JP2004261141A - Cathepsin c-like enzyme and method for producing the same - Google Patents
Cathepsin c-like enzyme and method for producing the same Download PDFInfo
- Publication number
- JP2004261141A JP2004261141A JP2003056781A JP2003056781A JP2004261141A JP 2004261141 A JP2004261141 A JP 2004261141A JP 2003056781 A JP2003056781 A JP 2003056781A JP 2003056781 A JP2003056781 A JP 2003056781A JP 2004261141 A JP2004261141 A JP 2004261141A
- Authority
- JP
- Japan
- Prior art keywords
- cathepsin
- enzyme
- amino acid
- seq
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、新規なプロテアーゼの製造に関する。より具体的には、カテプシンC活性を有するパイロコッカス属に属する古細菌由来の新規なカテプシンC様酵素、パイロコッカス属に属する古細菌由来の新規カテプシンC様酵素をコードするDNA、超好熱菌を用いるパイロコッカス属に属する古細菌由来のカテプシンC様酵素の生産に関する。
【0002】
【従来の技術】
各種動物細胞のリソゾーム分画に見出されるプロテアーゼとして、カテプシンが多種類知られている。このうちカテプシンCは、パパイン様システインプロテアーゼで、ポリペプチドに作用してN末端から、ジペプチドを遊離する酵素で、ジぺプチジルペプチダーゼとも呼ばれている。カテプシンCは、骨髄細胞やリンパ球の細胞質顆粒リソソームにあって免疫・炎症応答に必要なセリンプロテアーゼを切断し、活性化する(非特許文献1:Mcguire,MJ等、J.Biol.Chem.268,2458(1993)。カテプシンC欠損症は、歯周病の原因の一つである。(非特許文献2:Nature Genet.23,421−424(1999)。
【0003】
カテプシンCは、従来高等動物由来のもの、あるいは高等動物由来のカテプシンCをコードする遺伝子を酵母(非特許文献3:Appl.Microbiol.Biotechnol.(2002)59,252−258)、昆虫細胞等(非特許文献4:Biochemistry(2001)40,1671−1678)に発現させたものが報告されているにすぎず、動物細胞以外から由来するカテプシンCは知られていない。
【0004】
【非特許文献1】J.Biol.Chem.268,2458(1993)
【非特許文献2】Nature Genet.23,421−424(1999)
【非特許文献3】Appl. Microbiol.Biotechnol.(2002)59,252−258
【非特許文献4】Biochemistry(2001)40,1671−1678
【0005】
【発明が解決しようとする課題】
これまで見出されている高等動物のカテプシンCは、界面活性剤等の化学薬品に敏感であり、活性発現に塩素イオンを必要としていた。リソソームに存在する酵素は酸性領域に至適pHを持つものが多く至適反応温度も80℃以上のものはみいだされていない。本発明の課題は、歯磨き剤、洗剤、アミノ酸分析等に有用な、カテプシンC様の作用をする構造的に安定な耐熱性酵素を工業生産する技術を見出すことである。
【0006】
【発明の実施の形態】
本発明者らは、上記の課題を解決するために、鋭意検討した結果、ゲノム情報配列が解析され、多くの耐熱性酵素の供給源である90℃以上で生育するパイロコッカス属に属する微生物をジャーファーメンター培養し、その培養液中特に上清中にカテプシンC(ジペプチジルペプチダーゼ)の高活性を見出し、その生産、単離精製法及びその性質を解明して本酵素が歯磨き剤等に有用な、構造的に安定なカテプシン様酵素であり、その遺伝子をクローニングし大腸菌で発現させカテプシンC活性を確認し、本発明を完成させるに至った。
【0007】
パイロコッカス属に属する微生物としては、好適には、パイロコッカス ホリコシ(JCM9974、JCM微生物カタログ第7版(1999)を用いることができる。
【0008】
なお本発明において、カテプシンC様とは、N末からジペプチドを生じるジぺプチジルペプチダーゼ活性を有していることを意味する。
【0009】
本願発明のカテプシンC様酵素は、従来公知のカテプシンCとは、アミノ酸配列に相同性がほとんど無く、更に、カテプシンCがリソゾームで作用することから至適pHは酸性であるのに対し、本願出願のカテプシンC様酵素は中性で活性があることから、従来公知のカテプシンCとは、全く異なる酵素である。
【0010】
更に、従来のカテプシンCは、システインプロテアーゼであるところ、本願発明のカテプシンC様酵素は、システイン酵素阻害剤によって阻害されない場合もあり、システインプロテアーゼとも断定できない。
【0011】
本願発明には、
(1)低重合体構造を有する活性発現に塩素イオンを要求しないカテプシンC様酵素、
(2)至適反応温度が75〜85℃の範囲、至適反応pH7−8、であるカテプシンC様酵素、
(3)分子量160±20kDである上記のカテプシンC様酵素、
(4)パイロコッカス属に属する微生物由来のカテプシンC様酵素、及び
(5)パイロコッカス属に属する微生物が、パイロコッカスホリコシ(Pyrococcus horikoshii)であるカテプシンC様酵素、を包含する。
