JP2004251149A - 燃料噴射装置 - Google Patents
燃料噴射装置 Download PDFInfo
- Publication number
- JP2004251149A JP2004251149A JP2003040057A JP2003040057A JP2004251149A JP 2004251149 A JP2004251149 A JP 2004251149A JP 2003040057 A JP2003040057 A JP 2003040057A JP 2003040057 A JP2003040057 A JP 2003040057A JP 2004251149 A JP2004251149 A JP 2004251149A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- fuel
- switch
- control
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Fuel-Injection Apparatus (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
【課題】燃料噴射制御における燃料噴射制御の応答性能を良好に保持しつつ、減圧性能をも高めることができる燃料噴射装置を提供する。
【解決手段】本発明の燃料噴射装置では、減圧制御開始と同時に、駆動スイッチをオンにした状態で放電スイッチをオフ状態にする一方、定電流スイッチをオン・オフすることにより、電流を緩やかに供給しつつ、蓄圧配管内の高圧燃料を燃料系の低圧側に断続的に排出させるための遅延時間を長くする。このため、一回の減圧動作で燃料圧を大きく減圧することができる。そして、その減圧制御の断続的な繰り返しにより、減圧制御全体として所定の燃料圧まで減圧するのにかかる時間を短くすることができる。その結果、急激な減圧を要するような場合でもそれに対応することができる。
【選択図】 図6
【解決手段】本発明の燃料噴射装置では、減圧制御開始と同時に、駆動スイッチをオンにした状態で放電スイッチをオフ状態にする一方、定電流スイッチをオン・オフすることにより、電流を緩やかに供給しつつ、蓄圧配管内の高圧燃料を燃料系の低圧側に断続的に排出させるための遅延時間を長くする。このため、一回の減圧動作で燃料圧を大きく減圧することができる。そして、その減圧制御の断続的な繰り返しにより、減圧制御全体として所定の燃料圧まで減圧するのにかかる時間を短くすることができる。その結果、急激な減圧を要するような場合でもそれに対応することができる。
【選択図】 図6
Description
【0001】
【発明の属する技術分野】
本発明は、必要に応じてインジェクタ駆動時における燃料リークを利用した減圧制御を行う燃料噴射装置に関する。
【0002】
【従来の技術】
従来より、コモンレール式ディーゼルエンジン用の燃料噴射装置では、燃料を内燃機関の負荷に応じた圧力で噴射するために燃料圧の制御が行われている。
そして特に、燃料圧の制御において、例えば急減速時等の特定の運転状態において、フューエルカット等によりインジェクタの開弁動作が行われない場合でも、すみやかに燃料圧を制御目標圧に追従できるように、インジェクタ駆動時における燃料リークを利用した減圧制御手法が提案されていた(例えば特許文献1参照)。
【0003】
すなわち、図11(a)に示すように、この燃料噴射装置では、蓄圧配管(コモンレール)M1内の燃料圧が制御目標圧より大きい場合、制御弁駆動手段M4が燃料噴射弁M3における燃料噴射の開始に至る遅延時間未満の時間幅でインジェクタの制御弁M2を駆動して、蓄圧配管M1内の高圧燃料を燃料系の低圧側に断続的に排出する。つまり、蓄圧配管M1内の燃料の一部を燃料系の低圧側に導入することで、蓄圧配管M1内の燃料圧を低減させる。その結果、燃料圧は制御目標圧近傍に速やかに低減され、当該制御目標圧に追従することができるのである。つまり、同図(b)に示すように、インジェクタに通電を開始してから燃料噴射開始に至るまでの遅延時間を利用して、蓄圧配管内の燃料を燃料系の低圧側へ断続的に排出することにより蓄圧配管の圧力を低減する手法である。
【0004】
この減圧制御時の駆動回路側の動作とそれによるインジェクタ側の動作の関係を表すと、図12のようになる。
すなわち、駆動回路には、電源からの電力を受けて制御弁を駆動するアクチュエータを動作させるために、このアクチュエータに電流を供給するために電荷を蓄えるコンデンサと、電源からの供給電力によりコンデンサを所定の高電圧になるまで安定して電圧チャージするために所定周期でオン・オフされるチャージスイッチと、アクチュエータへの供給電流を通電又は遮断するためにオン・オフされる駆動スイッチと、コンデンサを放電させてアクチュエータにその放電電流を供給するためにオンされる放電スイッチと、放電スイッチがオフされた状態で、電源からの供給電流を所定の周期で通電又は遮断し、アクチュエータへの供給電流を所定以上に保持するためにオン・オフされる定電流スイッチとが備えられ、これらのスイッチをオン・オフ制御することにより、減圧制御を行っている。
【0005】
そして、同図に示すように、減圧制御を開始する前に、同図(c)に示すように、チャージスイッチをオン・オフ動作させてコンデンサにチャージ電圧を蓄え、同図(a),(b)に示すように、減圧制御開始により駆動スイッチをオンすると共に、放電スイッチをオンにする。これによりインジェクタへの供給電流(インジェクタ電流)が流れる。そして、一定時間経過すると放電スイッチがオフされ、その後は定電流スイッチのオン・オフによりインジェクタにほぼ一定の電流供給が保持される(同図(e))。一方、同図(d)に示すように、この放電によりコンデンサの電圧が下がっているため、その後は再びチャージスイッチをオン・オフ動作させてコンデンサにチャージ電圧を蓄える(同図(c))。
【0006】
そして、所定時間T11が経過すると、駆動スイッチがオフされインジェクタへの電流供給が停止される(同図(a))。この所定時間T11が、インジェクタが燃料噴射の開始に至るまでの遅延時間T12未満の時間幅であるため、燃料噴射は行われず、制御弁が蓄圧配管M1内の燃料の一部を燃料系の低圧側に導入する燃料リークのためだけに開弁状態とされる。それにより、燃料噴射を行うことなく蓄圧配管M1内の燃料を低圧側へリークさせている(同図(f),(g))。
【0007】
以上のような開弁制御を断続的に繰り返すことにより、蓄圧配管M1の燃料圧を積極的に下げ、全体として迅速な減圧制御を実現しているのである。
【0008】
【特許文献1】
特許第2636394号公報(第2頁,図1)
【0009】
【発明が解決しようとする課題】
しかしながら、近年においては、微小噴射等の細かな制御へのニーズが高まっており、燃料噴射装置としてより高い応答性能が要求されている。そして、インジェクタ側の改良及びその駆動回路側の改良により応答性を向上させ、通電を開始してから燃料噴射開始に至るまでの遅延時間がより短くなるようにされている。
【0010】
このため、上述した特許文献1に記載された燃料噴射装置のように、その燃料噴射に至るまでの遅延時間を利用して減圧性能を高める技術とは相反する現象が生じている。つまり、応答性能を向上させることにより、これに相反して減圧性能が低下するといった問題が生じているのである。
【0011】
本発明は、こうした問題に鑑みてなされたものであり、燃料噴射制御における燃料噴射制御の応答性能を良好に保持しつつ、減圧性能をも高めることができる燃料噴射装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題に鑑み、請求項1記載の燃料噴射装置は、高圧燃料を蓄える蓄圧配管と、蓄圧配管からの高圧燃料の作動室への導入,又は燃料系の低圧側への排出を切り換える制御弁を有し、高圧燃料の作動室への導入によりノズルニードルに閉弁方向の力を、高圧燃料の燃料系の低圧側への排出により開弁方向の力を受けるインジェクタと、制御弁を駆動するアクチュエータと、電源からの電力を受けてアクチュエータを駆動させるための電流を供給制御する電流供給手段とを備える。
【0013】
そして、蓄圧配管に燃料ポンプから燃料を供給して蓄圧配管内の燃料圧を制御すると共に、上記供給電流による制御弁の駆動時間によりその開弁時間を制御して、燃料を内燃機関の負荷に応じた圧力で噴射する燃料噴射制御を行う一方、蓄圧配管内の燃料圧が制御目標圧より大きい場合、燃料噴射の開始に至るまでの遅延時間未満の時間幅で制御弁を駆動して、蓄圧配管内の高圧燃料を燃料系の低圧側に断続的に排出させる減圧制御を行うものである。
【0014】
そして特に、電流供給手段が、減圧制御において、燃料噴射制御の場合よりも電流を緩やかに供給して、制御弁の開弁速度を低下させることにより、上記遅延時間が長くなるようにする。尚、ここでいう「緩やかに供給」とは、燃料噴射制御の場合のように、応答性を良くするために噴射制御開始の際に特に立ち上がりの大きな電流を与えるといったことを行わず、供給電流を緩やかに立ち上げ、所定の電流レベルでの供給を継続することを意味する。
【0015】
かかる構成によれば、その緩やかな電流供給により、減圧制御の際の制御弁の動作速度が燃料噴射制御の場合よりも遅くなるため、燃料噴射の開始に至るまでの遅延時間を長くすることができる。このため、その間多くの高圧燃料を蓄圧配管から排出することができ、蓄圧配管内の燃料圧を速やかに低減させることができる。この結果、制御目標圧が急激に変化したとしても、速やかに燃料圧を低減してそれに迅速に対応することができる。
【0016】
換言すれば、近年の燃料噴射制御の応答性の向上とは相反するように、減圧制御の応答性を意図的に燃料噴射制御とは独立して低下させることにより、その減圧性能を確保することができる。つまり、燃料噴射制御における燃料噴射制御の応答性能を良好に保持しつつ減圧性能をも高め、円滑な減圧制御を実現することができるのである。
