[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004259454A - Cylindrical alkaline battery - Google Patents

Cylindrical alkaline battery Download PDF

Info

Publication number
JP2004259454A
JP2004259454A JP2003045384A JP2003045384A JP2004259454A JP 2004259454 A JP2004259454 A JP 2004259454A JP 2003045384 A JP2003045384 A JP 2003045384A JP 2003045384 A JP2003045384 A JP 2003045384A JP 2004259454 A JP2004259454 A JP 2004259454A
Authority
JP
Japan
Prior art keywords
crosslinked
acrylic acid
meth
zinc
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003045384A
Other languages
Japanese (ja)
Other versions
JP4480945B2 (en
Inventor
Natsuki Toyoda
夏樹 豊田
Yoshinori Honda
佳則 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2003045384A priority Critical patent/JP4480945B2/en
Publication of JP2004259454A publication Critical patent/JP2004259454A/en
Application granted granted Critical
Publication of JP4480945B2 publication Critical patent/JP4480945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low pollution zinc alkaline battery using mercury-free zinc alloy powder for a gelled zinc negative electrode capable of easily filling the gelled zinc negative electrode in the battery, having a good shock resistant property, with heightened safety and a discharging property. <P>SOLUTION: The alkaline battery comprises a gelled zinc negative electrode containing mercury-free zinc alloy powder, a gelatinizing agent, and alkaline electrolyte solution. A mixture of a crosslinked (meta)acrylic acid polymer having a 0.5 mass% dispersion viscosity of 35 to 80 Pa×s in water at 25°C, and a grain diameter mainly of 5 to 240 μm; and non-crosslinked (meta) acrylic acid polymer of a 0.5 mass% dispersion viscosity of 0.05 to 0.8 Pa×s in 40% KOH solution at 25°C, and a grain diameter of 100 μm or less, is used as the gelatinizing agent. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は筒型アルカリ電池に関し、詳しくは無汞化亜鉛合金粉末を用いたゲル状亜鉛負極を備えた筒型アルカリ電池に関する。
【0002】
【従来の技術】
従来、亜鉛アルカリ電池の負極活物質としては、亜鉛の腐食によるガス発生の抑制及び電気特性の向上を目的として、汞化亜鉛合金粉末が用いられていたが、近年、使用済み電池による環境汚染が問題視されるようになってきたことから低公害化が社会的な要望となり、亜鉛合金粉末を無汞化(無水銀)にするための亜鉛合金組成や防食剤(インヒピター)等の研究が進められ、ついに実用上ガス発生に問題のない無水銀アルカリ電池用ゲル状亜鉛負極が開発されるに至っている。
【0003】
ところで、無汞化亜鉛合金粉末を単に用いた電池は、汞化亜鉛合金粉末を用いた電池より耐衝撃性が弱いことがわかった。そこで、ゲル化剤の形状や粒度の見直し、あるいはゲル化剤の増量により、ゲル状亜鉛負極の粘度を上げて耐衝撃性を向上させる方策がとられてきた。ところが、電池の耐衝撃性を改善するためにゲル状亜鉛負極の粘度を上げると、ゲル状亜鉛負極を充填する際に充填装置の器壁との摩擦が大きくなり、滑らかにゲル状亜鉛負極が流れないので、安定した充填作業が行なわれにくくなる。そのため、フッ素系界面活性剤をゲル状亜鉛負極に添加して充填作業を容易することが行なわれている。しかしながら、このようにフッ素系界面活性剤を添加すると、これが電池の内部抵抗として作用してしまうため、放電持続時間が短くなるという問題が生じていた。
【0004】
一方、最近の様々な携帯電子機器の発達は目覚しく、特に重負荷特性を必要とする機器が増加しているため、従来最も一般的に用いられているアルカリマンガン電池よりも高率放電特性に優れる電池が期待されている。
【0005】
上記事項を鑑みて、インサイドアウト型の構造を有するニッケル亜鉛電池において、高率放電特性を改善し、高容量を実現する電池の研究が行なわれており、この要請に応える電池として、水酸化ニッケルを含む正極活物質を用い、亜鉛を負極活物質とするインサイドアウト型ニッケル亜鉛一次電池も知られている(特許文献1参照)。
ところがかかる電池においても、前記アルカリ電池と同様に、使用する亜鉛合金粉末としては環境に配慮した無汞化亜鉛合金粉末を使用することが大前提であり、単に無汞化亜鉛合金粉末を用いた電池は、汞化亜鉛合金粉末を用いた電池より、落下等により電池に衝撃が加わったときの電圧降下量が大きい、すなわち耐衝撃性が弱いことが分かっている。
【0006】
このような電池においても、耐衝撃性改善のためにゲル化剤の形状、粒度の見直しや増量により、ゲル状亜鉛負極の粘度を上げて耐衝撃性を向上させる方策を検討してきたが、電池の耐衝撃性を改善するためにゲル状亜鉛負極の粘度を上げると、ゲル状亜鉛負極を充填する際に充填装置の器壁との摩擦が大きくなり、滑らかにゲル状亜鉛負極が流れないので、安定した充填作業が困難になるという問題点があった。
【0007】
【特許文献1】特開2000−48827号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記状況に鑑みてなされたもので、その目的は、ゲル状亜鉛負極に無汞化亜鉛合金粉末を用いた低公害の亜鉛アルカリ電池において、ゲル状亜鉛負極の電池内への充填を容易にさせるとともに、耐衝撃性を良好に保持して安全性を高め、かつ放電性能を高めることにある。
【0009】
【課題を解決するための手段】
本発明では2種のゲル化剤を併用してゲル状亜鉛負極を作成したことにより、ゲル状亜鉛負極の粘度を電池の耐衝撃性を保持できる程度に高めても、潤滑性があってゲル状亜鉛負極の電池内への充填が容易となり、その結果電池の耐衝撃性および放電性能のいずれにも優れ、かつ作業性も改善された亜鉛アルカリ電池を提供することが出来ることに着目してなされたものである。
【0010】
すなわち、本発明は、無汞化亜鉛合金粉末とゲル化剤及びアルカリ電解液を含むゲル状亜鉛負極を備えたアルカリ電池において、
前記ゲル化剤として25℃における水中の0.5質量%分散粘度が35〜80Pa・Sで、かつその粒径が5〜240μmを主としたものである架橋(メタ)アクリル酸系重合体と、25℃における40%KOH水溶液中の0.5質量%分散粘度が0.05〜0.8Pa・Sで、かつその粒径が100μm以下を主とした非架橋(メタ)アクリル酸系重合体とを併用したことを特徴とする筒型アルカリ電池である。
【0011】
上記本発明において、上記2種のゲル化剤の使用量は、架橋(メタ)アクリル酸系重合体の添加濃度がアルカリ電解液に対して1.0〜3.0質量%、非架橋(メタ)アクリル酸系重合体の添加濃度がアルカリ電解液に対して0.05〜0.5質量%の範囲が好ましい。
【0012】
また、本発明において前記架橋ポリ(メタ)アクリル酸系重合体は、架橋ポリ(メタ)アクリル酸塩であり、また非架橋(メタ)アクリル酸系重合体は鎖状ポリ(メタ)アクリル酸またはその塩類であることが望ましい。
【0013】
さらに、前記正極活物質としては、水酸化ニッケル系化合物粒子であることが、高率放電の電池を実現できることから好ましい。
【0014】
さらに、この前記水酸化ニッケル系化合物粒子としては、オキシ水酸化コバルト、三酸化ニコバルト、一酸化コバルト、水酸化コバルト、金属ニッケル、金属コバルトより選ばれる少なくとも一つの物質により被覆されていることが好ましい。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
本発明において用いるゲル化剤は、前述の通り、架橋(メタ)アクリル酸系重合体と非架橋(メタ)アクリル酸系重合体とを併用するものであり、以下これらのゲル化剤について説明する。
【0016】
(架橋(メタ)アクリル酸系重合体)
本発明で用いることのできる架橋(メタ)アクリル酸系重合体塩とは、アクリル酸あるいはメタクリル酸の単独重合体またはアクリル酸あるいはメタクリル酸と他のラジカル重合モノマーとの共重合体またはそれら塩(以下(メタ)アクリル酸系重合体という)を、電子線照射、あるいはX線照射によって架橋結合生ぜしめた重合体、または、この(メタ)アクリル酸系重合体を過酸化物で架橋反応させた重合体、あるいは、この(メタ)アクリル酸系重合体が有するカルボキシル基、水酸基などの官能基とエステル結合もしくはアミド結合する多官能性物質との反応によって架橋した重合体、さらに、(メタ)アクリル酸系重合体のカルボキシル基が多価金属イオンとのイオン結合によって架橋した(メタ)アクリル酸系重合体の塩である。このような架橋(メタ)アクリル酸系重合体の塩を構成する金属イオンとしては、Na、Kなどの1価の金属イオン、あるいは、Ca、Mgなどの2価の金属イオンを用いることができるが、電池性能に影響を及ぼさない点から、Naイオンが好ましい。
この架橋(メタ)アクリル酸系重合体としては、具体的には、ポリアクリル酸、ポリメタクリル酸、アクリル酸−メタクリル酸共重合体、アクリル酸−メタクリル酸エステル共重合体、アクリル酸−ビニルアルコール共重合体などの重合体の架橋物があげられる。
この架橋(メタ)アクリル酸系重合体塩としては、25℃における水中の0.5質量%分散粘度が35〜80Pa・Sの範囲にあることが必要である。
【0017】
(非架橋(メタ)アクリル酸系重合体)
本発明で用いることのできる非架橋(メタ)アクリル酸系重合体とは、アクリル酸あるいはメタクリル酸の単独重合体またはアクリル酸あるいはメタクリル酸と他のラジカル重合モノマーとの共重合体またはそれら塩(以下(メタ)アクリル酸系重合体という)であって、鎖状重合体である。
このような非架橋(メタ)アクリル酸系重合体の塩を構成する金属イオンとしては、Na、Kなどの1価の金属イオンを用いることができるが、電池性能に影響を及ぼさない点から、Naイオンが好ましい。
この非架橋(メタ)アクリル酸系重合体としては、具体的には、ポリアクリル酸、ポリメタクリル酸、アクリル酸−メタクリル酸共重合体、アクリル酸−アクリル酸エステル共重合体、メタクリル酸−ビニルアルコール共重合体などの重合体あるいはその塩があげられる。
【0018】
次に、本実施の形態で用いられる負極ゲル化剤以外の正極材料、及び負極材料について詳細に説明する。
(正極材料)
本発明で用いる正極活物質としては、従来公知の正極活物質を採用することができるが、二酸化マンガン粒子、及びオキシ水酸化ニッケル系粒子を用いることが好ましく、特にオキシ水酸化ニッケル粒子を主体とする正極活物質が高率放電特性に優れており、好ましい。
この二酸化マンガン粒子としては、一般のアルカリ電池に用いられているものを使用することができる。
また、オキシ水酸化ニッケル系粒子としては、オキシ水酸化ニッケル、あるいは、亜鉛もしくはコバルト単独あるいはその両方を共晶しているオキシ水酸化ニッケルを採用することができるが、共晶オキシ水酸化ニッケルが低電解液比率でもその構造変化を少なくできるので好ましい。オキシ水酸化ニッケルに共晶させる亜鉛もしくはコバルトの量としては、1〜7%の範囲が好ましい。亜鉛の量がこの範囲を下回ると、条件によっては正極が膨潤するため、その利用率が低下し、放電容量が低下する。またこの範囲を上回ると、相対的にニッケル純度が低下するため、高容量化に適さなくなる。
【0019】
また、水酸化ニッケル表面に、さらに高導電性の高次コバルト化合物を被着させた複合オキシ水酸化物とすることが、オキシ水酸化ニッケル粒子同士の電子導電性を確保する理由で好ましい。
前記表面に被着するコバルト化合物としては、出発原料として例えば、水酸化コバルト(Co(OH))、一酸化コバルト(CoO)、三酸化二コバルト(Co)、などをあげることができ、これを酸化処理してオキシ水酸化コバルト(CoOOH)、四酸化三コバルト(Co)などの高導電性高次コバルト酸化物に転化させる。
【0020】
上記本発明の正極活物質は、例えば次の方法によって製造することができる。
亜鉛及びコバルトをドープした水酸化ニッケル粒子に、水酸化コバルトを添加し、大気雰囲気中で攪拌しながら水酸化ナトリウム水溶液を噴霧する。引き続きマイクロウェーブ加熱を施すことにより水酸化ニッケル表面にコバルト高次酸化物の層が形成された複合水酸化ニッケル粒子が生成する。さらに、この反応系に次亜塩素酸ナトリウムなどの酸化剤を添加して酸化を進め、コバルト高次酸化物が被着した複合オキシ水酸化ニッケルを製造することができる。これによって導電性が極めて優れた正極活物質を得ることができる。
【0021】
かかる際に用いるコバルト粒子あるいはコバルト化合物粒子は、比表面積が2.5〜30m/gである水酸化コバルトを用いることが好ましい。コバルト粒子あるいはコバルト化合物粒子としてこの範囲のものを採用することによって水酸化ニッケルと水酸化コバルトとの接触面積が確保され、正極の利用率の向上につながる。
【0022】
また、上記ニッケル水酸化物の正極活物質にY、Er、Yb、Caの化合物を添加することにより、貯蔵時の容量維持率を改善することができる。用いられる上記化合物としては、例えばY、Er、Yb、などの金属酸化物、およびCaFなどの金属フッ化物があげられる。これらの金属酸化物および金属フッ化物は、正極活物質であるニッケル水酸化物に対して、0.1〜2質量%の範囲で用いることができる。金属酸化物もしくは金属フッ化物の配合量が上記範囲を下回った場合、貯蔵特性の改善効果が得られず、一方配合量が上記範囲を上回った場合、相対的に正極活物質の量が減るので高容量化に適さなくなるため好ましくない。
本発明においては、正極の導電性を改善するために、正極材料に炭素粒子を含有させることが望ましい。
かかる炭素粒子としては、例えばアセチレンブラック、カーボンブラック等を用いることができる。配合量は、正極活物質:炭素粒子=100:3〜10(質量比)の範囲が適切である。炭素粒子の配合比がこれより高いと活物質量が相対的に減少するため高容量化に適さなくなり、一方、炭素粒子の配合比がこれより低いと電子電導性が相対的に低下するので高出力特性に適さなくなる。
【0023】
(負極材料)
本発明で用いられる負極材料は、亜鉛合金を主成分とする負極活物質、前述のゲル化剤、電解液、及びさらに必要に応じて亜鉛化合物が混合されたゲル状材料からなっている。
【0024】
本発明において用いる亜鉛合金は、無汞化亜鉛合金として知られている水銀及び鉛を含まない亜鉛合金を用いることができる。具体的には、インジウム0.06質量%、ビスマス0.014質量%、アルミニウム0.0035質量%を含む亜鉛合金が、水素ガス発生の抑制効果があり望ましい。特にインジウム、ビスマスは放電性能を向上させるため望ましい。
負極作用物質として純亜鉛ではなく亜鉛合金を用いる理由は、アルカリ性電解液中での自己溶解速度を遅くし、密閉系の電池製品とした場合の電池内部での水素ガス発生を抑制して、漏液による事故を防止するためである。
【0025】
また、亜鉛合金の形状は、表面積を大きくして大電流放電に対応できるように粉末状とすることが望ましい。本発明において好ましい亜鉛合金の平均粒径は、100〜350μmの範囲が好ましい。亜鉛合金の平均粒径が上記範囲を上回った場合、表面積が比較的小さくなり大電流放電に対応することは困難になる。また、平均粒径が上記範囲を下回った場合、電池組み立て時の取り扱いが難しく、電解液及びゲル化剤と均一に混合することが困難になるばかりでなく、表面が活性であることから酸化されやすく不安定である。
【0026】
本発明で用いられる電解液は、水酸化カリウム、水酸化ナトリウムなどのアルカリ塩を溶質として用いた水溶液が好ましく、特に、水酸化カリウムを用いることが、好ましい。
【0027】
また、本発明においては、上記水酸化カリウムなどのアルカリ塩を水に溶解した電解液中に亜鉛化合物を添加することが望ましい。かかる亜鉛化合物としては、酸化亜鉛、水酸化亜鉛などの化合物が挙げられるが、特に酸化亜鉛が好ましい。電解液として少なくとも亜鉛化合物を含有するアルカリ性水溶液を用いるのは、アルカリ性水溶液中での亜鉛合金の自己溶解が酸性系の電解液と比較して格段に少なく、更には亜鉛合金のアルカリ性電解液中での自己溶解を亜鉛化合物、例えば酸化亜鉛を溶解して亜鉛イオンを予め存在させておくことにより更に抑制するためである。
【0028】
【実施例】
(実施例及び比較例)
以下、本発明の実施例および比較例について詳細に説明する。
以下の2種のゲル化剤すなわちゲル化剤A及びゲル化剤Bを準備した。ゲル化剤Aは、25℃における水中の0.5質量%分散粘度が60Pa・S(BH型粘度計)で、またその粒径が5〜240μmを主とした平均粒径35μmである架橋アクリル酸系重合体であり、ゲル化剤Bは25℃における40%KOH水溶液中の0.5質量%分散粘度が0.3Pa・S(ビスメトロンVS−1H型粘度計)で、またその粒径が100μm以下で平均粒径10μmである鎖状ポリアクリル酸である。
水酸化カリウム水溶液と酸化亜鉛から構成される電解液100gに対してゲル化剤Aおよびゲル化剤Bを、ゲル化剤Aについては、0〜3.5質量%の範囲で、また、ゲル化剤Bについては、0〜1.0質量%の範囲で、変化させながら添加し、さらに無汞化亜鉛合金粉末を加えて300gのゲル状亜鉛負極を作成した。
【0029】
こうして調製したゲル状亜鉛負極を用いて、図1に示すJIS規格LR6形(単3形)アルカリ電池を組み立てた。
図1において、1は正極端子を兼ねる有底円筒形の金属缶であり、この金属缶1内には円筒状に加圧成形した3個の正極合剤2が分割充填されている。正極合剤2は二酸化マンガン粉末とカーボン粉末を混合し、これを成形型を用いて所定の圧力で中空円筒状に加圧成形したものである。
【0030】
また、正極合剤2の中空部にはアセタール化ポリビニルアルコール繊維の不織布からなる有底円筒状のセパレータ3が配置されている。このセパレータを介して、前記方法で製造したゲル状亜鉛負極4が充填されている。ゲル状亜鉛負極4内には真鍮製の負極集電棒5が、その上端部をゲル状亜鉛負極4より突出するように装着されている。負極集電棒5の突出部外周面及び金属缶1の上部内周面には二重環状のポリアミド樹脂からなる絶縁ガスケット6が配設されている。また、絶縁ガスケット6の二重環状部の間にはリング状の金属板7が配設され、かつ金属板7には負極端子には負極端子を兼ねる帽子形の金属封口板8が集電棒5の頭部に当接するように配設されている。そして、金属缶1の開口縁を内方に屈曲させることによりガスケット6及び金属封口板8で金属缶1内を密封口している。
【0031】
(試験例1)
以上のようにして組み立てた各LR6形アルカリ電池について、作業性を調べた。
すなわち、上記の各ゲル状亜鉛負極を充填する際の、充填装置の器壁における流れの状態を調べ、表1に示した。表1において、◎は非常に良好、○は良好、△は可、×は不可を示す。また、−はゲル化剤の配合量が少なく、亜鉛粒子の沈降分離が発生し、ゲルとして成り立たなかったものを示している。
【0032】
【表1】

Figure 2004259454
【0033】
表1に示されるように、ゲル化剤Aを単独で使用した場合には、2.5質量%以上でゲル状になるが、亜鉛粒子を保持する能力が強いのでゲルが高粘度になるため、作業性を悪化させていることが分かる。これにゲル化剤Bを加えることで作業性が改善される。これは、鎖状ポリアクリル酸が溶解し無汞化亜鉛合金粉末や架橋アクリル酸系重合体表面に分布して潤滑剤としての役割を果たすため、充填装置の器壁との摩擦を低減してゲル状亜鉛負極の充填を容易にすることができるものと考えられる。
【0034】
ただし、ゲル化剤Aとゲル化剤Bの合計が4.0質量%以上になると、やはり高粘度のため作業性は悪化する。またゲル化剤が多すぎる高粘度のゲルでは、放電中に電解液の供給が不足気味になる傾向があり、特に重負荷放電時にこれが顕著となって、持続時間を低下させるという問題もある。
【0035】
(試験例2)
以上のようにして組み立てた各LR6形アルカリ電池について、耐衝撃性を調べた。
すなわち、耐衝撃性の試験は、放電負荷2Ωで放電している電池を高さ2mから自由落下させて、その時の作動電圧の変化量をオシロスコープで測定して行なった。結果を表2に示す(n=3の平均値)。表2中、◎は変化量100mv以下、○は100〜200mV、△は200〜500mV、×は500mV以上を示している。
【0036】
【表2】
Figure 2004259454
【0037】
表2に示されるように、ゲル化剤Aを単独で使用した場合は電解液に対して2.5質量%以上、ゲル化剤Bを併用した場合は、ゲル化剤Aを電解液に対して1.0質量%以上、ゲル化剤Bを電解液に対して0.05質量%以上またはゲル化剤Aを電解液に対して1.5質量%以上、ゲル化剤Bを電解液に対して0.01質量%以上でないと、ゲル状電解液の粘度が低くなり、ゲル状電解液中で亜鉛粒子が安定した状態を保つことができないため耐衝撃性が劣ることがわかる。
【0038】
ゲル化剤Bを単独で使用した場合は、添加量を増やしても耐衝撃性が改善されない。これは、ゲル化剤Aが電解液を吸収して膨張し、亜鉛粒子を固定することによって耐衝撃性を改善するのに対して、ゲル化剤Bは鎖状構造のため高粘度であっても亜鉛粒子を保持することが出来ないためであると考えられる。
【0039】
(試験例3)
次に、上記ゲル化剤Aの分散粘度と粒径が、電池作成の作業性及び制作した電池の耐衝撃性に及ぼす影響を調べるために、ゲル化剤A及びゲル化剤Bの添加量をそれぞれ、2.0質量%、0.1質量%とし、また、ゲル化剤Bとして、分散粘度0.3Pa・sで、粒径100μm以下で平均粒径が10μmの非架橋鎖状ポリアクリル酸を用いて前記実施例と同様にして、電池を作成し、前記試験例1、2と同様にして作業性及び耐衝撃性を調べた。
その結果を表3、及び表4に示す。
【0040】
【表3】
Figure 2004259454
【0041】
【表4】
Figure 2004259454
【0042】
上記表3及び表4の結果から明らかなように、ゲル化剤Aの該水中の0.5質量%分散粘度が35〜80Pa・Sの範囲であれば、上記試験例1及び試験例2の本発明実施例と同様の効果を奏することができる。この範囲を逸脱するとゲル状電解液の粘度がこれより増加または減少し、電池性能に悪影響を与える。例えば、水中の0.5質量%分散粘度が35Pa・S未満だと、ゲル状亜鉛負極は粘度が低すぎ、亜鉛粒子が沈降して分離してしまう。また、水中の0.5質量%分散粘度が80Pa・S以上であると、ゲル状亜鉛負極が高粘度すぎて放電性能を悪化させてしまうことが明かとなった。
またゲル化剤Aである架橋アクリル酸系重合体の粒径は、5μm未満であると耐衝撃性が悪化し、240μm以上では充填量のバラツキが大きくなるので、5〜240μmの粒径範囲が好ましいことが判明した。
【0043】
(試験例4)
次に、上記ゲル化剤Bの分散粘度と粒径が、電池作成の作業性及び制作した電池の耐衝撃性に及ぼす影響を調べるために、ゲル化剤A及びゲル化剤Bの添加量をそれぞれ、2.0質量%、0.1質量%とし、また、ゲル化剤Aとして、分散粘度60Pa・sで、粒径が5〜240μmを主とした平均粒径が35μmの架橋ポリアクリル酸を用いて前記実施例と同様にして、電池を作成し、前記試験例1、2と同様にして作業性及び耐衝撃性を調べた。
その結果を表5及び表6に示す。
【0044】
【表5】
Figure 2004259454
【0045】
【表6】
Figure 2004259454
【0046】
上記表5及び表6の結果から明らかなように、ゲル化剤Bの該40%KOH溶液中の0.5質量%分散粘度が0.05〜0.8Pa・Sの範囲であれば、上記試験例1及び試験例2における本発明の実施例と同様の効果を奏することができ、この範囲を逸脱するとやはりゲル状電解液の粘度の増加または減少によって、上記と同様の問題が生じ、ゲル状負極の分離や高粘度による放電性能の悪化を招く。したがって、架橋アクリル酸系重合体の25℃における水中の0.5質量%分散粘度は35〜80Pa・Sであって、非架橋アクリル酸系重合体の場合は25℃における40質量%水酸化カリウム水溶液中の0.5質量%分散粘度が0.05〜0.8Pa・Sでなければならないことが判明した。
【0047】
また、ゲル化剤Bである非架橋アクリル酸系重合体の粒径は、粒径が100μmを超えても耐衝撃性は改善されず、むしろゲル状亜鉛負極の密度が低下し亜鉛量が確保できないので、その粒径範囲は100μm以下が好ましいことも明かとなった。
【0048】
【発明の効果】
以上説明したように、本発明によれば、無汞化亜鉛合金粉末を使用したことにより電池の低公害化を達成するとともに、無汞化亜鉛合金粉末の使用に伴う作業性の悪化や耐衝撃性の劣化を改善し、放電性能を向上することができる。
【図面の簡単な説明】
【図1】本発明の一実施例であるアルカリ電池の断面図。
【符号の説明】
1…金属缶
2…正極合剤
3…セパレータ
4…ゲル状亜鉛負極
6…絶縁ガスケット
7…リング状の金属板
8…金属封口板
5…負極集電棒[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cylindrical alkaline battery, and more particularly, to a cylindrical alkaline battery provided with a gelled zinc negative electrode using a calcined zinc alloy powder.
[0002]
[Prior art]
Conventionally, as a negative electrode active material of a zinc-alkaline battery, zinc alloy powder has been used for the purpose of suppressing gas generation due to corrosion of zinc and improving electrical characteristics. As it has become a problem, low pollution has become a social demand, and research on zinc alloy compositions and anticorrosives (inhibitors) has been promoted to make zinc alloy powders no mercury (mercury-free). Finally, a gelled zinc negative electrode for a mercury-free alkaline battery having no practical problem in gas generation has been developed.
[0003]
By the way, it was found that a battery simply using the non-melonized zinc alloy powder had lower impact resistance than a battery using the non-melted zinc alloy powder. Therefore, measures have been taken to improve the impact resistance by increasing the viscosity of the gelled zinc negative electrode by reviewing the shape and particle size of the gelling agent or increasing the amount of the gelling agent. However, when the viscosity of the gelled zinc negative electrode is increased to improve the impact resistance of the battery, when the gelled zinc negative electrode is filled, friction with the container wall of the filling device increases, and the gelled zinc negative electrode is smoothly formed. Since it does not flow, it is difficult to perform a stable filling operation. For this reason, the filling operation is facilitated by adding a fluorine-based surfactant to the gelled zinc negative electrode. However, when such a fluorine-based surfactant is added, it acts as an internal resistance of the battery, so that there has been a problem that the discharge duration time is shortened.
[0004]
On the other hand, the recent development of various portable electronic devices has been remarkable, and in particular, since devices requiring heavy load characteristics are increasing, they are superior to the most commonly used alkaline manganese batteries in the past in terms of high rate discharge characteristics. Batteries are expected.
[0005]
In view of the above, nickel-zinc batteries having an inside-out type structure have been studied for batteries that improve high-rate discharge characteristics and achieve high capacity. There is also known an inside-out type nickel-zinc primary battery in which zinc is used as a negative electrode active material by using a positive electrode active material containing (see Patent Document 1).
However, in such a battery, as in the case of the alkaline battery, it is a major premise that the zinc alloy powder to be used is a non-melonized zinc alloy powder that is environmentally friendly. It is known that the battery has a larger voltage drop when a shock is applied to the battery due to dropping or the like, that is, has a lower impact resistance than a battery using a zinc alloy powder.
[0006]
In such batteries as well, to improve the impact resistance, we reviewed the shape and particle size of the gelling agent and improved the impact by increasing the viscosity of the gelled zinc negative electrode to improve the impact resistance. When the viscosity of the gelled zinc negative electrode is increased to improve the impact resistance of the gelled zinc negative electrode, when the gelled zinc negative electrode is filled, friction with the wall of the filling device increases, and the gelled zinc negative electrode does not flow smoothly. However, there is a problem that stable filling work becomes difficult.
[0007]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2000-48827
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to fill a gel zinc negative electrode into a battery in a low-pollution zinc alkaline battery using a calcined zinc alloy powder for the gel zinc negative electrode. And to improve safety by maintaining good impact resistance and enhance discharge performance.
[0009]
[Means for Solving the Problems]
In the present invention, the gelled zinc negative electrode is prepared by using two types of gelling agents in combination. Even if the viscosity of the gelled zinc negative electrode is increased to such an extent that the impact resistance of the battery can be maintained, the gelled zinc negative electrode has a lubricating property. With a focus on the fact that it is easy to fill the shape of the zinc negative electrode into the battery, and as a result, it is possible to provide a zinc alkaline battery having both excellent impact resistance and discharge performance, and improved workability. It was done.
[0010]
That is, the present invention relates to an alkaline battery provided with a gelled zinc negative electrode including a non-melonized zinc alloy powder, a gelling agent, and an alkaline electrolyte,
A crosslinked (meth) acrylic acid-based polymer having a 0.5% by mass dispersion viscosity in water at 25 ° C. of 35 to 80 Pa · S and a particle size of 5 to 240 μm as the gelling agent; Non-crosslinked (meth) acrylic acid-based polymer whose 0.5% by mass dispersion viscosity in a 40% KOH aqueous solution at 25 ° C. is 0.05 to 0.8 Pa · S and whose particle diameter is mainly 100 μm or less A cylindrical alkaline battery characterized by using the following.
[0011]
In the present invention, the amount of the two gelling agents used is such that the addition concentration of the crosslinked (meth) acrylic acid-based polymer is 1.0 to 3.0% by mass with respect to the alkaline electrolyte, ) The concentration of the acrylic acid polymer is preferably in the range of 0.05 to 0.5% by mass based on the alkaline electrolyte.
[0012]
In the present invention, the crosslinked poly (meth) acrylic acid-based polymer is a crosslinked poly (meth) acrylic acid salt, and the non-crosslinked (meth) acrylic acid-based polymer is a linear poly (meth) acrylic acid or Desirable are salts thereof.
[0013]
Further, it is preferable that the positive electrode active material be nickel hydroxide-based compound particles, since a high-rate discharge battery can be realized.
[0014]
Further, the nickel hydroxide-based compound particles are preferably coated with at least one substance selected from cobalt oxyhydroxide, dicobalt trioxide, cobalt monoxide, cobalt hydroxide, metal nickel, and metal cobalt. .
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
As described above, the gelling agent used in the present invention is a combination of a crosslinked (meth) acrylic acid polymer and a non-crosslinked (meth) acrylic acid polymer, and these gelling agents will be described below. .
[0016]
(Crosslinked (meth) acrylic acid polymer)
The crosslinked (meth) acrylic acid-based polymer salt that can be used in the present invention is a homopolymer of acrylic acid or methacrylic acid, a copolymer of acrylic acid or methacrylic acid with another radically polymerizable monomer or a salt thereof ( (Hereinafter referred to as (meth) acrylic acid-based polymer), a polymer formed by cross-linking by electron beam irradiation or X-ray irradiation, or a cross-linking reaction of this (meth) acrylic acid-based polymer with peroxide. A polymer or a polymer crosslinked by the reaction of a functional group such as a carboxyl group or a hydroxyl group of the (meth) acrylic acid-based polymer with a polyfunctional substance capable of forming an ester bond or an amide bond; It is a salt of (meth) acrylic acid polymer in which the carboxyl group of the acid polymer is crosslinked by ionic bond with polyvalent metal ion. As a metal ion constituting such a salt of the crosslinked (meth) acrylic acid-based polymer, a monovalent metal ion such as Na or K, or a divalent metal ion such as Ca or Mg can be used. However, Na ions are preferred because they do not affect battery performance.
Specific examples of the crosslinked (meth) acrylic acid-based polymer include polyacrylic acid, polymethacrylic acid, acrylic acid-methacrylic acid copolymer, acrylic acid-methacrylic acid ester copolymer, acrylic acid-vinyl alcohol A crosslinked product of a polymer such as a copolymer may be used.
This crosslinked (meth) acrylic acid-based polymer salt needs to have a 0.5% by mass dispersion viscosity in water at 25 ° C. in the range of 35 to 80 Pa · S.
[0017]
(Non-crosslinked (meth) acrylic acid polymer)
The non-crosslinked (meth) acrylic acid polymer that can be used in the present invention is a homopolymer of acrylic acid or methacrylic acid, a copolymer of acrylic acid or methacrylic acid with another radical polymerizable monomer, or a salt thereof ( (Hereinafter referred to as a (meth) acrylic acid-based polymer), which is a chain polymer.
Monovalent metal ions such as Na and K can be used as metal ions constituting such a non-crosslinked (meth) acrylic acid-based polymer salt, but from the viewpoint of not affecting battery performance, Na ions are preferred.
Specific examples of the non-crosslinked (meth) acrylic acid-based polymer include polyacrylic acid, polymethacrylic acid, acrylic acid-methacrylic acid copolymer, acrylic acid-acrylic ester copolymer, and methacrylic acid-vinyl. Examples thereof include polymers such as alcohol copolymers and salts thereof.
[0018]
Next, the positive electrode material other than the negative electrode gelling agent and the negative electrode material used in the present embodiment will be described in detail.
(Positive electrode material)
As the positive electrode active material used in the present invention, a conventionally known positive electrode active material can be employed, but it is preferable to use manganese dioxide particles, and nickel oxyhydroxide-based particles, and particularly to mainly use nickel oxyhydroxide particles. The positive electrode active material is excellent in high-rate discharge characteristics and is preferable.
As the manganese dioxide particles, those used in general alkaline batteries can be used.
As the nickel oxyhydroxide-based particles, nickel oxyhydroxide, or nickel oxyhydroxide in which zinc or cobalt alone or both are eutectic can be used. Even a low electrolytic solution ratio is preferable because its structural change can be reduced. The amount of zinc or cobalt eutectic in nickel oxyhydroxide is preferably in the range of 1 to 7%. If the amount of zinc falls below this range, the positive electrode swells depending on the conditions, so that the utilization rate decreases and the discharge capacity decreases. In addition, when the ratio exceeds this range, the purity of nickel is relatively lowered, so that it is not suitable for increasing the capacity.
[0019]
Further, it is preferable to use a composite oxyhydroxide in which a highly conductive high-order cobalt compound is adhered to the surface of nickel hydroxide for the purpose of securing the electronic conductivity between the nickel oxyhydroxide particles.
Examples of the cobalt compound deposited on the surface include, as starting materials, cobalt hydroxide (Co (OH) 2 ), cobalt monoxide (CoO), dicobalt trioxide (Co 2 O 3 ), and the like. This can be oxidized to convert it to a highly conductive high order cobalt oxide such as cobalt oxyhydroxide (CoOOH) or tricobalt tetroxide (Co 3 O 4 ).
[0020]
The positive electrode active material of the present invention can be produced, for example, by the following method.
Cobalt hydroxide is added to nickel hydroxide particles doped with zinc and cobalt, and an aqueous sodium hydroxide solution is sprayed while stirring in an air atmosphere. Subsequently, by performing microwave heating, composite nickel hydroxide particles having a layer of cobalt higher oxide formed on the surface of nickel hydroxide are generated. Further, an oxidizing agent such as sodium hypochlorite is added to the reaction system to proceed with the oxidation to produce a composite nickel oxyhydroxide coated with a cobalt higher oxide. Thereby, a positive electrode active material having extremely excellent conductivity can be obtained.
[0021]
As the cobalt particles or the cobalt compound particles used in this case, it is preferable to use cobalt hydroxide having a specific surface area of 2.5 to 30 m 3 / g. By employing the cobalt particles or the cobalt compound particles having the above range, a contact area between nickel hydroxide and cobalt hydroxide is secured, which leads to an improvement in the utilization rate of the positive electrode.
[0022]
Further, by adding a compound of Y, Er, Yb, and Ca to the positive electrode active material of the nickel hydroxide, the capacity retention during storage can be improved. Examples of the compounds used include metal oxides such as Y 2 O 3 , Er 2 O 3 , and Yb 2 O 3 , and metal fluorides such as CaF 2 . These metal oxides and metal fluorides can be used in the range of 0.1 to 2% by mass based on nickel hydroxide as the positive electrode active material. When the amount of the metal oxide or the metal fluoride falls below the above range, the effect of improving the storage characteristics cannot be obtained.On the other hand, when the amount of the metal oxide or the metal fluoride exceeds the above range, the amount of the positive electrode active material decreases relatively. It is not preferable because it is not suitable for increasing the capacity.
In the present invention, in order to improve the conductivity of the positive electrode, it is desirable to include carbon particles in the positive electrode material.
As such carbon particles, for example, acetylene black, carbon black and the like can be used. The compounding amount is appropriately in the range of positive electrode active material: carbon particles = 100: 3 to 10 (mass ratio). If the compounding ratio of the carbon particles is higher than this, the amount of the active material is relatively reduced, so that it is not suitable for increasing the capacity. On the other hand, if the compounding ratio of the carbon particles is lower than this, the electron conductivity relatively decreases, so Not suitable for output characteristics.
[0023]
(Negative electrode material)
The negative electrode material used in the present invention is composed of a negative electrode active material containing a zinc alloy as a main component, the above-mentioned gelling agent, an electrolytic solution, and, if necessary, a gel material in which a zinc compound is mixed.
[0024]
As the zinc alloy used in the present invention, a zinc alloy containing no mercury and lead, which is known as a non-melting zinc alloy, can be used. Specifically, a zinc alloy containing 0.06% by mass of indium, 0.014% by mass of bismuth, and 0.0035% by mass of aluminum has an effect of suppressing generation of hydrogen gas, and is therefore preferable. In particular, indium and bismuth are desirable for improving discharge performance.
The reason for using a zinc alloy instead of pure zinc as the negative electrode active material is that the rate of self-dissolution in an alkaline electrolyte is slowed, and the generation of hydrogen gas inside the battery when a closed battery product is used is suppressed. This is to prevent accidents caused by liquid.
[0025]
Further, the shape of the zinc alloy is desirably a powder so that the surface area can be increased to cope with a large current discharge. In the present invention, the average particle size of the zinc alloy is preferably in the range of 100 to 350 μm. When the average particle size of the zinc alloy exceeds the above range, the surface area becomes relatively small, and it becomes difficult to cope with a large current discharge. When the average particle size is less than the above range, handling during battery assembly is difficult, and not only is it difficult to uniformly mix with the electrolyte and the gelling agent, but also the surface is oxidized because the surface is active. Easy and unstable.
[0026]
The electrolyte used in the present invention is preferably an aqueous solution using an alkali salt such as potassium hydroxide or sodium hydroxide as a solute, and particularly preferably potassium hydroxide.
[0027]
Further, in the present invention, it is desirable to add a zinc compound to an electrolyte obtained by dissolving an alkali salt such as potassium hydroxide in water. Examples of such a zinc compound include compounds such as zinc oxide and zinc hydroxide, and zinc oxide is particularly preferred. The use of an alkaline aqueous solution containing at least a zinc compound as the electrolytic solution is that the self-dissolution of the zinc alloy in the alkaline aqueous solution is significantly less than that of the acidic electrolytic solution, and furthermore, in the alkaline electrolytic solution of the zinc alloy. Is further suppressed by dissolving a zinc compound, for example, zinc oxide and pre-existing zinc ions.
[0028]
【Example】
(Examples and Comparative Examples)
Hereinafter, examples and comparative examples of the present invention will be described in detail.
The following two gelling agents, gelling agent A and gelling agent B, were prepared. Gelling agent A is a crosslinked acryl having a 0.5% by mass dispersion viscosity in water at 25 ° C. of 60 Pa · S (BH type viscometer) and an average particle size of 35 μm mainly having a particle size of 5 to 240 μm. The gelling agent B is an acid polymer, the dispersion viscosity of 0.5% by mass in a 40% aqueous KOH solution at 25 ° C. is 0.3 Pa · S (vismetron VS-1H type viscometer), and its particle size is It is a linear polyacrylic acid having an average particle size of 10 μm and a size of 100 μm or less.
The gelling agent A and the gelling agent B are added to 100 g of an electrolytic solution composed of an aqueous potassium hydroxide solution and zinc oxide, and the gelling agent A is gelled in the range of 0 to 3.5% by mass. The agent B was added in a range of 0 to 1.0% by mass while changing, and further, a non-melting zinc alloy powder was added to prepare 300 g of a gelled zinc negative electrode.
[0029]
Using the gelled zinc negative electrode thus prepared, an LR6 (AA) alkaline battery according to JIS shown in FIG. 1 was assembled.
In FIG. 1, reference numeral 1 denotes a cylindrical metal can having a bottom serving also as a positive electrode terminal. In the metal can 1, three positive electrode materials 2 formed into a cylindrical shape by pressure are separately filled. The positive electrode mixture 2 is obtained by mixing manganese dioxide powder and carbon powder, and pressing the mixture into a hollow cylindrical shape at a predetermined pressure using a molding die.
[0030]
In the hollow portion of the positive electrode mixture 2, a bottomed cylindrical separator 3 made of a nonwoven fabric of acetalized polyvinyl alcohol fiber is disposed. The gelled zinc negative electrode 4 produced by the above method is filled through the separator. In the gelled zinc negative electrode 4, a negative electrode current collector rod 5 made of brass is mounted so that its upper end protrudes from the gelled zinc negative electrode 4. An insulating gasket 6 made of a double annular polyamide resin is disposed on the outer peripheral surface of the protruding portion of the negative electrode current collecting rod 5 and the inner peripheral surface of the upper portion of the metal can 1. A ring-shaped metal plate 7 is disposed between the double annular portions of the insulating gasket 6, and a hat-shaped metal sealing plate 8 serving also as a negative electrode terminal is provided on the metal plate 7 as a current collector rod 5. It is arranged so as to abut on the head of the. The inside edge of the metal can 1 is sealed by the gasket 6 and the metal sealing plate 8 by bending the opening edge of the metal can 1 inward.
[0031]
(Test Example 1)
The workability of each of the LR6 alkaline batteries assembled as described above was examined.
That is, the state of the flow on the vessel wall of the filling device when each of the above-mentioned gelled zinc negative electrodes was filled was examined. In Table 1, ◎ indicates very good, ○ indicates good, Δ indicates acceptable, and × indicates unacceptable. In addition,-indicates that the amount of the gelling agent was small, sedimentation and separation of zinc particles occurred, and the gel did not work.
[0032]
[Table 1]
Figure 2004259454
[0033]
As shown in Table 1, when the gelling agent A is used alone, it becomes a gel at 2.5% by mass or more. However, since the ability to retain zinc particles is strong, the gel has a high viscosity. It can be seen that the workability is deteriorated. The workability is improved by adding the gelling agent B to this. This is because the chain polyacrylic acid dissolves and distributes on the surface of the non-melonized zinc alloy powder and the cross-linked acrylic acid-based polymer and acts as a lubricant, thus reducing friction with the wall of the filling device. It is considered that the filling of the gelled zinc negative electrode can be facilitated.
[0034]
However, when the total of the gelling agent A and the gelling agent B is 4.0% by mass or more, the workability also deteriorates due to the high viscosity. In addition, in the case of a gel having a high viscosity which contains too much gelling agent, there is a tendency that the supply of the electrolytic solution tends to be insufficient during discharge, and this is particularly noticeable during heavy-load discharge, and there is a problem that the duration is reduced.
[0035]
(Test Example 2)
The impact resistance of each of the LR6 alkaline batteries assembled as described above was examined.
That is, the impact resistance test was performed by freely dropping a battery discharged with a discharge load of 2Ω from a height of 2 m and measuring the amount of change in operating voltage at that time with an oscilloscope. The results are shown in Table 2 (average value of n = 3). In Table 2, ◎ indicates a variation of 100 mV or less, は indicates 100 to 200 mV, Δ indicates 200 to 500 mV, and X indicates 500 mV or more.
[0036]
[Table 2]
Figure 2004259454
[0037]
As shown in Table 2, when the gelling agent A was used alone, 2.5% by mass or more based on the electrolyte solution, and when the gelling agent B was used in combination, the gelling agent A was added to the electrolyte solution. 1.0% by mass or more, the gelling agent B is 0.05% by mass or more based on the electrolytic solution, or the gelling agent A is 1.5% by mass or more based on the electrolytic solution. On the other hand, if the content is not 0.01% by mass or more, the viscosity of the gel electrolyte becomes low, and the impact resistance is poor because the zinc particles cannot be kept stable in the gel electrolyte.
[0038]
When the gelling agent B is used alone, the impact resistance is not improved even if the added amount is increased. This is because the gelling agent A absorbs the electrolyte and expands to improve the impact resistance by fixing the zinc particles, whereas the gelling agent B has a high viscosity due to the chain structure. This is considered to be because zinc particles cannot be retained.
[0039]
(Test Example 3)
Next, in order to investigate the influence of the dispersion viscosity and the particle size of the gelling agent A on the workability of battery preparation and the impact resistance of the manufactured battery, the addition amounts of the gelling agents A and B were determined. Non-crosslinked linear polyacrylic acid having a dispersion viscosity of 0.3 Pa · s, a particle diameter of 100 μm or less, and an average particle diameter of 10 μm was set as 2.0% by mass and 0.1% by mass, respectively. And a battery was prepared in the same manner as in the above Examples, and workability and impact resistance were examined in the same manner as in Test Examples 1 and 2.
The results are shown in Tables 3 and 4.
[0040]
[Table 3]
Figure 2004259454
[0041]
[Table 4]
Figure 2004259454
[0042]
As is clear from the results of Tables 3 and 4, if the 0.5% by mass dispersion viscosity of the gelling agent A in the water is in the range of 35 to 80 Pa · S, the test examples 1 and 2 The same effects as the embodiment of the present invention can be obtained. When the viscosity is out of this range, the viscosity of the gel electrolyte increases or decreases, which adversely affects battery performance. For example, if the 0.5% by mass dispersion viscosity in water is less than 35 Pa · S, the viscosity of the gelled zinc negative electrode is too low, and the zinc particles settle and separate. Further, it was clarified that when the 0.5% by mass dispersion viscosity in water was 80 Pa · S or more, the gelled zinc negative electrode was too high in viscosity and deteriorated the discharge performance.
When the particle size of the crosslinked acrylic acid polymer as the gelling agent A is less than 5 μm, the impact resistance is deteriorated, and when the particle size is 240 μm or more, the dispersion of the filling amount becomes large. It turned out to be favorable.
[0043]
(Test Example 4)
Next, in order to examine the influence of the dispersion viscosity and the particle size of the gelling agent B on the workability of battery production and the impact resistance of the produced battery, the addition amounts of the gelling agents A and B were determined. 2.0 mass% and 0.1 mass%, respectively, and as a gelling agent A, a crosslinked polyacrylic acid having a dispersion viscosity of 60 Pa · s and an average particle diameter of 35 μm mainly having a particle diameter of 5 to 240 μm. And a battery was prepared in the same manner as in the above Examples, and workability and impact resistance were examined in the same manner as in Test Examples 1 and 2.
The results are shown in Tables 5 and 6.
[0044]
[Table 5]
Figure 2004259454
[0045]
[Table 6]
Figure 2004259454
[0046]
As is clear from the results of Tables 5 and 6, when the 0.5% by mass dispersion viscosity of the gelling agent B in the 40% KOH solution is in the range of 0.05 to 0.8 Pa · S, the above The same effects as those of the examples of the present invention in Test Examples 1 and 2 can be obtained. If the viscosity deviates from this range, the same problem as described above occurs due to the increase or decrease in the viscosity of the gel electrolyte. This causes separation of the negative electrode and deterioration of discharge performance due to high viscosity. Therefore, the 0.5% by mass dispersion viscosity in water of the crosslinked acrylic acid-based polymer at 25 ° C. is 35 to 80 Pa · S, and the non-crosslinked acrylic acid-based polymer is 40% by mass potassium hydroxide at 25 ° C. It turned out that the 0.5% by mass dispersion viscosity in the aqueous solution must be 0.05 to 0.8 Pa · S.
[0047]
The particle size of the non-crosslinked acrylic acid polymer as the gelling agent B, even if the particle size exceeds 100 μm, does not improve the impact resistance, but rather decreases the density of the gelled zinc negative electrode and secures the amount of zinc. Since it is impossible, the particle size range is preferably 100 μm or less.
[0048]
【The invention's effect】
As described above, according to the present invention, the use of the non-melonized zinc alloy powder achieves the reduction of the pollution of the battery and the deterioration of workability and the impact resistance due to the use of the non-melted zinc alloy powder. The deterioration of the performance can be improved, and the discharge performance can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an alkaline battery according to one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Metal can 2 ... Positive electrode mixture 3 ... Separator 4 ... Gel zinc negative electrode 6 ... Insulating gasket 7 ... Ring-shaped metal plate 8 ... Metal sealing plate 5 ... Negative electrode current collecting rod

Claims (5)

無汞化亜鉛合金粉末、ゲル化剤及びアルカリ電解液を含むゲル状亜鉛負極を備えたアルカリ電池において、
前記ゲル化剤が、25℃における水中の0.5質量%分散粘度が35〜80Pa・Sで、かつその粒径が5〜240μmを主としたものである架橋(メタ)アクリル酸系重合体と、25℃における40%KOH水溶液中の0.5質量%分散粘度が0.05〜0.8Pa・Sで、かつその粒径が100μm以下を主とした非架橋(メタ)アクリル酸系重合体とを混合使用したものであることを特徴とする筒型アルカリ電池。
In an alkaline battery provided with a gelled zinc negative electrode containing a non-melonized zinc alloy powder, a gelling agent and an alkaline electrolyte,
A crosslinked (meth) acrylic acid-based polymer in which the gelling agent has a 0.5% by mass dispersion viscosity in water at 25 ° C. of 35 to 80 Pa · S and a particle size of 5 to 240 μm mainly. And a non-crosslinked (meth) acrylic acid-based polymer whose 0.5% by mass dispersion viscosity in a 40% KOH aqueous solution at 25 ° C. is 0.05 to 0.8 Pa · S and whose particle diameter is mainly 100 μm or less. A cylindrical alkaline battery characterized by being mixed with a combined battery.
前記架橋(メタ)アクリル酸系重合体の添加濃度が、アルカリ電解液に対して1.0〜3.0質量%で、かつ非架橋(メタ)アクリル酸系重合体の添加濃度がアルカリ電解液に対して0.03〜0.5質量%の範囲であることを特徴とする請求項1記載の筒型アルカリ電池。The addition concentration of the crosslinked (meth) acrylic acid polymer is 1.0 to 3.0% by mass based on the alkaline electrolyte, and the addition concentration of the non-crosslinked (meth) acrylic acid polymer is the alkaline electrolyte. 2. The cylindrical alkaline battery according to claim 1, wherein the content is in the range of 0.03 to 0.5% by mass. 前記架橋(メタ)アクリル酸系重合体が、架橋ポリアクリル酸塩であり、また非架橋ポリ(メタ)アクリル酸系重合体が鎖状ポリアクリル酸またはその塩であることを特徴とする請求項1または請求項2記載の筒型アルカリ電池。The crosslinked (meth) acrylic acid-based polymer is a crosslinked polyacrylic acid salt, and the non-crosslinked poly (meth) acrylic acid-based polymer is a linear polyacrylic acid or a salt thereof. The cylindrical alkaline battery according to claim 1. 前記正極活物質が水酸化ニッケル系化合物粒子であることを特徴とする請求項1ないし請求項3のいずれかに記載の筒型アルカリ電池。The cylindrical alkaline battery according to any one of claims 1 to 3, wherein the positive electrode active material is nickel hydroxide-based compound particles. 前記水酸化ニッケル系化合物粒子が、オキシ水酸化コバルト、三酸化ニコバルト、一酸化コバルト、水酸化コバルト、金属ニッケル、金属コバルトより選ばれる少なくとも一つの物質により被覆されていることを特徴とする請求項4に記載の筒型アルカリ電池。The nickel hydroxide-based compound particles are coated with at least one substance selected from cobalt oxyhydroxide, dicobalt trioxide, cobalt monoxide, cobalt hydroxide, metallic nickel, and metallic cobalt. 5. The cylindrical alkaline battery according to 4.
JP2003045384A 2003-02-24 2003-02-24 Cylindrical alkaline battery Expired - Lifetime JP4480945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045384A JP4480945B2 (en) 2003-02-24 2003-02-24 Cylindrical alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045384A JP4480945B2 (en) 2003-02-24 2003-02-24 Cylindrical alkaline battery

Publications (2)

Publication Number Publication Date
JP2004259454A true JP2004259454A (en) 2004-09-16
JP4480945B2 JP4480945B2 (en) 2010-06-16

Family

ID=33112203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045384A Expired - Lifetime JP4480945B2 (en) 2003-02-24 2003-02-24 Cylindrical alkaline battery

Country Status (1)

Country Link
JP (1) JP4480945B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114422A (en) * 2004-10-18 2006-04-27 Fdk Energy Co Ltd Positive electrode mixture of alkaline battery, and alkaline battery
WO2011007761A1 (en) * 2009-07-16 2011-01-20 住友精化株式会社 Gelling agent for an electrolyte solution for an alkaline battery
CN105226233A (en) * 2015-10-21 2016-01-06 宁波倍特瑞能源科技有限公司 A kind of negative pole of alkaline dry battery and application thereof
WO2016051811A1 (en) * 2014-10-03 2016-04-07 凸版印刷株式会社 Negative electrode substance for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN105185971B (en) * 2015-10-21 2019-03-29 宁波倍特瑞能源科技有限公司 A kind of cathode of alkaline dry battery and its application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216760A (en) * 1989-02-17 1990-08-29 Matsushita Electric Ind Co Ltd Zinc alkaline battery
JPH08138656A (en) * 1994-11-04 1996-05-31 Matsushita Electric Ind Co Ltd Alkaline battery
JP2000223113A (en) * 1999-02-02 2000-08-11 Toshiba Battery Co Ltd Zinc alkaline battery
JP2001006680A (en) * 1999-06-18 2001-01-12 Toshiba Battery Co Ltd Zinc alkaline battery
JP2003017080A (en) * 2001-06-29 2003-01-17 Toshiba Battery Co Ltd Zinc alkaline battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216760A (en) * 1989-02-17 1990-08-29 Matsushita Electric Ind Co Ltd Zinc alkaline battery
JPH08138656A (en) * 1994-11-04 1996-05-31 Matsushita Electric Ind Co Ltd Alkaline battery
JP2000223113A (en) * 1999-02-02 2000-08-11 Toshiba Battery Co Ltd Zinc alkaline battery
JP2001006680A (en) * 1999-06-18 2001-01-12 Toshiba Battery Co Ltd Zinc alkaline battery
JP2003017080A (en) * 2001-06-29 2003-01-17 Toshiba Battery Co Ltd Zinc alkaline battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114422A (en) * 2004-10-18 2006-04-27 Fdk Energy Co Ltd Positive electrode mixture of alkaline battery, and alkaline battery
WO2011007761A1 (en) * 2009-07-16 2011-01-20 住友精化株式会社 Gelling agent for an electrolyte solution for an alkaline battery
WO2016051811A1 (en) * 2014-10-03 2016-04-07 凸版印刷株式会社 Negative electrode substance for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6066021B2 (en) * 2014-10-03 2017-01-25 凸版印刷株式会社 Non-aqueous electrolyte secondary battery negative electrode agent, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
CN106463705A (en) * 2014-10-03 2017-02-22 凸版印刷株式会社 Negative electrode substance for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPWO2016051811A1 (en) * 2014-10-03 2017-04-27 凸版印刷株式会社 Non-aqueous electrolyte secondary battery negative electrode agent, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
CN105226233A (en) * 2015-10-21 2016-01-06 宁波倍特瑞能源科技有限公司 A kind of negative pole of alkaline dry battery and application thereof
CN105185971B (en) * 2015-10-21 2019-03-29 宁波倍特瑞能源科技有限公司 A kind of cathode of alkaline dry battery and its application

Also Published As

Publication number Publication date
JP4480945B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP5453243B2 (en) Alkaline chemical battery
US5587254A (en) Alkaline battery having a gelled negative electrode
JP4049811B2 (en) Primary electrochemical cell
JP5172181B2 (en) Zinc alkaline battery
JPH0765817A (en) Alkaline battery
JP2003017077A (en) Sealed alkaline zinc primary battery
JP2004259454A (en) Cylindrical alkaline battery
JP4914983B2 (en) Negative electrode composition for alkaline battery, zinc alloy powder used in the composition, and alkaline battery using the composition
JP2007227011A (en) Alkaline cell
JP6944994B2 (en) Alkaline secondary battery
EP4068412A1 (en) Alkaline battery positive electrode, alkaline battery, and production method therefor
JP7149079B2 (en) alkaline secondary battery
JP2005038697A (en) Cylinder alkaline battery
JP2017069075A (en) Alkaline secondary battery
JP2001006680A (en) Zinc alkaline battery
JP2003017079A (en) Zinc alkaline battery
JP2003086163A (en) Alkaline dry battery
JP2007220373A (en) Sealed alkaline zinc primary cell
JP7121585B2 (en) alkaline battery
JP2004139909A (en) Sealed nickel-zinc primary battery
JP7071131B2 (en) Alkaline secondary battery
JP3968248B2 (en) Aluminum battery
WO2019142915A1 (en) Alkaline secondary cell, charging method of said alkaline secondary cell, and charging device of alkaline secondary cell
JP2018060610A (en) Alkaline secondary battery
JP3315530B2 (en) Alkaline battery

Legal Events

Date Code Title Description
RD15 Notification of revocation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7435

Effective date: 20040702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150