【0012】
上記カテプシンC様ペプチドは、パイロコッカス属に属する微生物、好適にはパイロコッカスホリコシ(Pyrococcus horikoshii)を、適切な培養条件下(例えば、95℃)で培養・増殖した後、培養液を遠心分離、上清を例えば、メンブレンフィルターにより濃縮して酵素液を調製した後、上記酵素液を疎水性クロマトグラフィー陰イオン交換樹脂クロマトグラフィー、及び/又はゲルろ過クロマトグラフを適宜組み合わせて精製することができる。
【0013】
例えば、疎水性クロマトグラフィーとしては、アルキルアガロース、Phenyl Sepharose等、陰イオン性クロマトグラフィーとしては、DEAESepharose、QSepharoseHP、ゲル濾過クロマトグラフィーとしてはSephadex200、SepharoseHPを用いることができる。
【0014】
更に本件発明は、
(6)配列表の配列番号1に記載のアミノ酸配列を有するカテプシンC様酵素、
(7)配列表の配列番号1に記載のアミノ酸配列において、1または数個、好適には、1〜10個のアミノ酸残基が欠失、置換、または付加されたアミノ酸配列を含むカテプシンC様酵素、
(8)配列表の配列番号1に記載のアミノ酸配列と、70%以上の同一性、好適には85%以上の同一性、更に好適には、95%以上の同一性を有する、カテプシンC様酵素、
(9)配列表の配列番号1に記載のアミノ酸配列をコードするポリヌクレオ配列を含む、単離されたDNA分子等の核酸、
(10)配列表の配列番号1に記載のアミノ酸配列において、1または数個、好適には、1〜10個のアミノ酸残基が欠失、置換、または付加されたアミノ酸配列をコードするポリヌクレオ配列を含む、単離されたDNA分子等の核酸、
(11)配列表の配列番号2に記載のポリヌクレオ配列を含む、単離されたDNA分子等の核酸、及び
(12)配列表の配列番号2に記載のポリヌクレオ配列の相補的配列とストリンジェントな条件下でハイブリダイズし得、且つカテプシンC活性を有するポリペプチドをコードする、単離されたDNA分子等の核酸を包含する。
【0015】
なお、アミノ酸配列の同一性、及びポリヌクレオオチド配列の同一性とは、2以上のアミノ酸配列又はポリヌクレオチド配列の比較により決定された、配列間の関係の程度を意味する。同一性を決定するプログラムとしては、アミノ酸配列については、ClustalW、DNASIS等のプログラムがあるが、本件発明における同一性の数値は、ClustalWをデフォルト条件で用いた場合の数値を意味する。
【0016】
また、ストリンジェントな条件は、周知のストリンジェント条件を用いることができるが、例えば、(イ)低イオン強度、高温で洗浄する条件、例えば、0.015M NaCl、0.0015M クエン酸ナトリウム、0.1%SDSで50℃洗浄する条件、(ロ)50% ホルムアルデヒド、5XSSC(0.75M NaCl、0.075M クエン酸)、5.Xデンハルト溶液、サケ精子DNA(50g/ml)、0.1%SDS、及び10%硫酸デキストラン、42℃、更に0.2XSSC、0.1% DS、42℃で洗浄などの条件が挙げられる。
【0017】
更に、本発明には、上記(9)から(12)いずれかに記載のDNA分子を含む組み替えベクターも包含する。
【0018】
例えば、耐熱性プロリンジペプチド分解酵素の発現用のプロモータの調節下に上記(9)から(12)のいずれかに記載のDNA分子を含んで成り、宿主細胞において、カテプシンC活性を有するポリペプチドを発現する能力を有する、発現ベクターが挙げられる。具体的には、プロモータとしては、T7プロモータ(Novagen社)、mFDH1プロモータ(非特許文献3)、AUG1プロモータ(Invitrogen社)を用いることができる。発現ベクターとしては、各宿主において、公知の発現ベクターを用いることができるが、大腸菌においては、例えば、pET 11−aベクター(T7プロモータ(Novagen社))、メタノール酵母では、pMFXU4ベクター(mFDH1プロモータ(非特許文献3))あるいはpMETαベクター(AUG1プロモータ(Invitrogen社))をもとに発現ベクターを調製することができる。無論、本件カテプシンC様酵素の核酸配列を、それぞれの宿主におけるコドン使用頻度に併せて変更した後に、組み換えベクターに載せることもできる。
【0019】
また、本願発明には、ベクターにより形質転換された形質転換体を包含する。また、宿主としては、微生物細胞、昆虫由来の細胞、動物細胞、または植物細胞を用いることができ、例えば、大腸菌、Candida.bondini、COS―7細胞が挙げられる。
【0020】
上記ベクターを、宿主に導入する手段としては、それぞれの宿主に好適な公知の方法を用いることができ、例えば、リン酸カルシウム法、エレクトロポレーション法、更には、大腸菌では、高温ショック法、メタノール酵母では、リチウム酢酸法、等がある。
【0021】
形質転換体としては、具体的には、本件カテプシンC様酵素をコードする遺伝子を、例えば、pET11−aに組み込んだベクターで形質転換した大腸菌、FDHIプロモータを有するpMFXU4に組み込んだベクターで形質転換したメタノール酵母、バキュロウイルスのプロモータを用いたベクターに組み込んで導入した昆虫由来の細胞株の形質転換体がある。
【0022】
更に、本願発明には、形質転換体を培養する工程、得られる培養物よりカテプシンC様酵素を回収する工程を含む、カテプシンC様酵素活性を有する酵素蛋白の形質転換体を用いた製造方法並びに当該製造方法で得られたカテプシンC様酵素も包含される。
【0023】
更に、本願発明には、進化工学的手法により至適温度を37度付近に改変した歯磨き洗浄剤にとくに好適なカテプシンC様酵素も包含する。