【0017】
上記電流供給手段の具体的構成としては、請求項2に記載のように、アクチュエータに電流を供給するために電荷を蓄えるコンデンサと、電源からの供給電力によりコンデンサを所定の高電圧になるまで電圧チャージするためにオン・オフされるチャージスイッチと、アクチュエータへの供給電流を通電又は遮断するためにオン・オフされる駆動スイッチと、コンデンサを放電させてアクチュエータにその放電電流を供給するためにオンされる放電スイッチと、放電スイッチがオフされた状態で、電源からの供給電流を所定の周期で通電又は遮断し、アクチュエータへの供給電流を予め定める所定レベルに保持するためにオン・オフされる定電流スイッチと、各スイッチをオン・オフ制御するスイッチ制御手段とを備えたものが考えられる。
【0018】
そして、上記スイッチ制御手段が、減圧制御において、駆動スイッチをオンにした状態で、放電スイッチ及び定電流スイッチをオン・オフ制御することにより、電流を緩やかに供給しつつ、その遅延時間を長くする。
すなわち、かかる構成では、電流を緩やかに供給することで制御弁の動作を遅延させ、駆動スイッチのオン時間ひいては制御弁の駆動時間を長くしている。もちろん、制御弁の駆動は燃料噴射までに停止されるため、その間に燃料噴射が開始されることはない。つまり、このようにして燃料噴射の開始に至るまでの遅延時間が長くなるため、蓄圧配管内の高圧燃料を燃料系の低圧側に長く(つまり多く)排出させることができ、一回の減圧制御により大きく減圧させることができる。その結果、この減圧制御を断続的に繰り返すことで全体として迅速な減圧制御が行われ、その減圧性能が向上する。
【0019】
より具体的には、例えば請求項3に記載のように、上記スイッチ制御手段が、減圧制御開始と同時に、放電スイッチをオフ状態にする一方、定電流スイッチをオン・オフすることにより、電流を緩やかに供給しつつ、上記遅延時間を長くするようにしてもよい。尚、ここでいう「放電スイッチのオフ状態」は減圧制御開始時点でオフにする場合と、それ以前からオフにする場合の双方を含み得る。
【0020】
かかる構成では、減圧制御時において放電スイッチがオフ状態にあるため、コンデンサの放電による電流供給がなく、定電流スイッチの動作により、電流が所定の電流値まで緩やかに供給され、その後所定時間その電流レベルが保持される。それにより、上述した効果を発揮することができる。
【0021】
また、請求項4に記載のように、上記スイッチ制御手段が、減圧制御開始前にチャージスイッチをオン・オフ制御して、コンデンサのチャージ電圧が燃料噴射制御の場合よりも小さくなるようにすることにより、減圧制御時に放電スイッチのオンにより放電される電流を小さくすることで供給電流を緩やかに立ち上げ、それにより、上記遅延時間を長くするようにしてもよい。かかる構成により、上述した効果を発揮することができる。
【0022】
また、請求項5に記載のように、上記スイッチ制御手段が、減圧制御開始前にチャージスイッチをオン・オフ制御して、コンデンサを蓄電する一方、減圧制御時に放電スイッチのオン状態を燃料噴射制御の場合よりも短くなるように制御することにより放電される電流を小さくすることで、電流を緩やかに供給しつつ、上記遅延時間を長くするようにしてもよい。かかる構成により、上述した効果を発揮することができる。
【0023】
或いは、請求項6に記載のように、上記スイッチ制御手段が、減圧制御開始前にチャージスイッチをオフ状態にしてコンデンサの蓄電を停止する一方、減圧制御開始と同時に定電流スイッチをオン・オフすることにより、電流を緩やかに供給しつつ、遅延時間を長くするようにしてもよい。尚、その際には、放電スイッチを形式的にオンにしても、オフのままにしてもどちらでもよい(放電されないため、関係ない)。かかる構成により、上述した効果を発揮することができる。
【0024】
尚、上述した燃料噴射装置のスイッチ制御手段をコンピュータシステムにて実現する機能は、例えば、コンピュータシステム側で起動するプログラムとして備えられる(請求項7)。このようなプログラムの場合、例えば、フレキシブルディスク、光磁気ディスク、CD−ROM、DVD、ハードディスク等の記録媒体に記録し、必要に応じてコンピュータシステムにロードして起動することにより用いることができる。その他、ROMやバックアップRAMを記録媒体として前記プログラムを記録しておき、このROMあるいはバックアップRAMをコンピュータシステムに組み込んで使用してもよい。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を明確にするため、本発明の好適な実施例を図面と共に説明する。
[第1実施例]
本実施例は、本発明の燃料噴射装置を、多気筒ディーゼル機関の燃料噴射装置として構成したものであり、図1はその燃料噴射装置を1気筒分のインジェクタ及び配管系を中心に示す概略構成図である。
【0026】
同図に示すように、インジェクタ1の弁ケーイング2内には、弁体摺動孔3及び燃料溜り室5が形成され、先端には上記燃料溜り室5に連通するノズル孔7が形成されている。上記弁体摺動孔3には、ノズルニードル9の大径部11が摺動自在に嵌合されている。このノズルニードル9の大径部11の上部には、連結部13、下部に小径部15及び弁体部17が一体形成され、この弁体部17によりノズル孔7が開閉される。
【0027】
上記ノズルニードル9の連結部13の先端には、フランジ19、ピストンピン21及びピストン23が一体的に連結されている。上記フランジ19とハウジング25との間には、ばね27が架設され、ノズルニードル9に対して開弁方向にばね力を付勢している。
【0028】
上記ピストン23は、シリンダ29内に摺動自在に嵌合され、シリンダ29とともに作動室31を形成している。作動室31の上部に設けた高圧燃料の流出入口33には、オリフィス35を有するプレート弁37が当接され、ピストン23の上端面で支持されたばね体39の付勢力により押圧されている。
【0029】
この燃料噴射装置の燃料供給構成としては、燃料タンク41から流路43を介して燃料を汲み上げる燃料ポンプ45と、燃料ポンプ45から流路47を通じて供給した燃料を畜圧して各インジェクタ1に供給する蓄圧配管(コモンレール)49と、この蓄圧配管49からの燃料の供給方向を切り替え、インジェクタ1を開閉制御する三方電磁弁51とを備えており、また、燃料溜り室5に燃料を供給する経路としての流路53、蓄圧配管49と三方電磁弁51との流路55、三方電磁弁51と燃料タンク41との流路57が設けられている。
【0030】
三方電磁弁51には、図2(a)に示すように、弁本体61内の摺動孔63に摺動可動に嵌合された第1弁体65が設けられている。この第1弁体65は、スプリング67の付勢力により、第1弁座69に着座するようになされている。また、ソレノイド71(アクチュエータ)を励磁することにより第1弁体65が摺動して第1弁座69から離問するようになされている。更に、摺動孔63に連通した高圧燃料が供給される供給孔73が穿設されており、また摺動孔63と燃料タンク41とを連通する排出孔75、及び第1弁座69を介してインジェクタ1の作動室の流出入口33とを連通する第1接続孔77が形成されている。一方、第1弁体65内に形成された摺動孔79には、第2弁体81が摺動可能に嵌合されており、第2弁体81が着座する第2弁座83が圧力室85に形成されている。また、第1弁体65には圧力室85と供給孔73とを連通する連通孔87が穿設されており、第2弁座83を介して圧力室85に連通した第2接続孔89が形成されている。
【0031】
この三方電磁弁51の作動は、同図(a)に示すように、ソレノイド71が励磁されていないときにはスプリング67の付勢力により第1弁体65は、第1弁座69に着座して、第1接続孔77と排出孔75とを遮断している。また、供給孔73、連通孔87を介して圧力室85に供給される高圧燃料の圧力による作用力により、第2弁体81は、第2弁座83から離問されて、規制部91に突き当たるまで移動される。これにより、供給孔73が、連通孔87、圧力室85、第2接続孔89を介して第1接続孔77と連通されて、インジェクタ1の作動室に高圧燃料が供給され、燃料噴射が停止される。
【0032】
また、同図(b)に示すように、ソレノイド71が励磁されると、このソレノイド71はスプリング67の付勢力に抗して第1弁体65を引き上げ、第1弁体65を第1弁座69から離問する。第1弁体65が移動して、第2弁体81が第2弁座83に着座する。これにより、供給孔73は遮断され、接続孔77と排出孔75とが連通されて、図1に示すインジェクタ1の作動室31から燃料が排出される。この結果、インジェクタ1に流路53を介して供給される高圧燃料によりノズルニードル9が開弁方向に移動されて、燃料噴射が実行される。即ち、ノズルニードル9は、燃料溜り室5内の燃料の圧力により生じる開弁方向の力が、作動室31内の燃料の圧力に生じる閉弁方向の力とばね27等による付勢力との総和を上回った時、開弁方向に移動するのである。
【0033】
本実施例では、オリフィス35により燃料の移動は制限されているので、通常の燃料噴射制御を実行するときには、三方電磁弁51を切り替えてから開弁方向への力が閉弁方向への力を上回ってノズルニードル9が上方に移動を開始するまでの遅延時間(T2)を要する。また、その後のノズルニードル9の移動速度も、図1に示すインジェクタ1の作動室31からの燃料の移動の速さに依存している。
【0034】
次に、この燃料噴射装置の蓄圧配管49と燃料系の低圧側を連通又は遮断する流路を説明する。この三方電磁弁51は、上述したようにソレノイド71の励磁に応じて、図2(a)及び(b)の2位置に切り替えられる。この際、同図(c)に示すように、蓄圧配管側の供給孔73が、連通孔87と第2接続孔89及び第1接続孔77を介して、有意の時間、燃料系の低圧側である燃料タンク41側の排出孔75と連通する。そして、この有意の時間において、蓄圧配管49内の燃料が燃料タンク41に排出され、燃料圧が低減される。
