[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004255839A - Ink jet three-dimensionally shaping device and shaping method - Google Patents

Ink jet three-dimensionally shaping device and shaping method Download PDF

Info

Publication number
JP2004255839A
JP2004255839A JP2003052108A JP2003052108A JP2004255839A JP 2004255839 A JP2004255839 A JP 2004255839A JP 2003052108 A JP2003052108 A JP 2003052108A JP 2003052108 A JP2003052108 A JP 2003052108A JP 2004255839 A JP2004255839 A JP 2004255839A
Authority
JP
Japan
Prior art keywords
support material
support
model
dimensional printing
printing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003052108A
Other languages
Japanese (ja)
Inventor
Kunihiro Tamahashi
邦裕 玉橋
Tsutomu Maekawa
勉 前川
Hidetoshi Fujii
秀俊 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Printing Systems Ltd
Original Assignee
Hitachi Printing Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Printing Solutions Inc filed Critical Hitachi Printing Solutions Inc
Priority to JP2003052108A priority Critical patent/JP2004255839A/en
Publication of JP2004255839A publication Critical patent/JP2004255839A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily manufacture a three-dimensionally shaped product using an ink jet three-dimensionally shaping device, and to facilitate the interfacial release between a model material and a support material after shaping, with regard to their separation method after shaping. <P>SOLUTION: This three-dimentionally shaping device is constituted in the way that the model material which becomes a finished product and the support material which supports the model material during manufacturing, are created by means of an ink jet head with a plurality of nozzles. In the three-dimensionally shaping device, a nozzle for discharging the model material, a nozzle for discharging a first support material and a nozzle for discharging a second auxiliary support material having a release performance are provided. Consequently, liquids having different characteristics at the ink jet head are easily discharged, and the properties of releasability are provided between a conventional support material and a conventional model material. Further, the model material is easily separated from the support material without breaking, fusing or melting the support material. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、インクジェット方式で立体造形物を容易に作製するの三次元造形装置及び造形方法に係るもので、更に詳しくは造形後のモデル材とサポート材の分離法に関して両者の界面での剥離を容易にする方法に関するものである。
【0002】
【従来の技術】
三次元造形する方法として、インクジェット方式で固体インクを用いて三次元造形する方法が知られている(例えば、特許文献1参照)。また、サポート材に固体インクを使用し、モデル材(造形材)にUVインクを用いて製品化するといった報告がなされている(例えば、非特許文献1参照)。
【0003】
【特許文献1】
米国特許第4,992,806号明細書
【非特許文献1】
日刊工業新聞社刊行,「型技術」,2001年9月号,第16巻,第10号,P.43−45
【0004】
【発明が解決しようとする課題】
これまで、モデル材及びサポート材を用いて造形する三次元造形方法においては、製品となるモデル材を取り出すため、モデル材の周囲に存在する全サポート材を、有機溶媒を用いて溶解させるか、もしくは加熱して融解させなければならなかった。
【0005】
例えば、図2に示すように、まず、サポート材用ノズル24から固体インク25を吐出させ、次いでモデル用ノズル23からモデル材27を吐出させる。そして、再度、サポート材用ノズル24から固体インク15を吐出させる。この工程を走査して、平面内に厚み数10μmの2.5次元の図形を描写させる。これを垂直軸方向に積層させて立体モデルを作製する。その後、モデル材27と不用となるサポート材25とを分離する。通常、サポート材25は溶融させるか、薬液によって除去されるが、除去できなかった分、例えば図2のAの領域は手作業で掻き取らなければならない。
【0006】
しかしながら、昨今の環境負荷低減が叫ばれている状況下では、溶剤の使用を極力押さえこまなければならず、かつ省エネルギにも最大限注意を払わねばならなくなってきている。更に、手で掻き取るという効率の悪さを解消しない限り、三次元造形装置の普及は見込めない。
【0007】
以上より、本発明は、三次元造形を行なった後、容易にモデル材とサポート材を分離させ得るアイディアの創生を課題とする。
【0008】
【課題を解決するための手段】
市販のインクジェットプリンタに見られるように当プリンタは4色から7色まで自由に吐出できる。このようにインクジェットは、特性の異なる液体を容易に吐出できる。この特徴を利用して、サポート材とモデル材の間に、離型性の特性を持った第2のサポート材を吐出、積層させた積層サポート材を考案し、従来のサポート材を全部融解又は溶解することなく、モデル材とサポート材の分離を容易にするものである。
【0009】
【発明の実施の形態】
以下、本発明について図面を用いて説明する。
〔実施例1〕
まず、インクジェット方式の三次元造形装置について、図1の本発明の主要を構成する垂直断面図を用いて説明する。
【0010】
図において、1はプリントヘッドである。このプリントヘッドの動作は、卑近な例として挙げれば、印刷に用いる市販の圧電素子方式のインクジェットプリントヘッドを想像すれば良い。そして、本発明では、市販のインクジェットプリンタで用いる水性インクの代わりに、室温ではクレヨンのように固体であるが、吐出時には加熱溶融させて融液にされることにより吐出可能な粘度となる固体インクや、紫外線硬化型インク等を用いる。
【0011】
プリントヘッド1には、複数のノズルが設けられた3種類のノズル列が存在する。このうち、ノズル列2には離型性能を有する第2のサポート材、ノズル列3にはモデル材(造形材)、ノズル列4は造形物の型を形成する第1のサポート材となる液が蓄えられている。また、プリントヘッド1は図示しない移動手段により、図中、左右方向に往復移動し、この往復移動の過程で、夫々の材料を任意に吐出するよう制御されている。このプリントヘッド1によって作製された造形物8は、第2のサポート材7を介して第1のサポート材6に支持された状態で保持されている。
【0012】
次に、インクジェット方式の三次元造形の製造方法について説明する。
【0013】
図1において、最終的に製品となる部材はモデル材8である。三次元造形法では、造形前の事前準備として、対象とするモデルを水平面で薄くスライシングして2.5次元にデータ処理して積み上げていく手法を取っている。従って、形状が入り組んでいて出っ張っている個所には、その下側にサポート材6といわれる材料をあてがいながら積み上げていくようにデータ処理する。通常、スライシングする厚みは数10μmである。
【0014】
図示しないコンピュータから、事前準備で2.5次元にスライスされたデータが送信されてくると、図示しない駆動手段でもって、ノズル列2、ノズル列3、ノズル列4の各ノズルから、夫々所定の液滴5が吐出されて、平面上に画像を描画する。ここで、各ノズル列の吐出液量は、液滴の凝固時に数10μmの厚みとなるように調整される。本発明のように、固体インクや紫外線硬化型インクを用いると、吐出した液滴が盛り上がった状態となり、これを積み重ねていくことで立体像を形成させる。
【0015】
図3に、各液滴の吐出工程及び吐出された液滴の状態を示す。まず、第1のサポート材用ノズル列4から固体インク15を吐出させる。次いで、第2のサポート材用ノズル2列から離型剤を含んだ液16を吐出させる。本例では、離型剤としてフッ素系離型剤を用いた。更に、モデル材用ノズル列3からモデル材17を吐出させる。そして、再度、第2のサポート材用ノズル列2から離型剤を含んだ液16を吐出後、第1のサポート材用ノズル列4から固体インク15を吐出させる。この工程により、平面内に厚み数10μmの2.5次元の図形を描写させる。これを垂直軸方向に積層させて立体モデルを作製すると、図1のような造形物が作られる。その後、不用となる第1のサポート材6とモデル材8を分離させるが、従来法と異なり、図3のBの領域に示すように、第1のサポート材15とモデル材17との境界には離型剤16が介在するので、何らの溶剤を使用することなく、手作業であっても容易に分離できるようになる。
〔実施例2〕
本例では第1のサポート材46とモデル材48との分離を、冷却により行なう方法を検討した。
以下、図4を用いて説明する。
実施例1と同様の方法で作製したモデル材48と第1のサポート材46が未分離の状態の造形物を、−25℃で設定されている冷凍庫40に入れて硬化させた。ここで、第1のサポート材としては、モデル材よりも低温で脆化し易い材料を選定しておく。本実施例では、第1のサポート材にカルナバワックス等を主成分としたワックス系の材料、モデル材にはプロピレン樹脂を用いた。十分に冷えたと確認できた後、冷蔵庫から造形物を取り出し、機械的打撃を加えた。すると、第1のサポート材46に多数のクラック41が形成された。このようにして離型層となる第2のサポート材47を介して、第1のサポート材46をモデル材48から容易に分離できる。このとき、第1のサポート材46が固体の断片のため、掃除等の後処理が極めて容易になる。なお、本例では冷凍庫を用いて冷却したが、液体窒素に入れたり、冷凍圧縮空気を吹き付ける手法でも同等の効果を期待できる。
〔実施例3〕
本例では第2のサポート材のみを熱で溶解する方法を検討した。
まず、実施例1と同様の方法で造形物を形成するが、このとき第2のサポート材57には、モデル材58と第1のサポート材56よりも低融点の成分を含んだ材料を用いた。また、造形の際には、図5に示すように、第1のサポート材56の一部に第2のサポート材と同質の材料でドレイン用溝52を形成した。造形物を作製した後、受け皿53に入れて加熱炉内で造形物を加熱すると、低融点の成分を含んだ第2のサポート材57のみが溶解し、第1のサポート材56に予め設けたドレイン用溝52から流出させることができた。これにより、第2のサポート材57のみ溶解して、モデル材58と第1のサポート材56との境界にギャップが形成される。このギャップにより、第1のサポート材56とモデル材58とを容易に分離できる。
〔実施例4〕
本例では第2のサポート材のみを薬剤で溶解する方法を検討した。
まず、実施例1と同様の方法で造形物を形成するが、このとき第2のサポート材57にはアセトンで容易に溶解する成分を含んだ材料を用い、モデル材58と第1のサポート材56にはアセトンで容易に溶解する成分を含めないようにした。また、造形の際には、図5に示すように、第1のサポート材56の一部に第2のサポート材と同質の材料でドレイン用溝52を形成した。造形物を作製した後、図5に示す様に、受け皿13に入れて表面からアセトンを流したところ、第2のサポート材57のみ溶解して、モデル材58と第1のサポート材56との境界にはギャップが形成された。このギャップにより、第1のサポート材56とモデル材58とを容易に分離できる。なお、本例では溶解用の薬剤としてアセトンを用いたが、第2のサポート材を選択的に溶解させる液体であれば、本実施例の主旨を達成できる。
〔実施例5〕
本実施例では第1のサポート材とモデル材との熱膨張差を利用して分離する方法について検討した。
造形物を作製する方法は実施例1と同様である。ここでは第1のサポート材を低熱膨張材にする手法について述べる。第1のサポート材として、固体インクに直径0.1μmのシリカからなるフィラーを10%添加し、表面張力、粘度等インクジェットで吐出可能となるように調整した。この調整により、第1のサポート材はモデル材よりも熱膨張係数が7ppm小さくなった。なお、第2のサポート材はフッ素系離型剤を用いている。造形物を作製した後、図4に示した冷凍機を用いて−70℃まで冷却したところ、モデル材が若干収縮し、第1のサポート材から容易に分離できた。なお、分離されたモデル材は室温に戻すと元の形状に戻る。
〔実施例6〕
本実施例では第2のサポート材のみを吸収する電磁波のエネルギで溶解する方法を検討した。
第2のサポート材には、電磁波を吸収するフィラーを添加した。本実施例ではカーボンの微粉末を10%添加した。更に、第2のサポート材に前記フィラーを均一分散させて、なおかつ、表面張力、粘度等インクジェットで吐出可能な固体インクに調整した。
第2のサポート材にとして電磁波のエネルギを吸収させるためのフィラーを添加し、実施例1と同様の方法で造形物を作製した後、図6に示す様に500kHz高周波を印加して、誘導加熱方式で第2のサポート材67の中のカーボンを加熱し、この熱で第2のサポート材67を溶融させ、第1のサポート材66に予め設けておいた第2のサポート材と同質の材料で形成されたドレイン用溝62から、第2のサポート材67のみを流出させる。第2のサポート材67流出した結果、モデル材68と第1のサポート材66との境界にギャップが形成される。その後は主サポート材を割ることによって容易にモデル材と分離できる。
【0016】
【発明の効果】
本発明により、三次元造形法の最終工程であるモデル材とサポート材との分離を簡易化できるので、三次元造形法を普及できる。
【図面の簡単な説明】
【図1】本発明の主要部位を構成する三次元造形装置の概略図である。
【図2】従来法によるサポート材、モデル材用液の滴下順序を示す説明図である。
【図3】本発明による主サポート材、副サポート材、モデル材用液の滴下順序を示す説明図である。
【図4】実施例2の製造方法を説明する概略図である。
【図5】実施例3の製造方法を説明する概略図である。
【図6】実施例6の製造方法を説明する概略図である。
【符号の説明】
1はプリントヘッド、2は第2のサポート材用インクジェットノズル、3はモデル材用インクジェットノズル、4は第1のサポート材用インクジェットノズル、5は吐出液滴、6は第1のサポート材、7は第2のサポート材、8はモデル材、9はプリントヘッドの走査方向、10は恒温炉、11はクラック、12はドレイン用第2のサポート材、13はパレット、14は電磁波発生器、15は第1のサポート材用液滴、16は第2のサポート材用液滴、17はモデル材用液滴である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a three-dimensional molding apparatus and a molding method for easily producing a three-dimensional molded object by an ink jet method, and more particularly, to a method of separating a model material and a support material after molding at the interface between the two. How to make it easier.
[0002]
[Prior art]
As a method of performing three-dimensional modeling, a method of performing three-dimensional modeling using solid ink by an inkjet method is known (for example, see Patent Document 1). Further, there is a report that a solid ink is used as a support material and a product is manufactured using a UV ink as a model material (molding material) (for example, see Non-Patent Document 1).
[0003]
[Patent Document 1]
US Patent No. 4,992,806 [Non-Patent Document 1]
Published by Nikkan Kogyo Shimbun, "Mold Technology", September 2001, Volume 16, No. 10, 43-45
[0004]
[Problems to be solved by the invention]
Until now, in the three-dimensional modeling method of modeling using a model material and a support material, in order to take out the model material to be a product, all the support materials existing around the model material are dissolved using an organic solvent, Or it had to be heated and melted.
[0005]
For example, as shown in FIG. 2, first, the solid ink 25 is ejected from the support material nozzle 24, and then the model material 27 is ejected from the model nozzle 23. Then, the solid ink 15 is ejected from the support material nozzle 24 again. By scanning this process, a 2.5-dimensional figure having a thickness of several tens of μm is drawn in a plane. This is laminated in the vertical axis direction to produce a three-dimensional model. After that, the model material 27 and the unnecessary support material 25 are separated. Normally, the support material 25 is melted or removed by a chemical solution. However, the unremovable portion, for example, the region A in FIG. 2 must be manually scraped off.
[0006]
However, in a situation where reduction of environmental load has been called for recently, use of a solvent must be suppressed as much as possible, and maximum attention must be paid to energy saving. Further, unless the inefficiency of scraping by hand is eliminated, the spread of the three-dimensional printing apparatus cannot be expected.
[0007]
As described above, an object of the present invention is to create an idea that can easily separate a model material and a support material after performing three-dimensional printing.
[0008]
[Means for Solving the Problems]
As can be seen in commercially available inkjet printers, this printer can freely discharge from four to seven colors. Thus, the ink jet can easily discharge liquids having different characteristics. Utilizing this feature, a second support material having a releasability characteristic is ejected between the support material and the model material, and a laminated support material is devised. This facilitates separation of the model material and the support material without melting.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings.
[Example 1]
First, an ink-jet type three-dimensional printing apparatus will be described with reference to a vertical sectional view of FIG.
[0010]
In the figure, reference numeral 1 denotes a print head. The operation of this print head can be imagined as a simple example of a commercially available piezoelectric element type ink jet print head used for printing. In the present invention, instead of the water-based ink used in a commercially available ink jet printer, a solid ink which is solid at room temperature, such as crayon, is heated and melted to form a molten liquid at the time of discharge, and has a viscosity capable of being discharged. Alternatively, an ultraviolet curable ink or the like is used.
[0011]
The print head 1 has three types of nozzle rows provided with a plurality of nozzles. Among them, the nozzle row 2 has a second support material having mold release performance, the nozzle row 3 has a model material (molding material), and the nozzle row 4 has a liquid as a first support material forming a mold of a molded article. Is stored. The print head 1 is reciprocated in the left and right directions in the figure by a moving means (not shown), and is controlled so as to discharge each material arbitrarily in the course of the reciprocation. The modeled object 8 produced by the print head 1 is held while being supported by the first support member 6 via the second support member 7.
[0012]
Next, a description will be given of a method of manufacturing an ink-jet three-dimensional structure.
[0013]
In FIG. 1, a model member 8 is a member that finally becomes a product. In the three-dimensional printing method, as a preliminary preparation before the printing, a method of thinly slicing a target model on a horizontal plane, processing the data into 2.5 dimensions, and stacking the data is adopted. Therefore, data processing is performed such that a material called a support material 6 is applied to a portion where the shape is intricate and protrudes while being applied thereunder. Usually, the slicing thickness is several tens of μm.
[0014]
When 2.5-dimensional sliced data is transmitted from a computer (not shown) in advance, predetermined nozzles of nozzle row 2, nozzle row 3, and nozzle row 4 are respectively driven by driving means (not shown). The droplet 5 is ejected to draw an image on a plane. Here, the amount of liquid discharged from each nozzle row is adjusted so as to have a thickness of several tens of μm when the liquid droplets solidify. When a solid ink or an ultraviolet curable ink is used as in the present invention, the ejected droplets are in a raised state, and a three-dimensional image is formed by stacking the ejected droplets.
[0015]
FIG. 3 shows a discharging step of each droplet and a state of the discharged droplet. First, the solid ink 15 is ejected from the first support material nozzle row 4. Next, the liquid 16 containing the release agent is discharged from the two rows of the second support material nozzles. In this example, a fluorine-based release agent was used as the release agent. Further, the model material 17 is discharged from the model material nozzle row 3. Then, after the liquid 16 containing the release agent is discharged again from the second support material nozzle row 2, the solid ink 15 is discharged from the first support material nozzle row 4. By this step, a 2.5-dimensional figure having a thickness of several tens of μm is drawn in a plane. When a three-dimensional model is produced by laminating them in the vertical axis direction, a modeled object as shown in FIG. 1 is produced. Thereafter, the unnecessary first support member 6 and the model member 8 are separated from each other. However, unlike the conventional method, as shown in a region B of FIG. Since the mold release agent 16 is interposed, the resin can be easily separated even by manual operation without using any solvent.
[Example 2]
In this example, a method of separating the first support member 46 and the model member 48 by cooling was examined.
Hereinafter, description will be made with reference to FIG.
The modeled material from which the model material 48 and the first support material 46 produced in the same manner as in Example 1 were not separated was put into a freezer 40 set at −25 ° C. and cured. Here, as the first support material, a material that is more easily embrittled at a lower temperature than the model material is selected. In the present embodiment, a wax-based material mainly containing carnauba wax or the like was used for the first support material, and a propylene resin was used for the model material. After confirming that it was sufficiently cooled, the model was taken out of the refrigerator and mechanically hit. As a result, many cracks 41 were formed in the first support member 46. In this way, the first support member 46 can be easily separated from the model material 48 via the second support member 47 serving as a release layer. At this time, since the first support member 46 is a solid piece, post-processing such as cleaning becomes extremely easy. In this example, cooling was performed using a freezer. However, a similar effect can be expected by a method of putting the liquid into liquid nitrogen or blowing frozen compressed air.
[Example 3]
In this example, a method of melting only the second support material by heat was studied.
First, a modeled object is formed in the same manner as in Example 1. At this time, a material containing a component having a lower melting point than the model material 58 and the first support material 56 is used as the second support material 57. Was. In addition, at the time of modeling, as shown in FIG. 5, the drain groove 52 was formed in a part of the first support material 56 using a material of the same quality as the second support material. After the shaped object is prepared, the shaped object is heated in a heating furnace in a tray 53, and only the second support material 57 containing the low-melting component is melted and provided on the first support material 56 in advance. It was able to flow out from the drain groove 52. Thereby, only the second support member 57 is melted, and a gap is formed at the boundary between the model material 58 and the first support member 56. With this gap, the first support member 56 and the model member 58 can be easily separated.
[Example 4]
In this example, a method of dissolving only the second support material with a drug was studied.
First, a molded article is formed in the same manner as in Example 1. At this time, a material containing a component easily dissolved in acetone is used for the second support material 57, and the model material 58 and the first support material are used. 56 did not include components that readily dissolved in acetone. In addition, at the time of modeling, as shown in FIG. 5, the drain groove 52 was formed in a part of the first support material 56 using a material of the same quality as the second support material. After forming the modeled object, as shown in FIG. 5, when acetone was poured from the surface into the receiving tray 13, only the second support material 57 was dissolved, and the model material 58 and the first support material 56 were dissolved. A gap was formed at the boundary. With this gap, the first support member 56 and the model member 58 can be easily separated. In this embodiment, acetone is used as a dissolving agent. However, any liquid that selectively dissolves the second support material can achieve the gist of the present embodiment.
[Example 5]
In the present embodiment, a method of separating the first support material and the model material using the difference in thermal expansion was examined.
The method for producing a molded article is the same as that in the first embodiment. Here, a method of using the first support material as a low thermal expansion material will be described. As a first support material, 10% of a filler made of silica having a diameter of 0.1 μm was added to the solid ink to adjust the surface tension, the viscosity, and the like so that the ink could be ejected. By this adjustment, the first support material had a thermal expansion coefficient smaller by 7 ppm than the model material. The second support material uses a fluorine-based release agent. After producing the modeled object, when the model material was cooled to −70 ° C. using the refrigerator shown in FIG. 4, the model material slightly shrunk, and could be easily separated from the first support material. When the separated model material is returned to room temperature, it returns to its original shape.
[Example 6]
In the present embodiment, a method of melting only the second support material with the energy of the electromagnetic wave that is absorbed was studied.
A filler that absorbs electromagnetic waves was added to the second support material. In this embodiment, 10% of fine carbon powder was added. Further, the filler was uniformly dispersed in the second support material, and the solid support was adjusted to a solid ink, such as surface tension and viscosity, which can be ejected by inkjet.
A filler for absorbing the energy of electromagnetic waves is added to the second support material to form a shaped article in the same manner as in Example 1, and then a high frequency of 500 kHz is applied as shown in FIG. The carbon in the second support material 67 is heated by the method, and the second support material 67 is melted by the heat, and a material of the same quality as the second support material provided in the first support material 66 in advance. Only the second support material 67 flows out from the drain groove 62 formed by the above. As a result of the outflow of the second support material 67, a gap is formed at the boundary between the model material 68 and the first support material 66. After that, it can be easily separated from the model material by breaking the main support material.
[0016]
【The invention's effect】
According to the present invention, the separation of the model material and the support material, which is the final step of the three-dimensional printing method, can be simplified, so that the three-dimensional printing method can be widely used.
[Brief description of the drawings]
FIG. 1 is a schematic view of a three-dimensional printing apparatus constituting a main part of the present invention.
FIG. 2 is an explanatory view showing a dropping order of a support material and a model material liquid according to a conventional method.
FIG. 3 is an explanatory view showing a drop order of a main support material, a sub support material, and a liquid for a model material according to the present invention.
FIG. 4 is a schematic diagram illustrating a manufacturing method according to a second embodiment.
FIG. 5 is a schematic view illustrating a manufacturing method according to a third embodiment.
FIG. 6 is a schematic diagram illustrating a manufacturing method according to a sixth embodiment.
[Explanation of symbols]
1 is a print head, 2 is a second support material inkjet nozzle, 3 is a model material inkjet nozzle, 4 is a first support material inkjet nozzle, 5 is a discharge droplet, 6 is a first support material, 7 Is a second support material, 8 is a model material, 9 is a print head scanning direction, 10 is a constant temperature furnace, 11 is a crack, 12 is a second support material for drain, 13 is a pallet, 14 is an electromagnetic wave generator, 15 Is a first support material droplet, 16 is a second support material droplet, and 17 is a model material droplet.

Claims (14)

製品となるモデル材と、三次元造形物の作製時にモデル材の支持材となるサポート材を、複数のノズルを有するインクジェットヘッドで作製する三次元造形装置において、モデル材を吐出するノズルと、第1のサポート材を吐出するノズルと、離型性能を有する第2の副サポート材を吐出するノズルを備えたことを特徴とするインクジェット方式の三次元造形装置。In a three-dimensional modeling apparatus for manufacturing a model material to be a product and a support material to be a support material of the model material at the time of manufacturing a three-dimensional structure by an inkjet head having a plurality of nozzles, a nozzle for discharging the model material; An ink-jet type three-dimensional printing apparatus comprising: a nozzle for discharging a first support material; and a nozzle for discharging a second sub-support material having a releasing property. 請求項1記載のインクジェット方式の三次元造形装置において、
前記第2のサポート材は、モデル材もしくは主サポート材と、密着性、機械的特性、熱的特性、化学的特性、光学的特性において、実用上、分離可能な特性差を有する材料であることを特徴とするインクジェット方式の三次元造形装置。
The three-dimensional printing apparatus according to claim 1, wherein
The second support material is a material having a practically separable characteristic difference in adhesion, mechanical properties, thermal properties, chemical properties, and optical properties with the model material or the main support material. An inkjet three-dimensional printing apparatus characterized by the following.
請求項2記載のインクジェット方式の三次元造形装置において、
前記第2のサポート材は、シリコーン系またはフッ素系材料が成分として含まれていることを特徴とするインクジェット方式の三次元造形装置。
The three-dimensional printing apparatus of an ink jet system according to claim 2,
The second support member contains a silicone-based or fluorine-based material as a component.
請求項2記載のインクジェット方式の三次元造形装置において、
前記第2のサポート材は、前記モデル材及び前記第1のサポート材の融点より低い融点の物質が含まれていることを特徴とするインクジェット方式の三次元造形装置。
The three-dimensional printing apparatus of an ink jet system according to claim 2,
The two-dimensional support apparatus according to claim 1, wherein the second support material includes a substance having a melting point lower than the melting points of the model material and the first support material.
請求項2記載のインクジェット方式の三次元造形装置において、
前記第2のサポート材は、前記モデル材及び前記第1のサポート材より低い破壊強度を有することを特徴とするインクジェット方式の三次元造形装置。
The three-dimensional printing apparatus of an ink jet system according to claim 2,
The two-dimensional support apparatus according to claim 1, wherein the second support member has a lower breaking strength than the model material and the first support member.
請求項2記載のインクジェット方式の三次元造形装置において、
前記第2のサポート材は、前記モデル材より小さな熱膨張係数であることを特徴とするインクジェット方式の三次元造形装置。
The three-dimensional printing apparatus of an ink jet system according to claim 2,
The two-dimensional support device according to claim 1, wherein the second support member has a smaller coefficient of thermal expansion than the model material.
請求項2記載のインクジェット方式の三次元造形装置において、
前記第2のサポート材は、無機材料からなるフィラーが添加されていることを特徴とするインクジェット方式の三次元造形装置。
The three-dimensional printing apparatus of an ink jet system according to claim 2,
An ink-jet type three-dimensional printing apparatus, wherein the second support member is added with a filler made of an inorganic material.
請求項2記載のインクジェット方式の三次元造形装置において、
前記第2のサポート材は、電磁波の吸収係数の大きい材料が添加されていることを特徴とするインクジェット方式の三次元造形装置。
The three-dimensional printing apparatus of an ink jet system according to claim 2,
An ink-jet type three-dimensional printing apparatus, wherein a material having a large electromagnetic wave absorption coefficient is added to the second support material.
請求項2記載のインクジェット方式の三次元造形装置において、
前記第2のサポート材は、前記モデル材及び前記第1のサポート材には不溶である溶剤に溶解され得る成分を含むことを特徴とするインクジェット方式の三次元造形装置。
The three-dimensional printing apparatus of an ink jet system according to claim 2,
The two-dimensional support apparatus according to claim 1, wherein the second support material includes a component that can be dissolved in a solvent that is insoluble in the model material and the first support material.
請求項1記載のインクジェット方式の三次元造形装置において、
前記第1のサポート材をノズルから吐出後に、前記モデル材と接する面に前記第2のサポート材をノズル列から吐出させ、その後、モデル材を吐出させることにより三次元造形を行うことを特徴とするインクジェット方式の三次元造形法。
The three-dimensional printing apparatus according to claim 1, wherein
After discharging the first support material from a nozzle, the second support material is discharged from a nozzle row on a surface in contact with the model material, and thereafter, the three-dimensional modeling is performed by discharging the model material. Inkjet three-dimensional modeling.
請求項6及び7のいずれかに記載されているインクジェット方式の三次元造形装置において、
前記第1のサポート材をノズル列から吐出後に、前記モデル材と接する面に前記第2のサポート材をノズル列から吐出させ、その後、モデル材を吐出させ、造形後、前記モデル材の形状が可逆可能な程度まで冷却して収縮させた後、前記第1のサポート材と前記モデル材とを分離することを特徴とするインクジェット方式の三次元造形法。
An ink-jet type three-dimensional printing apparatus according to claim 6,
After the first support material is discharged from the nozzle row, the second support material is discharged from the nozzle row on a surface in contact with the model material, and then the model material is discharged. After modeling, the shape of the model material is changed. The three-dimensional printing method of an ink jet method, wherein the first support material and the model material are separated after cooling and shrinking to a reversible extent.
請求項4記載のインクジェット方式の三次元造形装置において、
前記第1のサポート材をノズル列から吐出後に、前記モデル材と接する面に前記第2のサポート材をノズル列から吐出させ、その後、モデル材を吐出させ、造形後、前記第1のサポート材の融点以下で、かつ前記第2のサポート材の融点以上の温度に加熱することにより、前記第1のサポート材と前記モデル材とを分離することを特徴とするインクジェット方式の三次元造形法。
The inkjet three-dimensional printing apparatus according to claim 4,
After the first support material is discharged from the nozzle row, the second support material is discharged from the nozzle row on a surface in contact with the model material, and then the model material is discharged. A first support material and the model material are separated by heating to a temperature equal to or lower than the melting point of the second support material and higher than the melting point of the second support material.
請求項8記載のインクジェット方式の三次元造形装置において、
前記第1のサポート材をノズル列から吐出後に、前記モデル材と接する面に前記第2のサポート材をノズル列から吐出させ、その後、モデル材を吐出させ、造形後、前記電磁波の吸収係数の大きい材料の吸収したエネルギで前記第2のサポート材を軟化もしくは融解させることにより、前記第1のサポート材と前記モデル材とを分離することを特徴とするインクジェット方式の三次元造形法。
The three-dimensional printing apparatus of an ink jet system according to claim 8,
After the first support material is discharged from the nozzle row, the second support material is discharged from the nozzle row on a surface in contact with the model material, and then the model material is discharged. After modeling, the absorption coefficient of the electromagnetic wave is reduced. An ink-jet type three-dimensional printing method, wherein the first support material and the model material are separated by softening or melting the second support material with energy absorbed by a large material.
請求項9記載のインクジェット方式の三次元造形装置において、
前記第1のサポート材をノズル列から吐出後に、前記モデル材と接する面に前記第2のサポート材をノズル列から吐出させ、その後、モデル材を吐出させ、造形後、前記第2のサポート材を溶解する溶液に浸漬することにより、前記第1のサポート材と前記モデル材とを分離することを特徴とするインクジェット方式の三次元造形法。
The three-dimensional printing apparatus of an ink jet system according to claim 9,
After discharging the first support material from the nozzle row, the second support material is discharged from the nozzle row to a surface in contact with the model material, and then the model material is discharged. Wherein the first support material and the model material are separated from each other by immersing the first support material and the model material.
JP2003052108A 2003-02-28 2003-02-28 Ink jet three-dimensionally shaping device and shaping method Pending JP2004255839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052108A JP2004255839A (en) 2003-02-28 2003-02-28 Ink jet three-dimensionally shaping device and shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052108A JP2004255839A (en) 2003-02-28 2003-02-28 Ink jet three-dimensionally shaping device and shaping method

Publications (1)

Publication Number Publication Date
JP2004255839A true JP2004255839A (en) 2004-09-16

Family

ID=33117049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052108A Pending JP2004255839A (en) 2003-02-28 2003-02-28 Ink jet three-dimensionally shaping device and shaping method

Country Status (1)

Country Link
JP (1) JP2004255839A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137156A (en) * 2006-11-29 2008-06-19 Fujifilm Corp Ink set for inkjet recording, and inkjet recording method
WO2012060204A1 (en) 2010-11-01 2012-05-10 株式会社キーエンス Modeling material for forming photoshaped article by ink-jet photoshaping method, support material for shape supporting during formation of photoshaped article by the photoshaping method, and process for producing photoshaped article by the photoshaping method
WO2012060203A1 (en) * 2010-11-01 2012-05-10 株式会社キーエンス Three-dimensional shaping device and three-dimensional shaping method
JP2012096428A (en) * 2010-11-01 2012-05-24 Keyence Corp Three-dimensional shaping apparatus and three-dimensional shaping method
JP2013525152A (en) * 2010-04-25 2013-06-20 オブジェト リミテッド 3D free-form fabrication of shell objects
JP2013540629A (en) * 2010-10-27 2013-11-07 ユージーン ギラー 3D object modeling process and modeling equipment
CN104254446A (en) * 2012-03-04 2014-12-31 斯特拉特西斯有限公司 System and method for depositing liquids
WO2015050033A1 (en) * 2013-10-04 2015-04-09 株式会社ミマキエンジニアリング Three-dimensional shaping device and method for forming three-dimensional shaping device
JP2015107653A (en) * 2015-01-16 2015-06-11 株式会社キーエンス Three-dimensional shaping apparatus and three-dimensional shaping method
JP2015229248A (en) * 2014-06-03 2015-12-21 コニカミノルタ株式会社 Production method of solid molded article
EP2960718A1 (en) 2014-06-20 2015-12-30 Keyence Corporation Modeling material for forming photofabrication model in ink-jet stereo lithography and production method of photofabrication model
JP2016002704A (en) * 2014-06-17 2016-01-12 コニカミノルタ株式会社 Composition liquid for 3d shaping, ink set for 3d shaping, and method for manufacturing 3d shaped object
WO2016027796A1 (en) * 2014-08-20 2016-02-25 株式会社ミマキエンジニアリング Method for manufacturing three-dimensional structure
JP2016028892A (en) * 2014-07-23 2016-03-03 キヤノン株式会社 Method for manufacturing three-dimensional molded article and apparatus for manufacturing three-dimensional molded article
WO2016052087A1 (en) * 2014-09-29 2016-04-07 株式会社Screenホールディングス Three-dimensional fabrication device, and three-dimensional molding manufacturing method and molding apparatus
JP2016141113A (en) * 2015-02-04 2016-08-08 富士ゼロックス株式会社 Lamination molding device and lamination molding program
WO2016136166A1 (en) * 2015-02-26 2016-09-01 Mitsubishi Electric Corporation Method for printing three dimensional object and three dimensional printer
WO2017018453A1 (en) * 2015-07-29 2017-02-02 日立マクセル株式会社 Resin composition for model materials, resin composition for support materials, optically shaped article and method for producing optically shaped article
WO2017017941A1 (en) 2015-07-27 2017-02-02 Canon Kabushiki Kaisha Laminate molding method and program for use in the same
JP2017065154A (en) * 2015-09-30 2017-04-06 ニチアス株式会社 Three-dimensional shaped object and shaping method thereof
CN106671403A (en) * 2015-11-11 2017-05-17 施乐公司 System and method for removing support structure from three-dimensional printed objects using microwave energy and nanoparticles
JP2017087722A (en) * 2015-11-11 2017-05-25 ゼロックス コーポレイションXerox Corporation System and method for removing support structure from three-dimensional printed object using microwave energy
CN106738854A (en) * 2016-11-30 2017-05-31 英华达(上海)科技有限公司 Three-dimensional printing method and system
EP3195955A1 (en) * 2016-01-22 2017-07-26 Seiko Epson Corporation Additive manufacturing method of a three-dimensional article
KR20170090443A (en) * 2014-11-19 2017-08-07 디지털 메탈 아베 Method and apparatus for manufacturing a series of objects
JP2017159563A (en) * 2016-03-10 2017-09-14 日本電気株式会社 Lamination molding apparatus and lamination molding method
KR20170108962A (en) 2015-01-26 2017-09-27 케이제이 케미칼즈 가부시키가이샤 Active energy ray-curable resin composition for three-dimensional model supporting material
KR20170115534A (en) 2015-02-06 2017-10-17 케이제이 케미칼즈 가부시키가이샤 Production method for 3d modeled object and 3d modeled object obtained using same
JP2018108726A (en) * 2017-01-05 2018-07-12 三緯國際立體列印科技股▲ふん▼有限公司XYZprinting, Inc. 3D printing method and 3D printing system
JP2018187894A (en) * 2017-05-11 2018-11-29 株式会社リコー Method for producing three-dimensional molding
JP2019018526A (en) * 2017-07-21 2019-02-07 東芝テック株式会社 Three-dimensional object forming apparatus and three-dimensional object forming method
CN109604592A (en) * 2017-04-28 2019-04-12 戴弗根特技术有限公司 Device and method for the removable support construction in increasing material manufacturing
JP2019069613A (en) * 2015-06-07 2019-05-09 ストラタシス リミテッド Method and apparatus for printing three-dimensional (3D) objects
JP2019081297A (en) * 2017-10-30 2019-05-30 セイコーエプソン株式会社 Manufacturing method of three-dimensional molding
JP2019081296A (en) * 2017-10-30 2019-05-30 セイコーエプソン株式会社 Manufacturing method of three-dimensional molding
JP2019081259A (en) * 2017-10-27 2019-05-30 株式会社リコー Method for manufacturing molded object and molding system
US10315365B2 (en) 2015-04-10 2019-06-11 Canon Kabushiki Kaisha Three-dimensional object manufacturing method, three-dimensional shaping method and three-dimensional shaping system
US10501863B2 (en) 2014-08-25 2019-12-10 Seiko Epson Corporation Forming method and formed article
JP2020001257A (en) * 2018-06-27 2020-01-09 ユニチカ株式会社 Resin composition and filamentous molded article
KR20200006600A (en) * 2017-05-29 2020-01-20 스트라타시스 엘티디. Method and system for additive manufacturing of peelable sacrificial structures
JP2020114650A (en) * 2019-01-18 2020-07-30 株式会社ミマキエンジニアリング Three-dimensional modeling apparatus, and method for manufacturing three-dimensional object
JP2020530822A (en) * 2017-07-28 2020-10-29 ストラタシス リミテッド Additional manufacturing process using a liquid material or a formulation that gives a liquid-like material
JP2021080568A (en) * 2021-02-04 2021-05-27 セイコーエプソン株式会社 Method for manufacturing three-dimensional molded article
US11111401B2 (en) 2015-09-15 2021-09-07 Maxell Holdings, Ltd. Light curing molding ink set, and method for manufacturing light cured article
JP2022010180A (en) * 2017-07-21 2022-01-14 東芝テック株式会社 Three-dimensional model forming method
DE112020002439T5 (en) 2019-05-22 2022-03-03 Keiyo Chemical Co.,Ltd. Cleaning method, cleaning device, cleaning agent and pre-cleaning agent
US11559936B2 (en) 2017-07-28 2023-01-24 Stratasys Ltd. Additive manufacturing processes employing a material featuring properties of a soft bodily tissue
US11696832B2 (en) 2017-07-28 2023-07-11 Stratasys Ltd. Method and system for fabricating object featuring properties of a hard tissue
DE112021005874T5 (en) 2020-10-26 2023-08-24 Keiyo Chemical Co.,Ltd. Feeding method, feeding device and cleaning means
US11786347B2 (en) 2018-09-27 2023-10-17 Stratasys Ltd. Method and system for additive manufacturing with a sacrificial structure for easy removal
US11795335B2 (en) 2015-09-15 2023-10-24 Maxell, Ltd. Resin composition for modeling material, light curing molding ink set, and method for manufacturing optically shaped article
US11801630B2 (en) 2017-07-28 2023-10-31 Stratasys Ltd. Method and system for fabricating object featuring properties of a blood vessel
US11897187B2 (en) 2017-12-28 2024-02-13 Stratasys Ltd. Method and system for additive manufacturing of peelable sacrificial structure
US11939468B2 (en) 2017-07-28 2024-03-26 Stratasys Ltd. Formulations usable in additive manufacturing of a three-dimensional object made of a soft material
WO2024101211A1 (en) * 2022-11-09 2024-05-16 株式会社村田製作所 Method for producing ceramic electronic component

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4615505B2 (en) * 2006-11-29 2011-01-19 富士フイルム株式会社 Ink set for ink jet recording and ink jet recording method
JP2008137156A (en) * 2006-11-29 2008-06-19 Fujifilm Corp Ink set for inkjet recording, and inkjet recording method
JP2013525152A (en) * 2010-04-25 2013-06-20 オブジェト リミテッド 3D free-form fabrication of shell objects
US11148354B2 (en) 2010-10-27 2021-10-19 Rize, Inc. Process and apparatus for fabrication of three dimensional objects
EP2632696B1 (en) * 2010-10-27 2020-07-29 Rize Inc. Process and apparatus for fabrication of three-dimensional objects
US10357918B2 (en) 2010-10-27 2019-07-23 Rize Inc. Process and apparatus for fabrication of three dimensional objects
US9227366B2 (en) 2010-10-27 2016-01-05 File2Part, Inc. Process for fabrication of three-dimensional objects
JP2013540629A (en) * 2010-10-27 2013-11-07 ユージーン ギラー 3D object modeling process and modeling equipment
US10265910B2 (en) 2010-10-27 2019-04-23 Rize Inc. Process and apparatus for fabrication of three-dimensional objects
JP2012096428A (en) * 2010-11-01 2012-05-24 Keyence Corp Three-dimensional shaping apparatus and three-dimensional shaping method
JP2012096429A (en) * 2010-11-01 2012-05-24 Keyence Corp Three-dimensional shaping device and three-dimensional shaping method
US9744692B2 (en) 2010-11-01 2017-08-29 Keyence Corporation Three-dimensional shaping device and three-dimensional shaping method
EP2447046A3 (en) * 2010-11-01 2017-10-25 Keyence Corporation Three-dimensional shaping apparatus and three-dimensional shaping method
KR20130141561A (en) 2010-11-01 2013-12-26 가부시키가이샤 키엔스 Modeling material for forming photoshaped article by ink-jet photoshaping method, support material for shape supporting during formation of photoshaped article by the photoshaping method, and process for producing photoshaped article by the photoshaping method
WO2012060204A1 (en) 2010-11-01 2012-05-10 株式会社キーエンス Modeling material for forming photoshaped article by ink-jet photoshaping method, support material for shape supporting during formation of photoshaped article by the photoshaping method, and process for producing photoshaped article by the photoshaping method
US9790382B2 (en) 2010-11-01 2017-10-17 Keyence Corporation Modeling material for forming photofabrication model in ink-jet three dimensional printing, supporting material for supporting the shape of photofabrication model on photofabrication and production method of photofabrication model
US9796863B2 (en) 2010-11-01 2017-10-24 Keyence Corporation Modeling material for forming photofabrication model in ink-jet three dimensional printing, supporting material for supporting the shape of photofabrication model on photofabrication and production method of photofabrication model
WO2012060203A1 (en) * 2010-11-01 2012-05-10 株式会社キーエンス Three-dimensional shaping device and three-dimensional shaping method
US9556346B2 (en) 2010-11-01 2017-01-31 Keyence Corporation Modeling material for forming photofabrication model in ink-jet three dimensional printing, supporting material for supporting the shape of photofabrication model on photofabrication and production method of photofabrication model
US10828825B2 (en) 2012-03-04 2020-11-10 Stratasys Ltd. System and method for depositing liquids
US9718238B2 (en) 2012-03-04 2017-08-01 Stratasys Ltd. System and method for depositing liquids
US10434714B2 (en) 2012-03-04 2019-10-08 Stratasys Ltd. System and method for depositing liquids
CN104254446A (en) * 2012-03-04 2014-12-31 斯特拉特西斯有限公司 System and method for depositing liquids
CN105636765A (en) * 2013-10-04 2016-06-01 株式会社御牧工程 Three-dimensional shaping device and method for forming three-dimensional shaping device
JP2015071282A (en) * 2013-10-04 2015-04-16 株式会社ミマキエンジニアリング Three-dimensional shaping device and method for forming three-dimensional shaping device
WO2015050033A1 (en) * 2013-10-04 2015-04-09 株式会社ミマキエンジニアリング Three-dimensional shaping device and method for forming three-dimensional shaping device
JP2015229248A (en) * 2014-06-03 2015-12-21 コニカミノルタ株式会社 Production method of solid molded article
JP2016002704A (en) * 2014-06-17 2016-01-12 コニカミノルタ株式会社 Composition liquid for 3d shaping, ink set for 3d shaping, and method for manufacturing 3d shaped object
EP2960718A1 (en) 2014-06-20 2015-12-30 Keyence Corporation Modeling material for forming photofabrication model in ink-jet stereo lithography and production method of photofabrication model
JP2016028892A (en) * 2014-07-23 2016-03-03 キヤノン株式会社 Method for manufacturing three-dimensional molded article and apparatus for manufacturing three-dimensional molded article
WO2016027796A1 (en) * 2014-08-20 2016-02-25 株式会社ミマキエンジニアリング Method for manufacturing three-dimensional structure
US10501863B2 (en) 2014-08-25 2019-12-10 Seiko Epson Corporation Forming method and formed article
JP2016068320A (en) * 2014-09-29 2016-05-09 株式会社Screenホールディングス Solid molding device, production method of solid molded article, and molding equipment
WO2016052087A1 (en) * 2014-09-29 2016-04-07 株式会社Screenホールディングス Three-dimensional fabrication device, and three-dimensional molding manufacturing method and molding apparatus
KR20170090443A (en) * 2014-11-19 2017-08-07 디지털 메탈 아베 Method and apparatus for manufacturing a series of objects
KR102359755B1 (en) * 2014-11-19 2022-02-10 디지털 메탈 아베 Method and apparatus for manufacturing a series of objects
US11712842B2 (en) 2014-11-19 2023-08-01 Digital Metal Ab Method and apparatus for manufacturing a series of objects
JP2015107653A (en) * 2015-01-16 2015-06-11 株式会社キーエンス Three-dimensional shaping apparatus and three-dimensional shaping method
US10711149B2 (en) 2015-01-26 2020-07-14 Kj Chemicals Corporation Active energy ray-curable resin composition for three-dimensional model supporting material
KR20170108962A (en) 2015-01-26 2017-09-27 케이제이 케미칼즈 가부시키가이샤 Active energy ray-curable resin composition for three-dimensional model supporting material
JP2016141113A (en) * 2015-02-04 2016-08-08 富士ゼロックス株式会社 Lamination molding device and lamination molding program
US10286598B2 (en) 2015-02-06 2019-05-14 Kj Chemicals Corporation Method for manufacturing three-dimensional molded product and three-dimensional molded product using the same
KR20170115534A (en) 2015-02-06 2017-10-17 케이제이 케미칼즈 가부시키가이샤 Production method for 3d modeled object and 3d modeled object obtained using same
WO2016136166A1 (en) * 2015-02-26 2016-09-01 Mitsubishi Electric Corporation Method for printing three dimensional object and three dimensional printer
US10315365B2 (en) 2015-04-10 2019-06-11 Canon Kabushiki Kaisha Three-dimensional object manufacturing method, three-dimensional shaping method and three-dimensional shaping system
JP2019069613A (en) * 2015-06-07 2019-05-09 ストラタシス リミテッド Method and apparatus for printing three-dimensional (3D) objects
WO2017017941A1 (en) 2015-07-27 2017-02-02 Canon Kabushiki Kaisha Laminate molding method and program for use in the same
WO2017018453A1 (en) * 2015-07-29 2017-02-02 日立マクセル株式会社 Resin composition for model materials, resin composition for support materials, optically shaped article and method for producing optically shaped article
JP2017031249A (en) * 2015-07-29 2017-02-09 日立マクセル株式会社 Resin composition for model material, resin composition for support material, optically shaped article and method for manufacturing optically shaped article
US11485067B2 (en) 2015-07-29 2022-11-01 Maxell, Ltd. Resin composition for modeling material, resin composition for supporting material, photofabrication product, and process for producing photofabrication product
EP3696202A1 (en) 2015-07-29 2020-08-19 Maxell Holdings, Ltd. Resin composition for model materials, resin composition for support materials, optically shaped article and method for producing optically shaped articleshaped article and mehtod for producing optocally shaped article
US11795335B2 (en) 2015-09-15 2023-10-24 Maxell, Ltd. Resin composition for modeling material, light curing molding ink set, and method for manufacturing optically shaped article
US11111401B2 (en) 2015-09-15 2021-09-07 Maxell Holdings, Ltd. Light curing molding ink set, and method for manufacturing light cured article
JP2017065154A (en) * 2015-09-30 2017-04-06 ニチアス株式会社 Three-dimensional shaped object and shaping method thereof
WO2017057333A1 (en) * 2015-09-30 2017-04-06 ニチアス株式会社 Three-dimensional shaped article and method for shaping same
JP2017087722A (en) * 2015-11-11 2017-05-25 ゼロックス コーポレイションXerox Corporation System and method for removing support structure from three-dimensional printed object using microwave energy
CN106671403A (en) * 2015-11-11 2017-05-17 施乐公司 System and method for removing support structure from three-dimensional printed objects using microwave energy and nanoparticles
JP2017087723A (en) * 2015-11-11 2017-05-25 ゼロックス コーポレイションXerox Corporation System and method for removing support structure from three-dimensional printed object using microwave energy and nanoparticle
US10350873B2 (en) * 2015-11-11 2019-07-16 Xerox Corporation System and method for removing support structure from three-dimensional printed objects using microwave energy and nanoparticles
US11565314B2 (en) 2016-01-22 2023-01-31 Seiko Epson Corporation Three-dimensional shaped article production method
US10814389B2 (en) 2016-01-22 2020-10-27 Seiko Epson Corporation Three-dimensional shaped article production method
CN113305300B (en) * 2016-01-22 2023-01-31 精工爱普生株式会社 Method for producing three-dimensional shaped object
CN106994515A (en) * 2016-01-22 2017-08-01 精工爱普生株式会社 The manufacture method of three-D moulding object
CN113305300A (en) * 2016-01-22 2021-08-27 精工爱普生株式会社 Method for manufacturing three-dimensional shaped object
CN106994515B (en) * 2016-01-22 2021-05-11 精工爱普生株式会社 Method for manufacturing three-dimensional shaped object
US20170209929A1 (en) * 2016-01-22 2017-07-27 Seiko Epson Corporation Three-dimensional shaped article production method
JP2017128779A (en) * 2016-01-22 2017-07-27 セイコーエプソン株式会社 Method for manufacturing three-dimensional molded object
US11878460B2 (en) 2016-01-22 2024-01-23 Seiko Epson Corporation Three-dimensional shaped article production method
EP3195955A1 (en) * 2016-01-22 2017-07-26 Seiko Epson Corporation Additive manufacturing method of a three-dimensional article
JP2017159563A (en) * 2016-03-10 2017-09-14 日本電気株式会社 Lamination molding apparatus and lamination molding method
CN106738854A (en) * 2016-11-30 2017-05-31 英华达(上海)科技有限公司 Three-dimensional printing method and system
JP2018108726A (en) * 2017-01-05 2018-07-12 三緯國際立體列印科技股▲ふん▼有限公司XYZprinting, Inc. 3D printing method and 3D printing system
US10661551B2 (en) 2017-01-05 2020-05-26 Xyzprinting, Inc. Three-dimension printing method and three-dimension printing system
CN109604592A (en) * 2017-04-28 2019-04-12 戴弗根特技术有限公司 Device and method for the removable support construction in increasing material manufacturing
CN109604592B (en) * 2017-04-28 2024-03-26 戴弗根特技术有限公司 Apparatus and method for removable support structures in additive manufacturing
JP2018187894A (en) * 2017-05-11 2018-11-29 株式会社リコー Method for producing three-dimensional molding
JP2020523219A (en) * 2017-05-29 2020-08-06 ストラタシス リミテッド Method and system for additive manufacturing of peelable sacrificial structures
KR20200006600A (en) * 2017-05-29 2020-01-20 스트라타시스 엘티디. Method and system for additive manufacturing of peelable sacrificial structures
US11584089B2 (en) 2017-05-29 2023-02-21 Stratasys Ltd. Method and system for additive manufacturing of peelable sacrificial structure
KR102217758B1 (en) * 2017-05-29 2021-02-22 스트라타시스 엘티디. Method and system for additive manufacturing of peelable sacrificial structures
JP2022010180A (en) * 2017-07-21 2022-01-14 東芝テック株式会社 Three-dimensional model forming method
JP2019018526A (en) * 2017-07-21 2019-02-07 東芝テック株式会社 Three-dimensional object forming apparatus and three-dimensional object forming method
JP7155378B2 (en) 2017-07-21 2022-10-18 東芝テック株式会社 Three-dimensional object forming method
JP7289290B2 (en) 2017-07-28 2023-06-09 ストラタシス リミテッド Additive manufacturing processes using formulations that give liquid or liquid-like materials
US11801630B2 (en) 2017-07-28 2023-10-31 Stratasys Ltd. Method and system for fabricating object featuring properties of a blood vessel
JP7549705B2 (en) 2017-07-28 2024-09-11 ストラタシス リミテッド Additive manufacturing processes using formulations that provide liquid or liquid-like materials
US11939468B2 (en) 2017-07-28 2024-03-26 Stratasys Ltd. Formulations usable in additive manufacturing of a three-dimensional object made of a soft material
JP2020530822A (en) * 2017-07-28 2020-10-29 ストラタシス リミテッド Additional manufacturing process using a liquid material or a formulation that gives a liquid-like material
US11559936B2 (en) 2017-07-28 2023-01-24 Stratasys Ltd. Additive manufacturing processes employing a material featuring properties of a soft bodily tissue
US11696832B2 (en) 2017-07-28 2023-07-11 Stratasys Ltd. Method and system for fabricating object featuring properties of a hard tissue
JP2019081259A (en) * 2017-10-27 2019-05-30 株式会社リコー Method for manufacturing molded object and molding system
JP6993611B2 (en) 2017-10-30 2022-01-13 セイコーエプソン株式会社 Manufacturing method of 3D model
JP2019081296A (en) * 2017-10-30 2019-05-30 セイコーエプソン株式会社 Manufacturing method of three-dimensional molding
JP2019081297A (en) * 2017-10-30 2019-05-30 セイコーエプソン株式会社 Manufacturing method of three-dimensional molding
US11897187B2 (en) 2017-12-28 2024-02-13 Stratasys Ltd. Method and system for additive manufacturing of peelable sacrificial structure
JP7064763B2 (en) 2018-06-27 2022-05-11 ユニチカ株式会社 Resin composition and filament molding
JP2020001257A (en) * 2018-06-27 2020-01-09 ユニチカ株式会社 Resin composition and filamentous molded article
US11786347B2 (en) 2018-09-27 2023-10-17 Stratasys Ltd. Method and system for additive manufacturing with a sacrificial structure for easy removal
JP2020114650A (en) * 2019-01-18 2020-07-30 株式会社ミマキエンジニアリング Three-dimensional modeling apparatus, and method for manufacturing three-dimensional object
JP7160700B2 (en) 2019-01-18 2022-10-25 株式会社ミマキエンジニアリング 3D modeling apparatus, manufacturing method of 3D model
DE112020002439T5 (en) 2019-05-22 2022-03-03 Keiyo Chemical Co.,Ltd. Cleaning method, cleaning device, cleaning agent and pre-cleaning agent
DE112020002439T9 (en) 2019-05-22 2023-02-16 Keiyo Chemical Co.,Ltd. Cleaning method, cleaning device, cleaning agent and pre-cleaning agent
US12005646B2 (en) 2019-05-22 2024-06-11 Raiser Moon, Inc. Cleaning method, cleaning device, cleaning agent, and preliminary cleaning agent
DE112021005874T5 (en) 2020-10-26 2023-08-24 Keiyo Chemical Co.,Ltd. Feeding method, feeding device and cleaning means
JP2021080568A (en) * 2021-02-04 2021-05-27 セイコーエプソン株式会社 Method for manufacturing three-dimensional molded article
JP7040651B2 (en) 2021-02-04 2022-03-23 セイコーエプソン株式会社 Manufacturing method of 3D model
WO2024101211A1 (en) * 2022-11-09 2024-05-16 株式会社村田製作所 Method for producing ceramic electronic component

Similar Documents

Publication Publication Date Title
JP2004255839A (en) Ink jet three-dimensionally shaping device and shaping method
KR101769692B1 (en) Method for manufacturing structural body and manufacturing apparatus therefor
KR102077206B1 (en) Method for manufacturing three-dimensional object with removable support structure
JP6669985B2 (en) Manufacturing method of three-dimensional objects
JP3618313B2 (en) Solid free form manufacturing method
JP6294659B2 (en) Manufacturing method and control device of shaped object
US9604407B2 (en) 3D printing techniques for creating tissue engineering scaffolds
JP2014024329A (en) Method and apparatus for manufacturing structure
JP6444077B2 (en) Three-dimensional structure forming apparatus and forming method
CN106634208A (en) Composite material 3d printing method realized by photocuring-jetting nano ink and printer
CN108367464B (en) Method of printing on a 3D jet printer
KR20170124961A (en) System and method for forming integrated interfaces within a three-dimensionally printed object with different build materials
JP4677022B2 (en) Mold for manufacturing hot melt ink pellets
CN107206667A (en) Generate three dimensional object
CN104191609B (en) A kind of pneumatic cleaning injection head dummy three-dimensional printing machine
JP6524845B2 (en) Three-dimensional modeling device
JP2008528777A (en) Method and mold for producing hot melt ink pellets
CN107856303B (en) Three-dimensional modeling apparatus, manufacturing method, and recording medium
JP2020151993A (en) Apparatus for manufacturing three-dimensional object and method for manufacturing three-dimensional object
JP2016124159A (en) Three-dimensional molding apparatus, three-dimensional molding method, and molding material
JP2005059289A (en) Three-dimensional shaping machine
JP2019018526A (en) Three-dimensional object forming apparatus and three-dimensional object forming method
JP6137614B2 (en) 3D modeling method and 3D modeling apparatus
JP7367475B2 (en) Method for manufacturing three-dimensional objects
JP7155378B2 (en) Three-dimensional object forming method