液晶層を駆動することによりマトリックス表示される。この際、FET素子のソース電極とドレイン電極間に設けた半導体層4の導電性を、絶縁層3を介して設けたゲート電極2によって制御し、液晶を駆動するものである。   FIG. 3 is a schematic sectional view showing an example of a liquid crystal display device using the FET device of the present invention. In a matrix display type liquid crystal display device including a plurality of address lines 7 and a plurality of data lines 8, the FET element of the present invention is formed at the intersection of the matrix lines. The matrix display is performed by driving the liquid crystal layer composed of the liquid crystal molecules 11 sandwiched between the pixel electrode 9 connected to the data wiring 8 and the counter electrode 13 facing the electrode via the FET element. At this time, the conductivity of the semiconductor layer 4 provided between the source electrode and the drain electrode of the FET element is controlled by the gate electrode 2 provided via the insulating layer 3 to drive the liquid crystal.

本発明によれば、液晶表示装置のように大面積の基板上に容易にFET素子を形成することができる。ゲートに印加する電圧によってソース・ドレイン間電流を大きく変調することができ、高階調性が得られその動作も安定しているので、優れたマトリックス型の液晶表示装置を提供することができる。   According to the present invention, an FET element can be easily formed on a large-sized substrate such as a liquid crystal display device. The current between the source and the drain can be largely modulated by the voltage applied to the gate, and high gradation characteristics can be obtained and the operation thereof is stable, so that an excellent matrix-type liquid crystal display device can be provided.

本発明によるディプレッションモードで使用されるFET素子が優れた特性について、以下のように推定する。   The excellent characteristics of the FET element used in the depletion mode according to the present invention are estimated as follows.

高分子間または結晶子等のドメインの間をキャリアが移動するに際し、高分子間やドメイン間の構造の乱れによってキャリアがトラップされたり、散乱されるため、外部に観測されるキャリア移動度は本来高分子結晶が有する移動度より大きく低下している。一方、CNTを適度に含む場合、高分子間やドメイン間をキャリア移動度の高いCNTが橋渡しするため、高移動度が得られると考えられる。   When carriers move between polymers or domains such as crystallites, the carriers are trapped or scattered by the disorder of the structure between the polymers or domains. The mobility is much lower than that of the polymer crystal. On the other hand, when CNTs are contained appropriately, it is considered that CNTs having high carrier mobility bridge between polymers and domains, and thus high mobility can be obtained.

また、CNTは単層CNTでは3分の1の確率で、また多層CNTではすべてが金属的であると考えられるため、半導体層に高分散したCNT中はそれぞれのCNTにおいて電界が均一であり、そのため半導体層に電界が有効に印加されると推測される。このためゲート電圧が半導体層に有効に印加され、CNTが無い場合に比べてオフ時により大きく空乏層領域が広がり、従ってオフ電流が極めて小さく抑えられたと推定される。   In addition, since CNTs are considered to be one-third in single-walled CNTs and entirely metallic in multi-walled CNTs, the electric field is uniform in each CNT in CNTs highly dispersed in the semiconductor layer, Therefore, it is assumed that an electric field is effectively applied to the semiconductor layer. For this reason, it is presumed that the gate voltage is effectively applied to the semiconductor layer, and the depletion layer region expands more at the time of off than in the case where there is no CNT, so that the off current is extremely suppressed.

また、本発明はディプレションモードでオフ電流を低く抑えることができるので、FET素子間にアイソレーションを施すのに本発明を適用してもよい。すなわち、FET素子間の半導体層のアイソレーションは通常、フォトリソグラフィーによるパターニング技術を用いて行われるが、有機半導体は一般に有機溶媒に溶解しやすく、パターニングによる選択的除去が難しい。そこで、本発明を利用して、除去すべき半導体層の部分にゲート電極を設けてオフ電圧を印加しておけば、空乏層が形成されてオフ電流が非常に低く抑えられるので、除去せずにも実質的に素子間が電気的に絶縁化(アイソレーション)されたと同じ効果を出すことができる。具体的な作製手段は例えば特表2003−508797号公報に記載の方法を用いて良い。   Further, according to the present invention, since the off-state current can be suppressed in the depletion mode, the present invention may be applied to provide isolation between FET elements. That is, isolation of a semiconductor layer between FET elements is usually performed using a patterning technique by photolithography. However, an organic semiconductor is generally easily dissolved in an organic solvent, and it is difficult to selectively remove the semiconductor by patterning. Therefore, if an off-voltage is applied by providing a gate electrode in a portion of a semiconductor layer to be removed by using the present invention, a depletion layer is formed and an off-current can be suppressed to a very low level. In addition, the same effect as that in which the elements are substantially electrically insulated (isolated) can be obtained. As a specific manufacturing means, for example, a method described in JP-T-2003-508797 may be used.