【0035】
以上のように、本実施例の燃料噴射装置は、インジェクタ1及び燃料供給機構の制御機構として、燃料ポンプ45のためのポンプ制御装置95と、蓄圧配管49に設けられ、畜圧した燃料の圧力を検出するための圧力センサ97と、スイッチ制御手段としての電子制御装置(以下「ECU」という)99とを備える。
【0036】
ECU99は、図3に示すように、周知のCPU101,ROM103,RAM105等により論理演算回路として構成され、圧力センサ97の出力や、アクセル操作量検出センサ107、クランク軸回転位置検出センサ109、クランク軸回転速度検出センサ111等の出力を入力する入力ポート113及び三方電磁弁51、ポンプ制御装置95等に制御信号を出力する出力ポート115を備える。このECU99は、所定のプログラムに従って、各センサの出力からインジェクタ1の開弁時間や燃料の制御目標圧を演算し、これら演算結果に基づいて三方電磁弁51及びポンプ制御装置95等の制御を行うことによって、好適な燃料噴射量制御を実現する。
【0037】
次に、インジェクタ1を駆動するために、ECU99内に設けられた駆動回路について、図4の概略図に基づいて説明する。
同図に示すように、この駆動回路には、電源からの電力を受けて三方電磁弁51(制御弁)を駆動するソレノイド71(アクチュエータ)を動作させるために、このソレノイド71に電流を供給するための電荷を蓄えるコンデンサ201と、電源(+B)からの供給電力によりコンデンサ201を所定の高電圧になるまで電圧チャージするためにオン・オフされるチャージスイッチ203と、ソレノイド71への供給電流を通電又は遮断するためにオン・オフされる駆動スイッチ205と、コンデンサ201を放電させてソレノイド71にその放電電流を供給するためにオンされる放電スイッチ207と、放電スイッチ207がオフされた状態で、電源(+B)からの供給電流を所定の周期で通電・遮断し、ソレノイド71への供給電流をほぼ一定に保持するためにオン・オフされる定電流スイッチ208とが備えられ、これらのスイッチをオン・オフ制御することにより、インジェクタ1の駆動制御を行っている。
【0038】
すなわち、電源(+B)から供給される電流は、ダイオード206によりその逆流を防止しつつコンデンサ201に蓄えられる。その際、電圧モニタ202により蓄電圧をモニタしつつ、発振回路204(IC等)によりチャージスイッチ203をオン・オフ制御しながら、所定のチャージ電圧になるようにされている。
【0039】
そして、駆動スイッチ205がオンされた状態で放電スイッチ207がオンされると、コンデンサ201からの放電電流がインジェクタ1のソレノイド71に供給される。その後、その供給電流を所定レベルに保持するために、所定期間定電流スイッチ208がオン・オフ制御され、電源から安定した電流を供給する。
【0040】
次に、このようにして構成された本実施例の燃料噴射装置による燃料噴射制御(特に減圧制御を伴わない通常制御)について、図5のタイミングチャートに基づいて説明する。
まず、燃料噴射制御を開始する前に、上述のようにチャージスイッチ203をオン・オフ動作させてコンデンサ201にチャージ電圧を蓄えておく。そして、ECU99からの指令に基づく燃料噴射制御開始により、駆動スイッチ205をオンすると共に放電スイッチ207をオンにする(同図(a),(b))。これによりインジェクタ1(ソレノイド71)への通電が行われる。そして一定時間経過すると放電スイッチ207がオフされ、その後は定電流スイッチ208のオン・オフによりインジェクタ1にほぼ一定の電流供給が保持される(同図(c)。
【0041】
そして、所定の遅延時間T2が経過すると燃料噴射が開始される(同図(d))。そして、所定の燃料噴射が行われた後、駆動スイッチ205がオフされてインジェクタ電流の通電が停止され、燃料噴射が停止する。この駆動スイッチ205がオンされてから燃料噴射が開始されるまでの有意の時間に、蓄圧配管49内の燃料が燃料タンク41にリークするため、燃料圧は所定量低減する(同図(e))。
【0042】
次に、本実施例の燃料噴射装置による燃料圧の減圧制御方法について、図6のタイミングチャートに基づいて説明する。尚、同図には、従来の減圧制御との違いを分かりやすくするために、図12の従来の減圧制御を点線にて併記している。
【0043】
図6に示すように、減圧制御が開始されると、駆動スイッチ205をオンすると共に、定電流スイッチ208を所定周期でオンすることにより、インジェクタ1(ソレノイド71)に上記一定レベルの電流を供給する。すなわち、同図(b)に示すように、本実施例ではコンデンサ201の放電による電流供給は行われない。
【0044】
このため、同図(e)に示すように、インジェクタ電流は緩やかに立ち上がり、そのため、燃料噴射の開始に至るまでの遅延時間T21が従来の遅延時間T2よりも長くなる。この結果、蓄圧配管49内の燃料の一部を燃料系の低圧側にリークさせる図2(c)の開弁状態が長くなり、図6(g)に示すように、従来よりも燃料リーク量が多くなる。その結果、一回の減圧制御において従来よりも蓄圧配管49の燃料圧を大きく低減することができ、燃料噴射装置としての減圧性能を向上させることができる。
【0045】
尚、図6(c)においては、次回の燃料噴射制御のために、減圧制御前にチャージスイッチ203をオン・オフ動作させてコンデンサ201にチャージ電圧を蓄えている。しかし、このチャージ処理は、燃料噴射制御前に行われればよく、必ずしも同図のタイミングにて行う必要はない。
【0046】
以上のように、本実施例の燃料噴射装置の減圧制御によれば、一回の減圧動作で燃料圧を大きく減圧することができる。そして、その減圧制御の断続的な繰り返しにより、減圧制御全体として所定の燃料圧まで減圧するのにかかる時間を短くすることができる。その結果、急激な減圧を要するような場合でもそれに対応することができる。
【0047】
例えば、図7(a)及び(b)に示すように、時刻t1にアクセル操作量が100[%]から0[%]になり、燃料の制御目標圧Pb(破線)が大きく下降した場合を想定する。この場合、本実施例では、同図(c)に実線で示すように、減圧制御一回あたりの三方電磁弁51の動作速度が従来よりも遅延し、三方電磁弁51の切り換えタイミングが従来(点線)よりも長くなる。その結果、蓄圧配管49内の高圧燃料を燃料系の低圧側に排出させる時間が長くなり、同図(a)に実線で示すように、燃料圧Paが従来(点線)よりも速やかに低下する。特に、同図(b)に示すように、時刻t1でアクセルを離してから再度時刻t2でアクセルを踏み込んだような場合、その時刻t1と時刻t2の時間間隔が同図よりもさらに短くなるような場合でも、本実施例の減圧制御によりこれに迅速に対応することができる。
【0048】
本実施例の減圧制御によれば一回の減圧動作で大きく減圧できるため、減圧制御全体として従来よりも迅速な制御を実現できる。
[第2実施例]
本実施例は、燃料噴射装置による燃料圧の減圧制御において、コンデンサ201のチャージ電圧を低く設定して、燃料噴射までの遅延時間を長くするものである。図8は、本実施例の減圧制御を表すタイミングチャートである。尚、同図にも、従来の減圧制御との違いを分かりやすくするために、図12の従来の減圧制御を点線にて併記している。尚、本実施例にかかる燃料噴射装置の構成及び燃料噴射の際の動作等については上記第1実施例のものと同様であるため、その説明については省略する。
【0049】
図8に示すように、まず、減圧制御を開始する前に、チャージスイッチ203をオン・オフ動作させてコンデンサ201にチャージ電圧を蓄えておく(同図c)。
このとき、チャージ電圧は噴射制御の際のチャージ量(つまり、従来のチャージ量)よりも所定量小さくなるようにする。従って、同図(d)に示すように、コンデンサ201の蓄電圧は従来の場合よりも小さな値となる。
【0050】
そして、ECU99からの指令に基づく減圧制御開始により、駆動スイッチ205をオンすると共に放電スイッチ207をオンにする(同図(a),(b))。そして一定時間経過すると放電スイッチ207がオフされ、その後は定電流スイッチ208のオン・オフによりインジェクタ1にほぼ一定の電流供給が保持される(同図(c)。これによりインジェクタ1(ソレノイド71)への通電が行われる。
【0051】
このように、減圧制御に際して行うコンデンサ201の蓄電圧を小さくすることにより、結果的に放電電流が少なくなるため、同図(e)に示すように、インジェクタ電流は緩やかに立ち上がり、その結果、燃料噴射の開始に至るまでの遅延時間T22が従来の遅延時間T2よりも長くなる。この結果、制御弁を駆動させるのに従来よりも時間がかかり、蓄圧配管49内の燃料の一部を燃料系の低圧側にリークさせる図2(c)の開弁状態が長くなり、図8(g)に示すように、従来よりも燃料リーク量が多くなる。その結果、一回の減圧制御において従来よりも蓄圧配管49の燃料圧を大きく低減することができ、燃料噴射装置としての減圧性能を向上させることができる。
【0052】
以上のように、本実施例の燃料噴射装置の減圧制御によっても、一回の減圧動作で燃料圧を大きく減圧することができる。そして、その減圧制御の断続的な繰り返しにより、減圧制御全体として所定の燃料圧まで減圧するのにかかる時間を短くすることができる。その結果、急激な減圧を要するような場合でもそれに対応することができる。
[第3実施例]
本実施例は、燃料噴射装置による燃料圧の減圧制御において、コンデンサ201の放電時間を短くして、燃料噴射までの遅延時間を長くするものである。図9は、本実施例の減圧制御を表すタイミングチャートである。尚、同図にも、従来の減圧制御との違いを分かりやすくするために、図12の従来の減圧制御を点線にて併記している。尚、本実施例にかかる燃料噴射装置の構成及び燃料噴射の際の動作等については上記第1実施例のものと同様であるため、その説明については省略する。
