[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004254880A - Photopolymerization apparatus - Google Patents

Photopolymerization apparatus Download PDF

Info

Publication number
JP2004254880A
JP2004254880A JP2003048367A JP2003048367A JP2004254880A JP 2004254880 A JP2004254880 A JP 2004254880A JP 2003048367 A JP2003048367 A JP 2003048367A JP 2003048367 A JP2003048367 A JP 2003048367A JP 2004254880 A JP2004254880 A JP 2004254880A
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
light
current
hollow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003048367A
Other languages
Japanese (ja)
Inventor
Masahiko Koshihara
正彦 腰原
Shigeru Yamazaki
繁 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON COMP NETWORK KK
NIPPON COMPUTER NETWORK KK
OPTO DEVICE KENKYUSHO KK
Original Assignee
NIPPON COMP NETWORK KK
NIPPON COMPUTER NETWORK KK
OPTO DEVICE KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON COMP NETWORK KK, NIPPON COMPUTER NETWORK KK, OPTO DEVICE KENKYUSHO KK filed Critical NIPPON COMP NETWORK KK
Priority to JP2003048367A priority Critical patent/JP2004254880A/en
Priority to PCT/JP2004/002264 priority patent/WO2004084758A1/en
Publication of JP2004254880A publication Critical patent/JP2004254880A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/003Apparatus for curing resins by radiation
    • A61C19/004Hand-held apparatus, e.g. guns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0088Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for oral or dental tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4542Evaluating the mouth, e.g. the jaw
    • A61B5/4547Evaluating teeth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Led Device Packages (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photopolymerization apparatus which efficiently emits light from a light emitting diode to an object to be irradiated, has a high optical output, does not have variations in irradiation, is light-weight and compact, and has a high reliability. <P>SOLUTION: For this photopolymerization apparatus, the temperature at the time of operation of the light emitting diode can be reduced by a light emitting unit constituted in such a manner that the light emitting diode which emits the light having a peak light emitting wavelength of 350 to 500 nm is arranged at the end part of a heat sink by joining and fixing, and also, the flexible heat sink having radiation effects which is joined and fixed to the back surface of the light emitting diode in order to increase the optical output of the light emitting diode is housed in a hollow pipe. Also, an electric current which is passed in a short time can be increased to a rated current or higher, and as a result, boosting the input power to the light emitting diode becomes possible, and the light volume for the irradiation is increased. In addition, the photopolymerization apparatus is constituted in such a manner that even when an excessive electric current is passed, the light emitting diode is prevented from spoiling the reliability by a thermal deterioration by the radiation effects. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】本発明は歯科用コンポジットレジン充填材に、発光ダイオードから発した光を高出力で効率よく且つ均斉度高く照射させることによって、ムラが無く重合硬化するための可視光重合照射器に関するものである。
【0002】
【従来の技術】光ファイバーを利用した光重合照射器の光源部の基本構造において、従来から発光ダイオ−ドの発光素子から発する光を効率よく導光用ファイバーへ入射するために特開平09−010238号、特開平07−240536号、特開平11−219608号などに開示されているように種々の構造のものが案出されている。例として図10に示すような特開平11−219608号によれば複数の樹脂レンズ型発光ダイオード101を同一方向へ光が放射できるように回路基板102上に配列し、発光ダイオード101の前方に配置したテーパー部に金属反射層104を被覆した先細のテーパー状の透明集光体103によって光を出射面側へ導きその先細の集光部即ち出射部に光ファイバー105を接続することによって複数の発光ダイオード101からの光を集光させることが可能となり光ファイバー105へ光を入射させることが試みられている。 またさらに、特開平09−010238号を図11で説明すると片側端面が発光面となる凸状の二次曲面からなる透明で且つ円錐面上に金属反射層115を付けた円錐状導光体112において前記凸状の二次曲面の接線に対して直角の方向に光を出射できるように複数の樹脂レンズ型発光ダイオード111を凸面上に配置し、その光を円柱状導光体113内で集光114することによって前記円錐状導光路112を介して円柱状導光体113の出射面側から光を外部へ照射する構造などが知られている。 そして、これらの光源部の基本構造を利用した光重合照射器の従来例として図12に示す小型の光重合照射装置が特開2000ー271155号に開示されているように多数個の発光ダイオード121を球面からなる発光ダイオード支持体122に配列し、その発光ダイオードは光ファイバー123の入射端に集光できるようになっている。このように構成された光学系を制御する回路124と駆動電源125と共にハンドピース126内に収納することによって、ハンディな光重合照射器が実用化されていることが良く知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、特開平09−010238号においては複数の発光ダイオードからの光を導光体を介して光ファイバー内に集光点を持たせる事によって効率よく光ファイバーへ入射できるものの、その光の均斉度が悪く光ファイバーから出射された光も同様に均斉度の悪いものであった。そして、砲弾型発光ダイオードの配光特性のバラツキが大きく導光しようとする光ファイバー径が小さくなるほど多数個の発光ダイオードを同一点に集光することは非常に困難になり、個々の発光ダイオード固有の配光バラツキ、光軸バラツキがあるために発光ダイオード個別の光学的な位置調整が必要になったり、導光体としても寸法精度が要求される透明の且つ円錐面に金属層を設けた円錐状二次曲面が必要になるなど実用上大変な困難性があった。 さらには、多数個の発光ダイオードを配列したことによって実質的な光源の大きさが大きくなり過ぎ、さらに多数個の発光ダイオードを使用するために消費電力も大きくなり蓄電池容量が大きくなったり或いは直流電源部が大きくなるなど装置全体の大きさにも影響を与え小型軽量化を目的とする装置においてはハンドリングの悪さや重すぎるなどの実用上の問題があった。 特開平11−219608号においては透明のテーパー状導光体によって発光ダイオードからの光が集光されるものの光反射による光減衰や光導光用ファイバーへ入射する光の入射角度を規定の角度以内即ち臨界角内に納めるためにテーパー角度を大きくすることができないことから、実質的にテーパー角度が小さくなり発光ダイオードから集光点即ち光導光用ファイバーの入射端との距離が遠くなり距離による光減衰が大きくなるなど、光学系からの光の漏れが少ないものの、光の反射、屈折損失に加えて照射距離が長くなることによって光減衰が大きくなるなどの問題があった。 一方、実用上の面から小型にするためにテーパー角度を大きく取り実質的な長さを短くしようとすると発光ダイオードの光がテーパ面で大きく屈折することによって反射ロスが大きくなりあまり効率の良いものにはならなかった。 このために前者従来例と同様多数個の発光ダイオードを使用する点では変わりなく実用上装置が大きくなり、消費電力も大きなものになっていたのが現状であった。 上述のように、従来技術においては基本的な構成は光ファイバーからの出射光の増大を計るために多数個の発光ダイオードを用いて光学的な工夫をすることによって高光出力のファイバー用光源を得る工夫がなされ装置の小型化や低消費電力性さらには高価になるなど実用に供するには問題があったのが現状である。 さらにこれら光源部の基本構造を利用した例として特開2000−271155号に示したハンディな装置においては、前記したように基本的に多数個の発光ダイオードを利用したものでありハンディとはいえその大きさは大きく実用上問題があった。