【0024】
【実施例】
以下、本発明の実施例を挙げて説明するが、本発明はこれら実施例のみに限定されるものではない。
【0025】
[実施例1] パイロコッカスホリコシの培養とカテプシンC活性の検出
13.5gのNaCl、4gのNa2SO4、0.7gのKCl、0.2gのNaHCO3、0.1gのKBr、30mgのH3BO3、10gのMgCl2・6H2O、1.5gのCaCl2、25mgのSrCl2、1.0mLのレザスリン溶液(0.2g/L)、1.0gの酵母エキス、5gのバクトペプトンを蒸留水1Lに溶かした培養液15Lを30分加圧殺菌した。常圧に戻った後、乾熱滅菌した粉末硫黄を0.1−0.2%となるように加えた。次ぎに窒素ガスを飽和し、別に加圧滅菌した25%硫化ナトリウム溶液を10mL加えて、レザスリン溶液のピンク色が着色しないことを確認して嫌気性としたのち、パイロコッカスホリコシ菌を培養液1.5Lを接種し、95℃で22時間毎分100回転の撹拌をしながら培養した。
【0026】
培養液沈澱の活性は、培地を遠心分離し、沈澱を培地の50mMのトリス緩衝液に懸濁し凍結融解、超音波処理をして抽出した細胞結合部分の活性は2.97単位/mL培養液の活性があった。一方培養液上清の活性は、そのままでは活性が検出できなかったがメンブランフィルターで2倍に濃縮後測定すると237.84単位/mL培養液の活性があった。カテプシンC活性は、H−Gly−Phe−p−nitroanilide(Bachem社製)を用いて測定し、1分間に1マイクロモルのパラニトロアニリドを遊離する量を1単位とした。蛋白mgあたりの活性は154.8であった。
【0027】
[実施例2] カテプシンC様酵素の精製
実施例1で得られた酵素液を疎水性クロマトグラフ(Hiload16/10Phenyl Sepharose アマシャムバイオサイエンス社製)を100mM燐酸ナトリウム緩衝液pH7.5硫安濃度を1モルで吸着させ、活性部分は硫安濃度0モルで溶出した。比活性は6,200になり収率は31%であった。本酵素は、疎水性カラムに吸着する疎水性蛋白である。
【0028】
陰イオン交換樹脂(HiTrap Q SepharoseHPアマシャムバイオサイエンス社製)に前述の疎水性クロマトグラフ溶出液を吸着させ10Mトリス緩衝液pH8で洗浄した。活性は0.3−0.4Mの食塩濃度の時に溶出した。比活性は7,137になり収率は10.7%であった。本酵素は、陰イオン交換樹脂に吸着する酸性蛋白である。
【0029】
ゲルろ過クロマトグラフ(Hiload26/60Sephadex200prepgradeアマシャムバイオサイエンス社製)にかけた。50mMの燐酸ナトリウム緩衝液で溶出すると溶出液234mLの分子量160±20kDに相当するところに活性ピークが存在した。比活性は12,578になり収率は6.5%であった。また、この画分をSDS電気泳動にかけると62±2kDの主成分と41±1kDの微少成分のバンドが検出された。したがって本酵素は、低重合体構造をとる蛋白であった。
【0030】
電気泳動で精製したタンパクのN末端分析を行なうとTSIEWDEKTFでありアミノ酸配列であった。アミノ酸配列は、配列番号1の配列で、そのアミノ酸配列コードする核酸配列は配列番号2の配列である。
【0031】
[実施例3] 酵素の酵素学的性質
カテプシンC活性は、200mMのH−Gly−Phe−p−nitroanilide(Bachem社製)1μL、50mM燐酸ナトリウム緩衝液pH7.5を949μL酵素液50μLの混合溶液を80℃で反応させ406nmの吸光度変化を観察し、パラニトロアニリドの分子吸光度9.91mMとして、1分間に1マイクロモルのパラニトロアニリドを遊離する量を1単位とした。
【0032】
塩素イオンの含まれていない酵素液に10mM,20mM,30mM,40mMの食塩を入れて活性測定したが、塩素イオンの添加による活性上昇は観察されなかった。従って、本酵素の活性発現には食塩は必要でなく、食塩を添加するための味の変化を受けることがなく本酵素は使用できる。
【0033】
反応温度は、精製酵素の至適反応温度は80℃であった(表1)。粗酵素の場合は、ばらつきが多いが、至適反応温度は90−100℃、37℃では至適温度の28%の活性があった。
【0034】
【表1】
【0035】
精製酵素の反応pHを表2に示す。pH7−8で100%の高活性に達した。したがって反応至適条件は、pH7−8、80℃である。
【0036】
【表2】
【0037】
精製酵素のカテプシンCの蛍光基質に対する生産物の相対活性を示す。表3のように本酵素は各種のカテプシンC基質を分解する。
【0038】
【表3】
【0039】
また、本精製酵素は、インシュリンB鎖のような長鎖に対する分解活性を有する。
精製酵素の阻害剤との挙動は表4に示す。
【0040】
【表4】
【0041】
上記阻害剤は、セリン酵素の阻害剤(PMSF(phenylmethylsulfonyl fluoride), TLCK(N−tosyl−L−phenylalaninecholomethyl ketone),DFP(diisopropyl fluorophosphate),金属酵素阻害剤(o−phenanthrolin), EDTA (ethylenediaminetetraacetic acid),SH酵素阻害剤(2−ME(2−mercaptoethanol),及びシステイン酵素阻害剤(NEM(N−ethylmalaimide), MIA(monoiodoacetic acid),Cystatinである。
【0042】
以上の結果から、セリン酵素阻害剤、金属酵素阻害剤、システイン酵素阻害剤ともに阻害したので、本件カテプシンC様酵素は、セリン、金属、システインが活性発現に関与していることは推定される。