【0053】
図9に示すように、まず、減圧制御を開始する前に、従来の場合と同様にチャージスイッチ203をオン・オフ動作させてコンデンサ201にチャージ電圧を蓄えておく(同図c)。
そして、ECU99からの指令に基づく減圧制御開始により、駆動スイッチ205をオンすると共に放電スイッチ207をオンにする(同図(a),(b))。
【0054】
そして、燃料噴射制御の場合(従来の場合)よりも短い一定時間が経過すると放電スイッチ207をオフして、その後は定電流スイッチ208のオン・オフによりインジェクタ1にほぼ一定の電流供給が保持される(同図(e))。これによりインジェクタ1(ソレノイド71)への通電が行われる。
【0055】
このように、駆動スイッチ205をオンした後に放電スイッチ207をオンする時間を短くしたため、同図(e)に示すように、インジェクタ電流は緩やかに立ち上がり、その結果、燃料噴射の開始に至るまでの遅延時間T23が従来の遅延時間T2よりも長くなる。この結果、制御弁を駆動させるのに従来よりも時間がかかり、蓄圧配管49内の燃料の一部を燃料系の低圧側にリークさせる図2(c)の開弁状態が長くなり、図9(g)に示すように、従来よりも燃料リーク量が多くなる。その結果、一回の減圧制御において従来よりも蓄圧配管49の燃料圧を大きく低減することができ、燃料噴射装置としての減圧性能を向上させることができる。
【0056】
以上のように、本実施例の燃料噴射装置の減圧制御によっても、一回の減圧動作で燃料圧を大きく減圧することができる。そして、その減圧制御の断続的な繰り返しにより、減圧制御全体として所定の燃料圧まで減圧するのにかかる時間を短くすることができる。その結果、急激な減圧を要するような場合でもそれに対応した円滑な減圧制御を実現することができる。
[第4実施例]
本実施例は、燃料噴射装置による燃料圧の減圧制御において、コンデンサ201のチャージ処理をなくすことにより、燃料噴射までの遅延時間を長くするものである。図10は、本実施例の減圧制御を表すタイミングチャートである。尚、同図にも、従来の減圧制御との違いを分かりやすくするために、図12の従来の減圧制御を点線にて併記している。尚、本実施例にかかる燃料噴射装置の構成及び燃料噴射の際の動作等については上記第1実施例のものと同様であるため、その説明については省略する。
【0057】
図10に示すように、本実施例では、減圧制御を開始する前にチャージスイッチ203をオン・オフ動作によるコンデンサ201への蓄電は行わない(同図c)。
そして、ECU99からの指令に基づく減圧制御開始により、駆動スイッチ205をオンすると共に、放電スイッチ207及び定電流スイッチ208をオンにする(同図(a),(b))。そして、この定電流スイッチ208のオンにより、インジェクタ電流が所定値に達すると、定電流スイッチ208のオン・オフによりインジェクタ1にほぼ一定の電流供給が保持される(同図(e))。これによりインジェクタ1(ソレノイド71)への通電が行われる。
【0058】
このように、減圧制御に際してコンデンサ201への蓄電を行わず、定電流スイッチ208のみによりインジェクタ電流を供給するようにしたため、同図(e)に示すように、インジェクタ電流は緩やかに立ち上がり、その結果、燃料噴射の開始に至るまでの遅延時間T24が従来の遅延時間T2よりも長くなる。この結果、制御弁を駆動させるのに従来よりも時間がかかり、蓄圧配管49内の燃料の一部を燃料系の低圧側にリークさせる図2(c)の開弁状態が長くなり、図10(g)に示すように、従来よりも燃料リーク量が多くなる。その結果、一回の減圧制御において従来よりも蓄圧配管49の燃料圧を大きく低減することができ、燃料噴射装置としての減圧性能を向上させることができる。
【0059】
以上のように、本実施例の燃料噴射装置の減圧制御によっても、一回の減圧動作で燃料圧を大きく減圧することができる。そして、その減圧制御の断続的な繰り返しにより、減圧制御全体として所定の燃料圧まで減圧するのにかかる時間を短くすることができる。その結果、急激な減圧を要するような場合でもそれに対応することができる。
【0060】
以上、本発明の実施例について説明したが、本発明の実施の形態は、上記実施例に何ら限定されることなく、本発明の技術的範囲に属する限り種々の形態をとり得ることはいうまでもない。
【図面の簡単な説明】
【図1】本発明の第1実施例にかかる燃料噴射装置の概略構成を表すブロック図である。
【図2】第1実施例の燃料噴射装置の動作を表す説明図である。
【図3】第1実施例の燃料噴射装置を制御する制御装置の概略構成を表すブロック図である。
【図4】第1実施例の制御回路の概略構成を表す説明図である。
【図5】第1実施例の燃料噴射制御を表すタイミングチャートである。
【図6】第1実施例の減圧制御を表すタイミングチャートである。
【図7】第1実施例の効果を表す説明図である。
【図8】第2実施例の減圧制御を表すタイミングチャートである。
【図9】第3実施例の減圧制御を表すタイミングチャートである。
【図10】第4実施例の減圧制御を表すタイミングチャートである。
【図11】従来の燃料噴射装置の構成及び動作を表す説明図である。
【図12】従来の減圧制御を表すタイミングチャートである。
【符号の説明】
1・・・インジェクタ、 9・・・ノズルニードル、 31・・・作動室、
41・・・燃料タンク、 45・・・燃料ポンプ、 49・・・蓄圧配管、
51・・・三方電磁弁、 71・・・ソレノイド、 201・・・コンデンサ、
203・・・チャージスイッチ、 205・・・駆動スイッチ、
207・・・放電スイッチ、 208・・・定電流スイッチ
【発明の属する技術分野】
本発明は、必要に応じてインジェクタ駆動時における燃料リークを利用した減圧制御を行う燃料噴射装置に関する。
【0002】
【従来の技術】
従来より、コモンレール式ディーゼルエンジン用の燃料噴射装置では、燃料を内燃機関の負荷に応じた圧力で噴射するために燃料圧の制御が行われている。
そして特に、燃料圧の制御において、例えば急減速時等の特定の運転状態において、フューエルカット等によりインジェクタの開弁動作が行われない場合でも、すみやかに燃料圧を制御目標圧に追従できるように、インジェクタ駆動時における燃料リークを利用した減圧制御手法が提案されていた(例えば特許文献1参照)。
【0003】
すなわち、図11(a)に示すように、この燃料噴射装置では、蓄圧配管(コモンレール)M1内の燃料圧が制御目標圧より大きい場合、制御弁駆動手段M4が燃料噴射弁M3における燃料噴射の開始に至る遅延時間未満の時間幅でインジェクタの制御弁M2を駆動して、蓄圧配管M1内の高圧燃料を燃料系の低圧側に断続的に排出する。つまり、蓄圧配管M1内の燃料の一部を燃料系の低圧側に導入することで、蓄圧配管M1内の燃料圧を低減させる。その結果、燃料圧は制御目標圧近傍に速やかに低減され、当該制御目標圧に追従することができるのである。つまり、同図(b)に示すように、インジェクタに通電を開始してから燃料噴射開始に至るまでの遅延時間を利用して、蓄圧配管内の燃料を燃料系の低圧側へ断続的に排出することにより蓄圧配管の圧力を低減する手法である。
【0004】
この減圧制御時の駆動回路側の動作とそれによるインジェクタ側の動作の関係を表すと、図12のようになる。
すなわち、駆動回路には、電源からの電力を受けて制御弁を駆動するアクチュエータを動作させるために、このアクチュエータに電流を供給するために電荷を蓄えるコンデンサと、電源からの供給電力によりコンデンサを所定の高電圧になるまで安定して電圧チャージするために所定周期でオン・オフされるチャージスイッチと、アクチュエータへの供給電流を通電又は遮断するためにオン・オフされる駆動スイッチと、コンデンサを放電させてアクチュエータにその放電電流を供給するためにオンされる放電スイッチと、放電スイッチがオフされた状態で、電源からの供給電流を所定の周期で通電又は遮断し、アクチュエータへの供給電流を所定以上に保持するためにオン・オフされる定電流スイッチとが備えられ、これらのスイッチをオン・オフ制御することにより、減圧制御を行っている。
【0005】
そして、同図に示すように、減圧制御を開始する前に、同図(c)に示すように、チャージスイッチをオン・オフ動作させてコンデンサにチャージ電圧を蓄え、同図(a),(b)に示すように、減圧制御開始により駆動スイッチをオンすると共に、放電スイッチをオンにする。これによりインジェクタへの供給電流(インジェクタ電流)が流れる。そして、一定時間経過すると放電スイッチがオフされ、その後は定電流スイッチのオン・オフによりインジェクタにほぼ一定の電流供給が保持される(同図(e))。一方、同図(d)に示すように、この放電によりコンデンサの電圧が下がっているため、その後は再びチャージスイッチをオン・オフ動作させてコンデンサにチャージ電圧を蓄える(同図(c))。
【0006】
そして、所定時間T11が経過すると、駆動スイッチがオフされインジェクタへの電流供給が停止される(同図(a))。この所定時間T11が、インジェクタが燃料噴射の開始に至るまでの遅延時間T12未満の時間幅であるため、燃料噴射は行われず、制御弁が蓄圧配管M1内の燃料の一部を燃料系の低圧側に導入する燃料リークのためだけに開弁状態とされる。それにより、燃料噴射を行うことなく蓄圧配管M1内の燃料を低圧側へリークさせている(同図(f),(g))。
【0007】
以上のような開弁制御を断続的に繰り返すことにより、蓄圧配管M1の燃料圧を積極的に下げ、全体として迅速な減圧制御を実現しているのである。
【0008】
【特許文献1】
特許第2636394号公報(第2頁,図1)
【0009】