【0004】
【目的】本発明の目的は発光ダイオードからの光を効率良く照射対象物へ照射でき且つ照射ムラのない軽量・小型で且つ信頼性の高い光重合照射装置を提供することにある。
【0005】
【課題を解決するための手段】発光ダイオード等の半導体素子は電気的温度的な絶対最大定格が有りこれを越えて使用する事は発光素子の寿命を損ねるためにしてはならないことになっており、絶対最大定格を越えないで使用すればその寿命は数万ないしは数十万時間以上が保証される。
しかしながらそのような長寿命を必要としない場合には絶対最大定格を越えて使用することにより特性が大幅に改善されることが考えられる。
現在歯科用光重合器の光源としてはハロゲンランプが主力であるがその寿命は高々数十時間から数百時間であり、実用に充分供されている。この観点からすれば発光ダイオードの寿命は数百時間から数千時間もあれば充分なものと言える。
一方歯科用光重合器の実用的な照射時間は短い方がよいのだが最長1分までが限界とされる。
上記観点に立ち現在市販されている発光ダイオードで調べてみると、発光ダイオードに充分大きい放熱体を取り付けその発光素子の平均値電流の絶対最大定格値の1.5倍以内、通電時間が1分以内であれば接合部温度が素子の絶対最大定格を越えて使用しても数千時間以上の寿命が有ることが判明した。
また発光素子に流す電流の平均値電流が、その発光素子の平均値電流の絶対最大定格値の1.5倍以内であればデューディ比を小さくすることによりジャンクション温度を低下させることが出来、更に大きな電流を流しうることが判明した。
素子に電流を流してからしばらくして熱的に安定してからの通電時間と電流値の関係を図3に、通電時間と接合部温度の関係を図4に示してある。
すなわち発光素子の平均値電流の絶対最大定格値をIave(max)、発光素子の寿命が大きく損なわれることなく1分間流しうる平均値電流をIave(ext)、デューディ比をDとし、その時に流す電流値をIpeak、素子に電流が流れている時間(sec)とすると次の式が成り立つことを確認した。
1.5 Iave(max)≧Iave(ext)≧Ipeak*D ・・・・ 1
D=Ton/(Ton+Toff) ・・・・ 2
Ton+Toff≦60 ・・・・ 3
例として Iave(max)=0.35A,D=0.4とした場合最大に流しうる電流及び時間は上の式より簡単に求められる。
1.5*0.35=0.*Ipeak
0.4=Ton/(Ton+Toff)
Ton+Toff=60
よりTon=24sec、Toff=36sec、Ipeak=1.3Aが得られる。
すなわち平均値電流の絶対最大定格が350mAの発光ダイオードは1.3Aの電流を最長24秒
間流すことが可能である。発光ダイオードからの光出力は電流にほぼ比例して増加し、上記の例においては光出力は定格内で使用したときに得られる最大光出力の約3.5倍得ることが出来た。
図5に一般に使用されている歯科用コンポジットレジンにこのとき得られる光を照射し照射時間と硬化膜の厚さの関係を調べた。。この時の発光ダイオードの発光波長は470nmである。
5秒照射で3mm、10秒照射で4.3mm硬化し、充分に実用範囲であることがわかった。
このような方法により従来複数個の発光ダイオードを使用しなければ得られなかった特性が一個の発光ダイオードを使用するだけで得られるため、発光ダイオードを取り付ける位置の自由度が増え色々な利点が得られるようになった。
例えばへの字型の中空パイプの先端に一個の発光ダイオードを取り付けることにより
従来必ず必要であったライトガイドが不要となり、大幅なコストダウンや、ライトガイドによる光の損失が無くなり更なる光出力増加が可能となった。
また本体内部に発光ダイオードを取り付ける場合にはレンズなどで集光する必要が無いためにライトガイドの直近に取り付けることが可能で、同様にコストダウン、効率アップが図れるという長所が得られる。
以上述べたように、発光ダイオードの点灯電流と点灯時間及び休止時間と発光ダイオードのジャンクション温度及び発光ダイオード背面側の温度上昇値との関係をを詳細に検討した結果、上記に示すように定格電流以上の点灯条件においても充分実用に供し得ることを確認した。
なお発光ダイオードの光出力を増大させるためには発光ダイオード背面に密着固定した放熱効果を持つ放熱体を設ける事が必須の条件であり、このことによって発光ダイオードの動作時温度を低減化でき、一定の時間を限定して通電できる電流を高めることを可能とし、その結果発光ダイオードへの入力電力を高められ放射される光出力の増大が計られたことのみならずさらに短時間において過大な電流を通電しても放熱体の放熱効果により発光ダイオードの熱劣化による信頼性を大きく損なわないですむ。
【0006】
【実施例1】以下、本発明の第一の実施例を図1、図2において説明する。
図1において、11は放熱基板12上に搭載されている470nm或いは490nmの光を放射する発光素子でありその周囲を発光素子からの光の取り出し効率を改善するためと発光素子の保護のために凸状の透明シリコン樹脂或いは透明エポキシ樹脂13にて覆われている。そして発光素子上の電極14abはそれぞれカソードリード15とアノードリード16へ金線17a,bにて電気的に接続されており、リード間に電流を通電することによって発光素子が発光する構造になっている。このような発光ダイオードを用いて図2に示すよう前記発光ダイオード21の放熱基板22の背面には表面が電気的絶縁処理が施された銅金属棒からなる放熱体23の一方の端部に熱伝導性の接合材24を介して密着されている。そして発光ダイオード21への電流供給は2本の電線25a,bから為され発光ダイオード21から出ているアノード及びカソードリード26abと電気的に接続され放熱体23に沿うように配線され電源部へと接続されている。そしてこの様な構成にすることによってことによって発光ダイオード21から発する熱は放熱体23によって外部へ直接熱が放散され、発光ダイオード点灯時の発熱を放熱体によって外部へ放散することが出来る。
【0007】
【実施例2】
上記の実用的な構造として図6に示すように、前記発光ダイオード61の放熱基板62の背面には表面が電気的絶縁処理が施された銅金属の細径線を束ねた縒り線状のフレキシブルな放熱体63の一方の端部に熱伝導性の接合材64を介して密着されている。このフレキシブルな放熱体63はステンレス金属からなる中空パイプ65の中に挿入・収納されている。そして発光ダイオード61は中空パイプの一方の先端部に気密に接着固定した樹脂製の発光ダイオードホルダー66の中に収納し、発光ダイオードホルダー65と発光ダイオード61の隙間は封着樹脂60によって埋められ密封されている。さらに前記発光ダイオード61への電流供給は2本の電線67a,bから為され発光ダイオード61から出ているアノード及びカソードリード68abと電気的に接続され縒り線からなるフレキシブルな放熱体63に沿うように配線され、その一方の線は中空パイプ65のもう一方の端部に気密に封着された電気的な接続を可能とし且つ気密性を保ちながら電気的な通電が可能なフィードスルー端子69接続されている。もう一方の電線は中空パイプ65の中でステンレス金属からなる中空パイプの内面にフレキシブルな放熱体によって押しつけられるように固定され中空パイプ65と実質的に電気的に接続されている。 又、ここではフレキシブルな放熱体として銅金属の細径線からなる縒り線を用いたが高価ではあるが軟銅や軟鉄(純鉄)などを用いても同様の効果が期待できることは容易に考えられる。
又、本発明の目的は歯科用光重合を目的としたが、本発明の基本構成によって他の目的、即ち350〜500nmの範囲を越えた発光波長の発光ダイオードを搭載することによって工業用内視鏡、医療用内視鏡、各種照明装置、各種車載用光源への応用展開が容易に考えられる。
【実施例3】
さらに図7に示すような多芯結束或いは単芯ムク棒のガラスからなる光ファイバー製ライトガイド72を用いて、その光ファイバーの入射端74近傍に発光ダイオード71を配置することによって発光ダイオード71から放射された光を導光し、一方の光ファイバーの出射端75に導くことによって効率よく光利用が可能な構造とする事が出来る。また、この時発光ダイオード71から発生した熱を背面側に放熱するために発光ダイオード71の背面に熱伝導性接着剤73を介して密着して放熱器76が配置してある。
以上のように二つの装置全体の構成例において前記したようにいずれの構造でも発光ダイオードへの通電電流条件が変わることはない。さらには本実施例においては単一の発光ダイオードを使用したが、これが複数個になっても上記の条件は変わらないことは容易に考えられる。
【実施例4】
図8に請求項2項に基づき装置全体の一実施例を示してある。
発光部81と、本体86に内蔵され前記発光部81のオン、オフを制御する制御部82と前記発光部に平均値電流の絶対最大定格値以上、1.5倍以下の電流を供給する電流源部83と電流源部に電力を供給するバッテリー部84と本体内のバッテリーに電力を供給する電源供給部85より構成されている。
発光部81と本体86は切り離すことが出来るために使用後発光部81を取り外して消毒する事が容易に出来る。
また本体86にはバッテリーが内蔵されているために使用時には本体と電源供給部85は切り離すことが出来いわゆるコードレス状態となり使い勝手が大変良い。
本体86内には必ずしもバッテリーを内蔵するする必要はなく、バッテリーを取り外して直接電流源部に電源供給部85を接続することも可能である。この場合使用時は本体と電源供給部85はつながれた状態になりコストが安くなり、更なる小型化も可能となる。
【実施例5】
図9に請求項3に基づき装置全体の一実施例を示してある。
発光ダイオード91からの光を外部に導出するライトガイド92と本体93内にはライトガイド入射端近傍に取り付けられた発光ダイオード91と、発光ダイオード91の熱を放出する放熱体94と、 発光ダイオード91に平均値電流の絶対最大定格値以上、1.5倍以下の電流を供給する電流源部95と電流源部に電力を供給するバッテリー部96と本体93内のバッテリーに電力を供給する電源供給部97より構成されている。
実施例4と同様に本体にはバッテリーが内蔵されているために使用時には本体と電源供給部97は切り離すことが出来いわゆるコードレス状態となり使い勝手が大変良い。
本体93内には必ずしもバッテリーを内蔵するする必要はなく、バッテリーを取り外して直接電流源部に電源供給部97を接続することも可能である。この場合使用時は本体と電源供給部97はつながれた状態になり安くなり、更なる小型化も可能となる。
【0008】
【発明の効果】以上説明したように、本発明の基本構成は350〜500nmの光を放射する発光ダイオード背面側を放熱体の先端部に密着固定した構成とし且つ発光ダイオードに通電する電流を定格電流の1.5倍以下とすることによって、さらに連続通電時間を60秒以下に限定することによって発光ダイオードからの光量を寿命などの信頼性を大きく損なわずに高めることが出来た。
【0009】
【図面の簡単な説明】
【図1】図1は本発明に基付く発光ダイオードの概略構造断面図である。
【図2】図2は本器の発光部の基本構造である。
【図3】図3は通電時間と電流値の関係の測定結果である。
【図4】図4は通電時間と接合部温度の関係を示した図である。
【図5】図5は実施例1における硬化実験結果である。
【図6】図6は実施例2における構成説明図である。
【図7】図7は実施例2におけるもう一つの実用上の構成説明図である。
【図8】図8は実施例3における構成説明図である。
【図9】図9は実施例4における構成説明図である。
【図10】図10は従来例
【図11】図11は従来例
【図12】図12は従来例