こうして上記のようにキャリア移動度が向上することから、ゲート電圧が0V〜−10Vの時のソース・ドレイン間電流が増加し、且つオンオフ比が向上することから、ゲート電圧が比較的小さい正の値の時(ディプレッションモード)に流れる電流がより抑制されることとなり、それらの結果として、本発明を用いることによってデプレッションモードでのゲート電圧操作によるFET動作において優れた特性を得ることができる。   Since the carrier mobility is improved as described above, the current between the source and drain when the gate voltage is 0 V to -10 V is increased, and the on / off ratio is improved. The current flowing at the time of the value (depletion mode) is further suppressed, and as a result, by using the present invention, excellent characteristics can be obtained in the FET operation by the gate voltage operation in the depletion mode.

以下、本発明を実施例に基づき具体的に説明する。ただし、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to the following examples.

実施例1
図1の模式断面図(A)に示すような本発明のFET素子を作製した。基板1に熱酸化膜(膜厚300nm)付きのアンチモンドープシリコンウエハー(抵抗率0.02Ωcm以下)を用いた。ここで、シリコンウエハーは基板1であると同時に、ゲート電極2であり、熱酸化膜は絶縁層3となる。
Example 1
An FET device of the present invention as shown in the schematic sectional view (A) of FIG. 1 was produced. An antimony-doped silicon wafer (resistivity of 0.02 Ωcm or less) with a thermal oxide film (thickness: 300 nm) was used for the substrate 1. Here, the silicon wafer is the gate electrode 2 at the same time as the substrate 1, and the thermal oxide film is the insulating layer 3.

次にフォトリソグラフィー技術および真空蒸着法を用いて金のソース電極5およびドレイン電極6を形成した。これら両電極の幅(チャネル幅)は50cm、両電極の間隔(チャネル長)は20μm、電極高さは40nmとした。   Next, a gold source electrode 5 and a drain electrode 6 were formed using a photolithography technique and a vacuum evaporation method. The width (channel width) of these two electrodes was 50 cm, the interval (channel length) between both electrodes was 20 μm, and the electrode height was 40 nm.

次に、半導体層4として用いる有機高分子半導体と単層CNT(以下、SWCNTと言う)からなる半導体性コンポジットの作製方法を示す。   Next, a method for manufacturing a semiconductor composite including an organic polymer semiconductor used as the semiconductor layer 4 and single-layer CNT (hereinafter, referred to as SWCNT) will be described.

SWCNT(CNI社製、純度95%)50mgを硫酸(和光純薬工業(株)製、純度95%以上)と硝酸(和光純薬工業(株)製、密度1.38)の体積比率が3:1の混酸200mLに入れ、超音波洗浄機(井内盛栄堂(株)製US−2、出力120W、2.6L)を用いて19時間超音波攪拌処理を行いSWCNTの長さを500nm以下にした。この混酸とSWCNTの混合物をポリ4フッ化エチレン(PTFE)メンブレンフィルター(ミリポアコーポレーション製、フィルタータイプ:JH)で濾過することにより短いSWCNT(以下s−SWCNTと言う)を濾別した。   A volume ratio of 50 mg of SWCNT (manufactured by CNI, purity 95%) to sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd., purity: 95% or more) and nitric acid (manufactured by Wako Pure Chemical Industries, Ltd., density: 1.38) is 3 : 1 and mixed in 200 mL of an acid mixture, and subjected to ultrasonic stirring for 19 hours using an ultrasonic cleaner (US-2, produced by Inuchi Seieido Co., Ltd., output: 120 W, 2.6 L) to reduce the length of SWCNT to 500 nm or less. did. The mixture of the mixed acid and SWCNT was filtered through a polytetrafluoroethylene (PTFE) membrane filter (manufactured by Millipore Corporation, filter type: JH) to filter out short SWCNT (hereinafter referred to as s-SWCNT).

クロロホルム10mLに上記s−SWCNT0.2mgを加え、有機高分子半導体としてポリ−3−ヘキシルチオフェン(アルドリッチ社製、レジオレギュラー)0.2mgを加えて氷冷しながら超音波ホモジナイザー(SONICS社製VCX−500)を用いて出力250Wで30分間超音波攪拌してs−SWCNT分散液を得た。得られたSWCNT分散液にさらにポリ−3−ヘキシルチオフェン50mgを加え、超音波洗浄機を用いて30分間超音波攪拌することによりポリ−3−ヘキシルチオフェンとs−SWCNTを成分とする半導体性コンポジットのクロロホルム溶液を得た。上記クロロホルム溶液を上記基板上に滴下しスピンコート法(回転速度1000rpm)により膜厚40nmの薄膜を形成した。これを70℃の真空恒温槽中に2時間放置して溶媒を除去し、半導体層を形成した。   0.2 mg of the above s-SWCNT was added to 10 mL of chloroform, 0.2 mg of poly-3-hexylthiophene (manufactured by Aldrich, Regioregular) was added as an organic polymer semiconductor, and an ultrasonic homogenizer (VCX-manufactured by Sonics) was added while cooling with ice. 500), and the mixture was ultrasonically stirred at an output of 250 W for 30 minutes to obtain an s-SWCNT dispersion. 50 mg of poly-3-hexylthiophene was further added to the obtained SWCNT dispersion liquid, and the mixture was ultrasonically stirred for 30 minutes using an ultrasonic cleaner to thereby form a semiconductor composite containing poly-3-hexylthiophene and s-SWCNT as components. To give a chloroform solution. The chloroform solution was dropped on the substrate to form a thin film having a thickness of 40 nm by a spin coating method (rotation speed: 1000 rpm). This was left in a vacuum oven at 70 ° C. for 2 hours to remove the solvent, thereby forming a semiconductor layer.