【発明が解決しようとする課題】
しかしながら、近年においては、微小噴射等の細かな制御へのニーズが高まっており、燃料噴射装置としてより高い応答性能が要求されている。そして、インジェクタ側の改良及びその駆動回路側の改良により応答性を向上させ、通電を開始してから燃料噴射開始に至るまでの遅延時間がより短くなるようにされている。
【0010】
このため、上述した特許文献1に記載された燃料噴射装置のように、その燃料噴射に至るまでの遅延時間を利用して減圧性能を高める技術とは相反する現象が生じている。つまり、応答性能を向上させることにより、これに相反して減圧性能が低下するといった問題が生じているのである。
【0011】
本発明は、こうした問題に鑑みてなされたものであり、燃料噴射制御における燃料噴射制御の応答性能を良好に保持しつつ、減圧性能をも高めることができる燃料噴射装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題に鑑み、請求項1記載の燃料噴射装置は、高圧燃料を蓄える蓄圧配管と、蓄圧配管からの高圧燃料の作動室への導入,又は燃料系の低圧側への排出を切り換える制御弁を有し、高圧燃料の作動室への導入によりノズルニードルに閉弁方向の力を、高圧燃料の燃料系の低圧側への排出により開弁方向の力を受けるインジェクタと、制御弁を駆動するアクチュエータと、電源からの電力を受けてアクチュエータを駆動させるための電流を供給制御する電流供給手段とを備える。
【0013】
そして、蓄圧配管に燃料ポンプから燃料を供給して蓄圧配管内の燃料圧を制御すると共に、上記供給電流による制御弁の駆動時間によりその開弁時間を制御して、燃料を内燃機関の負荷に応じた圧力で噴射する燃料噴射制御を行う一方、蓄圧配管内の燃料圧が制御目標圧より大きい場合、燃料噴射の開始に至るまでの遅延時間未満の時間幅で制御弁を駆動して、蓄圧配管内の高圧燃料を燃料系の低圧側に断続的に排出させる減圧制御を行うものである。
【0014】
そして特に、電流供給手段が、減圧制御において、燃料噴射制御の場合よりも電流を緩やかに供給して、制御弁の開弁速度を低下させることにより、上記遅延時間が長くなるようにする。尚、ここでいう「緩やかに供給」とは、燃料噴射制御の場合のように、応答性を良くするために噴射制御開始の際に特に立ち上がりの大きな電流を与えるといったことを行わず、供給電流を緩やかに立ち上げ、所定の電流レベルでの供給を継続することを意味する。
【0015】
かかる構成によれば、その緩やかな電流供給により、減圧制御の際の制御弁の動作速度が燃料噴射制御の場合よりも遅くなるため、燃料噴射の開始に至るまでの遅延時間を長くすることができる。このため、その間多くの高圧燃料を蓄圧配管から排出することができ、蓄圧配管内の燃料圧を速やかに低減させることができる。この結果、制御目標圧が急激に変化したとしても、速やかに燃料圧を低減してそれに迅速に対応することができる。
【0016】
換言すれば、近年の燃料噴射制御の応答性の向上とは相反するように、減圧制御の応答性を意図的に燃料噴射制御とは独立して低下させることにより、その減圧性能を確保することができる。つまり、燃料噴射制御における燃料噴射制御の応答性能を良好に保持しつつ減圧性能をも高め、円滑な減圧制御を実現することができるのである。
【0017】
上記電流供給手段の具体的構成としては、請求項2に記載のように、アクチュエータに電流を供給するために電荷を蓄えるコンデンサと、電源からの供給電力によりコンデンサを所定の高電圧になるまで電圧チャージするためにオン・オフされるチャージスイッチと、アクチュエータへの供給電流を通電又は遮断するためにオン・オフされる駆動スイッチと、コンデンサを放電させてアクチュエータにその放電電流を供給するためにオンされる放電スイッチと、放電スイッチがオフされた状態で、電源からの供給電流を所定の周期で通電又は遮断し、アクチュエータへの供給電流を予め定める所定レベルに保持するためにオン・オフされる定電流スイッチと、各スイッチをオン・オフ制御するスイッチ制御手段とを備えたものが考えられる。
【0018】
そして、上記スイッチ制御手段が、減圧制御において、駆動スイッチをオンにした状態で、放電スイッチ及び定電流スイッチをオン・オフ制御することにより、電流を緩やかに供給しつつ、その遅延時間を長くする。
すなわち、かかる構成では、電流を緩やかに供給することで制御弁の動作を遅延させ、駆動スイッチのオン時間ひいては制御弁の駆動時間を長くしている。もちろん、制御弁の駆動は燃料噴射までに停止されるため、その間に燃料噴射が開始されることはない。つまり、このようにして燃料噴射の開始に至るまでの遅延時間が長くなるため、蓄圧配管内の高圧燃料を燃料系の低圧側に長く(つまり多く)排出させることができ、一回の減圧制御により大きく減圧させることができる。その結果、この減圧制御を断続的に繰り返すことで全体として迅速な減圧制御が行われ、その減圧性能が向上する。
【0019】
より具体的には、例えば請求項3に記載のように、上記スイッチ制御手段が、減圧制御開始と同時に、放電スイッチをオフ状態にする一方、定電流スイッチをオン・オフすることにより、電流を緩やかに供給しつつ、上記遅延時間を長くするようにしてもよい。尚、ここでいう「放電スイッチのオフ状態」は減圧制御開始時点でオフにする場合と、それ以前からオフにする場合の双方を含み得る。
【0020】
かかる構成では、減圧制御時において放電スイッチがオフ状態にあるため、コンデンサの放電による電流供給がなく、定電流スイッチの動作により、電流が所定の電流値まで緩やかに供給され、その後所定時間その電流レベルが保持される。それにより、上述した効果を発揮することができる。
【0021】
また、請求項4に記載のように、上記スイッチ制御手段が、減圧制御開始前にチャージスイッチをオン・オフ制御して、コンデンサのチャージ電圧が燃料噴射制御の場合よりも小さくなるようにすることにより、減圧制御時に放電スイッチのオンにより放電される電流を小さくすることで供給電流を緩やかに立ち上げ、それにより、上記遅延時間を長くするようにしてもよい。かかる構成により、上述した効果を発揮することができる。
【0022】
また、請求項5に記載のように、上記スイッチ制御手段が、減圧制御開始前にチャージスイッチをオン・オフ制御して、コンデンサを蓄電する一方、減圧制御時に放電スイッチのオン状態を燃料噴射制御の場合よりも短くなるように制御することにより放電される電流を小さくすることで、電流を緩やかに供給しつつ、上記遅延時間を長くするようにしてもよい。かかる構成により、上述した効果を発揮することができる。
【0023】
或いは、請求項6に記載のように、上記スイッチ制御手段が、減圧制御開始前にチャージスイッチをオフ状態にしてコンデンサの蓄電を停止する一方、減圧制御開始と同時に定電流スイッチをオン・オフすることにより、電流を緩やかに供給しつつ、遅延時間を長くするようにしてもよい。尚、その際には、放電スイッチを形式的にオンにしても、オフのままにしてもどちらでもよい(放電されないため、関係ない)。かかる構成により、上述した効果を発揮することができる。
【0024】
尚、上述した燃料噴射装置のスイッチ制御手段をコンピュータシステムにて実現する機能は、例えば、コンピュータシステム側で起動するプログラムとして備えられる(請求項7)。このようなプログラムの場合、例えば、フレキシブルディスク、光磁気ディスク、CD−ROM、DVD、ハードディスク等の記録媒体に記録し、必要に応じてコンピュータシステムにロードして起動することにより用いることができる。その他、ROMやバックアップRAMを記録媒体として前記プログラムを記録しておき、このROMあるいはバックアップRAMをコンピュータシステムに組み込んで使用してもよい。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を明確にするため、本発明の好適な実施例を図面と共に説明する。
[第1実施例]
本実施例は、本発明の燃料噴射装置を、多気筒ディーゼル機関の燃料噴射装置として構成したものであり、図1はその燃料噴射装置を1気筒分のインジェクタ及び配管系を中心に示す概略構成図である。
【0026】
同図に示すように、インジェクタ1の弁ケーイング2内には、弁体摺動孔3及び燃料溜り室5が形成され、先端には上記燃料溜り室5に連通するノズル孔7が形成されている。上記弁体摺動孔3には、ノズルニードル9の大径部11が摺動自在に嵌合されている。このノズルニードル9の大径部11の上部には、連結部13、下部に小径部15及び弁体部17が一体形成され、この弁体部17によりノズル孔7が開閉される。
【0027】
上記ノズルニードル9の連結部13の先端には、フランジ19、ピストンピン21及びピストン23が一体的に連結されている。上記フランジ19とハウジング25との間には、ばね27が架設され、ノズルニードル9に対して開弁方向にばね力を付勢している。
【0028】
上記ピストン23は、シリンダ29内に摺動自在に嵌合され、シリンダ29とともに作動室31を形成している。作動室31の上部に設けた高圧燃料の流出入口33には、オリフィス35を有するプレート弁37が当接され、ピストン23の上端面で支持されたばね体39の付勢力により押圧されている。
【0029】
この燃料噴射装置の燃料供給構成としては、燃料タンク41から流路43を介して燃料を汲み上げる燃料ポンプ45と、燃料ポンプ45から流路47を通じて供給した燃料を畜圧して各インジェクタ1に供給する蓄圧配管(コモンレール)49と、この蓄圧配管49からの燃料の供給方向を切り替え、インジェクタ1を開閉制御する三方電磁弁51とを備えており、また、燃料溜り室5に燃料を供給する経路としての流路53、蓄圧配管49と三方電磁弁51との流路55、三方電磁弁51と燃料タンク41との流路57が設けられている。
【0030】