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a visible light polymerization method for irradiating light emitted from a light emitting diode with high efficiency and high uniformity to a dental composite resin filler so as to polymerize and cure without unevenness. It relates to an irradiator.
[0002]
2. Description of the Related Art In a basic structure of a light source section of a photopolymerization irradiator using an optical fiber, Japanese Patent Application Laid-Open No. 09-010238 discloses a conventional light emitting diode in order to efficiently emit light emitted from a light emitting element of a light emitting diode to a light guiding fiber. And various structures as disclosed in JP-A-07-240536, JP-A-11-219608, and the like. For example, according to JP-A-11-219608 as shown in FIG. 10, a plurality of resin lens type light emitting diodes 101 are arranged on a circuit board 102 so that light can be emitted in the same direction, and arranged in front of the light emitting diodes 101. A plurality of light emitting diodes are formed by guiding light to the emission surface side by a tapered transparent concentrator 103 having a tapered portion covered with a metal reflection layer 104 and connecting the optical fiber 105 to the tapered converging portion, ie, the emitting portion. Attempts have been made to collect light from the optical fiber 101 and to make the light incident on the optical fiber 105. Further, FIG. 11 illustrates JP-A-09-010238. FIG. 11 shows a conical light guide 112 made of a transparent quadratic curved surface having one end surface serving as a light emitting surface and having a metal reflective layer 115 provided on a conical surface. In the above, a plurality of resin lens type light emitting diodes 111 are arranged on the convex surface so that light can be emitted in a direction perpendicular to the tangent to the convex secondary curved surface, and the light is collected in the cylindrical light guide 113. There is known a structure in which light 114 is emitted to the outside from the exit surface side of the cylindrical light guide 113 through the conical light guide 112 when the light 114 is emitted. As a conventional example of a photopolymerization irradiator utilizing the basic structure of these light source sections, a small photopolymerization irradiator shown in FIG. 12 is disclosed in Japanese Patent Application Laid-Open No. 2000-271155. Are arranged on a light-emitting diode support 122 having a spherical surface, and the light-emitting diodes can be focused on the incident end of the optical fiber 123. It is well known that a handy photopolymerization irradiator is put into practical use by being housed in a handpiece 126 together with a circuit 124 for controlling the optical system thus configured and a drive power supply 125.
[0003]
[Problems to be solved by the invention]
However, in Japanese Patent Application Laid-Open No. 09-010238, although light from a plurality of light-emitting diodes can be efficiently incident on an optical fiber by providing a converging point in the optical fiber via a light guide, the uniformity of the light is poor. The light emitted from the optical fiber was also poor in uniformity. And, as the variation in the light distribution characteristics of the cannon-shaped light emitting diodes becomes larger and the diameter of the optical fiber to be guided becomes smaller, it becomes more difficult to collect a large number of light emitting diodes at the same point. Light-contribution variation and optical-axis variation necessitate optical position adjustment for individual light-emitting diodes, and a transparent and conical surface with a metal layer on a conical surface that requires dimensional accuracy as a light guide There were practical difficulties such as the need for quadratic surfaces. Furthermore, the arrangement of a large number of light emitting diodes causes the size of the substantial light source to become too large, and the use of a large number of light emitting diodes results in an increase in power consumption and an increase in the storage battery capacity, or a DC power supply. In the case of a device intended to reduce the size and weight by affecting the size of the entire device such as an increase in size, there are practical problems such as poor handling and excessive weight. In Japanese Patent Application Laid-Open No. 11-219608, light from a light emitting diode is condensed by a transparent tapered light guide, but light attenuation due to light reflection and the incident angle of light incident on a light guiding fiber are within a prescribed angle. Since the taper angle cannot be increased to be within the critical angle, the taper angle is substantially reduced, and the distance from the light-emitting diode to the converging point, that is, the light-guiding fiber incident end becomes longer, resulting in light attenuation due to the distance. However, although light leakage from the optical system is small, for example, the light reflection and refraction loss are increased, and there is a problem that the light attenuation is increased due to the longer irradiation distance. On the other hand, if the taper angle is increased to reduce the practical length in order to reduce the size from a practical point of view, the