【0001】
【発明の属する技術分野】
本発明は、本発明は、生体組織を低侵襲で温度非依存的に処置するための、波長6.1μm帯を供給する高繰り返しパルスレーザー装置に関する。また、本発明は、生体組織を低侵襲で温度非依存的に処置するための、波長6.1μm帯を供給する高繰り返しパルスレーザー装置の使用、及び生体組織を低侵襲で温度非依存的に高繰り返しパルスレーザー処置するための、波長6.1μm帯の使用に関する。さらに本発明は、波長6.1μm帯を供給する高繰り返しパルスレーザー装置を用いた生体組織を低侵襲で温度非依存的に処置する方法に関する。
【0002】
【従来の技術】
波長可変な中赤外自由電子レーザー(FEL)を用いた低侵襲の治療・診断技術の開発が進められている(非特許文献1及び2参照)。中赤外域には多くの分子振動由来の吸収ピークが存在するため、レーザーと生体との相互作用や相互作用領域を制御して選択的に誘起できる。FELには(1)波長可変性、(2)高ピークパワー、(3)高繰り返しといった3つの特長がある。(1)によってレーザー光の吸収体の選択、(2)によって高効率な相互作用誘起、(3)によって熱蓄積の制御を実現する。医用応用・バイオ応用分野における既存技術の更なる低侵襲化を図るため、これらの3つの特長を活かした基礎的な研究を進められている。
低侵襲なレーザー治療・診断において注意すべき事は対象部位の周辺には正常組織が密接して存在することである。所望の治療効果以外の照射効果を副作用と言い、特に著しい熱的・機械的な損傷等を逆作用と言う。つまり、治療効果を最大限に引き出しつつ、副作用・逆作用を最小限に抑える必要がある。そのためには、所望の治療効果が得られるように使用レーザーの照射条件(波長、パワー密度、パルス構造等)を高精度に制御しなければならない。低侵襲治療のレーザー光源として、分子振動領域に相当する数〜十数μmの波長城の光の中赤外域のパルスレーザーには、さらに次の特筆すべき特長がある。(1)低フォトンエネルギーであり、光解離・電子遷移による光化学的作用を誘起できないことから、DNA等への突然変異的な作用を回避できる。(2)生体組織に強く吸収されるため、高い改質効果を持つ。
【0003】
治療行為の低侵襲化には、相互作用の(1)空間的な制御、(2)時間的な制御が本質的に重要となる。(1)中赤外領域において、対象とする生体組織はその組成に応じて分子振動由来の固有の吸収特性を有している。即ち、分子振動を励起するレーザー波長を選べば対象部位(病巣部)に光の吸収領域を限定でき、相互作用領域を空間的に制御することができる。(2)時間的な相互作用制御はパルス構造の制御によって行われる。中赤外光は生体組織に対して顕著な温熱作用を及ぼすため、繰り返し周波数によるパルス間の熱蓄積効果の制御が有効な手法であると言える。この時、中赤外領域における生体の熱緩和時間を考慮に入れなければならない。一般的に熱緩和時間はマイクロ秒オーダーであるため、パルス間の熱蓄積を効果的に変化させるためには、106Hz(MHz)程度の高繰り返しパルスレーザーが要求される。
【0004】
分子振動励起による低侵襲治療・診断法のためのレーザー光源として、波長可変、高ピークパワー、高繰り返しと言った特長を併せ持つ中赤外自由電子レーザー(MIR−FEL;Mid−Infrared Free Electron Laser)がある。MIR−FELの波長、パワー密度、繰り返し周波数をパラメーターとすることによって、分子振動励起による熱的・機械的・化学的な生体相互作用を誘起させ、副作用・逆作用を抑えて所望の治療効果を実現する、最適なレーザーパラメーター領域を定量的に見積もることができる。これは既存技術の低侵襲化にとって有効な実験的アプローチである。加えて、MIR−FELは新規の治療・診断技術の提案及び確立にとっても不可欠なレーザー光源である。
【0005】
相互作用時間が対象とする生体組織の熱緩和時間よりも短い場合には、光の吸収領域に相互作用を閉じこめることができ、断熱膨張を伴う機械的作用を誘起できる。一方、長い場合には伝導によって熱伝導によって熱が広範囲に拡散し、温熱作用が顕著となる。この二面性はパワー密度と相互作用時間によって左右される。言い換えると、これらのパラメーター領域によって2つの相互作用に分類できる(図1参照)。相互作用は“1μsルール“ によって熱効果と非熱効果に大別される。熱効果には光化学作用(Photochemical interaction)と光熱作用(Photothermal interaction)がある。また、非熱効果は光衝撃作用(Photomechanical interaction)とも呼ばれ、光音響効果(Photoacoustic effect)、光アブレーション(Photoablation)、プラズマ誘起アブレーション(Plasma−induced ablation)、光破壊(Photodisruption)に分類される。ここで相互作用を決めるのはエネルギー密度ではなくパワー密度が重要であることを付記しておく。
【0006】
熱効果は相互作用時間が水の熱緩和時間1μsより長い場合に起こる。この効果は熱の伝搬を伴うため照射対象の周辺部へも熱的に影響を与え、広範囲に渡って生体組織を改質できる。光化学作用は1mW/cm2以下、1s以上で顕著となる。PDT (Photodynamic Therapy)においては活性酸素の殺細胞性による悪性腫場治療に光感受性物質とレーザー光によって引き起こされる光化学作用を利用している。一方、光熱作用は1μs以上でおこる。これは従来の機械的メスに代わる止血効果を伴った軟組織切除法として応用されている。ここで、この1μsはあくまでも単なる指標であり、対象とする生体組織や波長領域によって異なることに注意されたい。中赤外領域において生体の熱緩和時間はμs〜数百μsオーダーである。 非熱効果は機械的な作用を引き起こし、高パワー密度(106W/cm2以上)、短パルス幅(1μs以下)の領域で顕著となる。照射周辺部位への熱伝搬を無視できるため、相互作用領域を光の吸収領域内に限定できる。パルス幅1ns以上、1ns以下でそれぞれ光音響効果及び光アブレーシコン、プラズマ誘起アブレーション及び光破壊が起こる。光音響効果とは断熱的な体積膨張によって発生する圧力や張力を指し、生体組織の機械的切除や光音響診断に応用される。光アブレーションとは高フォトンエネルギーのレーザー光(例えば紫外光)を用いた原子・分子の直接励起によるアブレーションを指し、白内障手術や近視矯正手術などレーザー眼科治療に応用されている。プラズマ誘起アブレーションは1011W/cm2以上の高パワー密度領域で起こる。このような状況下では光学的なブレークダウン(optical breakdown)によってプラズマが発生し、これに付随してアブレーションが起こる。この相互作用はレーザー波長依存性を強く示さないことが知られており、歯科治療において虫歯除去等に有効である。光破壊はプラズマ発生を誘因とする衝撃波によって引き起こされる。熱拡散を伴わない応力によって生体硬組織(例えば胆石)を破砕できる。
このように、パワー密度と相互作用時間との組み合わせによって種々の治療に適合したレーザー生体相互作用を選ぶことができる。加えて、レーザー波長を任意の分子振動由来の吸収ピーク波長に設定することによって、対象部位を高精度に特定できる。これがMIR−FELの他に類をみない利点であるが、レーザーの照射部位や治療の対照となる疾患によりどのような波長を選定するかがおおきな問題となる。
【0007】
このように、従来技術の生体組織のレーザー切除には、レーザー光の吸収体を水あるいはタンパク質に設定してきた。それぞれの関連技術やその問題点について以下に述べる。
(i)吸収体を水としたCO2レーザー切除(非特許文献3参照)
波長10.6μmのCO2レーザーのエネルギーは組織中の水に吸収され、水の蒸散に伴い周辺組織が除去される。吸収係数が800−1000cm−1と比較的小さく、組織の蒸散と同時に止血のための熱凝固層を形成できるため、軟組織切除用レーザーとして臨床応用に幅広く用いられている。波長10.6μm帯の水の吸収特性は温度に依存しないため、温度変化による切除特性変化は顕著には現れない。しかし、組織の脱水・乾燥による吸収体の消失は吸収長の増大を意味しており、切除効果の減少と熱損傷層の増大を招く結果となる。このように、CO2レーザーによる切除特性は組織の含水量に強く依存するため、水を吸収体とするCO2レーザー切除は治療の安全性・確実性から見て問題があると言える。
【0008】
(ii)吸収体を水としたEr:YAGレーザー切除(非特許文献3参照)