三方電磁弁51には、図2(a)に示すように、弁本体61内の摺動孔63に摺動可動に嵌合された第1弁体65が設けられている。この第1弁体65は、スプリング67の付勢力により、第1弁座69に着座するようになされている。また、ソレノイド71(アクチュエータ)を励磁することにより第1弁体65が摺動して第1弁座69から離問するようになされている。更に、摺動孔63に連通した高圧燃料が供給される供給孔73が穿設されており、また摺動孔63と燃料タンク41とを連通する排出孔75、及び第1弁座69を介してインジェクタ1の作動室の流出入口33とを連通する第1接続孔77が形成されている。一方、第1弁体65内に形成された摺動孔79には、第2弁体81が摺動可能に嵌合されており、第2弁体81が着座する第2弁座83が圧力室85に形成されている。また、第1弁体65には圧力室85と供給孔73とを連通する連通孔87が穿設されており、第2弁座83を介して圧力室85に連通した第2接続孔89が形成されている。
【0031】
この三方電磁弁51の作動は、同図(a)に示すように、ソレノイド71が励磁されていないときにはスプリング67の付勢力により第1弁体65は、第1弁座69に着座して、第1接続孔77と排出孔75とを遮断している。また、供給孔73、連通孔87を介して圧力室85に供給される高圧燃料の圧力による作用力により、第2弁体81は、第2弁座83から離問されて、規制部91に突き当たるまで移動される。これにより、供給孔73が、連通孔87、圧力室85、第2接続孔89を介して第1接続孔77と連通されて、インジェクタ1の作動室に高圧燃料が供給され、燃料噴射が停止される。
【0032】
また、同図(b)に示すように、ソレノイド71が励磁されると、このソレノイド71はスプリング67の付勢力に抗して第1弁体65を引き上げ、第1弁体65を第1弁座69から離問する。第1弁体65が移動して、第2弁体81が第2弁座83に着座する。これにより、供給孔73は遮断され、接続孔77と排出孔75とが連通されて、図1に示すインジェクタ1の作動室31から燃料が排出される。この結果、インジェクタ1に流路53を介して供給される高圧燃料によりノズルニードル9が開弁方向に移動されて、燃料噴射が実行される。即ち、ノズルニードル9は、燃料溜り室5内の燃料の圧力により生じる開弁方向の力が、作動室31内の燃料の圧力に生じる閉弁方向の力とばね27等による付勢力との総和を上回った時、開弁方向に移動するのである。
【0033】
本実施例では、オリフィス35により燃料の移動は制限されているので、通常の燃料噴射制御を実行するときには、三方電磁弁51を切り替えてから開弁方向への力が閉弁方向への力を上回ってノズルニードル9が上方に移動を開始するまでの遅延時間(T2)を要する。また、その後のノズルニードル9の移動速度も、図1に示すインジェクタ1の作動室31からの燃料の移動の速さに依存している。
【0034】
次に、この燃料噴射装置の蓄圧配管49と燃料系の低圧側を連通又は遮断する流路を説明する。この三方電磁弁51は、上述したようにソレノイド71の励磁に応じて、図2(a)及び(b)の2位置に切り替えられる。この際、同図(c)に示すように、蓄圧配管側の供給孔73が、連通孔87と第2接続孔89及び第1接続孔77を介して、有意の時間、燃料系の低圧側である燃料タンク41側の排出孔75と連通する。そして、この有意の時間において、蓄圧配管49内の燃料が燃料タンク41に排出され、燃料圧が低減される。
【0035】
以上のように、本実施例の燃料噴射装置は、インジェクタ1及び燃料供給機構の制御機構として、燃料ポンプ45のためのポンプ制御装置95と、蓄圧配管49に設けられ、畜圧した燃料の圧力を検出するための圧力センサ97と、スイッチ制御手段としての電子制御装置(以下「ECU」という)99とを備える。
【0036】
ECU99は、図3に示すように、周知のCPU101,ROM103,RAM105等により論理演算回路として構成され、圧力センサ97の出力や、アクセル操作量検出センサ107、クランク軸回転位置検出センサ109、クランク軸回転速度検出センサ111等の出力を入力する入力ポート113及び三方電磁弁51、ポンプ制御装置95等に制御信号を出力する出力ポート115を備える。このECU99は、所定のプログラムに従って、各センサの出力からインジェクタ1の開弁時間や燃料の制御目標圧を演算し、これら演算結果に基づいて三方電磁弁51及びポンプ制御装置95等の制御を行うことによって、好適な燃料噴射量制御を実現する。
【0037】
次に、インジェクタ1を駆動するために、ECU99内に設けられた駆動回路について、図4の概略図に基づいて説明する。
同図に示すように、この駆動回路には、電源からの電力を受けて三方電磁弁51(制御弁)を駆動するソレノイド71(アクチュエータ)を動作させるために、このソレノイド71に電流を供給するための電荷を蓄えるコンデンサ201と、電源(+B)からの供給電力によりコンデンサ201を所定の高電圧になるまで電圧チャージするためにオン・オフされるチャージスイッチ203と、ソレノイド71への供給電流を通電又は遮断するためにオン・オフされる駆動スイッチ205と、コンデンサ201を放電させてソレノイド71にその放電電流を供給するためにオンされる放電スイッチ207と、放電スイッチ207がオフされた状態で、電源(+B)からの供給電流を所定の周期で通電・遮断し、ソレノイド71への供給電流をほぼ一定に保持するためにオン・オフされる定電流スイッチ208とが備えられ、これらのスイッチをオン・オフ制御することにより、インジェクタ1の駆動制御を行っている。
【0038】
すなわち、電源(+B)から供給される電流は、ダイオード206によりその逆流を防止しつつコンデンサ201に蓄えられる。その際、電圧モニタ202により蓄電圧をモニタしつつ、発振回路204(IC等)によりチャージスイッチ203をオン・オフ制御しながら、所定のチャージ電圧になるようにされている。
【0039】
そして、駆動スイッチ205がオンされた状態で放電スイッチ207がオンされると、コンデンサ201からの放電電流がインジェクタ1のソレノイド71に供給される。その後、その供給電流を所定レベルに保持するために、所定期間定電流スイッチ208がオン・オフ制御され、電源から安定した電流を供給する。
【0040】
次に、このようにして構成された本実施例の燃料噴射装置による燃料噴射制御(特に減圧制御を伴わない通常制御)について、図5のタイミングチャートに基づいて説明する。
まず、燃料噴射制御を開始する前に、上述のようにチャージスイッチ203をオン・オフ動作させてコンデンサ201にチャージ電圧を蓄えておく。そして、ECU99からの指令に基づく燃料噴射制御開始により、駆動スイッチ205をオンすると共に放電スイッチ207をオンにする(同図(a),(b))。これによりインジェクタ1(ソレノイド71)への通電が行われる。そして一定時間経過すると放電スイッチ207がオフされ、その後は定電流スイッチ208のオン・オフによりインジェクタ1にほぼ一定の電流供給が保持される(同図(c)。
【0041】
そして、所定の遅延時間T2が経過すると燃料噴射が開始される(同図(d))。そして、所定の燃料噴射が行われた後、駆動スイッチ205がオフされてインジェクタ電流の通電が停止され、燃料噴射が停止する。この駆動スイッチ205がオンされてから燃料噴射が開始されるまでの有意の時間に、蓄圧配管49内の燃料が燃料タンク41にリークするため、燃料圧は所定量低減する(同図(e))。
【0042】
次に、本実施例の燃料噴射装置による燃料圧の減圧制御方法について、図6のタイミングチャートに基づいて説明する。尚、同図には、従来の減圧制御との違いを分かりやすくするために、図12の従来の減圧制御を点線にて併記している。
【0043】
図6に示すように、減圧制御が開始されると、駆動スイッチ205をオンすると共に、定電流スイッチ208を所定周期でオンすることにより、インジェクタ1(ソレノイド71)に上記一定レベルの電流を供給する。すなわち、同図(b)に示すように、本実施例ではコンデンサ201の放電による電流供給は行われない。
【0044】
このため、同図(e)に示すように、インジェクタ電流は緩やかに立ち上がり、そのため、燃料噴射の開始に至るまでの遅延時間T21が従来の遅延時間T2よりも長くなる。この結果、蓄圧配管49内の燃料の一部を燃料系の低圧側にリークさせる図2(c)の開弁状態が長くなり、図6(g)に示すように、従来よりも燃料リーク量が多くなる。その結果、一回の減圧制御において従来よりも蓄圧配管49の燃料圧を大きく低減することができ、燃料噴射装置としての減圧性能を向上させることができる。
【0045】
尚、図6(c)においては、次回の燃料噴射制御のために、減圧制御前にチャージスイッチ203をオン・オフ動作させてコンデンサ201にチャージ電圧を蓄えている。しかし、このチャージ処理は、燃料噴射制御前に行われればよく、必ずしも同図のタイミングにて行う必要はない。
【0046】
以上のように、本実施例の燃料噴射装置の減圧制御によれば、一回の減圧動作で燃料圧を大きく減圧することができる。そして、その減圧制御の断続的な繰り返しにより、減圧制御全体として所定の燃料圧まで減圧するのにかかる時間を短くすることができる。その結果、急激な減圧を要するような場合でもそれに対応することができる。
【0047】
例えば、図7(a)及び(b)に示すように、時刻t1にアクセル操作量が100[%]から0[%]になり、燃料の制御目標圧Pb(破線)が大きく下降した場合を想定する。この場合、本実施例では、同図(c)に実線で示すように、減圧制御一回あたりの三方電磁弁51の動作速度が従来よりも遅延し、三方電磁弁51の切り換えタイミングが従来(点線)よりも長くなる。その結果、蓄圧配管49内の高圧燃料を燃料系の低圧側に排出させる時間が長くなり、同図(a)に実線で示すように、燃料圧Paが従来(点線)よりも速やかに低下する。特に、同図(b)に示すように、時刻t1でアクセルを離してから再度時刻t2でアクセルを踏み込んだような場合、その時刻t1と時刻t2の時間間隔が同図よりもさらに短くなるような場合でも、本実施例の減圧制御によりこれに迅速に対応することができる。