light from the light emitting diode is refracted largely by the tapered surface, resulting in a large reflection loss and a very efficient device. Did not become. For this reason, as in the former conventional example, the device is practically large in terms of using a large number of light-emitting diodes, and the power consumption is large at present. As described above, in the prior art, the basic configuration is to obtain a fiber light source with high light output by optically using a large number of light emitting diodes in order to measure the increase in light emitted from the optical fiber. At present, there is a problem in practical use such as downsizing of the device, low power consumption, and high cost. Further, in a handy device disclosed in Japanese Patent Application Laid-Open No. 2000-271155 as an example utilizing the basic structure of these light source units, a large number of light emitting diodes are basically used as described above. The size was large and had practical problems.
[0004]
An object of the present invention is to provide a light-weight, small-sized, and highly reliable photopolymerization irradiation apparatus which can efficiently irradiate light from a light-emitting diode to an irradiation object and has no irradiation unevenness.
[0005]
A semiconductor device such as a light emitting diode has an absolute maximum rating in terms of electrical temperature, and using the semiconductor device beyond the absolute maximum rating must not impair the life of the light emitting device. If it is used without exceeding the absolute maximum rating, its life is guaranteed to be tens of thousands or hundreds of thousands of hours or more.
However, when such a long service life is not required, it is conceivable that the characteristics can be greatly improved by using the capacitor beyond the absolute maximum rating.
At present, a halogen lamp is the main light source of a dental photopolymerizer, but its lifespan is at most several tens to several hundreds of hours, which is sufficient for practical use. From this viewpoint, it can be said that the lifetime of the light emitting diode is sufficient if it is several hundred hours to several thousand hours.
On the other hand, the practical irradiation time of a dental photopolymerizer is preferably shorter, but is limited to a maximum of 1 minute.
From the above point of view, when examining a light emitting diode currently on the market, a sufficiently large radiator is attached to the light emitting diode. It has been found that if the temperature is within the range, even if the junction temperature exceeds the absolute maximum rating of the element, the lifetime is several thousand hours or more.
If the average current of the current flowing through the light emitting element is within 1.5 times the absolute maximum rated value of the average current of the light emitting element, the junction temperature can be reduced by reducing the duty ratio, and It has been found that a large current can be passed.
FIG. 3 shows the relationship between the conduction time and the current value after a current has been passed through the element and became thermally stable a while later, and FIG. 4 shows the relationship between the conduction time and the junction temperature.
That is, Iave (max) is the absolute maximum rated value of the average current of the light emitting element, Iave (ext) is the average current that can flow for one minute without greatly impairing the life of the light emitting element, and D is the duty ratio. Assuming that the current value is Ipeak and the time (sec) during which the current flows through the element, the following equation is established.
1.5 Iave (max) ≧ Iave (ext) ≧ Ipeak * D 1
D = Ton / (Ton + Toff) 2
Ton + Toff ≦ 60 3
As an example, when Iave (max) = 0.35 A and D = 0.4, the maximum possible current and time can be easily obtained from the above equation.
1.5 * 0.35 = 0. * Ipeak
0.4 = Ton / (Ton + Toff)
Ton + Toff = 60
Thus, Ton = 24 sec, Toff = 36 sec, and Ipeak = 1.3 A are obtained.
That is, a light emitting diode having an absolute maximum rating of 350 mA of the average current can supply a current of 1.3 A for a maximum of 24 seconds. The light output from the light-emitting diode increased almost in proportion to the current, and in the above example, the light output could be obtained about 3.5 times the maximum light output obtained when used within the rating.
In FIG. 5, a generally used dental composite resin was irradiated with the light obtained at this time, and the relationship between the irradiation time and the thickness of the cured film was examined. . The emission wavelength of the light emitting diode at this time is 470 nm.
The resin was cured at 3 mm by irradiation for 5 seconds and at 4.3 mm by irradiation for 10 seconds, and was found to be sufficiently within a practical range.
By using such a method, the characteristics that could not be obtained without using a plurality of light emitting diodes in the past can be obtained by using only one light emitting diode, so that the degree of freedom of the mounting position of the light emitting diode is increased and various advantages are obtained. I was able to.