【0043】
[実施例4] カテプシンC様酵素の遺伝子工学的製造
(1)染色体DNAの調製
Pyrococcus horikoshii((JCM9974、JCM微生物カタログ第7版(1999)を実施例1のごとく培養し、培養菌体を集菌し緩衝液で洗浄後、SDS存在下プロテイナーゼKで菌体を分解後クロロホルムフェノール溶液で変性タンパク質を除去した後、核酸をアルコール沈澱させた。粗精製核酸をRNaseを働かせRNAを除去し、パイロコッカスホリコシ菌のDNAを得た。
【0044】
(2)カテプシンC様酵素遺伝子を含むプラスミドの調製
カテプシンC様酵素遺伝子と推定されるORFを調製するためのPCR反応のプライマーを設計した。そのプライマーを用いて、上記のDNAを鋳型としてPCR反応条件を検討したところ次ぎの条件が適していることが判明した。
The upper primer(5’GTG ATA CCC ATA TGA CTT CTA TCG AAT G3’下線部はNde I site)
;the lower primer(5’GCT CGG ATC CAG TCA ATA AGA3’下線部はBam HI site)アニーリング温度59度
調製した遺伝子は、ベクタープラスミド(pET−11a novagen社製)に結合させカテプシンC様酵素遺伝子を含むプラスミドを調製した。
【0045】
(3)酵素の大腸菌への導入
上記調製したプラスミドをコンピテンシーの高い大腸菌(XL2−Blue MRF’ stratagene社製)に形質導入した。
【0046】
(4)酵素の生産と精製
上記大腸菌から精製したプラスミドを酵素生産用の大腸菌(BL21−Codon Plus(DE3)RIL stratagene社製)に導入し、その大腸菌を37℃で培養した。一夜培養後,IPTGを加え37℃で4時間培養した。培養液を遠心分離して菌体を集め、凍結融解してカテプシンC酵素を抽出した。抽出液は、85℃、30分間熱処理し、熱変性しやすいタンパクを沈澱除去し上清の活性を測定した。上述のように調製したプラスミドで形質転換した形質転換体の上清を酵素液としH−Gly−Phe−p−nitroanilideに反応させた。生産量は、培養液mLあたり31単位の活性が生産された。本酵素は、通常のように37℃で培養してもインクルージョンボデーにならず、活性のあるカテプシンC様酵素が短時間に高活性で生産された。
【0047】
[実施例4] カテプシンC様酵素活性に対する界面活性剤の影響
実施例2で調製した本件精製酵素に対する界面活性剤の影響を、濃度を変えて測定した。その結果を下記表に示す。
【0048】
【表5】
【0049】
【発明の効果】
反応動力学的解析によると、この酵素のGly−Phe−p−naphthylamideに対する最大反応速度は、1.55x105/secであり、非常に大きな反応速度を示した。非常に効率の良い酵素であり、かつ高温でも使用できることから、種々の洗浄などに用いることが可能で、極めて有用な酵素である。
【0050】
【配列表】
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the production of novel proteases. More specifically, a novel cathepsin C-like enzyme derived from an archaebacterium belonging to the genus Pyrococcus having cathepsin C activity, a DNA encoding a novel cathepsin C-like enzyme derived from an archaea belonging to the genus Pyrococcus, a hyperthermophilic bacterium The present invention relates to the production of a cathepsin C-like enzyme derived from an archaebacterium belonging to the genus Pyrococcus using E. coli.
[0002]
[Prior art]
Many types of cathepsins are known as proteases found in lysosomal fractions of various animal cells. Cathepsin C is a papain-like cysteine protease that acts on a polypeptide to release a dipeptide from the N-terminus, and is also called dipeptidyl peptidase. Cathepsin C is located in the cytoplasmic granule lysosome of bone marrow cells and lymphocytes, and cleaves and activates a serine protease necessary for an immune / inflammatory response (Non-Patent Document 1: McGuire, MJ et al., J. Biol. Chem. 268). , 2458 (1993) Cathepsin C deficiency is one of the causes of periodontal disease (Non-Patent Document 2: Nature Genet. 23, 421-424 (1999).