【0048】
本実施例の減圧制御によれば一回の減圧動作で大きく減圧できるため、減圧制御全体として従来よりも迅速な制御を実現できる。
[第2実施例]
本実施例は、燃料噴射装置による燃料圧の減圧制御において、コンデンサ201のチャージ電圧を低く設定して、燃料噴射までの遅延時間を長くするものである。図8は、本実施例の減圧制御を表すタイミングチャートである。尚、同図にも、従来の減圧制御との違いを分かりやすくするために、図12の従来の減圧制御を点線にて併記している。尚、本実施例にかかる燃料噴射装置の構成及び燃料噴射の際の動作等については上記第1実施例のものと同様であるため、その説明については省略する。
【0049】
図8に示すように、まず、減圧制御を開始する前に、チャージスイッチ203をオン・オフ動作させてコンデンサ201にチャージ電圧を蓄えておく(同図c)。
このとき、チャージ電圧は噴射制御の際のチャージ量(つまり、従来のチャージ量)よりも所定量小さくなるようにする。従って、同図(d)に示すように、コンデンサ201の蓄電圧は従来の場合よりも小さな値となる。
【0050】
そして、ECU99からの指令に基づく減圧制御開始により、駆動スイッチ205をオンすると共に放電スイッチ207をオンにする(同図(a),(b))。そして一定時間経過すると放電スイッチ207がオフされ、その後は定電流スイッチ208のオン・オフによりインジェクタ1にほぼ一定の電流供給が保持される(同図(c)。これによりインジェクタ1(ソレノイド71)への通電が行われる。
【0051】
このように、減圧制御に際して行うコンデンサ201の蓄電圧を小さくすることにより、結果的に放電電流が少なくなるため、同図(e)に示すように、インジェクタ電流は緩やかに立ち上がり、その結果、燃料噴射の開始に至るまでの遅延時間T22が従来の遅延時間T2よりも長くなる。この結果、制御弁を駆動させるのに従来よりも時間がかかり、蓄圧配管49内の燃料の一部を燃料系の低圧側にリークさせる図2(c)の開弁状態が長くなり、図8(g)に示すように、従来よりも燃料リーク量が多くなる。その結果、一回の減圧制御において従来よりも蓄圧配管49の燃料圧を大きく低減することができ、燃料噴射装置としての減圧性能を向上させることができる。
【0052】
以上のように、本実施例の燃料噴射装置の減圧制御によっても、一回の減圧動作で燃料圧を大きく減圧することができる。そして、その減圧制御の断続的な繰り返しにより、減圧制御全体として所定の燃料圧まで減圧するのにかかる時間を短くすることができる。その結果、急激な減圧を要するような場合でもそれに対応することができる。
[第3実施例]
本実施例は、燃料噴射装置による燃料圧の減圧制御において、コンデンサ201の放電時間を短くして、燃料噴射までの遅延時間を長くするものである。図9は、本実施例の減圧制御を表すタイミングチャートである。尚、同図にも、従来の減圧制御との違いを分かりやすくするために、図12の従来の減圧制御を点線にて併記している。尚、本実施例にかかる燃料噴射装置の構成及び燃料噴射の際の動作等については上記第1実施例のものと同様であるため、その説明については省略する。
【0053】
図9に示すように、まず、減圧制御を開始する前に、従来の場合と同様にチャージスイッチ203をオン・オフ動作させてコンデンサ201にチャージ電圧を蓄えておく(同図c)。
そして、ECU99からの指令に基づく減圧制御開始により、駆動スイッチ205をオンすると共に放電スイッチ207をオンにする(同図(a),(b))。
【0054】
そして、燃料噴射制御の場合(従来の場合)よりも短い一定時間が経過すると放電スイッチ207をオフして、その後は定電流スイッチ208のオン・オフによりインジェクタ1にほぼ一定の電流供給が保持される(同図(e))。これによりインジェクタ1(ソレノイド71)への通電が行われる。
【0055】
このように、駆動スイッチ205をオンした後に放電スイッチ207をオンする時間を短くしたため、同図(e)に示すように、インジェクタ電流は緩やかに立ち上がり、その結果、燃料噴射の開始に至るまでの遅延時間T23が従来の遅延時間T2よりも長くなる。この結果、制御弁を駆動させるのに従来よりも時間がかかり、蓄圧配管49内の燃料の一部を燃料系の低圧側にリークさせる図2(c)の開弁状態が長くなり、図9(g)に示すように、従来よりも燃料リーク量が多くなる。その結果、一回の減圧制御において従来よりも蓄圧配管49の燃料圧を大きく低減することができ、燃料噴射装置としての減圧性能を向上させることができる。
【0056】
以上のように、本実施例の燃料噴射装置の減圧制御によっても、一回の減圧動作で燃料圧を大きく減圧することができる。そして、その減圧制御の断続的な繰り返しにより、減圧制御全体として所定の燃料圧まで減圧するのにかかる時間を短くすることができる。その結果、急激な減圧を要するような場合でもそれに対応した円滑な減圧制御を実現することができる。
[第4実施例]
本実施例は、燃料噴射装置による燃料圧の減圧制御において、コンデンサ201のチャージ処理をなくすことにより、燃料噴射までの遅延時間を長くするものである。図10は、本実施例の減圧制御を表すタイミングチャートである。尚、同図にも、従来の減圧制御との違いを分かりやすくするために、図12の従来の減圧制御を点線にて併記している。尚、本実施例にかかる燃料噴射装置の構成及び燃料噴射の際の動作等については上記第1実施例のものと同様であるため、その説明については省略する。
【0057】
図10に示すように、本実施例では、減圧制御を開始する前にチャージスイッチ203をオン・オフ動作によるコンデンサ201への蓄電は行わない(同図c)。
そして、ECU99からの指令に基づく減圧制御開始により、駆動スイッチ205をオンすると共に、放電スイッチ207及び定電流スイッチ208をオンにする(同図(a),(b))。そして、この定電流スイッチ208のオンにより、インジェクタ電流が所定値に達すると、定電流スイッチ208のオン・オフによりインジェクタ1にほぼ一定の電流供給が保持される(同図(e))。これによりインジェクタ1(ソレノイド71)への通電が行われる。
【0058】
このように、減圧制御に際してコンデンサ201への蓄電を行わず、定電流スイッチ208のみによりインジェクタ電流を供給するようにしたため、同図(e)に示すように、インジェクタ電流は緩やかに立ち上がり、その結果、燃料噴射の開始に至るまでの遅延時間T24が従来の遅延時間T2よりも長くなる。この結果、制御弁を駆動させるのに従来よりも時間がかかり、蓄圧配管49内の燃料の一部を燃料系の低圧側にリークさせる図2(c)の開弁状態が長くなり、図10(g)に示すように、従来よりも燃料リーク量が多くなる。その結果、一回の減圧制御において従来よりも蓄圧配管49の燃料圧を大きく低減することができ、燃料噴射装置としての減圧性能を向上させることができる。
【0059】
以上のように、本実施例の燃料噴射装置の減圧制御によっても、一回の減圧動作で燃料圧を大きく減圧することができる。そして、その減圧制御の断続的な繰り返しにより、減圧制御全体として所定の燃料圧まで減圧するのにかかる時間を短くすることができる。その結果、急激な減圧を要するような場合でもそれに対応することができる。
【0060】
以上、本発明の実施例について説明したが、本発明の実施の形態は、上記実施例に何ら限定されることなく、本発明の技術的範囲に属する限り種々の形態をとり得ることはいうまでもない。
【図面の簡単な説明】
【図1】本発明の第1実施例にかかる燃料噴射装置の概略構成を表すブロック図である。
【図2】第1実施例の燃料噴射装置の動作を表す説明図である。
【図3】第1実施例の燃料噴射装置を制御する制御装置の概略構成を表すブロック図である。
【図4】第1実施例の制御回路の概略構成を表す説明図である。
【図5】第1実施例の燃料噴射制御を表すタイミングチャートである。
【図6】第1実施例の減圧制御を表すタイミングチャートである。
【図7】第1実施例の効果を表す説明図である。
【図8】第2実施例の減圧制御を表すタイミングチャートである。
【図9】第3実施例の減圧制御を表すタイミングチャートである。
【図10】第4実施例の減圧制御を表すタイミングチャートである。
【図11】従来の燃料噴射装置の構成及び動作を表す説明図である。
【図12】従来の減圧制御を表すタイミングチャートである。
【符号の説明】
1・・・インジェクタ、 9・・・ノズルニードル、 31・・・作動室、
41・・・燃料タンク、 45・・・燃料ポンプ、 49・・・蓄圧配管、
51・・・三方電磁弁、 71・・・ソレノイド、 201・・・コンデンサ、
203・・・チャージスイッチ、 205・・・駆動スイッチ、
207・・・放電スイッチ、 208・・・定電流スイッチ
Claims (7)
- 高圧燃料を蓄える蓄圧配管と、
前記蓄圧配管からの高圧燃料の作動室への導入,又は燃料系の低圧側への排出を切り換える制御弁を有し、該高圧燃料の前記作動室への導入によりノズルニードルに閉弁方向の力を、該高圧燃料の前記燃料系の低圧側への排出により開弁方向の力を受けるインジェクタと、
前記制御弁を駆動するアクチュエータと、
電源からの電力を受けて、前記アクチュエータを駆動させるための電流を供給する電流供給手段と、
を備え、前記蓄圧配管に燃料ポンプから燃料を供給して前記蓄圧配管内の燃料圧を制御すると共に、前記供給電流による前記制御弁の駆動時間によりその開弁時間を制御して、燃料を内燃機関の負荷に応じた圧力で噴射する燃料噴射制御を行う一方、前記蓄圧配管内の燃料圧が制御目標圧より大きい場合、燃料噴射の開始に至るまでの遅延時間未満の時間幅で前記制御弁を駆動して、前記蓄圧配管内の前記高圧燃料を前記燃料系の低圧側に断続的に排出させる減圧制御を行う燃料噴射装置において、