For example, by attaching one light-emitting diode to the end of a hollow pipe with a U-shape, the light guide, which was always required in the past, is no longer necessary, and significant cost reduction and loss of light due to the light guide are eliminated, further increasing light output. Became possible.
Further, when the light emitting diode is mounted inside the main body, it is not necessary to condense the light with a lens or the like, so that the light emitting diode can be mounted immediately adjacent to the light guide.
As described above, the relationship between the lighting current of the light-emitting diode, the lighting time and the pause time, the junction temperature of the light-emitting diode, and the temperature rise value on the back side of the light-emitting diode was examined in detail. It was confirmed that even under the above-mentioned lighting conditions, it can be practically used.
In order to increase the light output of the light emitting diode, it is indispensable to provide a heat radiator having a heat radiating effect that is closely attached to the back of the light emitting diode, which can reduce the operating temperature of the light emitting diode and maintain a constant temperature. It is possible to increase the current that can be supplied for a limited time, and as a result, it is possible to increase the input power to the light emitting diode and increase the radiated light output, as well as to increase the excessive current in a shorter time. Even if electricity is supplied, the heat dissipation effect of the radiator does not significantly impair the reliability due to thermal deterioration of the light emitting diode.
[0006]
Embodiment 1 Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
In FIG. 1, reference numeral 11 denotes a light emitting element mounted on a heat radiating substrate 12 for emitting light of 470 nm or 490 nm. The light emitting element 11 is provided around the light emitting element for improving light extraction efficiency from the light emitting element and for protecting the light emitting element. It is covered with a convex transparent silicon resin or transparent epoxy resin 13. The electrodes 14ab on the light emitting element are electrically connected to the cathode lead 15 and the anode lead 16 by gold wires 17a and 17b, respectively, so that the light emitting element emits light by passing a current between the leads. I have. By using such a light emitting diode, as shown in FIG. 2, heat is applied to one end of a heat radiator 23 made of a copper metal rod whose surface is electrically insulated on the back surface of the heat radiating substrate 22 of the light emitting diode 21. It is adhered through a conductive bonding material 24. The current supply to the light emitting diode 21 is made from the two electric wires 25a and 25b, and is electrically connected to the anode and cathode leads 26ab coming out of the light emitting diode 21 and wired along the radiator 23 to the power supply unit. It is connected. With this configuration, the heat generated from the light emitting diode 21 is directly radiated to the outside by the radiator 23, and the heat generated when the light emitting diode is turned on can be radiated to the outside by the radiator.
[0007]
Embodiment 2
As a practical structure shown in FIG. 6, a twisted wire-like flexible wire formed by bundling copper metal thin wires whose surface is electrically insulated is provided on the back surface of the heat dissipation board 62 of the light emitting diode 61. One end of the heat radiator 63 is in close contact with a heat conductive bonding material 64. The flexible radiator 63 is inserted and housed in a hollow pipe 65 made of stainless metal. The light emitting diode 61 is housed in a resin light emitting diode holder 66 air-tightly bonded and fixed to one end of the hollow pipe, and the gap between the light emitting diode holder 65 and the light emitting diode 61 is filled and sealed with a sealing resin 60. Have been. Further, the electric current is supplied to the light emitting diode 61 from the two electric wires 67a and 67b so that the current is supplied to the anode and the cathode lead 68ab coming out of the light emitting diode 61 so as to follow the flexible radiator 63 composed of a stranded wire. The other end of the hollow pipe 65 is connected to a feed-through terminal 69 which enables an electric connection hermetically sealed and allows an electric current to be supplied while maintaining the airtightness. Have been. The other electric wire is fixed to the inner surface of the hollow pipe made of stainless steel in the hollow pipe 65 so as to be pressed by a flexible radiator, and is substantially electrically connected to the hollow pipe 65. Although a twisted wire made of a thin copper metal wire is used as a flexible heat radiator here, it is easily considered that the same effect can be expected even if soft copper or soft iron (pure iron) is used, although it is expensive. .
Although the purpose of the present invention is to aim at dental photopolymerization, the basic structure of the present invention has another purpose, that is, industrial endoscope by mounting a light emitting diode having an emission wavelength exceeding the range of 350 to 500 nm. Application development to mirrors, medical endoscopes, various lighting devices, and various light sources for vehicles can be easily considered.