Er:YAGレーザーの発振波長2.94μmは、OHの伸縮振動モードしこ対応しており、13000cm−1という極めて大きな吸収係数を有している。吸収長が1μm以下と小さいため、熱損傷(凝固)層をほんとんど形成しない、制御性の高い切除法として注目されている。水を吸収体とするため、CO2レーザー同様、組織の脱水・乾燥は切除特性及び熱損傷層に多大な影響を及ぼす。加えて、OH伸縮振動モードの吸収特性は温度に強く依存し(動的光学定数、非特許文献5参照)、温度上昇に伴い吸収係数は低下する。これは照射中の温度変化に対し、切除特性がそれに追従して変化することを意味する(非特許文献6参照)。このように、レーザー照射(治療)中においてEr:YAG レーザーでは含水量変化に加え、温度変化も切除特性に影響を及ぼす結果となり、従来の治療手法の更なる低侵襲化を図る必要がある。
【0009】
(iii)吸収体をタンパク質としたFEL切除(非特許文献4及び7参照)
臨床応用として一般に用いられている技術ではないが、自由電子レーザー照射によるタンパク質を吸収体とした生体軟・硬組織のアプレーション実験が行われてきた。非特許文献4では、生体軟組織を用いて、6.1μm(OH変角振動モード、アミド−I)と6.45μm(アミド−II)と3μm(OH伸縮振動モード、アミド−A)の切除量の吸収体依存性を調べ、その結果、タンパク質を吸収体とした場合(λ=6.451μm)に良好な切除効果が得られたことが報告されている。ここではタンパク質の熱変性に伴う組織の機械強度低下と水の蒸散の組み合わせによって切除効果が助長されたとしているが、その作用機序は未だ不明な点が多い(非特許文献4参照)。また、牛の大腿皮骨の切削では6.1μm(アミド−I)及び6.45μm(アミド−II)の照射によって、コラーゲンを主体とする骨の効果的な切除特性を得ている(非特許文献7参照)。
【0010】
現在、生体軟組織の切除用の医用レーザーには、波長10.6μmの炭酸ガスレーザ−や波長10.6μmのNdYAGレーザー、波長3.0μmのEr:YAG,ErYSGG, HoYAGレーザーなどが用いられている。この中では発振波長2.94μmのEr:YAGレーザー照射が副作用を抑えた低侵襲な軟組織切除に最適である。理由は、Er:YAGの発振波長が軟組織の70−80%を占める水の伸縮振動モード(吸収係数13000cm−1で吸収長は1μm以下)由来の吸収ピーク波長に一致しており、レーザーのエネルギーを効率よく組織に吸収させることができるためである。
しかしながら、レーザー治療時においてEr:YAGレーザー照射による副作用(熱損傷層の拡大)が数多く報告されている。これは、温度変化による水の吸収特性の変化(動的光学定数)によるものである。水の伸縮振動モードの吸収帯は温度変化に対して敏感であり、温度上昇によって吸収ピーク波長の短波長側へのシフトと吸収係数の低下が見られる。具体的には、1度から50度に対象の温度が変化すると、波長2.94μmにおいて吸収係数が13600cm−1から106500cm−1に変化する。レーザー照射による切除は水の蒸散によってなされるため、対象温度は少なくとも100−374度(加圧下水臨界点)にまで達する。対象温度によって吸収係数、即ち、光の吸収長が変化するため、その時々の治療ケースで切除深さが変化する。多くの治療ケースの場合、常温・大気圧下の水の吸収係数を用いて切除量を予測するため、実際の切除量や熱損傷層が予測値と異なる場合が多くある。これは、数ミクロン〜数十ミクロンスケールで所望の部位のみを切除する場合(角膜矯正手術など)には本質的で且つ不可避な問題として認識すべきである。
【0011】
以上まとめると、解決すべき問題点は、(1)含水量変化、(2)温度変化、(3)対象組織(軟・硬組織)の相違による(治療中の)吸収特性の変化である。この吸収特性変化が切除・熱変性に影響を及ぼすことは明らかである。通常、生体組織の吸収特性は常温・大気圧下で測定し、この吸収係数を用いて切除量や熱変性(凝固・損傷)層を推定・予測する。しかしながら、照射中の周囲の環境の変動によって実際の切除量・熱変性層と予測値に相違が生じる。
このように、治療の低侵襲化を実現するには、これらの諸問題を同時に克服することができるレーザー波長(分子振動モード)を見出すことが重要な課題とされている。
【0012】
【特許文献1】
特開平06−343651号
【特許文献2】
特表2001−511667号
【非特許文献1】
部谷 学ら、Molecular Electronics Bioelectronics、第13巻、第2号、第89−96頁 (2002年)
【非特許文献2】
中井 貞雄ら、生産と技術、第52巻、第3号、第8−22頁 (2000年)
【非特許文献3】
レーザー学会編、「先端レーザーテクノロジー」、1992年、日経技術図書株式会社発行
【非特許文献4】
Glenn Edwards, et al., Nature, 371, 416−418 (1994)
【非特許文献5】
Lary W. Pinkley, et al., J. Opt. Soc. Am., 67(4), 494−499 (1977)
【非特許文献6】
Joseph P. Cummings and Joseph T. Walsh, Jr., Appl. Phys. Lett., 62(16), 1988−1990 (1993)
【非特許文献7】
George M. Peavy, et al., Lasers in Surgery and Medicine, 26, 421−434 (1999)
【0013】
【発明が解決しようとする課題】
以上のように、従来のレーザー治療においては、レーザーによる切除特性が含水量・温度・組織種に強く依存するため、レーザー治療時の熱損傷層の拡大などの副作用や逆作用が数多く報告されており、より低侵襲性のレーザー治療法の開発が求められていた。
本発明は、水蒸散による生体軟組織切除にはその主成分である水を吸収体とすると効果的な掘削が実現できること、特に温度にほとんど影響を受けないレーザー治療法、そのためのレーザー治療装置、及びその使用方法を提供する。
【0014】
【課題を解決するための手段】
本発明者らは、波長6.1μmのレーザー光が、水のOH変角振動モード(μa=2700cm−1)とタンパク質のアミド−I(μa=3000cm−1)に対して同程度の吸収特性を有していることに着目して、波長6.1μmのレーザー光の特性を検討してきた結果、含水量が多い/少ない場合には吸収体がそれぞれ水/アミド−Iとなり、含水量に対する吸収特性の変化が少なく、切除の安定化を図ることができ、かつ、6.1μm照射によって周辺温度に影響を受けにくい切除特性を実現できることを見出した。
【0015】
即ち、本発明は、生体組織を低侵襲で温度非依存的に処置するための、波長6.1μm帯のレーザー光を供給する高繰り返しパルスレーザー装置に関する。また、本発明は、生体組織を低侵襲で温度非依存的に処置するための、波長6.1μm帯のレーザー光を供給する高繰り返しパルスレーザー装置の使用、及び生体組織を低侵襲で温度非依存的に高繰り返しパルスレーザー処置するための、波長6.1μm帯のレーザー光の使用に関する。
さらに本発明は、波長6.1μm帯のレーザー光を供給する高繰り返しパルスレーザー装置を用いた生体組織を低侵襲で温度非依存的に処置する方法に関する。
【0016】
本発明者らは、軟組織の擬似モデル試料としてゼラチンを用いて、レーザー光りによる切除特性を定量化した。生体の軟組織の多くは約80%の水と約20%のタンパク質で構成されている。
このような軟組織の切除機構を調べるために、本発明者らは、中赤外自由電子レーザーを用いて吸収体(水・タンパク質)を変えて、その掘削量を定量した。照射波長を5.6〜6.7μmで変化させ、照射部位において、ゼラチンの掘削(アブレーション)と気泡(バブル)の発生、及び吸収係数(cm−1)を測定した。掘削は水の蒸散によって、また、気泡は光音響効果の一つである張力波によって引き起こされる。結果を図2に示す。図2はゼラチン掘削量の波長依存性を示す。図2の左側の縦軸は、掘削(黒色(原図は赤色)丸印)及び気泡の深さ(灰色(原図は青色)四角印)(μm)を示し、右側の縦軸は吸収係数(cm−1)を示す。横軸は波長(μm)を示す。図2の黒色(原図は赤色)の線は水分が80%のゼラチン(Cw=80%)の場合の吸収スペクトルを示し、灰色(原図は黒色)の線は水分が0%のゼラチン(Cw=0%)の場合の吸収スペクトルを示す。
【0017】
ゼラチン掘削量はゼラチン表面から照射痕の底面までの距離として、バブル深さはゼラチン表面からバブルの最深部までの距離としてそれぞれ定義した。参考のために、20%(水80%)と100%(水0%)ゼラチンの吸収スペクトルを示す。照射サンプルである20%ゼラチンの吸収スペクトル(図中の濃い実線)には、6.1μm付近にOH変角振動モード由来の大きな吸収ピークが、6.45μmにアミド−II由来の小さな吸収ピークがある。