[0003]
Cathepsin C is a gene derived from a higher animal or a gene encoding cathepsin C derived from a higher animal, such as yeast (Non-Patent Document 3: Appl. Microbiol. Biotechnol. (2002) 59, 252-258), insect cells, etc. Non-patent document 4: Biochemistry (2001) 40, 1671-1678) is only reported, and cathepsin C derived from other than animal cells is not known.
[0004]
[Non-Patent Document 1] Biol. Chem. 268, 2458 (1993)
[Non-Patent Document 2] Nature Genet. 23, 421-424 (1999)
[Non-Patent Document 3] Appl. Microbiol. Biotechnol. (2002) 59, 252-258.
[Non-Patent Document 4] Biochemistry (2001) 40, 1671-1678
[0005]
[Problems to be solved by the invention]
Cathepsin C of higher animals, which has been found so far, is sensitive to chemicals such as surfactants, and required chloride ions for expression of the activity. Many of the enzymes present in lysosomes have an optimum pH in the acidic region, and no enzyme having an optimum reaction temperature of 80 ° C. or higher has been found. An object of the present invention is to find a technique for industrially producing a structurally stable thermostable enzyme having a cathepsin C-like action, which is useful for dentifrices, detergents, amino acid analysis and the like.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have conducted intensive studies in order to solve the above-mentioned problems. As a result, the genome information sequence was analyzed, and a microorganism belonging to the genus Pyrococcus, which is a source of many thermostable enzymes and grows at 90 ° C. or higher, was identified. After culturing in a jar fermenter, the high activity of cathepsin C (dipeptidyl peptidase) was found in the culture solution, particularly in the supernatant, and its production, isolation and purification methods, and its properties were clarified, and this enzyme was useful for dentifrices, etc. A structurally stable cathepsin-like enzyme, the gene of which was cloned and expressed in Escherichia coli to confirm cathepsin C activity, thereby completing the present invention.
[0007]
As the microorganism belonging to the genus Pyrococcus, Pyrococcus horikoshi (JCM9974, JCM Microorganism Catalog, 7th edition (1999)) can be preferably used.
[0008]
In the present invention, cathepsin C-like means having a dipeptidyl peptidase activity that generates a dipeptide from the N-terminus.
[0009]
The cathepsin C-like enzyme of the present invention has almost no amino acid sequence homology with the conventionally known cathepsin C, and furthermore, the optimal pH is acidic because cathepsin C acts on lysosomes. Is an enzyme which is completely different from conventionally known cathepsin C because it is neutral and active.
[0010]
Furthermore, although conventional cathepsin C is a cysteine protease, the cathepsin C-like enzyme of the present invention may not be inhibited by a cysteine enzyme inhibitor in some cases and cannot be determined as cysteine protease.
[0011]
In the present invention,
(1) a cathepsin C-like enzyme having a low polymer structure and not requiring chloride ions for activity expression;
(2) a cathepsin C-like enzyme having an optimal reaction temperature in the range of 75 to 85 ° C and an optimal reaction pH of 7 to 8,
(3) the above cathepsin C-like enzyme having a molecular weight of 160 ± 20 kD,
(4) Cathepsin C-like enzyme derived from a microorganism belonging to the genus Pyrococcus, and (5) Cathepsin C-like enzyme in which the microorganism belonging to the genus Pyrococcus is Pyrococcus horikoshii.
[0012]
The cathepsin C-like peptide is obtained by culturing and growing a microorganism belonging to the genus Pyrococcus, preferably Pyrococcus horikoshii, under appropriate culture conditions (eg, 95 ° C.). For example, after the supernatant is concentrated by a membrane filter to prepare an enzyme solution, the enzyme solution can be purified by appropriately combining hydrophobic chromatography, anion exchange resin chromatography, and / or gel filtration chromatography.
[0013]
For example, alkyl agarose and Phenyl Sepharose can be used as hydrophobic chromatography, DEAE Sepharose and Q Sepharose HP can be used as anionic chromatography, and Sephadex 200 and Sepharose HP can be used as gel filtration chromatography.
[0014]
Further, the present invention
(6) a cathepsin C-like enzyme having the amino acid sequence of SEQ ID NO: 1 in the sequence listing,
(7) Cathepsin C-like containing an amino acid sequence in which one or several, preferably 1 to 10 amino acid residues are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 1 in the sequence listing enzyme,
(8) Cathepsin C-like having 70% or more identity, preferably 85% or more identity, more preferably 95% or more identity with the amino acid sequence described in SEQ ID NO: 1 in the sequence listing. enzyme,
(9) a nucleic acid such as an isolated DNA molecule comprising a polynucleotide sequence encoding the amino acid sequence described in SEQ ID NO: 1 in the sequence listing;
(10) A polynucleotide sequence encoding the amino acid sequence of SEQ ID NO: 1 in which one or several, preferably 1 to 10 amino acid residues are deleted, substituted, or added. A nucleic acid such as an isolated DNA molecule,
(11) an isolated nucleic acid such as a DNA molecule comprising the polynucleotide sequence of SEQ ID NO: 2 in the sequence listing, and (12) a stringent sequence complementary to the sequence of the polynucleotide sequence of SEQ ID NO: 2 in the sequence listing. Includes nucleic acids, such as isolated DNA molecules, that hybridize under conditions and encode a polypeptide having cathepsin C activity.
[0015]
In addition, the identity of an amino acid sequence and the identity of a polynucleotide sequence mean the degree of the relationship between sequences determined by comparing two or more amino acid sequences or polynucleotide sequences. As a program for determining identity, there are programs such as ClustalW and DNASIS for amino acid sequences, but the value of identity in the present invention means a value when ClustalW is used under default conditions.
[0016]
As stringent conditions, well-known stringent conditions can be used. For example, (a) low ionic strength, high temperature washing conditions, for example, 0.015 M NaCl, 0.0015 M sodium citrate, 0 4. Conditions for washing at 50 ° C. with 1% SDS, (b) 50% formaldehyde, 5 × SSC (0.75 M NaCl, 0.075 M citric acid), X Denhardt's solution, salmon sperm DNA (50 g / ml), 0.1% SDS, and 10% dextran sulfate, 42 ° C., and 0.2X SSC, 0.1% DS, washing at 42 ° C.
[0017]
Furthermore, the present invention also includes a recombinant vector containing the DNA molecule according to any one of the above (9) to (12).
[0018]
For example, a polypeptide comprising a DNA molecule according to any one of the above (9) to (12) under the control of a promoter for expression of a thermostable proline dipeptide degrading enzyme, and having a cathepsin C activity in a host cell. An expression vector having the ability to express is included. Specifically, as the promoter, a T7 promoter (Novagen), an mFDH1 promoter (Non-Patent Document 3), and an AUG1 promoter (Invitrogen) can be used. As an expression vector, a known expression vector can be used in each host. In Escherichia coli, for example, a pET11-a vector (T7 promoter (Novagen)), and in a methanol yeast, a pMFXU4 vector (mFDH1 promoter (mFDH1 promoter)) Non-patent document 3)) or an expression vector can be prepared based on the pMETα vector (AUG1 promoter (Invitrogen)). Needless to say, the nucleic acid sequence of the present cathepsin C-like enzyme may be modified in accordance with the codon usage in each host, and then loaded on a recombinant vector.
[0019]
Further, the present invention includes a transformant transformed by the vector. As the host, microbial cells, insect-derived cells, animal cells, or plant cells can be used. For example, E. coli, Candida. bondini, COS-7 cells.
[0020]
As a means for introducing the vector into a host, a known method suitable for each host can be used.For example, a calcium phosphate method, an electroporation method, and further, in Escherichia coli, a high-temperature shock method, and in a methanol yeast, , Lithium acetic acid method, and the like.
[0021]
As a transformant, specifically, a gene encoding the present cathepsin C-like enzyme was transformed with, for example, Escherichia coli transformed with a vector incorporated into pET11-a, or a vector incorporated into pMFXU4 having an FDHI promoter. There are transformants of insect-derived cell lines that have been introduced by incorporating them into vectors using methanol yeast and baculovirus promoters.
[0022]
Further, the present invention includes a step of culturing the transformant, a step of recovering a cathepsin C-like enzyme from the obtained culture, a method for producing a transformant of an enzyme protein having a cathepsin C-like enzyme activity, and The cathepsin C-like enzyme obtained by the production method is also included.
[0023]
Furthermore, the present invention also includes a cathepsin C-like enzyme particularly suitable for a toothpaste whose optimal temperature has been changed to around 37 ° C. by an evolutionary engineering technique.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
[0025]
Example 1 Cultivation of Pyrococcus sorghum and detection of cathepsin C activity 13.5 g of NaCl, 4 g of Na 2 SO 4 , 0.7 g of KCl, 0.2 g of NaHCO 3 , 0.1 g of KBr, 30 mg of H 3 BO 3 , 10 g MgCl 2 .6H 2 O, 1.5 g CaCl 2 , 25 mg SrCl 2 , 1.0 mL resasulin solution (0.2 g / L), 1.0 g yeast extract, 5 g bacto 15 L of a culture solution obtained by dissolving peptone in 1 L of distilled water was pasteurized for 30 minutes. After returning to normal pressure, dry heat sterilized powdered sulfur was added to a concentration of 0.1-0.2%. Next, 10 mL of a 25% sodium sulfide solution saturated with nitrogen gas and then autoclaved was added, and after confirming that the pink color of the resasurin solution was not colored, the solution was made anaerobic. 0.5 L was inoculated and cultured at 95 ° C. for 22 hours with stirring at 100 rpm.
[0026]
The activity of the culture solution precipitate was determined by centrifuging the medium, suspending the precipitate in a 50 mM Tris buffer of the medium, freeze-thawing, and sonicating to extract a cell-binding portion of 2.97 units / mL. There was activity. On the other hand, the activity of the culture supernatant could not be detected as it was, but was measured after concentration by a factor of 2 with a membrane filter and found to be 237.84 units / mL. Cathepsin C activity was measured using H-Gly-Phe-p-nitroanilide (manufactured by Bachem), and the amount that released 1 micromol of paranitroanilide per minute was defined as 1 unit. The activity per mg of protein was 154.8.
[0027]
Example 2 Purification of Cathepsin C-Like Enzyme The enzyme solution obtained in Example 1 was subjected to hydrophobic chromatography (Hiload 16/10 Phenyl Sepharose, manufactured by Amersham Bioscience) in 100 mM sodium phosphate buffer, pH 7.5, and ammonium sulfate concentration of 1 mol. The active portion was eluted at a concentration of 0 mol of ammonium sulfate. The specific activity was 6,200, and the yield was 31%. This enzyme is a hydrophobic protein adsorbed on a hydrophobic column.
[0028]
The above-mentioned hydrophobic chromatographic eluate was adsorbed on an anion exchange resin (HiTrap Q Sepharose HP Amersham Bioscience) and washed with 10 M Tris buffer pH8. The activity eluted at a salt concentration of 0.3-0.4M. The specific activity was 7,137, and the yield was 10.7%. This enzyme is an acidic protein adsorbed on an anion exchange resin.
[0029]
It was applied to a gel filtration chromatograph (Hiload 26/60 Sephadex 200 prepgrade, manufactured by Amersham Bioscience). When eluted with a 50 mM sodium phosphate buffer, an activity peak was present at a position corresponding to a molecular weight of 160 ± 20 kD in 234 mL of the eluate. The specific activity was 12,578, and the yield was 6.5%. When this fraction was subjected to SDS electrophoresis, a band of a main component of 62 ± 2 kD and a band of a minor component of 41 ± 1 kD were detected. Therefore, this enzyme was a protein having a low polymer structure.
[0030]
N-terminal analysis of the protein purified by electrophoresis revealed that it was TSIEWDEKTF, which was an amino acid sequence. The amino acid sequence is the sequence of SEQ ID NO: 1, and the nucleic acid sequence encoding the amino acid sequence is the sequence of SEQ ID NO: 2.
[0031]
Example 3 Enzymatic Properties of Enzyme Cathepsin C activity was determined by mixing 1 μL of 200 mM H-Gly-Phe-p-nitroanilide (manufactured by Bachem), 949 μL of 50 mM sodium phosphate buffer pH 7.5 and 50 μL of enzyme solution. Was reacted at 80 ° C. and the change in absorbance at 406 nm was observed. The molecular absorbance of paranitroanilide was 9.91 mM, and the amount of 1 μmol of paranitroanilide released per minute was defined as 1 unit.
[0032]
The activity was measured by adding 10 mM, 20 mM, 30 mM, and 40 mM salt to an enzyme solution containing no chloride ions, and no activity increase was observed due to the addition of chloride ions. Therefore, salt is not required for expressing the activity of the enzyme, and the enzyme can be used without undergoing a change in taste due to the addition of salt.
[0033]
The optimum reaction temperature of the purified enzyme was 80 ° C. (Table 1). In the case of the crude enzyme, although there were many variations, the optimum reaction temperature was 90-100 ° C, and at 37 ° C, the activity was 28% of the optimum temperature.
[0034]
[Table 1]
[0035]
Table 2 shows the reaction pH of the purified enzyme. A high activity of 100% was reached at pH 7-8. Therefore, the optimal conditions for the reaction are pH 7-8 and 80 ° C.
[0036]
[Table 2]
[0037]
The relative activity of the product with respect to the fluorescent substrate of the purified enzyme cathepsin C is shown. As shown in Table 3, this enzyme decomposes various cathepsin C substrates.
[0038]
[Table 3]
[0039]
In addition, the purified enzyme has a degrading activity for long chains such as insulin B chain.
Table 4 shows the behavior of the purified enzymes with the inhibitors.
[0040]
[Table 4]
[0041]
The above-mentioned inhibitors include serine enzyme inhibitors (PMSF (phenylmethylsulfonyl fluoride), TLCK (N-tosyl-L-phenylalanine chloromethyl ketone), DFP (diisopropyl thiophene, thiophene thiophene, thiophene, thiophene, thiophene, thiophene) , SH enzyme inhibitors (2-ME (2-mercaptoethanol)), and cysteine enzyme inhibitors (NEM (N-ethylmalaimide), MIA (monoiodoacetic acid), and Cystatin.
[0042]
From the above results, it was presumed that serine, metal, and cysteine are involved in the expression of the activity of the cathepsin C-like enzyme because the serine enzyme inhibitor, the metalloenzyme inhibitor, and the cysteine enzyme inhibitor were all inhibited.
[0043]
[Example 4] Genetic engineering production of cathepsin C-like enzyme (1) Preparation of chromosomal DNA Pyrococcus horikoshii ((JCM9974, JCM Microorganism Catalog 7th edition (1999) was cultured as in Example 1, and cultured cells were collected) After the cells were washed with a buffer, the cells were digested with proteinase K in the presence of SDS, denatured proteins were removed with a chloroform phenol solution, and the nucleic acids were precipitated with alcohol. Coccus horikoshii DNA was obtained.
[0044]
(2) Preparation of Plasmid Containing Cathepsin C-like Enzyme Gene Primers for a PCR reaction for preparing an ORF presumed to be a cathepsin C-like enzyme gene were designed. When the PCR conditions were examined using the primers and the above DNA as a template, the following conditions were found to be suitable.