前記電流供給手段は、前記減圧制御において、前記燃料噴射制御の場合よりも前記電流を緩やかに供給して、前記制御弁の開弁速度を低下させることにより、前記遅延時間が長くなるようにすることを特徴とする燃料噴射装置。 - 前記電流供給手段は、
前記アクチュエータに前記電流を供給するために電荷を蓄えるコンデンサと、
電源からの供給電力により前記コンデンサを所定の電圧になるまで電圧チャージするためにオン・オフされるチャージスイッチと、
前記アクチュエータへの供給電流を通電又は遮断するためにオン・オフされる駆動スイッチと、
前記コンデンサを放電させて前記アクチュエータにその放電電流を供給するためにオンされる放電スイッチと、
前記放電スイッチがオフされた状態で、電源からの供給電流を所定の周期で通電又は遮断し、前記アクチュエータへの供給電流を予め定める所定レベルに保持するためにオン・オフされる定電流スイッチと、
前記各スイッチをオン・オフ制御するスイッチ制御手段と、
を備え、
前記スイッチ制御手段が、前記減圧制御において、前記駆動スイッチをオンにした状態で、前記放電スイッチ及び前記定電流スイッチをオン・オフ制御することにより、前記電流を緩やかに供給しつつ、前記遅延時間を長くすることを特徴とする請求項1記載の燃料噴射装置。 - 前記スイッチ制御手段は、
減圧制御開始と同時に、前記放電スイッチをオフ状態にする一方、前記定電流スイッチをオン・オフすることにより、前記電流を緩やかに供給しつつ、前記遅延時間を長くすることを特徴とする請求項2記載の燃料噴射装置。 - 前記スイッチ制御手段は、
減圧制御開始前に前記チャージスイッチをオン・オフ制御して、前記コンデンサのチャージ電圧が前記燃料噴射制御の場合よりも小さくなるようにすることにより、減圧制御時に前記放電スイッチのオンにより放電される電流を小さくすることで供給電流を緩やかに立ち上げ、それにより、前記遅延時間を長くすることを特徴とする請求項2記載の燃料噴射装置。 - 前記スイッチ制御手段は、
減圧制御開始前に前記チャージスイッチをオン・オフ制御して、前記コンデンサを蓄電する一方、減圧制御時に前記放電スイッチのオン状態を前記燃料噴射制御の場合よりも短くなるように制御することにより、放電される電流を小さくすることで前記電流を緩やかに供給しつつ、前記遅延時間を長くすることを特徴とする請求項2記載の燃料噴射装置。 - 前記スイッチ制御手段は、
減圧制御開始前に前記チャージスイッチをオフ状態にし、前記コンデンサの蓄電を停止する一方、減圧制御開始と同時に前記定電流スイッチをオン・オフすることにより、前記電流を緩やかに供給しつつ、前記遅延時間を長くすることを特徴とする請求項2記載の燃料噴射装置。 - 請求項2〜6のいずれかに記載の燃料噴射装置の前記スイッチ制御手段としてコンピュータシステムを機能させるプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003040057A JP2004251149A (ja) | 2003-02-18 | 2003-02-18 | 燃料噴射装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003040057A JP2004251149A (ja) | 2003-02-18 | 2003-02-18 | 燃料噴射装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004251149A true JP2004251149A (ja) | 2004-09-09 |
Family
ID=33024056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003040057A Pending JP2004251149A (ja) | 2003-02-18 | 2003-02-18 | 燃料噴射装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004251149A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014207523A2 (en) | 2013-06-24 | 2014-12-31 | Toyota Jidosha Kabushiki Kaisha | Drive system and drive method for fuel injection valve |
DE102015225591A1 (de) | 2015-12-17 | 2017-06-22 | Robert Bosch Gmbh | Schaltungsanordnung und Verfahren zum Ansteuern eines induktiven Aktors |
US9926879B2 (en) | 2013-05-10 | 2018-03-27 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for fuel injection valve and method thereof |
-
2003
- 2003-02-18 JP JP2003040057A patent/JP2004251149A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9926879B2 (en) | 2013-05-10 | 2018-03-27 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for fuel injection valve and method thereof |
WO2014207523A2 (en) | 2013-06-24 | 2014-12-31 | Toyota Jidosha Kabushiki Kaisha | Drive system and drive method for fuel injection valve |
US10156199B2 (en) | 2013-06-24 | 2018-12-18 | Toyota Jidosha Kabushiki Kaisha | Drive system and drive method for fuel injection valves |
DE112014002966B4 (de) | 2013-06-24 | 2019-10-10 | Toyota Jidosha Kabushiki Kaisha | Antriebssystem und Antriebsverfahren für ein Kraftstoffeinspritzventil |
DE102015225591A1 (de) | 2015-12-17 | 2017-06-22 | Robert Bosch Gmbh | Schaltungsanordnung und Verfahren zum Ansteuern eines induktiven Aktors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4110751B2 (ja) | インジェクタ駆動制御装置 | |
JP5572604B2 (ja) | 燃料噴射弁の制御装置 | |
JP2008051106A (ja) | 圧電燃料インジェクタ | |
JP2005171928A (ja) | アクチュエータ駆動装置および燃料噴射装置 | |
WO2019225076A1 (ja) | 燃料噴射制御装置 | |
JP2007534879A (ja) | 量制御のためのソレノイドバルブの作動方法 | |
JP2636394B2 (ja) | 燃料噴射装置 | |
JP2011127523A (ja) | 蓄圧式燃料噴射装置の制御装置及び制御方法並びに蓄圧式燃料噴射装置 | |
JP2004251149A (ja) | 燃料噴射装置 | |
JP2002161788A (ja) | 内燃機関の燃料噴射装置 | |
JP2013064363A (ja) | 内燃機関の燃料噴射装置 | |
JP2004248457A (ja) | ピエゾアクチュエータ駆動回路および燃料噴射装置 | |
JP2006291843A (ja) | 燃料噴射装置 | |
JP2009287558A (ja) | 燃料噴射装置制御に関する改良 | |
JP3827003B2 (ja) | 燃料噴射制御装置 | |
US11131264B2 (en) | Fuel injection control device | |
JP4118432B2 (ja) | 電磁弁駆動回路 | |
JP3268245B2 (ja) | 電磁弁駆動回路 | |
JP2004019666A (ja) | 内燃機関の駆動方法、コンピュータプログラム、内燃機関、および内燃機関の駆動装置 | |
JP4483822B2 (ja) | 燃料噴射制御装置 | |
JP2011190773A (ja) | 内燃機関およびその燃料供給装置 | |
JPH1113583A (ja) | エンジンの燃料噴射装置 | |
JPH1162677A (ja) | 電磁弁駆動装置 | |
JP2002371896A (ja) | 内燃機関の噴射制御装置 | |
JP2018155146A (ja) | 燃料噴射制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20050413 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20070713 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080422 |