波長が、5.75μm、6.10μm、6.20μm、6.40μm、及び6.70μmの各々の場合の掘削と気泡の状態を図3に図面に代わる写真で示す。図3の上段は上側から見た写真であり、下段は横側から見た写真である。波長が6.10μm以外の場合には溶融(melting)が起きていることがわかる。
【0018】
次に、水の温度による吸収スペクトルの変化について検討した。まず、2.94μm(水のOH伸縮振動)における1℃、16℃、39℃、及び50℃の温度の水について調べた。結果を図4に示す。図4の縦軸は吸収係数(×103cm−1)を示し、横軸は波長(μm)を示す。図4の薄い灰色の線は1℃の場合を示し、少し薄い灰色の線は16℃の場合を示し、濃い灰色の線は39℃の場合を示し、黒色の線は50℃の場合を示す。図4中における矢印は、2.94μmにおける吸収係数の変化の傾向を示している。次に、6.05μm(水のOH変角振動)における1℃、16℃、39℃、及び50℃の温度の水について調べた。結果を図5に示す。図5の縦軸は吸収係数(×103cm−1)を示し、横軸は波長(μm)を示す。図5の薄い灰色の線は1℃の場合を示し、少し薄い灰色の線は16℃の場合を示し、濃い灰色の線は39℃の場合を示し、黒色の線は50℃の場合を示す。図5中における矢印は、6.05μmにおける吸収係数の変化の傾向を示している。
波長2.94μmのときの1℃の水の吸収係数は13600cm−1であったが、50℃の水の吸収係数は10650cm−1であり、その差(Δμa)は2950cm−1であった。また、波長6.05μmのときの1℃の水の吸収係数は2500cm−1であったが、50℃の水の吸収係数は2700cm−1であり、その差(Δμa)は僅かに200cm−1に過ぎなかった。
さらに、波長2.94μm(水のOH伸縮振動)では、水の温度が上がるに連れて吸収係数が減少する傾向であるが、波長6.05μm(水のOH変角振動)では水の温度が上がるに連れて吸収係数が増加する傾向であることもわかった。
【0019】
以上のことから、水の蒸散による掘削特性は対象の吸収特性に強く依存し、以前報告されたタンパク質変性による掘削量の助長効果は観測されなかった。水を多く含む軟組織において、水の蒸散によって切除を行う場合はその主成分である水を吸収体とすべきである。また、掘削特性が吸収特性と類似したことから、水蒸散の状況下においても水の6.1μmのOH変角振動モードの吸収特性は温度変化の影響を受けにくく、3μmのOH伸縮振動モードと比較して、低侵襲治療に適したレーザー波長であると言える。加えて、6.1μmにはもう1つの吸収体であるタンパク質のアミド−Iがあり、照射中の生体組織の脱水・乾燥による吸収特性の変化に対しても効率的な相互作用を誘起できる。
以上のように、水の蒸散による軟組織切除にはその主成分である水のOH変角振動モード励起が適しており、ゼラチンは水の蒸散によって切除され、その切除量の波長依存性はゼラチンの常温・大気圧下の吸収特性とよく一致した。これは、切除特性が湿度変化によらないことを示唆するものであり、もし切除が温度で変化するなら、常温の吸収特性に一致しない。このことは、軟組織切除のレーザーパラメーター下においても切除量を常温・大気圧下の光学定数データで予測可能であることを示唆している。このように、6.0μm帯パルスレーザーが低侵襲軟組織切除にとって最適なレーザ−光源となり得ることが実験的に明らかにされた。
【0020】
さらに、本発明の6.1μmレーザー照射による軟組織の切除の状況と、従来の3μm Er:YAGレーザー及び10μmCO2レーザーとの比較を行った結果を図6に示す。図6の左側から、レーザー光源、波長(μm)、吸収体、吸収係数(cm−1)、温度変化(左から右方向が上昇方向)、水分量変化(左から右方向が減少方向)をそれぞれ示している。図6の上の段から、波長が2.94μmの場合、2段目が6.1μm野場合、3段目が10.6μmの場合、4段目が1.06μmの場合をそれぞれ示している。図6の半月状白部が切除部位であり、薄黒塗り部が熱損傷部位である。
この結果より、レーザー照射に伴う温度変化、部位水分量変化により、Er:YAGレーザー、CO2レーザーの場合は、切除層、熱損傷層などが変化するが、6.1μmレーザーの場合は、切除層、熱損傷層とも変化しないことがわかる。また、6.1μmの照射中の吸収特性が変化が小さいため、照射中の切除特性が一定であり、誤切除、誤熱損傷無しに、安心して、レーザー切除、止血がおこなわれるものであることがわかった。
なお、各レーザー照射による切除、熱損傷の深さの差は、基本的には、損傷吸収係数μaの逆数が光進達深さ(吸収長、optical deptgh)であることによる。止血は、言うなれば熱損傷部位によっておこなわれる。現に、炭酸ガスレーザーは、止血用に使用されており、Er:YAGレーザーは、出血を伴いながら、切除がなされている。
【0021】
本発明は、低侵襲な生体軟・硬組織切除を実現するための波長6.1μmを供給する高繰り返しパルスレーザー装置に関するものである。6.1μm照射による切除特性の低侵襲化の機構として、次の(1)−(3)が挙げられる。本発明は主成分が水かタンパク質である組織(例えば、皮膚、角膜などの軟組織や象牙質、骨などの硬組織)であれば適用可能である。
(1)含水量変化に対する切除安定化機構
波長6.1μmのレーザー光は、水のOH変角振動モード(μa=2700cm−1)とタンパク質のアミド−I(μa=3000cm−1)に対して同程度の吸収特性を有している。そのため、含水量が多い/少ない場合には吸収体がそれぞれ水/アミド−Iとなり、含水量に対する吸収特性の変化が少なく、切除の安定化を図ることができる。
(2)温度上昇に対する切除安定化機構
治療時間の短縮化は低侵襲治療にとって重要である。そのためには高繰り返し照射が求められるが、パルス間での熱蓄積による対象組織の温度上昇が問題となる。吸収特性は温度依存性を持つが、6.1μm照射によって周辺温度に影響を受けにくい切除特性を実現できる。
(3)止血を伴う軟組織切除
波長6.1μmに対する水・タンパク質の吸収係数は約3000cm−1であり、CO2レーザーの波長域とほぼ同等(1000cm−1程度)であるため、熱変性(凝固)層を形成しつつ軟組織切除を行える。これは治療中の出血を回避でき、治療時間の短縮、治療の簡略化が可能となるということである。
【0022】
生体組織の切除は水・タンパク質の蒸散によって行われる。波長6.1μmでは、生体組織の含水量が多い場合には、OH変角振動モード励起によって、少ない場合には、アミド−I励起によってレーザーエネルギーが効率よく組織中に吸収される。即ち、吸収特性が含水量にあまり影響を受けない性質を有している。また、生体の軟組織は80%の水と20%のタンパク質から、硬組織(骨や象牙質)は60−70%のリン酸塩(アパタイト)と30−40%の水・タンパク質から構成されている。リン酸塩の溶融・蒸散は1000度以上の高温領域で起こるため、硬組織の切除には水・タンパク質を吸収体とした、これらの蒸散が有効となる。
本発明における「軟組織」は、生体において比較的水分含有量の多い組織のことであり、例えば、水分含有量が60%以上、好ましくは60〜80%である生体組織をいう。本発明の方法は、好ましくは生体の軟組織に好適に適用され得るものであるが、波長6.1μmにはアミド−I吸収帯もあり、タンパク質を含む組織にも有効性があることから、本発明波の方法は生体の軟組織に限定されるものではない。例えば、硬組織(歯、骨など)も、水及び蛋白質を含むため、本発明の対象として、有効に用いられ得る。即ち、本発明は、水と蛋白質を含む生体組織に有効に適用可能であるということであるが、より好ましくは本発明は、波長6.1μmのレーザー光を用いることにより、水のOH変角振動により掘削を可能し、この波長における水の温度依存的な吸収係数の変化(Δμa)が小さいことから、温度に対して安定な処置がおこなえることを特徴とするものである。
このように、吸収体として水・タンパク質を同時に選択できる6.1μmは、軟・硬組織に対して照射中の含水量変化、温度変化による切除量の変化を最小限に抑えることができる。
【0023】
本発明におけるレーザー光の波長としては、6.1μmが好ましいが、これに限定されるものではなく、水のOH変角振動の吸収帯で、好ましくはさらにタンパク質のアミド−I吸収帯の波長であればよい。本発明では、この吸収帯のことを6.1μm帯と称する。本発明の好ましい波長としては、具体的には6.1±0.2μm、より好ましくは6.1±0.1μmが挙げられる。
本発明は、吸収係数の温度依存性小さいこと、切除特性の温度依存性の小さいことから、より高い繰り返しパルスの使用が可能となるが、照射対象組織の熱伝導による熱緩和時間よりも短いものが好ましい。具体的には30μs以下が好ましいがこれに限定されるものではない。パルス幅は、個々の治療ケースにおいて疾患の状態、患者の状態、組織の状態などに応じて適宜調整することができる。