The upper primer (5'GTG ATA CC C ATA TG A CTT CTA TCG AAT G3 ' underlined the Nde I site)
The lower primer (5 ′ GCT C GG ATC CAG TCA ATA AGA 3 ′ underlined is Bam HI site) Annealing temperature 59 ° C. The gene prepared at the annealing temperature of 59 ° C. is ligated to a vector plasmid (manufactured by pET-11a Novagen) to produce a cathepsin C-like enzyme. A plasmid containing the gene was prepared.
[0045]
(3) Introduction of enzyme into Escherichia coli The above-prepared plasmid was transduced into Escherichia coli (XL2-Blue MRF 'stratagene) having high competence.
[0046]
(4) Production and Purification of Enzyme The plasmid purified from the E. coli was introduced into E. coli (BL21-Codon Plus (DE3) RIL Stratagene) for enzyme production, and the E. coli was cultured at 37 ° C. After overnight culture, IPTG was added and the cells were cultured at 37 ° C for 4 hours. The culture was centrifuged to collect the cells, which were freeze-thawed to extract the cathepsin C enzyme. The extract was subjected to a heat treatment at 85 ° C. for 30 minutes to remove the protein which was easily denatured by heat, and the activity of the supernatant was measured. The supernatant of the transformant transformed with the plasmid prepared as described above was used as an enzyme solution and reacted with H-Gly-Phe-p-nitroanilide. The production amount was 31 units of activity per mL of the culture solution. This enzyme did not become an inclusion body even when cultured at 37 ° C. as usual, and an active cathepsin C-like enzyme was produced with high activity in a short time.
[0047]
Example 4 Effect of Surfactant on Cathepsin C-Like Enzyme Activity The effect of the surfactant on the purified enzyme prepared in Example 2 was measured at different concentrations. The results are shown in the table below.
[0048]
[Table 5]
[0049]
【The invention's effect】
According to the reaction kinetic analysis, the maximum reaction rate of this enzyme for Gly-Phe-p-naphthylamide was 1.55 × 10 5 / sec, indicating a very large reaction rate. Since it is a very efficient enzyme and can be used even at high temperatures, it can be used for various washings and the like, and is a very useful enzyme.
[0050]
[Sequence list]
Claims (14)
(1)至適反応温度が75−85℃、
(2)至適反応pHがpH7−8、
(3)活性発現に塩素イオンを要求しないA cathepsin C-like enzyme having the following properties:
(1) The optimal reaction temperature is 75-85 ° C,
(2) The optimum reaction pH is pH 7-8,
(3) Chloride ion is not required for activity expression
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003056781A JP4058514B2 (en) | 2003-03-04 | 2003-03-04 | Cathepsin C-like enzyme and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003056781A JP4058514B2 (en) | 2003-03-04 | 2003-03-04 | Cathepsin C-like enzyme and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004261141A true JP2004261141A (en) | 2004-09-24 |
JP4058514B2 JP4058514B2 (en) | 2008-03-12 |
Family
ID=33120368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003056781A Expired - Lifetime JP4058514B2 (en) | 2003-03-04 | 2003-03-04 | Cathepsin C-like enzyme and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4058514B2 (en) |
-
2003
- 2003-03-04 JP JP2003056781A patent/JP4058514B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP4058514B2 (en) | 2008-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3479509B2 (en) | Alkaline protease | |
JP4571604B2 (en) | Tripeptidyl aminopeptidase | |
JP2731407B2 (en) | Novel protease enzyme | |
CN108588061A (en) | The low-temperature alkali pectin enzyme mutant that a kind of specific enzyme activity and thermal stability improve | |
US5705379A (en) | Nucleotide sequences encoding a thermostable alkaline protease | |
WO1995005477A1 (en) | Thermostable alkaline metalloprotease produced by a hyphomonas, and preparation thereof | |
Kumeta et al. | Identification of a member of the serralysin family isolated from a psychrotrophic bacterium, Pseudomonas fluorescens 114 | |
JP3915983B2 (en) | Protease, DNA encoding the protease, and method for producing protease | |
JP5283154B2 (en) | Trypsin-like enzyme | |
JP4058514B2 (en) | Cathepsin C-like enzyme and method for producing the same | |
Mane et al. | A study of extracellular alkaline protease from Bacillus subtilis NCIM 2713 | |
JP5260941B2 (en) | Novel collagenolytic enzymes and their use | |
JP3463951B2 (en) | Thermostable pyroglutamyl peptidase and its gene | |
KR0180103B1 (en) | Thrombosis dissolution enzyme from bacillus subtilis | |
JP4212340B2 (en) | Alkaline protease | |
JP3512237B2 (en) | Thermostable methionine aminopeptidase and its gene | |
JPH0670765A (en) | Protease, gene coding the same, method for producing the protease and its use | |
JP2004313043A (en) | Alkali protease | |
WO2006054595A1 (en) | Novel high alkaline protease and use thereof | |
JP4116798B2 (en) | Novel amidase and gene encoding the same | |
KR102114929B1 (en) | Novel Cold-active subtilase and Uses thereof | |
JP2001258577A (en) | Polygalacturonase | |
Kocabıyık et al. | Cloning and overexpression of a thermostable signal peptide peptidase (SppA) from Thermoplasma volcanium GSS1 in E. coli | |
JP4324365B2 (en) | Alkaline protease | |
WO2023090461A1 (en) | Protein-deamidating enzyme |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4058514 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |