[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004266124A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2004266124A
JP2004266124A JP2003055546A JP2003055546A JP2004266124A JP 2004266124 A JP2004266124 A JP 2004266124A JP 2003055546 A JP2003055546 A JP 2003055546A JP 2003055546 A JP2003055546 A JP 2003055546A JP 2004266124 A JP2004266124 A JP 2004266124A
Authority
JP
Japan
Prior art keywords
light emitting
substrate
emitting device
semiconductor light
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003055546A
Other languages
Japanese (ja)
Inventor
Tomio Inoue
登美男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003055546A priority Critical patent/JP2004266124A/en
Publication of JP2004266124A publication Critical patent/JP2004266124A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device the entire profile of which is made low by surely carrying out flip chip mount of a semiconductor light emitting element. <P>SOLUTION: The semiconductor light emitting device includes a substrate 2 made of a ceramic raw material. The light emitting element 5 is mounted on the substrate 2 of the semiconductor light emitting device by joining an n-type electrode and a p-type electrode of the light emitting element 5 with two electrodes 3, 4 formed on the substrate 2 via micro bumps 8, 9 respectively. Since the ceramic raw material is used for the substrate 2, the substrate 2 is chemically stabilized and lead electrodes can be formed on the surface with high accuracy, the substrate 2 is not softened nor deformed even when heat is applied at joining of the micro bumps 8, 9, and the ultrasonic vibration is not absorbed to attain efficient joining of the micro bumps 8, 9. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、青色光や紫外光発光ダイオード等の光デバイスに利用される窒化ガリウム系化合物を利用した半導体発光装置に関する。
【0002】
【従来の技術】
GaN、GaAlN、InGaNおよびInAlGaN等の窒化ガリウム系化合物半導体は、可視光発光デバイスや高温動作電子デバイス用の半導体材料として多用されるようになり、青色発光ダイオードの分野での展開が進んでいる。
【0003】
この窒化ガリウム系化合物半導体の製造では、半導体膜を成長させるための結晶基板として、一般的に絶縁性のサファイア基板が利用されている。このサファイア基板のような絶縁性の結晶基板を用いる場合、結晶基板側に電極を形成することができないので、電極は、結晶基板とは反対側の面に形成される。
【0004】
図4(A)は窒化ガリウム系化合物半導体をフリップチップ実装した従来例に係る半導体発光装置の正面図、(B)は同半導体発光装置の平面図である。
【0005】
図4(A)、(B)において、樹脂系の絶縁性リード基板51には、メッキ法によりリード電極52a,52bが形成され、一方のリード電極52aと発光素子53のn電極、および他方のリード電極52bと発光素子53のp電極がそれぞれ対向し、マイクロバンプ54a、54bを介して導通接合されると共に固定されている。発光素子53はフリップチップ実装されるので、サファイア基板55側が天面になり、発光する光の主光取り出し面となっている。そして、発光素子53の全面を透明なエポキシ樹脂56でトランスファー成型により封止している(例えば、特許文献1)。
【0006】
ここで用いた半導体発光装置の図4は、トップビュータイプの半導体発光装置で、トップビュータイプとは、発光装置の主光取り出し面からの発光方向(図4(A)中に矢印で示す方向)が半田実装面に対して垂直になっている形式のものをいい、このタイプの半導体発光装置は、例えば、携帯電話機等のテンキー用バックライト等に用いられる。このような用途に用いられるためには、厚みを薄くすることによって、実装容積を低減すると共に広い範囲のテンキーを照らすため配光を広くすることが重要である。
【0007】
このような発光素子53を用いる半導体発光装置の場合は、発光素子の電極とリード電極間の導通にワイヤボンディングを用いないので、ワイヤの立ち上がりの高さが必要でなく、封止樹脂の厚みを薄くすることができるというメリットがある。しかし、発光素子53の電極と樹脂系の絶縁性リード基板51のリード電極とをマイクロバンプにより導通固定するので、温度サイクル環境における発光素子53とリード基板51の熱膨張率の差に起因する断線モードについて注意しなければならない。
【0008】
また、図5(A)はサイドビュータイプの従来構造の半導体発光装置の正面図、(B)は同半導体発光装置の平断面図である。サイドビュータイプとは、発光装置の主光取り出し面からの発光方向が半田実装面に対して平行になっている形式のものをいい、このタイプの半導体発光装置は、例えば、携帯電話機等のフルカラー液晶パネルのバックライト用導光板の側面に配置されて用いられる。このような用途に用いられるためには、半田実装面からの高さt(図5(A)に記載)を低くすることによって、実装容積を低減すると共に、導光板に多くの光量を入れるために軸上光度を高くすることが重要である。
【0009】
図5(A)、(B)において、金属製のリードフレーム61は、銅ベースの板状基板を型で打ち抜き、表面にAgメッキを施してリード電極62a,62bを形成し、その回りを樹脂で成型したパッケージ64を形成したもので、一方のリード電極62a上に発光素子63の電極形成面と反対のサファイア面側を接着面にして透光性の接着剤65などで搭載固定し、発光素子63のn電極とリード電極62aをワイヤー66aで、また他方のリード電極62bと発光素子63のp電極をワイヤー66bでそれぞれ導通接合されている。発光素子63は電極形成面を主光取り出し面とするように実装されるので、透明電極62cを通して発光する光を取り出している。そして、発光素子63の全面を透明なエポキシ樹脂68で封止している。
【0010】
パッケージ64は、発光素子63の側面から出る光を主光取り出し面側に反射させて、軸上光度を高くする役割をも兼ね備えさせる必要があるため、反射率のよい白色の樹脂で内面は末広がりのテーパーを持つ形状に成型されている。
【0011】
この構造の場合、リード電極上へのフリップチップ実装は困難であるため(理由は後述する)発光素子53をフリップチップ実装するためには、図6(A)、(B)で示すようにサブマウント素子69上に発光素子53をフリップチップ実装した複合発光素子を用いることになる。
【0012】
【特許文献1】
特開平11−121797号公報(段落番号0029〜0030、第1図)
【0013】
【発明が解決しようとする課題】
図4に示すように、GaN系発光素子をフリップチップ実装したトップビュータイプの半導体発光装置の場合、発光装置の厚みTを300μm以下にすることは可能であるが、量産化のためには以下の問題点がある。
【0014】
まず第1の問題点は、樹脂系の基板では、蒸着による薄膜電極の形成ができないので、リード電極のパターンを精度よく形成できないため、発光素子搭載部分の両リード電極間に最低100μmの間隔が必要であり、また、リード電極の形状がシャープにならないという点である。このため、リード電極のパターンを認識してフリップチップ実装するときの誤差が大きくなり、所定の実装場所からずれて実装されるため、電極間のショートやオープンが発生してしまう。
【0015】
第2の問題点は、GaN系発光素子を実装するときに、マイクロバンプに熱と超音波を加えて溶着接合する必要があるが、樹脂系の基板では、熱により基板が軟化するため、超音波の振動伝達によるマイクロバンプの接合が不十分になり、バンプ部のオープンによる断線が発生し、信頼性に問題が生じてくる。
【0016】
第3の問題点は、GaN系発光素子のp,n電極と樹脂系リード基板のリード電極とをマイクロバンプにより導通固定しているので、GaN系発光素子の大部分を占めるサファイア基板と樹脂系リード基板の熱膨張率が大きく異なると、温度サイクル環境での繰り返しストレスにより、マイクロバンプ部にクラックが入り、オープンによる断線が発生する。
【0017】
この場合、サファイアの熱膨張係数は、7.2×10−6/℃に対して、樹脂系リード基板として通常用いられているBTレジンガラス布基板の熱膨張係数は、10.0×10−6/℃と約40%程度大きくなっている。
【0018】
このように、薄型化に有効なフリップチップ実装構造については、実装上、樹脂系リード基板に起因するいくつかの問題があり、十分な信頼性が確保できないため半導体発光装置としていまだ実用化されていない。
【0019】
図5に示すサイドビュータイプの半導体発光装置の場合も、リード電極62aと62b間の隙間が100μm以下には出来ないこと、及びリード電極の下には成型樹脂がきているので、樹脂基板を用いる上記のトップビュータイプの場合と同じ理由で、マイクロバンプによるフリップチップ実装が困難である。
【0020】
また、図6の(A)、(B)で示すサブマウント素子69上に発光素子53をフリップチップ実装した複合発光素子を用いる場合では、サブマウント素子69を発光素子53より大きくする必要があるため、サイドビュータイプの半導体発光装置で重要な半田実装面からの高さtを750μm以下にすることが困難であるという問題点がある。
【0021】
そこで本発明は、半導体発光素子のフリップチップ実装を確実に行って、信頼性を確保した上で、全体を薄型化(つまり半田実装面からの高さを低く)することのできる半導体発光装置を提供することを目的とする。
【0022】
【課題を解決するための手段】
本発明の半導体発光装置においては、絶縁性リード基板に、耐熱性を有して薄膜電極の形成が可能なセラミック素材を用いた半導体発光装置としたものである。
【0023】
この発明によれば、半導体発光素子のフリップチップ実装を確実に行って信頼性を確保した上で、全体を薄型化することのできる半導体発光装置が得られる。
【0024】
【発明の実施の形態】
本発明の請求項1に記載の発明は、基板上に形成された2つのリード電極に、発光素子のp側電極およびn側電極をそれぞれマイクロバンプを介して接合することにより前記基板上に前記発光素子を搭載した半導体発光装置において、
前記基板は、セラミック素材からなることを特徴とする半導体発光装置としたものであり、基板にセラミック素材を用いたので、基板が科学的に安定して表面に薄膜電極のリード電極を精度よく形成でき、また、マイクロバンプの接合時に熱を加えても軟化して変形せず、また、超音波振動を吸収せずマイクロバンプが効率よく接合されるという作用を有する。
【0025】
また、トップビュータイプの場合、透光性結晶基板を天面にして実装し、ワイヤーの立ち上がりがないので半導体発光装置の厚みTを薄くできるという作用を有し、サイドビュータイプの場合は、セラミック基板がサブマウント素子とパッケージの一部も兼ねるので、半田実装面からの高さtを500μm以下に薄くできるという作用を有する。
【0026】
請求項2に記載の発明は、前記リード電極を、前記基板の表面に蒸着したことを特徴とする請求項1に記載の半導体発光装置としたものであり、めっき法で形成したリード電極の厚みに比べて、蒸着によるリード電極の厚みは薄くなるので、基板の段差が小さくなり、超音波による振動が確実に伝達されるという作用を有する。
【0027】
請求項3に記載の発明は、前記発光素子は、透光性結晶基板を備えた窒化ガリウム系の発光素子であって、前記透光性結晶基板を主光取り出し面とし、前記発光素子が透光性の樹脂で封止されたことを特徴とする請求項1に記載の半導体発光装置としたものであり、発光効率が向上するという作用を有する。
【0028】
請求項4に記載の発明は、前記基板には、前記発光素子から側方に出た光を主光取り出し方向に反射させる反射壁をスルーホールの内周面に形成した反射部材が設けられていることを特徴とする請求項1から3のいずれかの項に記載の半導体発光装置としたものであり、発光素子から側方に取り出された光を主光取り出し方向に反射させて主光取り出し方向に出る光の強度を強くするという作用を有する。
【0029】
請求項5に記載の発明は、前記基板を構成するセラミック素材は、酸化アルミニウム、窒化アルミニウムおよびチタン酸バリウムのいずれかを主体とすることを特徴とする請求項1から4のいずれかの項に記載の半導体発光装置としたものであり、耐熱性が高いので加熱しても軟化せず、化学的にも安定なので、細密なパターンを形成しやすいという作用を有する。
【0030】
以下、本発明の実施の形態について、図1から図3を用いて説明する。
【0031】
(第1の実施の形態)
図1(A)は本発明の第1の実施の形態に係る半導体発光装置の正面図、(B)は同半導体発光装置の平面図である。
【0032】
半導体発光装置1は、セラミック素材からなる白色の基板2の表面に発光素子5を搭載した装置である。
【0033】
基板2の2つのリード電極3,4には、発光素子5のn側電極6およびp側電極7が、それぞれマイクロバンプ8,9を介して導通接続されている。
【0034】
接続時には、マイクロバンプ8,9に熱および超音波振動を加えて、加圧することにより接合させる。
【0035】
基板2を構成するセラミック素材は、例えば、酸化アルミニウムを主体とすることができる。
【0036】
この素材は、耐熱性に優れ、また、熱による変形が小さいという特性を有している。このため、マイクロバンプ8,9の接続時に加えられる熱(160〜190℃程度)によっても変形せず、また、超音波振動を減衰させないので、振動による摩擦熱を確実に発生させ、接続を確実に行うことができる。
【0037】
なお、セラミック製の基板2は、今まで図4に示すような半導体発光装置には用いられていなかった。その理由は、基板上に実装された発光素子を樹脂封止する際にトランスファー成型が用いられているが、セラミック製基板の場合、金型を密着させて樹脂を流す場合に弾性が不足しているため密閉できず、樹脂漏れが発生するためである。
【0038】
今回、窒化ガリウム系発光素子をフリップチップ実装することにより、ワイヤーがなくなったために、発光素子5の天面側からのポッティング又はスクリーン印刷による樹脂封止が可能となり、トランスファー成型する必要がないため、セラミック基板が使用できるようになったのである。
【0039】
基板2は、矩形板状に形成され、対向する短辺にはスルーホール電極10,11を形成し裏面にリード電極3,4をつなげている。
【0040】
リード電極3,4は、NiCr,Au(最表面はAu)からなり、基板2の表面に金属蒸着されている。両リード電極3,4は、図示しない外部配線に導通接続される基板2の裏側の両端部からスルーホール電極10,11を介して表側に接続され、表側の中央部で対向配置されている。この対向部分は、発光素子のn側電極6およびp側電極7とほぼ同じ形状に形成され、その間のギャップ幅は、10〜40μmに形成されている。リード電極3,4のパターンを、セラミック製の基板2に蒸着により形成するので、ギャップ幅を非常に小さく、かつ精度よく形成することができる。
【0041】
かかる構成によって、発光素子5を搭載するフリップチップボンダーの認識精度が向上し、また、搭載位置が少しずれた場合でもオープンやショートになることがなくなる。
【0042】
また、リード電極3,4の厚みは、金属蒸着を用いると、2〜5μmに形成でき、超音波振動を加えるときには、基板2に発光素子5側から確実に圧力が加わるが、樹脂基板にめっき法によりリード電極を形成した場合には、リード電極の厚みが厚くなり、樹脂基板の裏面の中央部が支持台から浮いた状態になって樹脂基板が撓む。そしてマイクロバンプからリード電極に伝達された振動が、樹脂基板の撓みによって吸収されてしまう。リード電極3,4の厚みを薄くすることによって、基板2の裏面が支持台に密着し、また内部摩擦が少ないセラミック製の基板2を用いることによって振動がマイクロバンプ8,9からリード電極3,4に確実に伝達されるので、溶着を確実に行うことができる。
【0043】
発光素子5は、透光性結晶基板12に複数の窒化ガリウム系の化合物半導体膜を積層した正方形板状のもので、n側電極6およびp側電極7は、窒化ガリウム系の化合物半導体層側にそれぞれ配置されている。そして、n側電極6およびp側電極7を基板2側に向けて基板2のリード電極3,4にフリップチップ実装されている。
【0044】
発光素子5は、窒化ガリウム系の化合物半導体層の天面や側部およびマイクロバンプ8,9を含む発光素子5と基板2との間を、エポキシ樹脂13で封止している。
【0045】
発光素子5の窒化ガリウム系の化合物半導体層に含まれる発光層から主光取り出し面方向や側方に向かう青色または緑色光は、エポキシ樹脂13内を通過し、外側に取り出される。
【0046】
また、封止樹脂の中に青色光からその補色光に変換する蛍光体を混合することによって、白色光にすることも出来る。
【0047】
(第2の実施の形態)
図2(A)は本発明の第2の実施の形態に係る半導体発光装置の正面図、(B)は同半導体発光装置の平断面図である。第1の実施の形態に係る半導体発光装置はトップビュータイプのものであるのに対し、第2の実施の形態に係る半導体発光装置20はサイドビュータイプの発光装置である。
【0048】
半導体発光装置20のセラミック製基板21は、前述した半導体発光装置1の基板2とは、スルーホール電極の位置が異なっている。隣接する2つの角部に新たな円弧状の切欠き24,25(スルーホール電極)を形成し、金属蒸着によるリード電極22,23を表面に形成している。
【0049】
リード電極22,23には、半導体発光素子15が搭載され、スルーホールを有する反射部材27が、半導体発光素子15に外挿され基板21に固定されている。反射部材27のスルーホールの形状は、主光取り出し方向に広がる錐形状の断面形状で、半導体発光素子15から出される横方向の光を主光取り出し方向に効率よく反射させ、軸上光度を高くするという目的のために、白色の樹脂成型品で作られているか、または、その内周面28上に反射率の良いAgのメッキが形成されている。また、スルーホールの内部には、透明なエポキシ樹脂29が充填されている。
【0050】
基板21の側面の切欠き24,25が形成されている部分は,リード電極22,23につながっているので、基板21の切欠き(スルーホール電極)24,25側の側面26を取付面として、半導体発光装置20をサイドビュータイプとして用いることができる。
【0051】
また、セラミック基板上に、半導体発光素子をフリップチップ実装した後に、蛍光体を含有した樹脂ペーストを半導体発光素子の回りにスクリーン印刷法などで塗布(図示せず)して、白色発光の半導体発光装置にすることも出来る。
【0052】
(第3の実施の形態)
図3(A)は本発明の第3の実施の形態に係る半導体発光装置の正断面図、(B)は同半導体発光装置の平面図である。これは、第1の実施の形態に係る半導体発光装置1のトップビュータイプのものに、第2の実施の形態に係る半導体発光装置20の反射部材27を追加して形成した半導体発光装置30である。
【0053】
この半導体発光装置30は、薄型で広配光を目的にした第1の実施の形態に係る半導体発光装置1とは異なり、半導体発光素子5から出される横方向の光を主光取り出し方向に効率よく反射させ、軸上光度を高くするという目的のためになされ、照明用の白色LEDに応用される。
【0054】
また、この場合もセラミック基板上に、半導体発光素子をフリップチップ実装した後に、蛍光体を含有した樹脂ペーストを半導体発光素子の回りにスクリーン印刷法などで塗布(図示せず)して、白色発光の半導体発光装置にすることも出来る。
【0055】
なお、セラミック素材としては、上記のもの以外に、例えば、窒化珪素やチタン酸バリウム等も用いることが可能である。
【0056】
また、基板のリード電極は、焼成により形成することも可能である。
【0057】
【発明の効果】
以上のように本発明によれば、基板にセラミック素材を用いたので、基板が化学的に安定して表面にリード電極を精度よく形成でき、また、マイクロバンプの接合時に熱を加えても軟化して変形せず、また、超音波振動を吸収せずマイクロバンプを効率よく接合することによって、半導体発光素子のフリップチップ実装を確実に行って全体を薄型化することができる。
【0058】
リード電極を基板の表面に蒸着すると、基板の段差が小さくなり、超音波による振動を確実に伝達するので、マイクロバンプの接合をより確実に行うことができる。
【0059】
基板にスルーホールを形成した反射部材を設けると、発光素子から側方に取り出された光を主光取り出し方向に反射させ、発光効率を上げることができる。
【0060】
セラミック素材からなる基板を、酸化アルミニウム、窒化アルミニウムおよびチタン酸バリウムのいずれかを主体にすると、耐熱性が高いので加熱しても軟化せず、化学的にも安定なので、細密なパターンを形成しやすく、マイクロバンプの接合が確実になる。また、窒化アルミニウムは放熱特性をよくすることができるし、チタン酸バリウムはコンデンサを形成でき、窒化ガリウム系の半導体発光素子の静電耐圧を200V程度まで保護できる。
【図面の簡単な説明】
【図1】(A)は本発明の第1の実施の形態に係る半導体発光装置の正面図
(B)は同半導体発光装置の平面図
【図2】(A)は本発明の第2の実施の形態に係る半導体発光装置の正面図
(B)は同半導体発光装置の平断面図
【図3】(A)は本発明の第3の実施の形態に係る半導体発光装置の正断面図
(B)は同半導体発光装置の平面図
【図4】(A)は従来例に係るトップビュータイプの半導体発光装置の正面図
(B)は同半導体発光装置の平面図
【図5】(A)は従来例に係るサイドビュータイプの半導体発光装置の正面図
(B)は同半導体発光装置の平断面図
【図6】(A)は複合発光素子を用いた従来例に係るサイドビュータイプの半導体発光装置の正面図
(B)は同半導体発光装置の平断面図
【符号の説明】
1 半導体発光装置
2 基板
3,4 リード電極
5 発光素子
6 n側電極
7 p側電極
8,9 マイクロバンプ
10,11 スルーホール電極
12 透光性結晶基板
13 エポキシ樹脂
20 半導体発光装置
21 基板
22,23 リード電極
24,25 切欠き(スルーホール電極)
26 側面
27 反射部材
28 内周面
29 エポキシ樹脂
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor light emitting device using a gallium nitride-based compound used for an optical device such as a blue light or ultraviolet light emitting diode.
[0002]
[Prior art]
Gallium nitride-based compound semiconductors such as GaN, GaAlN, InGaN, and InAlGaN have been widely used as semiconductor materials for visible light emitting devices and high-temperature operating electronic devices, and are being developed in the field of blue light emitting diodes.
[0003]
In the production of this gallium nitride-based compound semiconductor, an insulating sapphire substrate is generally used as a crystal substrate for growing a semiconductor film. When an insulating crystal substrate such as a sapphire substrate is used, an electrode cannot be formed on the crystal substrate side, and thus the electrode is formed on a surface opposite to the crystal substrate.
[0004]
FIG. 4A is a front view of a conventional semiconductor light emitting device in which a gallium nitride-based compound semiconductor is flip-chip mounted, and FIG. 4B is a plan view of the semiconductor light emitting device.
[0005]
4A and 4B, lead electrodes 52a and 52b are formed on a resin-based insulating lead substrate 51 by a plating method, and one of the lead electrodes 52a and the n-electrode of the light-emitting element 53 and the other are formed. The lead electrode 52b and the p-electrode of the light emitting element 53 face each other, are conductively connected and fixed via the micro bumps 54a and 54b. Since the light emitting element 53 is flip-chip mounted, the sapphire substrate 55 side is the top surface and serves as a main light extraction surface for emitted light. Then, the entire surface of the light emitting element 53 is sealed by transfer molding with a transparent epoxy resin 56 (for example, Patent Document 1).
[0006]
FIG. 4 of the semiconductor light emitting device used here is a top view type semiconductor light emitting device. The top view type is a light emitting direction from a main light extraction surface of the light emitting device (a direction indicated by an arrow in FIG. 4A). ) Is perpendicular to the solder mounting surface, and this type of semiconductor light emitting device is used, for example, for a numeric keypad backlight of a mobile phone or the like. In order to be used in such applications, it is important to reduce the mounting volume by reducing the thickness and to widen the light distribution to illuminate a wide range of numeric keys.
[0007]
In the case of a semiconductor light emitting device using such a light emitting element 53, since wire bonding is not used for conduction between the electrode of the light emitting element and the lead electrode, a rising height of the wire is not required, and the thickness of the sealing resin is reduced. There is an advantage that it can be made thin. However, since the electrode of the light emitting element 53 and the lead electrode of the resin-based insulating lead substrate 51 are conductively fixed by the microbump, disconnection due to the difference in the coefficient of thermal expansion between the light emitting element 53 and the lead substrate 51 in a temperature cycle environment. You have to be careful about the modes.
[0008]
FIG. 5A is a front view of a side-view type semiconductor light emitting device having a conventional structure, and FIG. 5B is a plan sectional view of the semiconductor light emitting device. The side-view type refers to a type in which a light emitting direction from a main light extraction surface of a light emitting device is parallel to a solder mounting surface, and a semiconductor light emitting device of this type is, for example, a full-color type such as a mobile phone. It is used by being arranged on the side surface of a light guide plate for a backlight of a liquid crystal panel. In order to be used in such applications, the height t from the solder mounting surface (described in FIG. 5A) is reduced to reduce the mounting volume and to allow a large amount of light to enter the light guide plate. It is important to increase the on-axis luminosity.
[0009]
In FIGS. 5A and 5B, a metal lead frame 61 is formed by punching a copper-based plate-like substrate with a mold, applying Ag plating to the surface thereof, forming lead electrodes 62a and 62b, and forming a resin around the lead electrodes. The package 64 is formed by molding with a light-transmitting adhesive 65 or the like on one lead electrode 62a with the sapphire surface side opposite to the electrode forming surface of the light emitting element 63 as the bonding surface, and the light emission is performed. The n-electrode of the element 63 and the lead electrode 62a are electrically connected by a wire 66a, and the other lead electrode 62b and the p-electrode of the light-emitting element 63 are electrically connected by a wire 66b. Since the light emitting element 63 is mounted so that the surface on which the electrode is formed is used as the main light extraction surface, the light emitted is emitted through the transparent electrode 62c. Then, the entire surface of the light emitting element 63 is sealed with a transparent epoxy resin 68.
[0010]
The package 64 must reflect the light emitted from the side surface of the light emitting element 63 to the main light extraction surface side and also have a function of increasing the axial luminous intensity. It is molded into a shape with a taper of
[0011]
In the case of this structure, flip-chip mounting on the lead electrode is difficult (the reason will be described later). In order to flip-chip mount the light emitting element 53, as shown in FIGS. A composite light emitting element in which the light emitting element 53 is flip-chip mounted on the mount element 69 will be used.
[0012]
[Patent Document 1]
JP-A-11-121797 (paragraph numbers 0029 to 0030, FIG. 1)
[0013]
[Problems to be solved by the invention]
As shown in FIG. 4, in the case of a top-view type semiconductor light-emitting device in which a GaN-based light-emitting element is flip-chip mounted, the thickness T of the light-emitting device can be reduced to 300 μm or less. There is a problem.
[0014]
First, the first problem is that a thin film electrode cannot be formed by vapor deposition on a resin-based substrate, so that the pattern of the lead electrodes cannot be formed with high accuracy. This is necessary, and the shape of the lead electrode is not sharpened. For this reason, an error when recognizing the pattern of the lead electrode and performing flip-chip mounting increases, and mounting is performed at a position shifted from a predetermined mounting location, thereby causing a short circuit or open between the electrodes.
[0015]
The second problem is that when mounting a GaN-based light-emitting element, it is necessary to apply heat and ultrasonic waves to the micro-bumps to perform welding bonding. However, in the case of a resin-based substrate, the substrate is softened by heat. The bonding of the microbumps due to the transmission of the vibration of the sound wave becomes insufficient, and the disconnection occurs due to the opening of the bump portions, which causes a problem in reliability.
[0016]
A third problem is that since the p and n electrodes of the GaN-based light emitting device and the lead electrodes of the resin-based lead substrate are conductively fixed by micro-bumps, the sapphire substrate and the resin-based substrate that occupy most of the GaN-based light-emitting device. If the thermal expansion coefficients of the lead substrates are significantly different, the microbumps will crack due to repetitive stress in a temperature cycle environment, and breakage due to opening will occur.
[0017]
In this case, the thermal expansion coefficient of sapphire, against 7.2 × 10 -6 / ℃, thermal expansion coefficient of the BT resin glass cloth substrate normally used as the resin system lead board is 10.0 × 10 - 6 / ° C., which is about 40% larger.
[0018]
As described above, the flip-chip mounting structure that is effective for thinning has several problems due to the resin-based lead substrate in mounting, and it is not practically used as a semiconductor light emitting device because sufficient reliability cannot be secured. Absent.
[0019]
Also in the case of the side-view type semiconductor light emitting device shown in FIG. 5, a resin substrate is used because the gap between the lead electrodes 62a and 62b cannot be made smaller than 100 μm and the molding resin comes under the lead electrodes. For the same reason as in the above-described top view type, flip chip mounting with micro bumps is difficult.
[0020]
In the case of using a composite light emitting element in which the light emitting element 53 is flip-chip mounted on the sub mount element 69 shown in FIGS. 6A and 6B, the sub mount element 69 needs to be larger than the light emitting element 53. Therefore, there is a problem that it is difficult to make the height t from the solder mounting surface, which is important in a side-view type semiconductor light emitting device, 750 μm or less.
[0021]
Therefore, the present invention provides a semiconductor light emitting device capable of reliably performing flip-chip mounting of a semiconductor light emitting element, securing reliability, and reducing the overall thickness (that is, the height from the solder mounting surface). The purpose is to provide.
[0022]
[Means for Solving the Problems]
The semiconductor light emitting device of the present invention is a semiconductor light emitting device using a ceramic material having heat resistance and capable of forming a thin film electrode on an insulating lead substrate.
[0023]
According to the present invention, it is possible to obtain a semiconductor light emitting device capable of reliably performing flip-chip mounting of a semiconductor light emitting element and securing reliability, and also capable of reducing the overall thickness.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention is characterized in that the p-side electrode and the n-side electrode of the light emitting element are respectively bonded to two lead electrodes formed on the substrate via microbumps, so that the two lead electrodes are formed on the substrate. In a semiconductor light emitting device equipped with a light emitting element,
The substrate is a semiconductor light emitting device characterized by being made of a ceramic material. Since the ceramic material is used for the substrate, the substrate is scientifically stable and the thin-film electrode lead electrode is accurately formed on the surface. In addition, even if heat is applied during the bonding of the microbumps, the microbumps are softened and do not deform, and the microbumps are efficiently bonded without absorbing ultrasonic vibration.
[0025]
In the case of the top-view type, the light-transmitting crystal substrate is mounted on the top surface, and since there is no rise of the wire, the thickness T of the semiconductor light-emitting device can be reduced. Since the substrate also serves as a part of the package and the submount element, the height t from the solder mounting surface can be reduced to 500 μm or less.
[0026]
According to a second aspect of the present invention, there is provided the semiconductor light emitting device according to the first aspect, wherein the lead electrode is vapor-deposited on a surface of the substrate. Since the thickness of the lead electrode formed by vapor deposition is smaller than that of the method described above, the step of the substrate is reduced, and the vibration by the ultrasonic wave is reliably transmitted.
[0027]
According to a third aspect of the present invention, the light emitting device is a gallium nitride-based light emitting device including a light transmitting crystal substrate, wherein the light transmitting crystal substrate is a main light extraction surface, and the light emitting device is a light transmitting device. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is sealed with an optical resin, and has an effect of improving luminous efficiency.
[0028]
According to a fourth aspect of the present invention, the substrate is provided with a reflecting member formed on an inner peripheral surface of the through hole, the reflecting wall reflecting light emitted laterally from the light emitting element in a main light extracting direction. 4. The semiconductor light emitting device according to claim 1, wherein light extracted laterally from the light emitting element is reflected in a main light extraction direction to extract the main light. This has the effect of increasing the intensity of light emitted in the direction.
[0029]
The invention according to claim 5, wherein the ceramic material constituting the substrate is mainly composed of any one of aluminum oxide, aluminum nitride, and barium titanate. The semiconductor light-emitting device described above has high heat resistance, does not soften even when heated, and is chemically stable, so that a fine pattern can be easily formed.
[0030]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0031]
(First Embodiment)
FIG. 1A is a front view of a semiconductor light emitting device according to a first embodiment of the present invention, and FIG. 1B is a plan view of the semiconductor light emitting device.
[0032]
The semiconductor light emitting device 1 is a device in which a light emitting element 5 is mounted on a surface of a white substrate 2 made of a ceramic material.
[0033]
The n-side electrode 6 and the p-side electrode 7 of the light emitting element 5 are electrically connected to the two lead electrodes 3 and 4 of the substrate 2 via the micro bumps 8 and 9, respectively.
[0034]
At the time of connection, heat and ultrasonic vibrations are applied to the micro bumps 8 and 9 and the micro bumps 8 and 9 are joined by pressing.
[0035]
The ceramic material forming the substrate 2 can be mainly composed of, for example, aluminum oxide.
[0036]
This material has characteristics of excellent heat resistance and small deformation due to heat. Therefore, the micro-bumps 8 and 9 are not deformed by the heat (approximately 160 to 190 ° C.) applied at the time of connection and do not attenuate the ultrasonic vibration. Can be done.
[0037]
Note that the ceramic substrate 2 has not been used in a semiconductor light emitting device as shown in FIG. The reason is that transfer molding is used when sealing the light emitting element mounted on the substrate with resin.However, in the case of a ceramic substrate, the elasticity is insufficient when the mold is brought into close contact and the resin flows. Because of this, it cannot be sealed and resin leakage occurs.
[0038]
This time, by mounting the gallium nitride based light emitting element by flip chip mounting, the wires disappeared, so it became possible to perform resin molding by potting or screen printing from the top side of the light emitting element 5, and it was not necessary to perform transfer molding, Ceramic substrates can now be used.
[0039]
The substrate 2 is formed in a rectangular plate shape, and through-hole electrodes 10 and 11 are formed on opposing short sides, and lead electrodes 3 and 4 are connected to the back surface.
[0040]
The lead electrodes 3 and 4 are made of NiCr, Au (the outermost surface is Au), and are metal-deposited on the surface of the substrate 2. The two lead electrodes 3 and 4 are connected to the front side via the through-hole electrodes 10 and 11 from both ends on the back side of the substrate 2 which is conductively connected to an external wiring (not shown), and are opposed to each other at the center part on the front side. This opposing portion is formed in substantially the same shape as the n-side electrode 6 and the p-side electrode 7 of the light emitting element, and the gap width therebetween is formed to be 10 to 40 μm. Since the patterns of the lead electrodes 3 and 4 are formed on the ceramic substrate 2 by vapor deposition, the gap width can be formed very small and accurately.
[0041]
With such a configuration, recognition accuracy of the flip chip bonder on which the light emitting element 5 is mounted is improved, and even if the mounting position is slightly shifted, no open or short circuit occurs.
[0042]
The thickness of the lead electrodes 3 and 4 can be formed to 2 to 5 μm by using metal evaporation. When ultrasonic vibration is applied, pressure is applied to the substrate 2 from the light emitting element 5 side, but plating is applied to the resin substrate. When the lead electrode is formed by the method, the thickness of the lead electrode is increased, and the central portion of the back surface of the resin substrate floats from the support table, so that the resin substrate is bent. Then, the vibration transmitted from the microbump to the lead electrode is absorbed by the bending of the resin substrate. By reducing the thickness of the lead electrodes 3 and 4, the back surface of the substrate 2 is in close contact with the support table, and vibration is reduced from the micro bumps 8 and 9 to the lead electrodes 3 and 9 by using the ceramic substrate 2 with low internal friction. 4, the welding can be performed reliably.
[0043]
The light-emitting element 5 has a square plate shape in which a plurality of gallium nitride-based compound semiconductor films are laminated on a translucent crystal substrate 12, and the n-side electrode 6 and the p-side electrode 7 are formed on the gallium nitride-based compound semiconductor layer side. Are arranged respectively. The n-side electrode 6 and the p-side electrode 7 are flip-chip mounted on the lead electrodes 3 and 4 of the substrate 2 with the substrate facing the substrate 2.
[0044]
In the light emitting element 5, the epoxy resin 13 seals the space between the light emitting element 5 including the top surface and side portions of the gallium nitride-based compound semiconductor layer and the micro bumps 8 and 9 and the substrate 2.
[0045]
The blue or green light traveling from the light emitting layer included in the gallium nitride-based compound semiconductor layer of the light emitting element 5 toward the main light extraction surface or to the side passes through the epoxy resin 13 and is extracted to the outside.
[0046]
In addition, white light can be obtained by mixing a phosphor that converts blue light into its complementary color light into the sealing resin.
[0047]
(Second embodiment)
FIG. 2A is a front view of a semiconductor light emitting device according to a second embodiment of the present invention, and FIG. 2B is a plan sectional view of the semiconductor light emitting device. The semiconductor light emitting device according to the first embodiment is a top-view type, whereas the semiconductor light emitting device 20 according to the second embodiment is a side-view type light emitting device.
[0048]
The position of the through-hole electrode of the ceramic substrate 21 of the semiconductor light emitting device 20 is different from that of the substrate 2 of the semiconductor light emitting device 1 described above. New arc-shaped notches 24 and 25 (through-hole electrodes) are formed at two adjacent corners, and lead electrodes 22 and 23 formed by metal evaporation are formed on the surface.
[0049]
The semiconductor light emitting element 15 is mounted on the lead electrodes 22 and 23, and a reflecting member 27 having a through hole is externally mounted on the semiconductor light emitting element 15 and fixed to the substrate 21. The shape of the through hole of the reflection member 27 is a conical cross-sectional shape that spreads in the main light extraction direction, and efficiently reflects lateral light emitted from the semiconductor light emitting element 15 in the main light extraction direction to increase on-axis luminous intensity. For this purpose, it is made of a white resin molded product, or its inner peripheral surface 28 is plated with Ag having good reflectivity. The inside of the through hole is filled with a transparent epoxy resin 29.
[0050]
The portions of the side surfaces of the substrate 21 where the notches 24 and 25 are formed are connected to the lead electrodes 22 and 23, so that the side surface 26 of the substrate 21 on the side of the notches (through-hole electrodes) 24 and 25 is used as a mounting surface. The semiconductor light emitting device 20 can be used as a side view type.
[0051]
Further, after the semiconductor light emitting device is flip-chip mounted on the ceramic substrate, a resin paste containing a phosphor is applied around the semiconductor light emitting device by a screen printing method or the like (not shown), and the semiconductor light emitting device emits white light. It can also be a device.
[0052]
(Third embodiment)
FIG. 3A is a front sectional view of a semiconductor light emitting device according to a third embodiment of the present invention, and FIG. 3B is a plan view of the semiconductor light emitting device. This is a semiconductor light emitting device 30 formed by adding the reflecting member 27 of the semiconductor light emitting device 20 according to the second embodiment to the top view type semiconductor light emitting device 1 according to the first embodiment. is there.
[0053]
The semiconductor light emitting device 30 is different from the semiconductor light emitting device 1 according to the first embodiment, which is thin and has a wide light distribution, in that the lateral light emitted from the semiconductor light emitting element 5 is efficiently emitted in the main light extraction direction. It is made for the purpose of reflecting well and increasing on-axis luminous intensity, and is applied to a white LED for illumination.
[0054]
Also in this case, after the semiconductor light emitting device is flip-chip mounted on the ceramic substrate, a resin paste containing a phosphor is applied around the semiconductor light emitting device by a screen printing method or the like (not shown) to emit white light. Semiconductor light emitting device.
[0055]
In addition, as the ceramic material, for example, silicon nitride, barium titanate, or the like can be used in addition to the above materials.
[0056]
Further, the lead electrode of the substrate can be formed by firing.
[0057]
【The invention's effect】
As described above, according to the present invention, the ceramic material is used for the substrate, so that the substrate is chemically stable, and the lead electrode can be accurately formed on the surface. By efficiently joining the micro-bumps without being deformed and absorbing ultrasonic vibrations, flip chip mounting of the semiconductor light emitting element can be reliably performed and the whole can be reduced in thickness.
[0058]
When the lead electrode is deposited on the surface of the substrate, the step of the substrate becomes small, and the vibration by the ultrasonic wave is transmitted reliably, so that the bonding of the micro bumps can be performed more reliably.
[0059]
When a reflective member having a through hole is provided on a substrate, light extracted laterally from the light emitting element is reflected in a main light extraction direction, and luminous efficiency can be increased.
[0060]
When a substrate made of a ceramic material is mainly made of aluminum oxide, aluminum nitride, or barium titanate, it has high heat resistance, does not soften even when heated, and is chemically stable. It is easy to ensure the bonding of the micro bumps. In addition, aluminum nitride can improve heat radiation characteristics, and barium titanate can form a capacitor, and can protect the gallium nitride based semiconductor light emitting element from an electrostatic breakdown voltage of about 200 V.
[Brief description of the drawings]
FIG. 1A is a front view of a semiconductor light emitting device according to a first embodiment of the present invention; FIG. 1B is a plan view of the semiconductor light emitting device; FIG. FIG. 3B is a front sectional view of the semiconductor light emitting device according to the embodiment; FIG. 3A is a front sectional view of the semiconductor light emitting device according to the third embodiment of the present invention; FIG. 4 (A) is a plan view of the semiconductor light emitting device according to the related art; FIG. 4 (A) is a plan view of the semiconductor light emitting device according to the related art; FIG. FIG. 6B is a front view of a side-view type semiconductor light emitting device according to a conventional example. FIG. 6B is a plan sectional view of the semiconductor light emitting device. FIG. 6A is a side view type semiconductor according to a conventional example using a composite light emitting element. The front view (B) of the light emitting device is a plan sectional view of the semiconductor light emitting device.
DESCRIPTION OF SYMBOLS 1 Semiconductor light emitting device 2 Substrate 3, 4 Lead electrode 5 Light emitting element 6 n side electrode 7 p side electrode 8, 9 Micro bump 10, 11 Through hole electrode 12 Translucent crystal substrate 13 Epoxy resin 20 Semiconductor light emitting device 21 Substrate 22, 23 Lead electrode 24, 25 Notch (through-hole electrode)
26 side surface 27 reflective member 28 inner peripheral surface 29 epoxy resin

Claims (5)

基板上に形成された2つのリード電極に、発光素子のp側電極およびn側電極をそれぞれマイクロバンプを介して接合することにより前記基板上に前記発光素子を搭載した半導体発光装置において、
前記基板は、セラミック素材からなることを特徴とする半導体発光装置。
In a semiconductor light emitting device having the light emitting element mounted on the substrate by bonding a p-side electrode and an n-side electrode of the light emitting element to two lead electrodes formed on the substrate via micro bumps,
A semiconductor light emitting device, wherein the substrate is made of a ceramic material.
前記リード電極を、前記基板の表面に蒸着したことを特徴とする請求項1に記載の半導体発光装置。The semiconductor light emitting device according to claim 1, wherein the lead electrode is deposited on a surface of the substrate. 前記発光素子は、透光性結晶基板を備えた窒化ガリウム系の発光素子であって、前記透光性結晶基板を主光取り出し面とし、前記発光素子が透光性の樹脂で封止されたことを特徴とする請求項1に記載の半導体発光装置。The light-emitting element is a gallium nitride-based light-emitting element including a light-transmitting crystal substrate, wherein the light-transmitting crystal substrate is used as a main light extraction surface, and the light-emitting element is sealed with a light-transmitting resin. The semiconductor light emitting device according to claim 1, wherein: 前記基板には、前記発光素子から側方に出た光を主光取り出し方向に反射させる反射壁をスルーホールの内周面に形成した反射部材が設けられていることを特徴とする請求項1から3のいずれかの項に記載の半導体発光装置。2. The substrate according to claim 1, wherein a reflection member is provided on the inner peripheral surface of the through hole, the reflection wall reflecting light emitted laterally from the light emitting element in a main light extraction direction. 4. The semiconductor light-emitting device according to any one of items 3 to 3. 前記基板を構成するセラミック素材は、酸化アルミニウム、窒化アルミニウムおよびチタン酸バリウムのいずれかを主体とすることを特徴とする請求項1から4のいずれかの項に記載の半導体発光装置。5. The semiconductor light emitting device according to claim 1, wherein the ceramic material forming the substrate is mainly made of one of aluminum oxide, aluminum nitride, and barium titanate. 6.
JP2003055546A 2003-03-03 2003-03-03 Semiconductor light emitting device Pending JP2004266124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055546A JP2004266124A (en) 2003-03-03 2003-03-03 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055546A JP2004266124A (en) 2003-03-03 2003-03-03 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2004266124A true JP2004266124A (en) 2004-09-24

Family

ID=33119531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055546A Pending JP2004266124A (en) 2003-03-03 2003-03-03 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2004266124A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197318A (en) * 2003-12-26 2005-07-21 Stanley Electric Co Ltd Lateral emission surface-mounted led and manufacturing method thereof
JP2006339650A (en) * 2005-06-01 2006-12-14 Samsung Electro-Mechanics Co Ltd Side emission led package and its manufacturing process
JP2007311786A (en) * 2006-05-18 2007-11-29 Samsung Electro Mech Co Ltd Light emitting device package, and light emitting device package array
JP2008004640A (en) * 2006-06-20 2008-01-10 Toyoda Gosei Co Ltd Light emitting device
JP2008166535A (en) * 2006-12-28 2008-07-17 Nichia Chem Ind Ltd Surface-mounting side light emitting device and its manufacturing method
JP2008546192A (en) * 2005-05-30 2008-12-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Casing body and method of manufacturing casing body
KR100978028B1 (en) * 2005-09-13 2010-08-25 쇼와 덴코 가부시키가이샤 Light-emitting device
US7812358B2 (en) 2005-09-13 2010-10-12 Showa Denko K.K. Light-emitting device
US8858004B2 (en) 2005-12-22 2014-10-14 Cree, Inc. Lighting device
US8901585B2 (en) 2003-05-01 2014-12-02 Cree, Inc. Multiple component solid state white light
US9142734B2 (en) 2003-02-26 2015-09-22 Cree, Inc. Composite white light source and method for fabricating
JP2016127144A (en) * 2014-12-26 2016-07-11 日亜化学工業株式会社 Light emission device
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
US9640734B2 (en) 2013-12-13 2017-05-02 Nichia Corporation Light emitting device
US9666772B2 (en) 2003-04-30 2017-05-30 Cree, Inc. High powered light emitter packages with compact optics
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198689A (en) * 1985-02-27 1986-09-03 Oshino Denki Seisakusho:Kk Manufacture of light emitting diode display element
JPH09283803A (en) * 1996-04-09 1997-10-31 Nichia Chem Ind Ltd Chip led and manufacture thereof
JP2001068738A (en) * 1999-08-24 2001-03-16 Rohm Co Ltd Semiconductor light-emitting device
JP2002335020A (en) * 2001-05-10 2002-11-22 Nichia Chem Ind Ltd Light emitting device
JP2003008071A (en) * 2001-06-22 2003-01-10 Stanley Electric Co Ltd Led lamp using led substrate assembly
JP2003037298A (en) * 2001-07-25 2003-02-07 Stanley Electric Co Ltd Surface-mounted led lamp
JP2003046139A (en) * 2001-07-12 2003-02-14 Renyu Kagi Kofun Yugenkoshi Light-emitting semiconductor device
JP2003046137A (en) * 2001-07-27 2003-02-14 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
JP2003060243A (en) * 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd Composite light-emitting element
JP2004221186A (en) * 2003-01-10 2004-08-05 Nanotemu:Kk Semiconductor light emitting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198689A (en) * 1985-02-27 1986-09-03 Oshino Denki Seisakusho:Kk Manufacture of light emitting diode display element
JPH09283803A (en) * 1996-04-09 1997-10-31 Nichia Chem Ind Ltd Chip led and manufacture thereof
JP2001068738A (en) * 1999-08-24 2001-03-16 Rohm Co Ltd Semiconductor light-emitting device
JP2002335020A (en) * 2001-05-10 2002-11-22 Nichia Chem Ind Ltd Light emitting device
JP2003008071A (en) * 2001-06-22 2003-01-10 Stanley Electric Co Ltd Led lamp using led substrate assembly
JP2003046139A (en) * 2001-07-12 2003-02-14 Renyu Kagi Kofun Yugenkoshi Light-emitting semiconductor device
JP2003037298A (en) * 2001-07-25 2003-02-07 Stanley Electric Co Ltd Surface-mounted led lamp
JP2003046137A (en) * 2001-07-27 2003-02-14 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
JP2003060243A (en) * 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd Composite light-emitting element
JP2004221186A (en) * 2003-01-10 2004-08-05 Nanotemu:Kk Semiconductor light emitting device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142734B2 (en) 2003-02-26 2015-09-22 Cree, Inc. Composite white light source and method for fabricating
US9666772B2 (en) 2003-04-30 2017-05-30 Cree, Inc. High powered light emitter packages with compact optics
US8901585B2 (en) 2003-05-01 2014-12-02 Cree, Inc. Multiple component solid state white light
JP2005197318A (en) * 2003-12-26 2005-07-21 Stanley Electric Co Ltd Lateral emission surface-mounted led and manufacturing method thereof
US8772065B2 (en) 2005-05-30 2014-07-08 Osram Opto Semiconductors Gmbh Housing body and method for production thereof
JP2008546192A (en) * 2005-05-30 2008-12-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Casing body and method of manufacturing casing body
US8288791B2 (en) 2005-05-30 2012-10-16 Osram Opto Semiconductors Gmbh Housing body and method for production thereof
JP4676386B2 (en) * 2005-06-01 2011-04-27 サムソン エルイーディー カンパニーリミテッド. Side-emitting LED package and manufacturing method thereof
JP2006339650A (en) * 2005-06-01 2006-12-14 Samsung Electro-Mechanics Co Ltd Side emission led package and its manufacturing process
KR100978028B1 (en) * 2005-09-13 2010-08-25 쇼와 덴코 가부시키가이샤 Light-emitting device
US7812358B2 (en) 2005-09-13 2010-10-12 Showa Denko K.K. Light-emitting device
US8858004B2 (en) 2005-12-22 2014-10-14 Cree, Inc. Lighting device
JP2007311786A (en) * 2006-05-18 2007-11-29 Samsung Electro Mech Co Ltd Light emitting device package, and light emitting device package array
JP2008004640A (en) * 2006-06-20 2008-01-10 Toyoda Gosei Co Ltd Light emitting device
US8802459B2 (en) 2006-12-28 2014-08-12 Nichia Corporation Surface mount lateral light emitting apparatus and fabrication method thereof
US9190588B2 (en) 2006-12-28 2015-11-17 Nichia Corporation Side-view type light emitting apparatus and package
JP2008166535A (en) * 2006-12-28 2008-07-17 Nichia Chem Ind Ltd Surface-mounting side light emitting device and its manufacturing method
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED
US9640734B2 (en) 2013-12-13 2017-05-02 Nichia Corporation Light emitting device
US10270011B2 (en) 2013-12-13 2019-04-23 Nichia Corporation Light emitting device
JP2016127144A (en) * 2014-12-26 2016-07-11 日亜化学工業株式会社 Light emission device

Similar Documents

Publication Publication Date Title
TWI712181B (en) Light-emitting device, integrated light-emitting device, and light-emitting module
US7935978B2 (en) Light emitting device and method for manufacturing the same
JP4747726B2 (en) Light emitting device
TWI535077B (en) Light emitting?apparatus and light emitting module thereof
US9882104B2 (en) Light emitting device package having LED disposed in lead frame cavities
JP4325412B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP4114364B2 (en) Light emitting device and manufacturing method thereof
US20090072250A1 (en) Chip type semiconductor light emitting device
KR100851183B1 (en) Semiconductor light emitting device package
KR100610650B1 (en) Light emitting diode package and manufacturing method thereof
EP1953835A1 (en) Light-emitting device
JP2004266124A (en) Semiconductor light emitting device
JP2007103917A (en) Solid state element device
JPWO2005031882A1 (en) Light emitting device
JP2007287713A (en) Light-emitting device, and manufacturing method thereof
CN102113139A (en) Light-emitting device
EP2194588A2 (en) Light emitting device and method for manufacturing same
KR101622399B1 (en) Led device
CN105552189A (en) Light emitting device package and light emitting apparatus including the package
KR100574557B1 (en) Light emitting diode package and method for manufacturing light emitting diode package
JP2004221186A (en) Semiconductor light emitting device
KR100866879B1 (en) LED package and method of manufacturing the same
JP2004172636A (en) Light emitting diode and its manufacturing method
JPH11121797A (en) Chip type semiconductor light emitting device
KR101813493B1 (en) Light Emitting Diode Module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728