次に、上記FET素子のゲート電圧(Vg)を変えたときのソース・ドレイン間電流(Id)−ソース・ドレイン間電圧(Vsd)特性を測定した。測定にはヒューレット・パッカード社製ピコアンメータ/ボルテージソース4140Bを用い、減圧下(1torr以下)で測定した。その結果を表1に示す。   Next, the characteristics of the source-drain current (Id) -source-drain voltage (Vsd) when the gate voltage (Vg) of the FET element was changed were measured. The measurement was carried out under reduced pressure (1 torr or less) using a picoammeter / voltage source 4140B manufactured by Hewlett-Packard Company. Table 1 shows the results.

表1から、Vg=0Vの時にはVsd=−4VのIdは−2.49×10-5Aであるのに対し、Vg=20V時のIdは−2.41×10-9Aと大きく減少していることが分かる。ここでこのようなVgを0Vから20Vまで制御する操作はデプリッションモードの操作といい、その範囲がわずか20Vでオンオフ比が104以上にも達していた。 From Table 1, when Vg = 0 V, the Id of Vsd = -4 V is -2.49 × 10 −5 A, whereas the Id at Vg = 20 V is greatly reduced to −2.41 × 10 −9 A. You can see that it is doing. Here, such an operation of controlling Vg from 0 V to 20 V is called an operation in a depletion mode, and its range is only 20 V and the on / off ratio has reached 10 4 or more.

上記測定から得られた電流−電圧特性からキャリア移動度を求めたところ、2.54×10-3cm2/V・secであった。 When the carrier mobility was determined from the current-voltage characteristics obtained from the above measurement, it was 2.54 × 10 −3 cm 2 / V · sec.

実施例2
図3は実施例1と同様の構成を有するFET素子を用いた液晶表示素子を示す断面図である。ガラス基板1上に形成されたゲート電極2はアドレス配線7と接続されている。ゲート電極2上に絶縁層3を介して形成されたソース電極5およびドレイン電極6のうち、ソース電極5はデータ配線8に、ドレイン電極はITOからなる画素電極9にそれぞれ接続されている。ソース電極5およびドレイン電極6には半導体コンポジット薄膜からなる半導体層4が形成され、更にこの半導体層4にはFET素子全体と画素電極上にポリイミドからなる配向膜10が形成されている。対向するガラス基板14上にはITOからなる対向電極13および配向膜12が形成されている。通常の方法により対向電極12を含むガラス基板14と画素電極9、FET素子を含むガラス基板1とを対向させて液晶セルが形成され、両者の基板の間には液晶が封入されている。なお、ポリイミドからなる配向膜10、12は膜形成後ラビング処理が施されている。
Example 2
FIG. 3 is a cross-sectional view showing a liquid crystal display device using an FET device having a configuration similar to that of the first embodiment. The gate electrode 2 formed on the glass substrate 1 is connected to the address wiring 7. Of the source electrode 5 and the drain electrode 6 formed on the gate electrode 2 via the insulating layer 3, the source electrode 5 is connected to the data line 8, and the drain electrode is connected to the pixel electrode 9 made of ITO. A semiconductor layer 4 made of a semiconductor composite thin film is formed on the source electrode 5 and the drain electrode 6, and an alignment film 10 made of polyimide is formed on the entire FET element and the pixel electrode on the semiconductor layer 4. A counter electrode 13 and an alignment film 12 made of ITO are formed on a glass substrate 14 facing the glass substrate 14. A liquid crystal cell is formed by facing the glass substrate 14 including the counter electrode 12 and the glass substrate 1 including the pixel electrode 9 and the FET element by a usual method, and a liquid crystal is sealed between the two substrates. Note that the alignment films 10 and 12 made of polyimide are subjected to a rubbing treatment after the film formation.

液晶表示装置の上下に偏光フィルムをクロスニコル状態で配置して、その応答性を調べたところ、データ配線(ソース電極)に−5V、対向電極に0Vの電圧を、アドレス配線を通してゲート電極に20Vの電圧を印加し、次に0Vの電圧を印加した。液晶はゲート電極に20Vの電圧を印加したときには白表示状態であったのに対し、0Vの電位に対して遅れを生じることなく速やかに黒表示状態となった。   When the polarizing films were arranged in a crossed Nicol state on the upper and lower sides of the liquid crystal display device and the response was examined, a voltage of -5 V was applied to the data wiring (source electrode), a voltage of 0 V was applied to the counter electrode, and a voltage of 20 V was applied to the gate electrode through the address wiring. , And then a voltage of 0 V was applied. The liquid crystal was in a white display state when a voltage of 20 V was applied to the gate electrode, but quickly changed to a black display state without delay with respect to the potential of 0 V.