【0024】
本発明のレーザー装置としては、前記した6.1μm帯のレーザー光を照射できるものであれば特に限定されるものではない。レーザー光源についても6.1μm帯のレーザー光を照射できるものであれば、特に制限はない。例えば、6.1μm帯のレーザーを照射可能な自由電子レーザー装置、近年開発されてきている非線形結晶を用いた差周波光の発生技術により3.0−10.0μmまでの中赤外光を発生する固体レーザー装置などであってもよい。
【0025】
本発明は、レーザー治療における最適な波長を見出したことに基づく発明であり、波長として6.1μm帯を使用することを特徴とするものである。好ましくは、水分含有量が60%以上の軟組織の治療、切除、措置などの処置において波長6.1μm帯のレーザー光を使用することを特徴とするものである。
生体組織の主成分は水であるため、水を吸収体として軟組織を低侵襲的に加工・診断する本発明の治療技術は様々な部位(目・口・皮膚・臓器等)において適用可能である。本発明の技術は、水の吸収特性に照射波長を一致させるため、光の吸収領域を対象のごく表層部(数〜数百ミクロン)に限定でき、高精度に相互作用領域を制御できる。したがい、正常部位と病巣部が極めて近接している治療ケースにおいて、特に良好な治療効果が得られる。本技術により、誤切除、過度の熱損傷無しに容易に生体組織のレーザー切除を行うことができる。
このように、本発明技術は、これまでの生体組織切除用レーザー照射装置に対して、優位性を有しており、これらの装置の代替えも含めて、より広範囲に、多岐に渡る治療に適用可能な、レーザー装置としての可能性があるものである。
【0026】
【実施例】
次に実施例により本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0027】
実施例1 (ゼラチンを用いた実験)
軟組織の切除機構を調べるために、中赤外自由電子レーザーを用いて水とタンパク質からなる吸収体により、その掘削量を定量した。照射サンプルには生体軟組織を模擬したゼラチン(水Cw=80%含有)を用い、照射波長は5.6〜6.7μm(6.1μm:OH変角振動モード・アミド−I,6.45μm:アミド−II)で変化させた。
照射部位において、ゼラチンの掘削と気泡(バブル)の発生が観測された。前者は水の蒸散によって、後者は光音響効果の一つである張力波によって引き起こされる。図2にゼラチン掘削量の波長依存性を示す。ゼラチン掘削量はゼラチン表面から照射痕の底面までの距離として、バブル深さはゼラチン表面からバブルの最深部までの距離としてそれぞれ定義した。参考のために、20%(水80%)と100%(水0%)ゼラチンの吸収スペクトルを示す。照射サンプルである20%ゼラチンの吸収スペクトル(図中の濃い実線)には、6.1μm付近にOH変角振動モード由来の大きな吸収ピークが、6.45μmにアミド−II由来の小さな吸収ピークが観察された。
結果を図2にまとめて示す。また、掘削の状況を図3に図面に代わるカラー写真で示す。
以上のように、水の蒸散による軟組織切除にはその主成分である水のOH変角振動モード励起が適していることを実験的に明らかにした。
【0028】
実施例2 水の吸収スペクトルの温度及び波長による変化
レーザー光の照射波長が、2.94μm(水のOH伸縮振動)及び6.05μm(水のOH変角振動)における、1℃、16℃、39℃、及び50℃の温度の水について、その吸収スペクトルを調べた。
2.94μm(水のOH伸縮振動)の場合の結果を図4に示す。6.05μm(水のOH変角振動)の場合の結果を図5に示す。
【0029】
実施例3 従来のレーザー光による掘削と本発明のレーザー光による掘削の比較
本発明の6.1μmレーザー照射による軟組織の切除の状況と、従来の3μmEr:YAGレーザー及び10μmCO2レーザーによる掘削状況の比較を、雪上部位及び熱損傷部位について行った。
結果を図6に示す。
【0030】
【発明の効果】
従来技術(CO2・Er:YAGレーザー等)では、切除特性が含水量・温度・組織種に強く依存するため、適用可能な治療法が限られてきた。本発明である6.1μm帯の高繰り返しパルスレーザー装置では切除特性がこれらの要因に依らず一定となるため、安定した処置が可能となり、誤切除、過度の熱損傷無しに容易に生体組織のレーザー切除などの処置を行うことができる。したがって、本発明による適用可能な治療法は多岐に渡ると期待される。
【図面の簡単な説明】
【図1】図1は、レーザー処置における、パワー密度と相互作用時間とのパラメーター領域による2つの相互作用を模式的に説明したものである。
【図2】図2は、中赤外自由電子レーザーを用いて吸収体(水・タンパク質)を変えて、その掘削量を定量した結果を示す。図2の左側の縦軸は、掘削(黒色(原図は赤色)丸印)及び気泡の深さ(灰色(原図は青色)四角印)(μm)を示し、右側の縦軸は吸収係数(cm−1)を示す。横軸は波長(μm)を示す。図2の黒色(原図は赤色)の線は水分が80%のゼラチン(Cw=80%)の場合の吸収スペクトルを示し、灰色(原図は黒色)の線は水分が0%のゼラチン(Cw=0%)の場合の吸収スペクトルを示す。
【図3】図3は、各波長におけるゼラチンの掘削及び気泡の発生状況を示した、図面に代わるカラー写真である。図3の上段は上側から見た写真であり、下段は横側から見た写真である。
【図4】図4は、2.94μm(水のOH伸縮振動)における1℃、16℃、39℃、及び50℃の温度の水の吸収スペクトルを示す。図4の縦軸は吸収係数(×103cm−1)を示し、横軸は波長(μm)を示す。図4の薄い灰色の線は1℃の場合を示し、少し薄い灰色の線は16℃の場合を示し、濃い灰色の線は39℃の場合を示し、黒色の線は50℃の場合を示す。図4中における矢印は、6.05μmにおける吸収係数の変化の傾向を示している。
【図5】図5は、6.05μm(水のOH変角振動)における1℃、16℃、39℃、及び50℃の温度の水の吸収スペクトルを示す。図5の縦軸は吸収係数(×103cm−1)を示し、横軸は波長(μm)を示す。図5の薄い灰色の線は1℃の場合を示し、少し薄い灰色の線は16℃の場合を示し、濃い灰色の線は39℃の場合を示し、黒色の線は50℃の場合を示す。図5中における矢印は、6.05μmにおける吸収係数の変化の傾向を示している。
【図6】図6は、従来のレーザー光による掘削と本発明のレーザー光による掘削の比較を結果を示す。図6の左側から、レーザー光源、波長(μm)、吸収体、吸収係数(cm−1)、温度変化(左から右方向が上昇方向)、水分量変化(左から右方向が減少方向)をそれぞれ示している。図6の上の段から、波長が2.94μmの場合、2段目が6.1μm野場合、3段目が10.6μmの場合、4段目が1.06μmの場合をそれぞれ示している。図6の半月状白部が切除部位であり、薄黒塗り部が熱損傷部位である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-repetition rate pulse laser device that supplies a wavelength band of 6.1 μm for minimally invasive treatment of living tissue in a temperature-independent manner. The present invention also provides a use of a high repetition pulse laser device for supplying a wavelength band of 6.1 μm for treating a living tissue in a minimally invasive and temperature-independent manner, and a method for treating a living tissue in a minimally invasive and temperature-independent manner It relates to the use of a 6.1 μm wavelength band for high repetition pulsed laser treatment. Furthermore, the present invention relates to a method for treating a living tissue in a minimally invasive and temperature-independent manner using a high repetition pulse laser device supplying a 6.1 μm wavelength band.
[0002]
[Prior art]
Development of a minimally invasive treatment / diagnosis technology using a tunable mid-infrared free electron laser (FEL) is underway (see Non-Patent Documents 1 and 2). Since there are many absorption peaks derived from molecular vibrations in the mid-infrared region, the interaction between the laser and the living body and the interaction region can be controlled and induced selectively. FEL has three features such as (1) wavelength variability, (2) high peak power, and (3) high repetition. (1) realizes selection of a laser light absorber, (2) realizes highly efficient interaction induction, and (3) realizes control of heat accumulation. In order to further reduce the invasiveness of existing technologies in the fields of medical applications and bio-applications, basic research utilizing these three features is being advanced.
A point to be noted in minimally invasive laser treatment / diagnosis is that normal tissues are closely located around the target site. Irradiation effects other than the desired therapeutic effect are called side effects, and particularly significant thermal and mechanical damage are called adverse effects. In other words, it is necessary to minimize the side effects and adverse effects while maximizing the therapeutic effect. For that purpose, the irradiation conditions (wavelength, power density, pulse structure, etc.) of the used laser must be controlled with high precision so that a desired therapeutic effect can be obtained. As a laser light source for minimally invasive treatment, a pulse laser in the mid-infrared region having a wavelength of several to several tens of μm corresponding to a molecular vibration region has the following further distinctive features. (1) Since it has low photon energy and cannot induce photochemical action due to photodissociation and electron transition, it is possible to avoid mutative action on DNA and the like. (2) Since it is strongly absorbed by living tissue, it has a high modifying effect.
[0003]
In order to make the treatment less invasive, (1) spatial control and (2) temporal control of the interaction are essentially important. (1) In the mid-infrared region, a target biological tissue has a unique absorption characteristic derived from molecular vibrations according to its composition. That is, if a laser wavelength that excites molecular vibration is selected, a light absorption region can be limited to a target site (lesion), and an interaction region can be spatially controlled. (2) Temporal interaction control is performed by controlling the pulse structure. Since the mid-infrared light exerts a remarkable thermal effect on the living tissue, it can be said that control of the heat accumulation effect between pulses by the repetition frequency is an effective method. At this time, the thermal relaxation time of the living body in the mid-infrared region must be taken into account. Generally, the thermal relaxation time is on the order of microseconds. 6 A high repetition pulse laser of about Hz (MHz) is required.
[0004]
Mid-Infrared Free Electron Laser (MIR-FEL) which has features such as wavelength tunable, high peak power, and high repetition as a laser light source for minimally invasive treatment / diagnosis by molecular vibration excitation. There is. By using MIR-FEL wavelength, power density, and repetition frequency as parameters, thermal, mechanical, and chemical biological interactions are induced by molecular vibrational excitation, and side effects and adverse effects are suppressed to achieve the desired therapeutic effect. It is possible to quantitatively estimate an optimum laser parameter region to be realized. This is an effective experimental approach for making the existing technology less invasive. In addition, MIR-FEL is a laser light source that is indispensable for proposing and establishing new therapeutic and diagnostic technologies.
[0005]
When the interaction time is shorter than the thermal relaxation time of the target biological tissue, the interaction can be confined in the light absorption region, and a mechanical action accompanied by adiabatic expansion can be induced. On the other hand, when it is long, heat is diffused over a wide range by heat conduction due to conduction, and the heating effect becomes remarkable. This duality depends on the power density and the interaction time. In other words, these parameters can be used to classify two interactions (see FIG. 1). The interaction is roughly classified into a thermal effect and a non-thermal effect according to the “1 μs rule”. The thermal effect includes a photochemical action (Photochemical interaction) and a photothermal action (Photothermal interaction). The non-thermal effect is also called a photomechanical interaction, and includes a photoacoustic effect, a photoablation, a plasma-induced ablation, and a photodissociation into a photodissociation. . Here, it should be added that the power density, not the energy density, is important in determining the interaction.
[0006]
Thermal effects occur when the interaction time is longer than the thermal relaxation time of water, 1 μs. Since this effect involves the propagation of heat, it also thermally affects the peripheral portion of the irradiation target, and can modify living tissue over a wide range. Photochemical action is 1 mW / cm 2 Below, it becomes remarkable in 1s or more. In PDT (Photodynamic Therapy), a photosensitizer and a photochemical action caused by laser light are used to treat a malignant tumor site by cell killing of active oxygen. On the other hand, the photothermal action occurs in 1 μs or more. This has been applied as a soft tissue resection method with a hemostatic effect replacing the conventional mechanical scalpel. Here, it should be noted that this 1 μs is merely an index and varies depending on the target biological tissue and the wavelength region. In the mid-infrared region, the thermal relaxation time of a living body is on the order of μs to several hundred μs. The non-thermal effect causes a mechanical effect, resulting in a high power density (10 6 W / cm 2 Above), and becomes remarkable in a region of a short pulse width (1 μs or less). Since the heat propagation to the irradiation peripheral portion can be ignored, the interaction region can be limited to the light absorption region. When the pulse width is 1 ns or more and 1 ns or less, photoacoustic effect, photoablation, plasma-induced ablation, and photodisruption occur, respectively. The photoacoustic effect refers to pressure and tension generated by adiabatic volume expansion, and is applied to mechanical ablation of living tissue and photoacoustic diagnosis. Photoablation refers to ablation by direct excitation of atoms and molecules using high photon energy laser light (eg, ultraviolet light), and is applied to laser ophthalmic treatment such as cataract surgery and myopia correction surgery. Plasma induced ablation is 10 11 W / cm 2 It occurs in the above high power density region. Under such circumstances, plasma is generated due to optical breakdown, which is accompanied by ablation. It is known that this interaction does not show laser wavelength dependence strongly, and is effective for dental caries removal in dental treatment. Photodisruption is caused by a shock wave triggered by plasma generation. Biological hard tissues (eg, gallstones) can be crushed by stress without thermal diffusion.
In this way, a combination of power density and interaction time can select a laser bio-interaction suitable for various treatments. In addition, the target site can be specified with high accuracy by setting the laser wavelength to an absorption peak wavelength derived from any molecular vibration. This is a unique advantage other than MIR-FEL, but it is a major problem to select a wavelength depending on a laser irradiation site or a disease to be treated.
[0007]
As described above, in the laser ablation of living tissue in the related art, the absorber of the laser light is set to water or protein. The related technologies and their problems are described below.
(I) CO with water as absorber 2 Laser ablation (see Non-Patent Document 3)
CO of wavelength 10.6μm 2 The energy of the laser is absorbed by the water in the tissue, and the surrounding tissue is removed as the water evaporates. Absorption coefficient is 800-1000cm -1 Since it is relatively small and can form a thermocoagulated layer for hemostasis at the same time as transpiration of tissue, it is widely used in clinical applications as a laser for soft tissue resection. Since the absorption characteristic of water in the 10.6 μm wavelength band does not depend on temperature, a change in ablation characteristics due to a temperature change does not appear remarkably. However, disappearance of the absorber due to dehydration / drying of the tissue means an increase in the absorption length, which results in a decrease in the ablation effect and an increase in the heat damage layer. Thus, CO 2 Laser ablation characteristics strongly depend on the water content of the tissue, so CO 2 Laser ablation can be problematic in terms of treatment safety and certainty.
[0008]
(Ii) Er: YAG laser ablation using water as the absorber (see Non-Patent Document 3)
The oscillation wavelength of 2.94 μm of the Er: YAG laser corresponds to the stretching vibration mode of OH, and is 13,000 cm. -1 It has an extremely large absorption coefficient. Since the absorption length is as small as 1 μm or less, it is attracting attention as a highly controllable ablation method that hardly forms a thermally damaged (coagulated) layer. Since water is used as the absorber, CO 2 Like lasers, dehydration and desiccation of tissue has a significant effect on the ablation properties and heat damage layer. In addition, the absorption characteristics of the OH stretching vibration mode strongly depend on the temperature (dynamic optical constant, see Non-Patent Document 5), and the absorption coefficient decreases as the temperature rises. This means that the ablation characteristics change following the temperature change during irradiation (see Non-Patent Document 6). As described above, in the case of Er: YAG laser during laser irradiation (treatment), in addition to a change in water content, a change in temperature also affects the ablation characteristics, and it is necessary to further reduce the invasiveness of the conventional treatment method.
[0009]
(Iii) FEL excision using protein as absorber (see Non-Patent Documents 4 and 7)
Although not a commonly used technique for clinical application, an experiment on the application of living soft and hard tissues using a protein as an absorber by free electron laser irradiation has been performed. In Non-Patent Document 4, the resection amounts of 6.1 μm (OH bending vibration mode, amide-I), 6.45 μm (amide-II), and 3 μm (OH stretching vibration mode, amide-A) using living soft tissue It was reported that a good excision effect was obtained when protein was used as the absorber (λ = 6.451 μm). Here, it is stated that the excision effect was promoted by a combination of a decrease in mechanical strength of tissue and a transpiration of water due to thermal denaturation of the protein, but the mechanism of action is still largely unknown (see Non-Patent Document 4). In addition, in cutting bovine femoral skin, 6.1 μm (Amide-I) and 6.45 μm (Amide-II) are irradiated to obtain effective excision characteristics of bone mainly composed of collagen (Non-patented). Reference 7).
[0010]
At present, as a medical laser for ablation of living soft tissue, a carbon dioxide gas laser having a wavelength of 10.6 μm, an NdYAG laser having a wavelength of 10.6 μm, an Er: YAG, ErYSGG, HoYAG laser having a wavelength of 3.0 μm, and the like are used. Among them, irradiation of an Er: YAG laser having an oscillation wavelength of 2.94 μm is most suitable for minimally invasive soft tissue resection with suppressed side effects. The reason is that the oscillation wavelength of Er: YAG occupies 70-80% of the soft tissue in the stretching vibration mode of water (absorption coefficient 13000 cm -1 The absorption length is equal to or less than 1 μm), so that the energy of the laser can be efficiently absorbed by the tissue.
However, many side effects (expansion of the thermally damaged layer) due to Er: YAG laser irradiation during laser treatment have been reported. This is due to a change in water absorption characteristics (dynamic optical constant) due to a temperature change. The absorption band in the water stretching vibration mode is sensitive to temperature changes, and the absorption peak wavelength shifts to the shorter wavelength side and the absorption coefficient decreases as the temperature rises. Specifically, when the target temperature changes from 1 degree to 50 degrees, the absorption coefficient becomes 13600 cm at a wavelength of 2.94 μm. -1 To 106500cm -1 Changes to Since ablation by laser irradiation is performed by evaporation of water, the target temperature reaches at least 100 to 374 ° C. (critical point of pressurized sewage). Since the absorption coefficient, that is, the light absorption length, changes depending on the target temperature, the ablation depth changes in each treatment case. In many treatment cases, the ablation amount is predicted using the absorption coefficient of water at normal temperature and atmospheric pressure, so that the actual ablation amount and the heat-damaged layer often differ from the predicted values. This should be recognized as an essential and inevitable problem when only a desired site is excised on a scale of several microns to several tens of microns (such as corneal orthopedic surgery).
[0011]
In summary, the problems to be solved are (1) changes in water content, (2) changes in temperature, and (3) changes in absorption characteristics (during treatment) due to differences in target tissues (soft and hard tissues). It is clear that this change in absorption characteristics affects excision and thermal denaturation. Normally, the absorption characteristics of a living tissue are measured at normal temperature and atmospheric pressure, and the absorption coefficient is used to estimate and predict the excision amount and the thermally denatured (coagulation / damage) layer. However, due to the fluctuation of the surrounding environment during irradiation, a difference occurs between the actual ablation amount / thermally denatured layer and the predicted value.
As described above, it is important to find a laser wavelength (molecular vibration mode) capable of overcoming these problems at the same time in order to achieve a low invasive treatment.
[0012]
[Patent Document 1]
JP-A-06-343651
[Patent Document 2]
JP 2001-511667A
[Non-patent document 1]
Manabu Betani, Molecular Electronics Bioelectronics, Vol. 13, No. 2, pp. 89-96 (2002)
[Non-patent document 2]
Sadao Nakai et al., Production and Technology, Vol. 52, No. 3, pp. 8-22 (2000)
[Non-Patent Document 3]
The Laser Society of Japan, "Advanced Laser Technology", 1992, published by Nikkei Technical Book Co., Ltd.
[Non-patent document 4]
Glenn Edwards, et al. , Nature, 371, 416-418 (1994).
[Non-Patent Document 5]
Larry W. Pinkley, et al. , J. et al. Opt. Soc. Am. , 67 (4), 494-499 (1977).
[Non-Patent Document 6]
Joseph P.S. Cummings and Joseph T. Walsh, Jr. , Appl. Phys. Lett. , 62 (16), 1988-1990 (1993).
[Non-Patent Document 7]
George M. Peavy, et al. , Lasers in Surgery and Medicine, 26, 421-434 (1999).
[0013]
[Problems to be solved by the invention]
As described above, in conventional laser treatment, the ablation characteristics of the laser strongly depend on the water content, temperature, and tissue type. Therefore, development of a less invasive laser treatment method was required.
The present invention is that a living soft tissue excision by water transpiration can realize effective excavation when water as its main component is used as an absorber, especially a laser treatment method which is hardly affected by temperature, a laser treatment apparatus therefor, and Provides its use.
[0014]
[Means for Solving the Problems]
The present inventors have found that a laser beam having a wavelength of 6.1 μm emits an OH bending vibration mode (μ a = 2700cm -1 ) And protein amide-I (μ a = 3000cm -1 ), The characteristics of laser light having a wavelength of 6.1 μm have been studied. As a result, when the water content is large / small, the absorber is water / water. It has been found that it becomes amide-I, the change in absorption characteristics with respect to the water content is small, stabilization of excision can be achieved, and excision characteristics which are hardly influenced by the surrounding temperature can be realized by irradiation with 6.1 μm.
[0015]
That is, the present invention relates to a high repetition pulse laser device for supplying laser light in a wavelength band of 6.1 μm for treating a living tissue in a low invasive manner and in a temperature independent manner. In addition, the present invention uses a highly repetitive pulsed laser device that supplies laser light in a wavelength band of 6.1 μm for treating a living tissue in a minimally invasive and temperature-independent manner. The present invention relates to the use of a laser beam having a wavelength band of 6.1 μm for performing a high repetition pulse laser treatment in a dependent manner.
Further, the present invention relates to a method for treating a living tissue in a minimally invasive and temperature-independent manner using a high repetition pulse laser device for supplying a laser beam in a wavelength band of 6.1 μm.
[0016]
The present inventors quantified the ablation characteristics by laser light using gelatin as a pseudo model sample of soft tissue. Most of the soft tissue of a living body is composed of about 80% water and about 20% protein.
In order to investigate such a soft tissue resection mechanism, the present inventors changed the absorber (water / protein) using a mid-infrared free electron laser and quantified the amount of excavation. The irradiation wavelength was changed in the range of 5.6 to 6.7 μm, and at the irradiation site, drilling (ablation) of gelatin, generation of bubbles, and absorption coefficient (cm) -1 ) Was measured. Drilling is caused by water transpiration and bubbles are caused by tension waves, one of the photoacoustic effects. FIG. 2 shows the results. FIG. 2 shows the wavelength dependence of the amount of excavated gelatin. The vertical axis on the left side of FIG. 2 shows excavation (black (the original figure is red) circle) and the depth of the bubble (gray (the original figure is blue) square) (μm), and the vertical axis on the right side shows the absorption coefficient (cm). -1 ). The horizontal axis shows the wavelength (μm). In FIG. 2, a black line (red in the original drawing) shows an absorption spectrum in the case of gelatin with 80% moisture (Cw = 80%), and a gray line (black in the original drawing) shows gelatin with 0% moisture (Cw = 80%). 0%).
[0017]
The amount of excavated gelatin was defined as the distance from the gelatin surface to the bottom of the irradiation mark, and the bubble depth was defined as the distance from the gelatin surface to the deepest part of the bubble. For reference, the absorption spectra of 20% (80% water) and 100% (0% water) gelatin are shown. The absorption spectrum of the irradiated sample, 20% gelatin (dark solid line in the figure) shows a large absorption peak derived from the OH bending vibration mode around 6.1 μm, and a small absorption peak derived from amide-II at 6.45 μm. is there.
Excavations and air bubbles at wavelengths of 5.75 μm, 6.10 μm, 6.20 μm, 6.40 μm, and 6.70 μm are shown in FIG. The upper part of FIG. 3 is a photograph seen from the upper side, and the lower part is a photograph seen from the lateral side. It can be seen that when the wavelength is other than 6.10 μm, melting has occurred.
[0018]
Next, the change of the absorption spectrum with the temperature of water was examined. First, water at 1 ° C., 16 ° C., 39 ° C., and 50 ° C. at 2.94 μm (OH stretching vibration of water) was examined. FIG. 4 shows the results. The vertical axis of FIG. 4 indicates the absorption coefficient (× 10 3 cm -1 ), And the horizontal axis indicates the wavelength (μm). The light gray line in FIG. 4 indicates the case of 1 ° C., the slightly light gray line indicates the case of 16 ° C., the dark gray line indicates the case of 39 ° C., and the black line indicates the case of 50 ° C. . The arrow in FIG. 4 indicates the tendency of the change in the absorption coefficient at 2.94 μm. Next, water at 1 ° C., 16 ° C., 39 ° C., and 50 ° C. at 6.05 μm (OH bending vibration of water) was examined. FIG. 5 shows the results. The vertical axis in FIG. 5 is the absorption coefficient (× 10 3 cm -1 ), And the horizontal axis indicates the wavelength (μm). The light gray line in FIG. 5 indicates the case of 1 ° C., the slightly light gray line indicates the case of 16 ° C., the dark gray line indicates the case of 39 ° C., and the black line indicates the case of 50 ° C. . The arrow in FIG. 5 indicates the tendency of the change in the absorption coefficient at 6.05 μm.
The absorption coefficient of water at 1 ° C. at a wavelength of 2.94 μm is 13600 cm. -1 However, the absorption coefficient of water at 50 ° C. was 10650 cm. -1 And the difference (Δμ a ) Is 2950cm -1 Met. The absorption coefficient of water at 1 ° C. at a wavelength of 6.05 μm is 2500 cm. -1 But the absorption coefficient of water at 50 ° C. was 2700 cm -1 And the difference (Δμ a ) Is only 200cm -1 It was only.
Further, at a wavelength of 2.94 μm (OH stretching vibration of water), the absorption coefficient tends to decrease as the temperature of the water increases, but at a wavelength of 6.05 μm (OH bending vibration of water), the water temperature increases. It was also found that the absorption coefficient tended to increase as it rose.
[0019]
From the above, the excavation characteristics due to water transpiration depended strongly on the absorption characteristics of the target, and the previously reported enhancement effect of excavation volume due to protein denaturation was not observed. When excision is performed on water-rich soft tissue by transpiration of water, the main component, water, should be used as the absorber. In addition, since the excavation characteristics are similar to the absorption characteristics, the absorption characteristics of the 6.1 μm OH bending vibration mode of water are not easily affected by temperature changes even under the situation of water transpiration, and the absorption characteristics of the 3 μm OH stretching vibration mode are small. In comparison, it can be said that the laser wavelength is suitable for minimally invasive treatment. In addition, at 6.1 μm, there is another absorber, protein amide-I, which can induce efficient interaction even with changes in absorption characteristics due to dehydration and drying of living tissue during irradiation.
As described above, OH bending vibration mode excitation, which is the main component of water, is suitable for soft tissue excision by evaporation of water, gelatin is excised by evaporation of water, and the wavelength dependence of the excision amount is determined by gelatin. It was in good agreement with the absorption characteristics at normal temperature and atmospheric pressure. This suggests that the ablation characteristics do not depend on humidity changes, and if the ablation changes with temperature, does not match the room temperature absorption characteristics. This suggests that the amount of ablation can be predicted by optical constant data at normal temperature and atmospheric pressure even under the laser parameter of soft tissue ablation. Thus, it has been experimentally demonstrated that a 6.0 μm-band pulse laser can be an optimal laser light source for minimally invasive soft tissue resection.
[0020]
Furthermore, the state of soft tissue resection by the 6.1 μm laser irradiation of the present invention and the conventional 3 μm Er: YAG laser and 10 μm CO 2 FIG. 6 shows the result of comparison with the laser. From the left side of FIG. 6, the laser light source, wavelength (μm), absorber, absorption coefficient (cm−1), temperature change (left-to-right ascending direction), and water content change (left-to-right decreasing direction). Each is shown. From the upper stage in FIG. 6, the case where the wavelength is 2.94 μm, the case where the second stage is 6.1 μm, the case where the third stage is 10.6 μm, and the case where the fourth stage is 1.06 μm are shown. . The half-moon-shaped white part in FIG. 6 is the resection site, and the light black part is the heat-damaged site.
From these results, it can be seen that the temperature change and the water content change due to laser irradiation cause the Er: YAG laser, CO 2 In the case of the laser, the ablation layer and the thermally damaged layer change, but in the case of the 6.1 μm laser, the ablation layer and the thermally damaged layer do not change. In addition, since the absorption characteristics during irradiation of 6.1 μm are small, the ablation characteristics during irradiation are constant, and laser ablation and hemostasis can be performed with confidence without erroneous resection or thermal damage. I understood.
The difference between the depth of ablation and thermal damage caused by each laser irradiation is basically determined by the damage absorption coefficient μ a Is the light penetration depth (absorption length, optical deptgh). Hemostasis is, so to speak, done by the site of thermal damage. Actually, a carbon dioxide laser is used for hemostasis, and an Er: YAG laser is excised with bleeding.
[0021]
The present invention relates to a high repetition pulse laser device for supplying a wavelength of 6.1 μm for realizing minimally invasive soft and hard tissue excision. The following (1) to (3) can be cited as mechanisms for making the ablation characteristics less invasive by irradiation with 6.1 μm. The present invention is applicable to any tissue whose main component is water or protein (for example, soft tissues such as skin and cornea and hard tissues such as dentin and bone).
(1) Ablation stabilization mechanism against changes in water content
The laser light having a wavelength of 6.1 μm is emitted in the OH bending vibration mode (μ a = 2700cm -1 ) And protein amide-I (μ a = 3000cm -1 ) Has the same level of absorption characteristics. Therefore, when the water content is large / small, the absorber becomes water / amide-I, respectively, and there is little change in the absorption characteristics with respect to the water content, so that the excision can be stabilized.
(2) Ablation stabilization mechanism against temperature rise
Reduction of treatment time is important for minimally invasive treatment. For that purpose, high repetition irradiation is required, but there is a problem that the temperature of the target tissue increases due to heat accumulation between pulses. Although the absorption characteristics have temperature dependency, the ablation characteristics that are hardly affected by the ambient temperature can be realized by the irradiation of 6.1 μm.
(3) Soft tissue resection with hemostasis
Water / protein absorption coefficient for wavelength 6.1μm is about 3000cm -1 And CO 2 Almost the same as laser wavelength range (1000cm -1 ), Soft tissue resection can be performed while forming a heat-denatured (coagulated) layer. This means that bleeding during the treatment can be avoided, the treatment time can be shortened, and the treatment can be simplified.
[0022]
Excision of living tissue is performed by evaporation of water and protein. At a wavelength of 6.1 μm, the laser energy is efficiently absorbed by the OH bending vibration mode excitation when the water content of the living tissue is high, and by the amide-I excitation when the water content is low. That is, it has the property that the absorption characteristics are not so affected by the water content. The soft tissue of a living body is composed of 80% water and 20% protein, and the hard tissue (bone and dentin) is composed of 60-70% phosphate (apatite) and 30-40% water / protein. I have. Since the melting and transpiration of phosphate occurs in a high-temperature region of 1000 ° C. or more, the transpiration of water and protein using an absorbent as an absorber is effective for cutting hard tissue.
The “soft tissue” in the present invention refers to a tissue having a relatively high water content in a living body, and refers to, for example, a living tissue having a water content of 60% or more, preferably 60 to 80%. The method of the present invention can be preferably applied to soft tissues of a living body. However, the method of the present invention has an amide-I absorption band at a wavelength of 6.1 μm, and is effective for tissues containing proteins. The method of the invention wave is not limited to soft tissues of a living body. For example, hard tissues (tooth, bone, etc.) can also be effectively used as an object of the present invention because they contain water and proteins. That is, the present invention can be effectively applied to a living tissue containing water and protein. More preferably, the present invention uses a laser beam having a wavelength of 6.1 μm to change the OH angle of water. Excavation is enabled by vibration, and the temperature-dependent absorption coefficient change of water at this wavelength (Δμ a ) Is small, so that stable treatment can be performed with respect to temperature.
As described above, 6.1 μm in which water and protein can be simultaneously selected as an absorber can minimize changes in water content during irradiation of soft and hard tissues and changes in ablation amount due to temperature changes.
[0023]
The wavelength of the laser beam in the present invention is preferably 6.1 μm, but is not limited to this, and is preferably in the absorption band of OH bending vibration of water, more preferably in the wavelength of the amide-I absorption band of protein. I just need. In the present invention, this absorption band is referred to as a 6.1 μm band. The preferred wavelength of the present invention is specifically 6.1 ± 0.2 μm, more preferably 6.1 ± 0.1 μm.
The present invention allows the use of a higher repetition pulse because the temperature dependence of the absorption coefficient is small and the temperature dependence of the ablation characteristics is small, but it is shorter than the thermal relaxation time due to the heat conduction of the irradiation target tissue. Is preferred. Specifically, it is preferably 30 μs or less, but is not limited thereto. The pulse width can be appropriately adjusted according to the disease state, patient state, tissue state, and the like in each treatment case.
[0024]
The laser device of the present invention is not particularly limited as long as it can irradiate the aforementioned 6.1 μm band laser light. The laser light source is not particularly limited as long as it can emit a 6.1 μm-band laser beam. For example, a free-electron laser device capable of irradiating a 6.1 μm-band laser, and mid-infrared light of 3.0-10.0 μm is generated by a recently developed differential frequency light generation technology using a nonlinear crystal. Solid laser device or the like.
[0025]
The present invention is based on the finding of an optimum wavelength in laser treatment, and is characterized by using a 6.1 μm band as the wavelength. Preferably, a laser beam having a wavelength of 6.1 μm is used in a treatment such as treatment, ablation, or treatment of a soft tissue having a water content of 60% or more.
Since water is the main component of living tissue, the treatment technique of the present invention, which uses soft water as an absorbent to process and diagnose soft tissue in a minimally invasive manner, can be applied to various sites (eyes, mouth, skin, organs, etc.). . According to the technology of the present invention, since the irradiation wavelength is made to match the water absorption characteristic, the light absorption region can be limited to a very small surface layer (several to several hundred microns), and the interaction region can be controlled with high precision. Accordingly, a particularly good therapeutic effect can be obtained in a treatment case where the normal site and the lesion are extremely close to each other. According to the present technology, laser ablation of a living tissue can be easily performed without erroneous ablation and excessive thermal damage.
As described above, the technology of the present invention has an advantage over the conventional laser irradiation devices for living tissue ablation, and is applicable to a wider range of treatments including replacement of these devices. Possible, possible laser device.
[0026]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0027]
Example 1 (Experiment using gelatin)
In order to investigate the mechanism of soft tissue ablation, the amount of excavation was quantified with a water and protein absorber using a mid-infrared free electron laser. Gelatin (containing water Cw = 80%) simulating living soft tissue was used as the irradiation sample, and the irradiation wavelength was 5.6 to 6.7 μm (6.1 μm: OH bending vibration mode amide-I, 6.45 μm). Amide-II).
Excavation of gelatin and generation of bubbles were observed at the irradiated site. The former is caused by water transpiration and the latter is caused by tension waves, one of the photoacoustic effects. FIG. 2 shows the wavelength dependence of the amount of excavated gelatin. The amount of excavated gelatin was defined as the distance from the gelatin surface to the bottom of the irradiation mark, and the bubble depth was defined as the distance from the gelatin surface to the deepest part of the bubble. For reference, the absorption spectra of 20% (80% water) and 100% (0% water) gelatin are shown. The absorption spectrum of the irradiated sample, 20% gelatin (dark solid line in the figure) shows a large absorption peak derived from the OH bending vibration mode around 6.1 μm, and a small absorption peak derived from amide-II at 6.45 μm. Was observed.
The results are summarized in FIG. The excavation situation is shown in FIG. 3 by a color photograph instead of a drawing.
As described above, it has been experimentally revealed that OH bending vibration mode excitation, which is a main component of water, is suitable for soft tissue excision by evaporation of water.
[0028]
Example 2 Change in absorption spectrum of water with temperature and wavelength
The irradiation wavelength of the laser light is 2.94 μm (OH stretching vibration of water) and 6.05 μm (OH bending vibration of water). The absorption spectrum was examined.
The result in the case of 2.94 μm (OH stretching vibration of water) is shown in FIG. FIG. 5 shows the result in the case of 6.05 μm (OH bending vibration of water).
[0029]
Example 3 Comparison between conventional laser light excavation and laser light excavation of the present invention
Soft tissue ablation by 6.1 μm laser irradiation according to the present invention and conventional 3 μm Er: YAG laser and 10 μm CO 2 The comparison of the excavation situation by the laser was performed for the site on snow and the site of thermal damage.
FIG. 6 shows the results.
[0030]
【The invention's effect】
Conventional technology (CO 2 ・ Er: YAG laser, etc.), the ablation characteristics strongly depend on the water content, temperature, and tissue type, so that applicable treatment methods have been limited. In the 6.1 μm band high repetition pulse laser apparatus according to the present invention, the ablation characteristics are constant irrespective of these factors, so that a stable treatment can be performed and biological tissue can be easily removed without erroneous ablation and excessive thermal damage. Procedures such as laser ablation can be performed. Therefore, the applicable treatments according to the present invention are expected to be wide-ranging.
[Brief description of the drawings]
FIG. 1 schematically illustrates two interactions in a laser treatment in a parameter range of power density and interaction time.
FIG. 2 shows the results of quantifying the amount of excavation by changing the absorber (water / protein) using a mid-infrared free electron laser. The vertical axis on the left side of FIG. 2 shows excavation (black (the original figure is red) circle) and the depth of the bubble (gray (the original figure is blue) square) (μm), and the vertical axis on the right side shows the absorption coefficient (cm). -1 ). The horizontal axis shows the wavelength (μm). In FIG. 2, a black line (red in the original drawing) shows an absorption spectrum in the case of gelatin with 80% moisture (Cw = 80%), and a gray line (black in the original drawing) shows gelatin with 0% moisture (Cw = 80%). 0%).
FIG. 3 is a color photograph instead of a drawing, showing the state of excavation of gelatin and generation of bubbles at each wavelength. The upper part of FIG. 3 is a photograph seen from the upper side, and the lower part is a photograph seen from the lateral side.
FIG. 4 shows the absorption spectra of water at 1 ° C., 16 ° C., 39 ° C., and 50 ° C. at 2.94 μm (OH stretching vibration of water). The vertical axis of FIG. 4 indicates the absorption coefficient (× 10 3 cm -1 ), And the horizontal axis indicates the wavelength (μm). The light gray line in FIG. 4 indicates the case of 1 ° C., the slightly light gray line indicates the case of 16 ° C., the dark gray line indicates the case of 39 ° C., and the black line indicates the case of 50 ° C. . The arrow in FIG. 4 indicates the tendency of the change in the absorption coefficient at 6.05 μm.
FIG. 5 shows absorption spectra of water at 1 ° C., 16 ° C., 39 ° C., and 50 ° C. at 6.05 μm (OH bending vibration of water). The vertical axis in FIG. 5 is the absorption coefficient (× 10 3 cm -1 ), And the horizontal axis indicates the wavelength (μm). The light gray line in FIG. 5 indicates the case of 1 ° C., the slightly light gray line indicates the case of 16 ° C., the dark gray line indicates the case of 39 ° C., and the black line indicates the case of 50 ° C. . The arrow in FIG. 5 indicates the tendency of the change in the absorption coefficient at 6.05 μm.
FIG. 6 shows the results of a comparison between the conventional laser beam excavation and the laser beam excavation of the present invention. From the left side of FIG. 6, the laser light source, wavelength (μm), absorber, absorption coefficient (cm−1), temperature change (left-to-right ascending direction), and water content change (left-to-right decreasing direction). Each is shown. From the upper stage in FIG. 6, the case where the wavelength is 2.94 μm, the case where the second stage is 6.1 μm, the case where the third stage is 10.6 μm, and the case where the fourth stage is 1.06 μm are shown. . The half-moon-shaped white part in FIG. 6 is the resection site, and the light black part is the heat-damaged site.