Embodiment 3
Further, by arranging the light emitting diode 71 near the incident end 74 of the optical fiber by using an optical fiber light guide 72 made of a multi-core united or single-core glass rod as shown in FIG. By guiding the reflected light to the emission end 75 of one of the optical fibers, a structure capable of efficiently using the light can be obtained. At this time, a radiator 76 is disposed on the rear surface of the light emitting diode 71 in close contact with the rear surface of the light emitting diode 71 via a heat conductive adhesive 73 in order to radiate the heat generated from the light emitting diode 71 to the rear surface side.
As described above, in the configuration examples of the two devices as a whole, as described above, the current supply condition to the light emitting diode does not change in either structure. Further, in the present embodiment, a single light emitting diode is used, but it is easily conceivable that the above condition does not change even if a plurality of light emitting diodes are used.
Embodiment 4
FIG. 8 shows an embodiment of the entire apparatus based on the second aspect.
A light-emitting unit 81, a control unit 82 built in the main body 86 for controlling on / off of the light-emitting unit 81, and a current for supplying a current not less than the absolute maximum rated value of the average current to 1.5 times or less to the light-emitting unit The power supply unit 83 includes a power source unit 83, a battery unit 84 for supplying power to the current source unit, and a power supply unit 85 for supplying power to the battery in the main body.
Since the light emitting section 81 and the main body 86 can be separated, the light emitting section 81 can be easily removed and disinfected after use.
Further, since the main body 86 has a built-in battery, the main body and the power supply section 85 can be separated at the time of use, so that the main body 86 is in a so-called cordless state, which is very convenient.
It is not always necessary to incorporate a battery in the main body 86, and it is also possible to remove the battery and directly connect the power supply unit 85 to the current source unit. In this case, at the time of use, the main body and the power supply unit 85 are connected, so that the cost is reduced and the size can be further reduced.
Embodiment 5
FIG. 9 shows an embodiment of the entire apparatus based on the third aspect.
A light guide 92 for guiding the light from the light emitting diode 91 to the outside, a light emitting diode 91 mounted in the body 93 near the light guide incident end, a radiator 94 for emitting heat of the light emitting diode 91, A current source unit 95 for supplying a current not less than the absolute maximum rated value of the average current and 1.5 times or less, a battery unit 96 for supplying power to the current source unit, and a power supply for supplying power to the battery in the main body 93 It comprises a part 97.
As in the fourth embodiment, since the battery is built in the main body, the main body and the power supply unit 97 can be separated at the time of use, so that a so-called cordless state is provided, which is very convenient.
It is not always necessary to incorporate a battery in the main body 93, and it is also possible to remove the battery and directly connect the power supply unit 97 to the current source unit. In this case, during use, the main body and the power supply unit 97 are in a connected state, so that the cost is reduced, and further downsizing is possible.
[0008]
As described above, the basic structure of the present invention is such that the back side of the light emitting diode which emits light of 350 to 500 nm is fixed to the tip of the heat radiator, and the current flowing through the light emitting diode is rated. By setting the current to 1.5 times or less, the continuous energization time was further limited to 60 seconds or less, whereby the light quantity from the light emitting diode could be increased without significantly impairing the reliability such as the life.
[0009]
[Brief description of the drawings]
FIG. 1 is a schematic structural sectional view of a light emitting diode based on the present invention.
FIG. 2 shows a basic structure of a light emitting unit of the present device.
FIG. 3 is a measurement result of a relationship between an energization time and a current value.
FIG. 4 is a diagram showing a relationship between an energizing time and a junction temperature.
FIG. 5 shows the results of a curing experiment in Example 1.
FIG. 6 is an explanatory diagram of a configuration according to a second embodiment.
FIG. 7 is an explanatory diagram of another practical configuration according to the second embodiment.
FIG. 8 is an explanatory diagram of a configuration according to a third embodiment.
FIG. 9 is an explanatory diagram of a configuration according to a fourth embodiment.
10 is a conventional example. FIG. 11 is a conventional example. FIG. 12 is a conventional example.

Claims (5)

発光ダイオードを用いた光重合器において、発光ダイオードに流す電流の平均値を、発光ダイオードの平均値電流の絶対最大定格値以上1.5倍以下にし、通電時間を 60秒以下とし、かつ発光ダイオードの絶対最大接合部温度を超えて使用することを特徴とする光重合器。In a photopolymerization device using a light emitting diode, the average value of the current flowing through the light emitting diode is set to be 1.5 times or more of the absolute maximum rated value of the average current of the light emitting diode, the energizing time is 60 seconds or less, and the light emitting diode is A photopolymerizer used above the absolute maximum junction temperature. 前記光重合器は発光部と本体と電源供給部より構成され、発光部はへの字状に曲げられた中空パイプと、中空パイプの一方の先端に密封されてとりつけられた前記発光ダイオードと、前記発光ダイオードの背面に取り付けられた棒状放熱体と、前記発光ダイオードに電力を供給するための導電体と、導電体と電気的な接続をする端子を持ち中空パイプの他の一端に密封された端子部を備へ本体より脱着、回転が可能にしたことを特徴とする請求項1に記載の光重合器。The light polymerization device is composed of a light emitting unit, a main body, and a power supply unit, the light emitting unit is a hollow pipe bent in a U-shape, and the light emitting diode hermetically attached to one end of the hollow pipe, A rod-shaped radiator attached to the back of the light emitting diode, a conductor for supplying power to the light emitting diode, and a terminal having an electrical connection with the conductor were sealed at the other end of the hollow pipe. The photopolymerizer according to claim 1, wherein the terminal portion is detachable from the main body and can be rotated. 前記光重合器は前記発光ダイオードからの光を外部へ導出するライトガイドと、ライトガイド入射端に対向し光放射面側を密着あるいは近接配置した前記発光ダイオードと、前記発光ダイオードの熱を放出するための放熱体を備えた事を特徴とする請求項1に記載の光重合器。The light polymerization device emits light from the light emitting diode, a light guide that guides light from the light emitting diode to the outside, the light emitting diode in which a light emitting surface side is disposed in close contact with or close to a light guide incident end, and emits heat of the light emitting diode. The photopolymerizer according to claim 1, further comprising a heat radiator for use. 前記ライトガイドは多芯結束ガラスファイバー或いは石英製ムク棒からなることを特徴とする請求項3に記載の光重合照射器。The photopolymerization irradiator according to claim 3, wherein the light guide is made of a multi-core united glass fiber or a quartz rod. 前記発光ダイオードは複数の発光素子よりなることを特徴とする請求項1に記載の光重合照射器。The photopolymerization irradiator according to claim 1, wherein the light emitting diode comprises a plurality of light emitting elements.
JP2003048367A 2003-02-26 2003-02-26 Photopolymerization apparatus Pending JP2004254880A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003048367A JP2004254880A (en) 2003-02-26 2003-02-26 Photopolymerization apparatus
PCT/JP2004/002264 WO2004084758A1 (en) 2003-02-26 2004-02-26 Photopolymerization unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048367A JP2004254880A (en) 2003-02-26 2003-02-26 Photopolymerization apparatus

Publications (1)

Publication Number Publication Date
JP2004254880A true JP2004254880A (en) 2004-09-16

Family

ID=33094789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048367A Pending JP2004254880A (en) 2003-02-26 2003-02-26 Photopolymerization apparatus

Country Status (2)

Country Link
JP (1) JP2004254880A (en)
WO (1) WO2004084758A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253528A (en) * 2005-03-14 2006-09-21 Opto Device Kenkyusho:Kk Reflecting light emitting diode unit, and light emitting diode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1019970A1 (en) * 1997-09-25 2000-07-19 University of Bristol Optical irradiation device
JPH11272838A (en) * 1998-01-22 1999-10-08 Tenryu Technics:Kk Article image pickup method and electronic component mounting device
US6419483B1 (en) * 2000-03-01 2002-07-16 3M Innovative Properties Company Method and apparatus for curling light-curable dental materials
JP2001356247A (en) * 2000-06-13 2001-12-26 Mitsubishi Rayon Co Ltd Illuminator
JP2002151741A (en) * 2000-11-08 2002-05-24 Murata Mfg Co Ltd Light emitting device, mounting substrate, and electronic equipment using the device and substrate
JP2002360605A (en) * 2001-06-06 2002-12-17 Morita Mfg Co Ltd Medical light irradiator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253528A (en) * 2005-03-14 2006-09-21 Opto Device Kenkyusho:Kk Reflecting light emitting diode unit, and light emitting diode

Also Published As

Publication number Publication date
WO2004084758A1 (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US11273021B2 (en) Dental curing light having unibody design that acts as a heat sink
US7198397B2 (en) LED endoscope illuminator and methods of mounting within an endoscope
US6880954B2 (en) High intensity photocuring system
US9022628B2 (en) Compact, high efficiency, high power solid state light source using a single solid state light-emitting device
US20040029069A1 (en) Curing light instrument
JP3686660B2 (en) Light irradiation device and optical unit
JP2006504253A (en) Illuminator assembly
WO1997036552A1 (en) Apparatus and method for polymerising dental photopolymerisable compositions
WO2002033312A2 (en) A light-emitting assembly
US20220263293A1 (en) Semiconductor laser and material machining method using a semiconductor laser
US20060199144A1 (en) High Efficiency LED Curing Light System
WO2000067660A1 (en) Curing device and method
JP2004254880A (en) Photopolymerization apparatus
JP2003124520A (en) Photopolymerization radiation device
KR101877421B1 (en) Light curing apparatus for dental clini
KR102068505B1 (en) Lens Module and Light Curing Apparatus for Dental Clinic Including Thereof
JP2003144461A (en) Irradiation device for photocuring
JP2007017540A (en) Light irradiation device
KR100893033B1 (en) LED Electro-Optical Assemblies and Methods for Forming LED Electro-Optical Assemblies
JP2005050575A (en) Condensing mirror device of discharge lamp

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20060303

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20060303

Free format text: JAPANESE INTERMEDIATE CODE: A523