実施例3
実施例1の半導体性コンポジットを使用して膜厚10nmの半導体層を形成した以外は実施例1の方法と同様の操作を行い、FET素子を作製した。
Example 3
An FET element was fabricated by performing the same operation as in the method of Example 1 except that a semiconductor layer having a thickness of 10 nm was formed using the semiconductor composite of Example 1.

ゲート電圧(Vg)を変えたときのソース・ドレイン間電流(Id)−ソース・ドレイン間電圧(Vsd)特性を測定した結果のうち、Vsdが−4Vで、Vgが0Vと20Vの時のIdを表1に示す。この結果からオンオフ比を求めたところ、Vsd=−4V、Vgの範囲0〜20Vの条件下で3.97×104であり、キャリア移動度は1.08×10-5cm2/V・secであった。 Among the results of measuring the source-drain current (Id) -source-drain voltage (Vsd) characteristics when the gate voltage (Vg) is changed, Id when Vsd is -4V and Vg is 0V and 20V. Are shown in Table 1. When the on / off ratio was determined from this result, it was 3.97 × 10 4 under the conditions of Vsd = −4 V and Vg in the range of 0 to 20 V, and the carrier mobility was 1.08 × 10 −5 cm 2 / V ·. sec.

実施例4
実施例1の半導体性コンポジットを構成する有機高分子半導体としてポリ−3−ブチルチオフェン(アルドリッチ社製、レジオレギュラー)を使用して膜厚100nmの半導体層を形成した以外は実施例1の方法と同様の操作を行い、FET素子を作製した。
Example 4
The method of Example 1 was repeated except that a semiconductor layer having a thickness of 100 nm was formed using poly-3-butylthiophene (Aldrich, Regioregular) as the organic polymer semiconductor constituting the semiconductor composite of Example 1. The same operation was performed to produce an FET device.

ゲート電圧(Vg)を変えたときのソース・ドレイン間電流(Id)−ソース・ドレイン間電圧(Vsd)特性を測定した結果のうち、Vsdが−4Vで、Vgが0Vと20Vの時のIdを表1に示す。この結果からオンオフ比を求めたところ、Vsd=−4V、Vgの範囲0〜20Vの条件下で9.83×103であり、キャリア移動度は3.56×10-3cm2/V・secであった。 Among the results of measuring the source-drain current (Id) -source-drain voltage (Vsd) characteristics when the gate voltage (Vg) is changed, Id when Vsd is -4V and Vg is 0V and 20V. Are shown in Table 1. When the on / off ratio was determined from this result, it was 9.83 × 10 3 under the conditions of Vsd = −4 V and Vg in the range of 0 to 20 V, and the carrier mobility was 3.56 × 10 −3 cm 2 / V ·. sec.

実施例5
実施例1の半導体性コンポジットを使用して1μmの半導体層を形成した以外は実施例1の方法と同様の操作を行い、FET素子を作製した。
Example 5
An FET device was manufactured by performing the same operation as in the method of Example 1 except that a semiconductor layer of 1 μm was formed using the semiconductor composite of Example 1.

ゲート電圧(Vg)を変えたときのソース・ドレイン間電流(Id)−ソース・ドレイン間電圧(Vsd)特性を測定した結果のうち、Vsdが−4Vで、Vgが0Vと20Vの時のIdを表1に示す。得られた電流−電圧特性からキャリア移動度を算出したところ1.04×10-2cm2/V・secであった。 Among the results of measuring the source-drain current (Id) -source-drain voltage (Vsd) characteristics when the gate voltage (Vg) is changed, Id when Vsd is -4V and Vg is 0V and 20V. Are shown in Table 1. When the carrier mobility was calculated from the obtained current-voltage characteristics, it was 1.04 × 10 −2 cm 2 / V · sec.

比較例1
実施例1の半導体性コンポジットに代えて該コンポジットを作製する際に用いた同じポリ−3−ヘキシルチオフェンのみを使用する以外は実施例1の方法と同様の操作を行い、FET素子を作製した。半導体層のポリ−3−ヘキシルチオフェンの膜厚は実施例1と同じく40nmであった。
Comparative Example 1
An FET device was manufactured by performing the same operation as in the method of Example 1 except that the same poly-3-hexylthiophene used in manufacturing the composite was used instead of the semiconductor composite of Example 1. The thickness of the semiconductor layer of poly-3-hexylthiophene was 40 nm as in Example 1.

ゲート電圧(Vg)を変えたときのソース・ドレイン間電流(Id)−ソース・ドレイン間電圧(Vsd)特性を測定した結果のうち、Vsdが−4Vで、Vgが0Vと20Vの時のIdを表1に示す。この結果からキャリア移動度を求めたところ、7.23×10-5cm2/V・secであった。また、Vsd=−4Vにおける、Vgの範囲0〜20Vでのオンオフ比は3.47×102であった。 Of the results of measuring the source-drain current (Id) -source-drain voltage (Vsd) characteristics when the gate voltage (Vg) is changed, Id when Vsd is -4 V and Vg is 0 V and 20 V Are shown in Table 1. When the carrier mobility was calculated from the result, it was 7.23 × 10 −5 cm 2 / V · sec. Further, the on / off ratio in the range of Vg of 0 to 20 V at Vsd = -4 V was 3.47 × 10 2 .

実施例6
実施例1の半導体性コンポジットに含まれるCNTの処理方法を、酸中での超音波処理から、CNT分散液の濾過処理に変更した以外は実施例1と同様の操作を行い、FET素子を作製した。CNT分散液の濾過処理は次のようにして行った。SWCNT(CNI社製、純度95%)2mgと、直鎖状共役系重合体であるポリ−3−ヘキシルチオフェン(アルドリッチ社製、レジオレギュラー)2mgと、クロロホルム20mLを50mLのガラス製サンプル管の中に入れて超音波破砕機(東京理化器械製VCX−500:出力250W、直接照射)を用いて30分間超音波照射し、CNTを均一分散した。この分散液5mLを分取して、公称10μm孔径のPTFE製オムニポアメンブレンフィルター(アドバンテック社製、直径25mm)を用いて吸引濾過した。フィルター上に微量の濾別物が存在したが、大半のCNTは濾液中に含まれており、この濾液を20倍に希釈し、CNT濃度が約0.5mg/100mLのCNT分散液を得た。ここにポリ−3−ヘキシルチオフェンさらに500mgを加え、超音波洗浄機(井内盛栄堂(株)製US−2、出力120W、2.6L)で超音波を30分間照射することによって、CNTの分散した半導体性コンポジットの塗液を得た。
Example 6
Fabrication of FET element by performing the same operation as in Example 1 except that the method of treating CNT contained in the semiconductor composite of Example 1 was changed from ultrasonic treatment in acid to filtration treatment of CNT dispersion liquid. did. The filtration treatment of the CNT dispersion was performed as follows. In a 50 mL glass sample tube, 2 mg of SWCNT (purity: 95%, manufactured by CNI), 2 mg of poly-3-hexylthiophene (manufactured by Aldrich, regioregular), which is a linear conjugated polymer, and 20 mL of chloroform were placed. And sonicated for 30 minutes using an ultrasonic crusher (VCX-500, manufactured by Tokyo Rika Instruments Co., Ltd., output 250 W, direct irradiation) to uniformly disperse the CNTs. 5 mL of this dispersion was collected and suction-filtered using a PTFE omnipore membrane filter (Advantech, 25 mm in diameter) having a nominal pore size of 10 μm. Although a trace amount of the separated substance was present on the filter, most of the CNTs were contained in the filtrate, and the filtrate was diluted 20 times to obtain a CNT dispersion having a CNT concentration of about 0.5 mg / 100 mL. Further, 500 mg of poly-3-hexylthiophene was added thereto, and the mixture was irradiated with ultrasonic waves for 30 minutes using an ultrasonic cleaning machine (US-2, produced by Inuchi Seieido Co., Ltd., output: 120 W, 2.6 L) to disperse CNTs. A semiconductive composite coating solution was obtained.

次に、この塗液を用いて、半導体層の膜厚が40nmのFET素子を形成し、該FET素子を真空にした測定ボックスに移し、ゲート電圧を印加しながらドレイン・ソース間の電圧電流特性を測定した。ゲート電圧を(Vg)を変えたときのソース・ドレイン間電流(Id)−ソース・ドレイン間電圧(Vsd)特性を測定した結果のうち、Vsdが−4Vで、Vgが0Vと20Vの時のIdを表1に示す。この結果からオンオフ比を求めたところ、Vsd=−4V、Vgの範囲0〜20Vの条件下で4.62×103であり、キャリア移動度は7.30×10-3cm2/V/secであった。 Next, an FET element having a semiconductor layer thickness of 40 nm was formed using this coating solution, and the FET element was moved to a vacuumed measurement box, and a voltage-current characteristic between a drain and a source was applied while a gate voltage was applied. Was measured. Among the results of measuring the source-drain current (Id) -source-drain voltage (Vsd) characteristics when the gate voltage was changed (Vg), the results were obtained when Vsd was -4 V, and Vg was 0 V and 20 V. Id is shown in Table 1. When the on / off ratio was determined from this result, it was 4.62 × 10 3 under the conditions of Vsd = −4 V and Vg in the range of 0 to 20 V, and the carrier mobility was 7.30 × 10 −3 cm 2 / V /. sec.

実施例7
CNT分散液を10μm孔径のフィルターによる濾過を行わなかった以外は実施例6と全く同様の操作をしてFET素子を作製した。ソース・ドレイン間の電流電圧特性を測定し、Vsdが−4Vで、Vgが0Vと20Vの時のIdを表1に示した。この結果からオンオフ比を求めたところ、Vsd=−4V、Vgの範囲0〜20Vの条件下で1.61×100であり、キャリア移動度は2.97×10-3cm2/V/secであった。
Example 7
An FET device was produced in exactly the same manner as in Example 6, except that the CNT dispersion was not filtered through a filter having a pore size of 10 μm. The current-voltage characteristics between the source and the drain were measured, and Id when Vsd was −4 V and Vg was 0 V and 20 V was shown in Table 1. When the on / off ratio was determined from this result, it was 1.61 × 10 0 under the conditions of Vsd = −4 V and Vg in the range of 0 to 20 V, and the carrier mobility was 2.97 × 10 −3 cm 2 / V /. sec.

Figure 2004266272
Figure 2004266272

本発明におけるFET素子を示した模式断面図FIG. 2 is a schematic cross-sectional view showing an FET device according to the present invention. 超音波を照射することによって作製したポリ−3−ヘキシルチオフェンと単層カーボンナノチューブの半導体性コンポジットの導電率のカーボンナノチューブ重量分率に対するプロットPlot of Conductivity of Semiconducting Composite of Poly-3-hexylthiophene and Single-Walled Carbon Nanotube Prepared by Irradiating Ultrasonic Waves against Carbon Nanotube Weight Fraction 本発明の実施例2の形態を示した液晶表示装置の模式断面図Example 2 is a schematic cross-sectional view of a liquid crystal display device according to a second exemplary embodiment of the present invention.

符号の説明Explanation of reference numerals

1、14 基板
2 ゲート電極
3 絶縁層
4 半導体層
5 ソース電極
6 ドレイン電極
7 アドレス配線
8 データ配線
9 画素電極
10、12 配向膜
11 液晶分子
13 対向電極
DESCRIPTION OF SYMBOLS 1, 14 Substrate 2 Gate electrode 3 Insulating layer 4 Semiconductor layer 5 Source electrode 6 Drain electrode 7 Address wiring 8 Data wiring 9 Pixel electrode 10, 12 Alignment film 11 Liquid crystal molecule 13 Counter electrode

Claims (8)

ソース電極とドレイン電極間に設けた半導体層の導電性を絶縁層を介して設けられたゲート電極によって制御する電界効果型トランジスタであって、半導体層がカーボンナノチューブを分散した有機高分子半導体で形成され、ディプレッションモードで電流を制御することを特徴とする電界効果型トランジスタ。 A field-effect transistor in which the conductivity of a semiconductor layer provided between a source electrode and a drain electrode is controlled by a gate electrode provided through an insulating layer, wherein the semiconductor layer is formed of an organic polymer semiconductor in which carbon nanotubes are dispersed. And controlling the current in a depletion mode. ソース電極とドレイン電極間に設けたカーボンナノチューブが分散した有機高分子半導体層の導電性を、絶縁層を介して設けられたゲート電極によって制御する電界効果型トランジスタであって、カーボンナノチューブの重量分率が有機高分子半導体に対し0.1重量%以上1重量%以下であり、有機高分子半導体層の膜厚が10nm以上100nm以下である請求項1記載の電界効果型トランジスタ。 A field-effect transistor in which the conductivity of an organic polymer semiconductor layer in which carbon nanotubes are provided between a source electrode and a drain electrode is dispersed is controlled by a gate electrode provided through an insulating layer. 2. The field effect transistor according to claim 1, wherein the ratio is 0.1% by weight or more and 1% by weight or less with respect to the organic polymer semiconductor, and the film thickness of the organic polymer semiconductor layer is 10 nm or more and 100 nm or less. カーボンナノチューブの長さがソース電極とドレイン電極間の距離よりも小さい請求項1または2記載の電界効果型トランジスタ。 3. The field effect transistor according to claim 1, wherein a length of the carbon nanotube is smaller than a distance between the source electrode and the drain electrode. 有機高分子半導体がポリチオフェン系重合体を有する有機高分子半導体である請求項1〜3のいずれか記載の電界効果型トランジスタ。 The field effect transistor according to any one of claims 1 to 3, wherein the organic polymer semiconductor is an organic polymer semiconductor having a polythiophene-based polymer. 一対の対向する基板上に複数のアドレス線と複数のデータ線とが対向してマトリックス状に設けられており、このマトリックス配線の交点に配置された電界効果型トランジスタと、この電界効果型トランジスタを介して前記データ線と接続された画素電極と、この画素電極に対向した対向電極とによって液晶層を挟持したアクティブマトリックス型の液晶表示装置であって、電界効果型トランジスタが請求項1〜4のいずれか記載の電界効果型トランジスタである液晶表示装置。 A plurality of address lines and a plurality of data lines are provided in a matrix on a pair of opposed substrates, and a field-effect transistor disposed at an intersection of the matrix wiring and a field-effect transistor. An active matrix type liquid crystal display device in which a liquid crystal layer is sandwiched between a pixel electrode connected to the data line via a pixel electrode and a counter electrode facing the pixel electrode, wherein the field effect transistor is a liquid crystal display device according to claim 1. A liquid crystal display device, which is the field-effect transistor according to any one of the above. カーボンナノチューブを直鎖状共役系重合体と共に溶媒中に分散させ、得られたカーボンナノチューブ分散液を濾過することによって、ソース電極とドレイン電極間の距離よりも小さいカーボンナノチューブを得る請求項3記載の電界効果型トランジスタ。 4. The carbon nanotube according to claim 3, wherein the carbon nanotube is dispersed in a solvent together with the linear conjugated polymer, and the obtained carbon nanotube dispersion is filtered to obtain a carbon nanotube smaller than the distance between the source electrode and the drain electrode. Field-effect transistor. カーボンナノチューブ分散液の調製を超音波照射により行う請求項6記載の電界効果型トランジスタ。 The field effect transistor according to claim 6, wherein the preparation of the carbon nanotube dispersion liquid is performed by ultrasonic irradiation. カーボンナノチューブ分散液の濾過に用いるフィルターが、孔径0.5〜10μmのメンブレンフィルターである請求項6記載の電界効果型トランジスタ。 7. The field effect transistor according to claim 6, wherein the filter used for filtering the carbon nanotube dispersion liquid is a membrane filter having a pore size of 0.5 to 10 [mu] m.
JP2004030307A 2003-02-14 2004-02-06 Field effect transistor and liquid crystal display device using the same Expired - Fee Related JP4572543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030307A JP4572543B2 (en) 2003-02-14 2004-02-06 Field effect transistor and liquid crystal display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003036215 2003-02-14
JP2004030307A JP4572543B2 (en) 2003-02-14 2004-02-06 Field effect transistor and liquid crystal display device using the same

Publications (2)

Publication Number Publication Date
JP2004266272A true JP2004266272A (en) 2004-09-24
JP4572543B2 JP4572543B2 (en) 2010-11-04

Family

ID=33133969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030307A Expired - Fee Related JP4572543B2 (en) 2003-02-14 2004-02-06 Field effect transistor and liquid crystal display device using the same

Country Status (1)

Country Link
JP (1) JP4572543B2 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054686A1 (en) * 2004-11-18 2006-05-26 Konica Minolta Holdings, Inc. Method for manufacturing organic thin-film transistor and organic thin-film transistor
JP2008047855A (en) * 2006-07-19 2008-02-28 Toray Ind Inc Field-effect transistor
JP2009065057A (en) * 2007-09-07 2009-03-26 Nec Corp Semiconductor device
US7537975B2 (en) 2005-04-22 2009-05-26 Samsung Mobile Display Co., Ltd. Organic thin film transistor and method of fabricating the same
JP2010015153A (en) * 2008-07-04 2010-01-21 Qinghua Univ Liquid crystal display panel using touch panel
JP2010020312A (en) * 2008-07-09 2010-01-28 Qinghua Univ Liquid crystal display screen using touch panel
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
KR101163791B1 (en) 2006-05-16 2012-07-10 삼성전자주식회사 Method for Patterning Electrodes of Organic Electronic Devices, Organic Thin Film Transistor Comprising the Electrodes and Display Devices Comprising the Same
US8237675B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
KR101206661B1 (en) 2006-06-02 2012-11-30 삼성전자주식회사 Organic electronic device comprising semiconductor layer and source/drain electrodes which are formed from materials of same series
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
JP2017120895A (en) * 2015-12-31 2017-07-06 エルジー ディスプレイ カンパニー リミテッド Active layer, thin-film transistor array substrate, and display device
JP2017120894A (en) * 2015-12-28 2017-07-06 エルジー ディスプレイ カンパニー リミテッド Active layer, thin-film transistor array substrate, and display device
CN111148701A (en) * 2017-10-04 2020-05-12 东丽株式会社 Packaging material and method for producing same, reading device, content management system, breakage detection device, opening detection label, and opening detection system
WO2022039148A1 (en) * 2020-08-17 2022-02-24 株式会社村田製作所 Semiconductor sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101859222B1 (en) 2016-11-28 2018-05-21 주식회사 엔디디 Nano material field effect transistor and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016599A1 (en) * 2001-08-09 2003-02-27 Asahi Kasei Kabushiki Kaisha Organic semiconductor element
JP2003096313A (en) * 2001-09-27 2003-04-03 Toray Ind Inc Polymer composite
JP2004158710A (en) * 2002-11-07 2004-06-03 Asahi Kasei Corp Organic semiconductor thin film and its producing process
WO2005008784A1 (en) * 2003-07-17 2005-01-27 Matsushita Electric Industrial Co., Ltd. Field effect transistor and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016599A1 (en) * 2001-08-09 2003-02-27 Asahi Kasei Kabushiki Kaisha Organic semiconductor element
JP2003096313A (en) * 2001-09-27 2003-04-03 Toray Ind Inc Polymer composite
JP2004158710A (en) * 2002-11-07 2004-06-03 Asahi Kasei Corp Organic semiconductor thin film and its producing process
WO2005008784A1 (en) * 2003-07-17 2005-01-27 Matsushita Electric Industrial Co., Ltd. Field effect transistor and method for manufacturing same

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054686A1 (en) * 2004-11-18 2006-05-26 Konica Minolta Holdings, Inc. Method for manufacturing organic thin-film transistor and organic thin-film transistor
US7537975B2 (en) 2005-04-22 2009-05-26 Samsung Mobile Display Co., Ltd. Organic thin film transistor and method of fabricating the same
KR101163791B1 (en) 2006-05-16 2012-07-10 삼성전자주식회사 Method for Patterning Electrodes of Organic Electronic Devices, Organic Thin Film Transistor Comprising the Electrodes and Display Devices Comprising the Same
KR101206661B1 (en) 2006-06-02 2012-11-30 삼성전자주식회사 Organic electronic device comprising semiconductor layer and source/drain electrodes which are formed from materials of same series
JP2008047855A (en) * 2006-07-19 2008-02-28 Toray Ind Inc Field-effect transistor
JP2009065057A (en) * 2007-09-07 2009-03-26 Nec Corp Semiconductor device
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8237675B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
US8199123B2 (en) 2008-07-04 2012-06-12 Tsinghua University Method for making liquid crystal display screen
JP2010015153A (en) * 2008-07-04 2010-01-21 Qinghua Univ Liquid crystal display panel using touch panel
US8237679B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8228308B2 (en) 2008-07-04 2012-07-24 Tsinghua University Method for making liquid crystal display adopting touch panel
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411051B2 (en) 2008-07-09 2013-04-02 Tsinghua University Liquid crystal display screen
JP2010020312A (en) * 2008-07-09 2010-01-28 Qinghua Univ Liquid crystal display screen using touch panel
US8411052B2 (en) 2008-07-09 2013-04-02 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
KR20170077938A (en) * 2015-12-28 2017-07-07 엘지디스플레이 주식회사 Active Layer, Array Substrate for Thin Film Transistor And Display Device Of The Same
JP2017120894A (en) * 2015-12-28 2017-07-06 エルジー ディスプレイ カンパニー リミテッド Active layer, thin-film transistor array substrate, and display device
US10868044B2 (en) 2015-12-28 2020-12-15 Lg Display Co., Ltd. Active layer, thin-film transistor array substrate comprising the same, and display device comprising the same
KR102459948B1 (en) * 2015-12-28 2022-10-31 엘지디스플레이 주식회사 Active Layer, Array Substrate for Thin Film Transistor And Display Device Of The Same
JP2017120895A (en) * 2015-12-31 2017-07-06 エルジー ディスプレイ カンパニー リミテッド Active layer, thin-film transistor array substrate, and display device
US10468473B2 (en) 2015-12-31 2019-11-05 Lg Display Co., Ltd. Active layer, thin-film transistor array substrate comprising the same, and display device comprising the same
CN111148701A (en) * 2017-10-04 2020-05-12 东丽株式会社 Packaging material and method for producing same, reading device, content management system, breakage detection device, opening detection label, and opening detection system
US11487981B2 (en) 2017-10-04 2022-11-01 Toray Industries, Inc. Packing material, method for producing packing material, reading device, stored-article management system, disconnection detection device, unsealing detection label, and unsealing detection system
WO2022039148A1 (en) * 2020-08-17 2022-02-24 株式会社村田製作所 Semiconductor sensor
JP7487780B2 (en) 2020-08-17 2024-05-21 株式会社村田製作所 Semiconductor Sensor

Also Published As

Publication number Publication date
JP4572543B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4572543B2 (en) Field effect transistor and liquid crystal display device using the same
Xu et al. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED)
US7956345B2 (en) CNT devices, low-temperature fabrication of CNT and CNT photo-resists
JP5177695B2 (en) Switching element and manufacturing method thereof
JP5333221B2 (en) Carbon nanotube structure and thin film transistor
Kim et al. Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry
Kim et al. Fully transparent thin-film transistors based on aligned carbon nanotube arrays and indium tin oxide electrodes
KR101240656B1 (en) Flat panel display and manufacturing method of flat panel display
CN100593871C (en) Organic field-effect transistors having high mobility and preparation thereof
JP2007103584A (en) Transistor element, display device and manufacturing methods thereof
WO2010053171A1 (en) Switching element and method for manufacturing same
CN102379042A (en) Field effect transistor, method for manufacturing same, and electronic device using same
US20090146134A1 (en) Semiconductive percolating networks
JP4661065B2 (en) Complementary organic semiconductor device
JP2009246342A (en) Field-effect transistor, method of manufacturing the same, and image display apparatus
JP2007273594A (en) Field-effect transistor
JP5733612B2 (en) Material for organic semiconductor thin film, method of forming organic semiconductor thin film using the material, and organic thin film transistor
KR101645971B1 (en) Molecule doped single-walled carbon nanotube and thin film transistor
JP2008053607A (en) Manufacturing method of field effect transistor using carbon nanotube dispersion polymer
JP4419425B2 (en) Organic thin film transistor element
JP4304275B2 (en) Organic semiconductor thin film transistor
JP2007188923A (en) Field effect transistor and picture display device
KR20070079744A (en) Organic semiconductor materials using cnts enhanced their semiconducting properties, organic semiconductor thin film using the materials and organic semiconductor device employing the thin film
JP2006060169A (en) Field effect transistor and method for manufacturing same
JP2007158140A (en) Organic transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees