[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004249640A - Cooling device of mold for high-precision plastic optical component - Google Patents

Cooling device of mold for high-precision plastic optical component Download PDF

Info

Publication number
JP2004249640A
JP2004249640A JP2003043756A JP2003043756A JP2004249640A JP 2004249640 A JP2004249640 A JP 2004249640A JP 2003043756 A JP2003043756 A JP 2003043756A JP 2003043756 A JP2003043756 A JP 2003043756A JP 2004249640 A JP2004249640 A JP 2004249640A
Authority
JP
Japan
Prior art keywords
mold
cooling
cooling liquid
cooling device
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003043756A
Other languages
Japanese (ja)
Other versions
JP2004249640A5 (en
Inventor
Taisuke Matsushita
泰典 松下
Manabu Nishikawa
西川  学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003043756A priority Critical patent/JP2004249640A/en
Publication of JP2004249640A publication Critical patent/JP2004249640A/en
Publication of JP2004249640A5 publication Critical patent/JP2004249640A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive cooling device of a mold enabling highly-efficient manufacture of a molded article excellent particularly in in-transfer-plane precision (deviation of a transfer plane from the mold), in regard to the cooling device of the mold for obtaining a high-precision plastic optical component. <P>SOLUTION: This cooling device has a constitution wherein a heater plate and a cooling plate are disposed sequentially on the respective outside of a cavity part and a core part in a pair composing the mold for a thermoplastic resin. The heater plate has a large number of parallel heat transfer heaters which are provided with the function of regulating a temperature distribution in the longitudinal direction of the heaters, while the cooling plate has a large number of parallel coolant passages which are disposed so that a coolant flowing through some of the coolant passages and the coolant flowing through the other coolant passages be counter currents to each other. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱可塑性樹脂原料を使用してオーバーヘッドプロジェクター、ウィンドディスプレイ、フロントプロジェクター、デジタルカメラ、ヘッドアップディスプレイ、複写機、レーザープリンター、その他光学機器に使用する光学部品、特に成形表面の粗さがナノメートルオーダーの平滑性及び形状偏差量が数十ミクロン以下の形状精度が要求される光学部品等の高精度プラスチックス製光学部品を製造する為の金型の冷却装置に関する。
【0002】
【従来の技術】
高精度なプラスチック製光学製品を成形する方法としては、射出圧縮成型法、高温射出成型法、プレス成型法等があるが、投射レンズ(特許文献1参照)、投射ミラー(特許文献2参照)のような、金型転写面内の高低差が15mm以上の曲率を有した非球面或いは球面形状であって100cm以上の面積を有するものを転写面内精度(転写面の金型形状に対する偏差)を100μm以下に実現するためには冷却時のキャビティ型及びコア型の面内温度分布(特に成形樹脂のガラス転移温度付近での)を極めて小さく抑えることが必要である。
【0003】
上記の諸元を有する金型を使用して成形された成形品の転写面内精度を100μm以下に実現するためには、長時間かけて金型面内の温度分布を安定させながら冷却するか、又は高精度な温度調節器を冷却パターンに合わせて複数器使用し精密な温度コントロールする等、高額な初期設備投資を必要とし、または成形工程において長時間を要し量産性に乏しかった。
【0004 】
【特許文献1】
特開2002−139610
【特許文献2】
特開2002−228815
【0005 】
【発明が解決しようとする課題】
本発明は金型転写面内の高低差が15mm以上の曲率、転写面積100cm以上及び転写面内精度を100μm以下を必要とする高精度なプラスチック製光学製品を高額な温度調節器を必要とせずに、かつ短時間の成形サイクルを可能とした高精度プラスチックス製光学部品用金型の冷却装置を提供する。
【0006 】
【課題を解決するための手段】
本発明者は、上記問題を解決した高精度プラスチックス製光学部品用金型の冷却装置であってその要旨は、
(1)キャビティー型とコア型との一対からなる熱可塑性樹脂用金型の該キャビティー型及びコア型の外側に、ヒータープレートと冷却プレートとを順次に配置し、ヒータープレートは並行した多数本の電熱ヒーターを有していて該ヒータの長手方向に温度分布調整可能な機能を具備しており、かつ冷却プレートは並行した多数本の冷却液路を有していて該冷却液路のうちの何本かの冷却液路を流れる冷却液とその他の冷却液路を流れる冷却液が互いに向流になるように配置したことを特徴とする高精度プラスチックス製光学部品用金型の冷却装置である。
(2)キャビティー型とコア型との一対からなる熱可塑性樹脂用金型の該キャビティー型及びコア型の内部に、電熱ヒーターと冷却液路とを並行して複数本を設け、電熱ヒーターはその長手方向に温度分布調整可能な機能を具備しており、かつ冷却液路のうちの何本かの冷却液路を流れる冷却液とその他の冷却液路を流れる冷却液が互いに向流になるように配置したことを特徴とする高精度プラスチックス製光学部品用金型の冷却装置である。
(3)電熱ヒーターは、長手方向に二箇所以上のコントロールが可能なものであることを特徴とする上記(1)〜(2)何れかの高精度プラスチックス製光学部品用金型の冷却装置である。
(4)冷却液路の各々には、流量調整バルブを設けたことを特徴とする上記(1)〜(3)何れかの高精度プラスチックス製光学部品用金型の冷却装置である。
【0007】
【発明の実施の形態】
以下、本発明の高精度プラスチックス製光学部品用金型の冷却装置を添付図面に基づいて説明する。
図1は高精度プラスチックス製光学部品用金型の冷却装置の一実施例の縦断面図である。
図2は高精度プラスチックス製光学部品用金型の冷却装置の他の実施例の縦断面図である。
図3はヒータープレートの一実施例の平面斜視図である。
図4は冷却プレートの一実施例の平面断面図である。
図5は冷却プレートの他の実施例の平面断面図である。
図6はキャビティー型の概略図である。
図7は高精度プラスチックス製光学部品用金型の内部に、電熱ヒーターと冷却液路とを設けた一実施例の縦断面図である。
【0008】
図1及び2において、1はキャビティー型であって、当該キャビティー型1は鏡面仕上げされた非球面形状を有する。
2はコア型であって、当該コア型2とキャビティー型1の一対によって熱可塑性樹脂成形体7を成形する金型を構成する。
3及び4は周枠であって、当該周枠3、4によってキャビティー型1及びコア型2が挟持されてセッチングされている。
【0009】
図1において、5はヒータープレートであって、当該ヒータープレート5は並行した多数本の電熱ヒーターの挿入用孔5−1を有し、キャビティー型1及びコア型2の外側に接触して配置されいる。
6は冷却プレートであって、該冷却プレート6は並行した多数本の冷却液路6−1(図1)、6−2及び6−3(図2)を有し、ヒータープレート5の外側に接触して配置されている。
そして、ヒータープレート5に設けられている電熱ヒーターの挿入用孔の長手方向と冷却プレート6の設けられている冷却液路とは、直交配置(図1)であっても並行配置(図2)の何れであっても良い。
図2において、冷却液路6−2は紙面に対して奥から手前に冷却液が流れる冷却液路を示し、一方冷却液路6−3は紙面に対して手前から奥に冷却液が流れる冷却液路を示しており、両冷却液路を交互に並行して配置した例である。
上述の通り、ヒータープレート5及び冷却プレート6の二枚のプレートの組合せによって、キャビティー型1及びコア型2よりなる金型の冷却装置を構成している。
【0010】
図3において、ヒータープレート5に設けられた電熱ヒーターの挿入用孔5−1内の長手方向には、分割された3本の電熱ヒーター5−2A、5−2B及び5−2Cが内挿されており、当該電熱ヒーターは各々別個に温度調整が可能な機能を具備している。
この各電熱電熱ヒーター5−2A、5−2B及び5−2Cは、各々少なくとも5cm×5cm(25cm)面積程度を温度制御できるような性能を有していることが好ましい。
【0011】
図4においては、冷却プレート6に設けられた冷却液路6−2A及び6−2Bと冷却液路6−3A、6−3B及び6−3Cとは、冷却液が交互に向流するように配置された例である。
図5においては、冷却プレート6に設けられた右側の2本の冷却液路6−2A及び6−2Bと左側の2本の冷却液路6−3A及び6−3Bとは、冷却液が向流となるように配置されており、また冷却プレート6の中央部に位置する冷却液路6−2Cと6−3Cも向流するように配置された例である。
このように、本発明は冷却プレート6の両端面より冷却液を流入する向流冷却液路を配置したので、冷却プレート6の一端面のみ冷却液を流入する冷却液路配置の場合のように当該一端面が局部的に過冷になる虞がなく、冷却プレート6を全体的に均等に冷却することができる。
【0012】
各冷却液路の入口部には、流量調整バルブ6−4を設け、当該各バルブ6−4の開度を調整することにより冷却液の流量をコントロールすると共に、ヒータープレート5に設けられている各電熱ヒーターを温度調整することにより、金型内壁の温度分布を4℃以内に制御できる機能を具備している。
また、ヒータープレート5及び冷却プレート6は熱伝導率λが50W/m・k以上の材料を用い、一般的にはアルミニウム合金の使用が好ましく、更に銅合金を用いることがより好ましい。
【0013】
図6において、キャビティー型1の代表的な形状であって、即ち金型転写面内の高低差Hが15mm以上の曲率を有した非球面形状で100cm以上の面積を有し、かつキャビティー型1の底面から非球面形状の最低厚みHが30mmを有する金型には、本発明の冷却装置が好適に利用できる。
【0014】
図7は、キャビティー型1及びコア型2の内部に直接に電熱ヒータ挿入用孔5−1と冷却液路6−2、6−3とを並行して交互に複数本設けた例である。
そして電熱ヒータ挿入用孔5−1内の長手方向には、図3に示した構造と同様に分割された3本の電熱ヒーター5−2A、5−2B及び5−2Cが内挿されており、当該電熱ヒーターは各々別個に温度調整が可能な機能を具備している。
冷却液路6−2、6−3は冷却液が互いに向流になるように配置され、その各々には流量調整バルブが設けられている。
この図7において、キャビティー型1及びコア型2の内部に電熱ヒータ挿入用孔と冷却液路とを直接設けるに際し、金型に加工を施しても当該金型に必要強度が確保され、またこの加工作業の影響で当該金型の転写面精度が悪化しない場合に採用することができる。
また、金型内部に設けられる上記電熱ヒータ挿入用孔と冷却液路の配置箇所は、キャビティー型1の転写面及びコア型2の熱可塑性樹脂成形体面からの厚み方向の距離が一定になるように配置するのが好ましい。
【0015】
【実施例】
(実施例1)
ガラス転移温度が140℃(DSC法)の非晶性ポリオレフィン(ゼオノア:日本ゼオン(株)製)を100℃、48時間真空中で乾燥したものを、下記式(1)からなる非球面形状を有し、縦(光軸方向):160mm、横方向(光軸と垂直):160mm、厚さ:8mmの大きさで、図6におけるHが30mm、Hが30mmの樹脂成形金型内で加熱溶融させながら厚み方向に、プレス圧力0.7MPaで240℃、50分加熱して賦形した。
その後240℃から100℃まで、樹脂の収縮に追従できるように厚み方向に0.5MPaの圧力を加えた状態で40分をかけて徐冷して成形体7を得た。
【0016】
当該成形体7を得るために使用したヒータープレート5は図3に示す構造であって、7075系アルミニウム合金製、300mm角であって各々50mm×50mm角のエリアが温度制御できる性能の多分割電熱ヒーターを具備した構造である。
上記の徐冷工程時において、キャビティー型1側のヒータープレート5は図3の電熱ヒーター5−2Bの温度は当初240℃に設定し、電熱ヒーター5−2A、5−2Cの温度はこれよりも5℃低く設定した。
一方、コア型2側のヒータープレート5は図3の電熱ヒーター5−2A、5−2Cの温度は当初240℃に設定し、電熱ヒーター5−2Bの温度はこれよりも10℃低く設定した。
【0017】
また、キャビティー型1側の冷却プレート6は図4に示す態様で冷却液路6−3Bを流量調整バルブ6−4で閉止し、冷却液路6−2A、6−2Bを流れる冷却水量を均等にしてその合計水量が15L/min、同様にして冷却液路6−3A、6−3Cを流れる冷却水量を均等にしてその合計水量が15L/minに流量調整バブル6−4にて調整した。
一方、コア型2側の冷却プレート6は図4に示す態様で冷却液路6−3A 、6−3Cを流量調整バルブ6−4で閉止し、冷却液路6−2A、6−2Bを流れる冷却水量を均等にしてその合計水量が15L/min、冷却液路6−3Bを流れる冷却水量を15L/minに流量調整バブル6−4にて調整した。
【0018】
上記の様に、冷却プレート6に一定量の冷却水を流しながらヒータープレート5の各電熱ヒーターの温度を制御して、キャビティー型1における金型最低厚み(H)部分の温度と金型最大厚み(H+H)部分の温度差を4℃以内に維持しながら樹脂温度を240℃から100℃まで降下させて成形体7を成形した後、100℃の状態で成形体7を金型より取り出した。
このようにして得られた成形体7の転写面の基準形状に対する最大偏差は40μmであった。
【0019】
Z(h)=ch/(1+√(1−(1+k)c))+Ah+Bh+Ch+Dh10……(1)
(c=1/r,c:曲線,r:半径,k:円錐率,A,B,C,Dは係数)
r=−160
k=−8.0
A=7.0−9
B=−9.0−14
C=6.5−19
D=−2.0−24
【0020】
(比較例1)
実施例1において、型内における240℃の溶融樹脂を樹脂温度100℃まで徐冷して成形体7を得る工程において、キャビティ型1側及びコア側2の冷却プレート6は図4における冷却プレート6の冷却液路6−2A及び6−2Bを流れる冷却水量を均等にしてその合計冷却水量が15L/min、また冷却液路6−3A、6−3B、6−3Cを流れる冷却水量を均等にしてその合計冷却水量が15L/minに流量調整バルブ6−4にて一定流量に調整した。
一方キャビティ型1側及びコア側2のヒータープレート5に挿入されている各電熱ヒーターは全て同温度で制御しながら、240℃から100℃まで樹脂の収縮に追従できるように0.5MPaの圧力を加えた状態で40分かけて徐冷して成形体7を成形した後、100℃の状態で成形体7を金型より取り出した。
なお、徐冷して樹脂温度が100℃に達した時点でのキャビティー型1における金型最低厚み(H)部分の温度と金型最大厚み(H+H)部分の温度差が10℃であった。このようにして得られた成形体7の転写面の基準形状に対する最大偏差は60μmであった。
【0021】
(比較例2)
実施例1において、型内における240℃の溶融樹脂を樹脂温度100℃まで徐冷して成形体7を得る工程において、キャビティ型1側及びコア側2の冷却プレート6は図4における冷却プレート6の冷却液路6−2A及び6−2Bを流れる冷却水量を均等にしてその合計冷却水量が15L/min、また冷却液路6−3A、6−3B、6−3Cを流れる冷却水量を均等にしてその合計冷却水量が15L/minに流量調整バルブ6−4にて一定流量に調整した。
一方キャビティ型1側及びコア側2のヒータープレート5に挿入されている各電熱ヒーターは全て同温度で制御しながら、240℃から100℃まで樹脂の収縮に追従できるように0.5MPaの圧力を加えた状態で、240℃から160℃まで15分、160℃で30分、160℃から140℃まで10分、140℃で30分、140℃から100℃まで30分、及び100℃で30分、合計145分かけて徐冷することによって、キャビティー型1における金型最低厚み(H)部分の温度と金型最大厚み(H+H)部分の温度差を4℃以内に維持して成形体7を成形した後、100℃の状態で成形体7を金型より取り出した。このようにして得られた成形体7の転写面の基準形状に対する最大偏差は40μmであった。
【0022】
【発明の効果】
本発明の金型冷却装置は、高額な初期設備投資を必要とせず比較的に成形サイクルが短いので生産性に優れている。
また、得られた成形体7の転写面の基準形状に対する最大偏差が小さいので、高精度が要求されるプラスチックス製光学部品の金型冷却装置として好適に使用される。
【図面の簡単な説明】
【図1】高精度プラスチックス製光学部品用金型の冷却装置の一実施例の縦断面図。
【図2】高精度プラスチックス製光学部品用金型の冷却装置の他の実施例の縦断面図。
【図3】ヒータープレートの一実施例の平面斜視図。
【図4】冷却プレートの一実施例の平面断面図。
【図5】冷却プレートの他の実施例の平面断面図。
【図6】キャビティー型の概略図。
【図7】高精度プラスチックス製光学部品用金型の内部に、電熱ヒーターと冷却液路とを設けた一実施例の縦断面図。
【符号の説明】
1…キャビティー型
2…コア型
3、4…周枠
5…ヒータープレート
5−1…電熱ヒーター挿入用孔
5−2A、5−2B、5−2C…電熱ヒーター
6…冷却プレート
6−1、6−2、6−3…冷却液路
6−2A、6−2B、6−3A、6−3B、6−3C…冷却液路
6−4…流量調整バルブ
7…熱可塑性樹脂成形体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is directed to the use of a thermoplastic resin raw material for an overhead projector, a wind display, a front projector, a digital camera, a head-up display, a copying machine, a laser printer, and other optical components used in optical devices, particularly, a molding surface having a reduced roughness. The present invention relates to a mold cooling apparatus for manufacturing a high-precision plastics optical component such as an optical component that requires nanometer-order smoothness and a shape accuracy of several tens of microns or less.
[0002]
[Prior art]
As a method for molding a high-precision plastic optical product, there are an injection compression molding method, a high-temperature injection molding method, a press molding method, and the like, and a projection lens (see Patent Document 1) and a projection mirror (see Patent Document 2). Such a non-spherical or spherical shape having a curvature of 15 mm or more in the mold transfer surface and having an area of 100 cm 2 or more in the transfer surface accuracy (deviation of the transfer surface from the mold shape). In order to achieve a thickness of 100 μm or less, it is necessary to minimize the in-plane temperature distribution of the cavity mold and the core mold during cooling (particularly near the glass transition temperature of the molding resin).
[0003]
In order to achieve an in-transfer accuracy of 100 μm or less for a molded product molded using a mold having the above specifications, it is necessary to cool over a long time while stabilizing the temperature distribution in the mold surface. In addition, a high-precision temperature control was required, such as using a plurality of high-precision temperature controllers in accordance with a cooling pattern and performing precise temperature control, or a long time was required in the molding process, and mass productivity was poor.
[0004]
[Patent Document 1]
JP-A-2002-39610
[Patent Document 2]
JP-A-2002-228815
[0005]
[Problems to be solved by the invention]
The present invention requires a high-precision plastic optical product requiring a curvature having a height difference of 15 mm or more in a mold transfer surface, a transfer area of 100 cm 2 or more, and a transfer surface accuracy of 100 μm or less, and an expensive temperature controller. Provided is a high-precision plastics mold cooling device for optical parts that enables a short molding cycle without requiring a molding cycle.
[0006]
[Means for Solving the Problems]
The present inventor is a cooling device for a high-precision plastics optical component mold that solves the above problems, the gist of which is:
(1) In a mold for a thermoplastic resin comprising a pair of a cavity mold and a core mold, a heater plate and a cooling plate are sequentially arranged outside the cavity mold and the core mold, and the heater plates are arranged in parallel. It has a function of adjusting the temperature distribution in the longitudinal direction of the heater, and the cooling plate has a large number of parallel cooling liquid passages. A cooling liquid flowing through some of the cooling liquid paths and a cooling liquid flowing through the other cooling liquid paths are arranged so as to be countercurrent to each other. It is.
(2) A plurality of electric heaters and coolant passages are provided in parallel in the cavity mold and the core mold of the thermoplastic resin mold composed of a pair of a cavity mold and a core mold, Has a function of adjusting the temperature distribution in the longitudinal direction, and the coolant flowing through some of the coolant passages and the coolant flowing through the other coolant passages are countercurrent to each other. This is a cooling device for a mold for a high-precision plastics optical component, which is characterized by being arranged as follows.
(3) The apparatus for cooling a high-precision plastics optical component mold according to any one of (1) and (2), wherein the electric heater is capable of controlling at two or more locations in the longitudinal direction. It is.
(4) The cooling device for a high-precision plastics optical component mold according to any one of the above (1) to (3), wherein a flow control valve is provided in each of the cooling liquid passages.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a cooling device for a mold for a high-precision plastics optical component of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view of one embodiment of a cooling device for a mold for an optical component made of high-precision plastics.
FIG. 2 is a longitudinal sectional view of another embodiment of a cooling device for a high-precision plastics mold for an optical component.
FIG. 3 is a plan perspective view of one embodiment of the heater plate.
FIG. 4 is a plan sectional view of one embodiment of the cooling plate.
FIG. 5 is a plan sectional view of another embodiment of the cooling plate.
FIG. 6 is a schematic view of a cavity mold.
FIG. 7 is a longitudinal sectional view of an embodiment in which an electric heater and a cooling liquid passage are provided inside a high-precision plastics mold for an optical component.
[0008]
1 and 2, reference numeral 1 denotes a cavity mold, and the cavity mold 1 has a mirror-finished aspherical shape.
Reference numeral 2 denotes a core mold, and a pair of the core mold 2 and the cavity mold 1 constitutes a mold for molding the thermoplastic resin molded body 7.
Reference numerals 3 and 4 denote peripheral frames, and the cavity mold 1 and the core mold 2 are sandwiched and set by the peripheral frames 3 and 4.
[0009]
In FIG. 1, reference numeral 5 denotes a heater plate. The heater plate 5 has a large number of parallel electric heater insertion holes 5-1 and is arranged in contact with the outside of the cavity mold 1 and the core mold 2. Have been.
Reference numeral 6 denotes a cooling plate, which has a number of parallel cooling liquid passages 6-1 (FIG. 1), 6-2 and 6-3 (FIG. 2). They are arranged in contact.
The longitudinal direction of the insertion hole for the electric heater provided on the heater plate 5 and the cooling liquid passage provided on the cooling plate 6 are arranged in parallel (FIG. 1) even if they are arranged orthogonally (FIG. 1). Any of these may be used.
In FIG. 2, a cooling liquid path 6-2 indicates a cooling liquid path in which the cooling liquid flows from the back to the front with respect to the paper surface, while a cooling liquid path 6-3 indicates the cooling liquid in which the cooling liquid flows from the front to the back with respect to the paper surface This is an example in which liquid paths are shown, and both cooling liquid paths are alternately arranged in parallel.
As described above, the combination of the two plates, the heater plate 5 and the cooling plate 6, constitutes a mold cooling device including the cavity mold 1 and the core mold 2.
[0010]
In FIG. 3, three divided electric heaters 5-2A, 5-2B and 5-2C are inserted in the longitudinal direction in the insertion hole 5-1 of the electric heater provided on the heater plate 5. Each of the electric heaters has a function of individually controlling the temperature.
It is preferable that each of the electrothermal heaters 5-2A, 5-2B, and 5-2C has a performance capable of controlling the temperature of at least about 5 cm × 5 cm (25 cm 2 ).
[0011]
In FIG. 4, the cooling liquid passages 6-2A and 6-2B and the cooling liquid passages 6-3A, 6-3B and 6-3C provided in the cooling plate 6 are arranged so that the cooling liquid alternately flows. This is an example of arrangement.
In FIG. 5, the cooling liquid flows between two cooling liquid paths 6-2A and 6-2B on the right side and two cooling liquid paths 6-3A and 6-3B on the left side provided on the cooling plate 6. In this example, the cooling liquid passages 6-2C and 6-3C located at the center of the cooling plate 6 are also arranged so as to flow countercurrently.
As described above, in the present invention, since the counterflow cooling liquid passages through which the cooling liquid flows in from both end surfaces of the cooling plate 6 are arranged, as in the case of the cooling liquid passage arrangement in which the cooling liquid flows only through one end surface of the cooling plate 6. There is no possibility that the one end face is locally overcooled, and the cooling plate 6 can be uniformly cooled as a whole.
[0012]
A flow control valve 6-4 is provided at the inlet of each cooling liquid passage, and the flow rate of the cooling liquid is controlled by adjusting the opening degree of each valve 6-4. It has a function to control the temperature distribution of the mold inner wall within 4 ° C. by adjusting the temperature of each electric heater.
The heater plate 5 and the cooling plate 6 are made of a material having a thermal conductivity λ of 50 W / m · k or more, and generally, an aluminum alloy is preferably used, and more preferably, a copper alloy is more preferably used.
[0013]
6, a typical shape of the cavity mold 1, that has a 100 cm 2 or more areas in a non-spherical shape that the height difference H 1 of the mold transfer plane had a curvature of more than 15 mm, and the mold having a minimum thickness H 2 is 30mm aspherical from the bottom surface of the cavity mold 1, a cooling device of the present invention can be suitably used.
[0014]
FIG. 7 shows an example in which a plurality of holes 5-1 for inserting an electric heater and cooling fluid passages 6-2, 6-3 are provided alternately and parallel directly inside the cavity mold 1 and the core mold 2. .
In the longitudinal direction inside the electric heater insertion hole 5-1, three electric heaters 5-2A, 5-2B, and 5-2C divided in the same manner as the structure shown in FIG. 3 are inserted. Each of the electric heaters has a function of individually adjusting the temperature.
The cooling liquid passages 6-2 and 6-3 are arranged so that the cooling liquid flows in countercurrent to each other, and each of them is provided with a flow control valve.
In FIG. 7, when directly providing the electric heater insertion hole and the coolant passage inside the cavity mold 1 and the core mold 2, even if the mold is processed, the required strength of the mold is secured. It can be employed when the transfer surface accuracy of the mold does not deteriorate due to the influence of this processing operation.
In addition, the distances in the thickness direction from the transfer surface of the cavity mold 1 and the surface of the thermoplastic resin molded body of the core mold 2 are constant at the positions where the electric heater insertion hole and the cooling liquid passage are provided inside the mold. It is preferable to arrange them in such a manner.
[0015]
【Example】
(Example 1)
An amorphous polyolefin having a glass transition temperature of 140 ° C. (DSC method) (Zeonor: manufactured by Nippon Zeon Co., Ltd.) dried in a vacuum at 100 ° C. for 48 hours is converted into an aspherical surface having the following formula (1). a vertical (optical axis direction): 160 mm, transverse (perpendicular to the optical axis): 160 mm, thickness: a size of 8 mm, it is H 2 in FIG. 6 30mm, H 1 is the resin molding die 30mm In the thickness direction, the mixture was heated at 240 ° C. for 50 minutes at a pressing pressure of 0.7 MPa while being melted by heating to form a shape.
Thereafter, from 240 ° C. to 100 ° C., a molded product 7 was obtained by gradually cooling over 40 minutes while applying a pressure of 0.5 MPa in the thickness direction so as to follow the shrinkage of the resin.
[0016]
The heater plate 5 used to obtain the molded body 7 has the structure shown in FIG. 3 and is made of 7075-based aluminum alloy. It has a structure with a heater.
In the above-described slow cooling step, the heater plate 5 on the side of the cavity mold 1 sets the temperature of the electric heater 5-2B of FIG. 3 to 240 ° C. initially, and sets the temperature of the electric heaters 5-2A and 5-2C to this. Was also set 5 ° C. lower.
On the other hand, in the heater plate 5 on the core mold 2 side, the temperature of the electric heaters 5-2A and 5-2C in FIG. 3 was initially set at 240 ° C., and the temperature of the electric heater 5-2B was set at 10 ° C. lower than this.
[0017]
Further, the cooling plate 6 on the side of the cavity mold 1 closes the cooling liquid passage 6-3B with the flow rate adjusting valve 6-4 in the mode shown in FIG. 4, and controls the amount of cooling water flowing through the cooling liquid passages 6-2A and 6-2B. The total amount of water was made equal to 15 L / min, and similarly, the amount of cooling water flowing through the cooling liquid passages 6-3A and 6-3C was made equal to adjust the total amount of water to 15 L / min with the flow control bubble 6-4. .
On the other hand, in the cooling plate 6 on the core mold 2 side, the cooling fluid passages 6-3A and 6-3C are closed by the flow control valve 6-4 in the manner shown in FIG. 4, and the cooling fluid passages 6-2A and 6-2B flow. The cooling water amount was made equal to adjust the total water amount to 15 L / min, and the cooling water amount flowing through the cooling liquid passage 6-3B to 15 L / min with the flow control bubble 6-4.
[0018]
As described above, the temperature of each electric heater of the heater plate 5 is controlled while flowing a fixed amount of cooling water through the cooling plate 6, and the temperature of the mold minimum thickness (H 2 ) portion of the cavity mold 1 and the mold are controlled. While maintaining the temperature difference at the maximum thickness (H 1 + H 2 ) portion within 4 ° C., the resin temperature is lowered from 240 ° C. to 100 ° C. to form the molded body 7, and then the molded body 7 is heated at 100 ° C. Removed from the mold.
The maximum deviation of the transfer surface of the molded body 7 thus obtained from the reference shape was 40 μm.
[0019]
Z (h) = ch 2 / (1 + √ (1- (1 + k) c 2 h 2)) + Ah 4 + Bh 6 + Ch 8 + Dh 10 ...... (1)
(C = 1 / r, c: curve, r: radius, k: cone ratio, A, B, C, and D are coefficients)
r = -160
k = -8.0
A = 7.0-9
B = -9.0 -14
C = 6.5-19
D = -2.0 -24
[0020]
(Comparative Example 1)
In Example 1, in the step of gradually cooling the molten resin at 240 ° C. in the mold to a resin temperature of 100 ° C. to obtain a molded body 7, the cooling plates 6 on the cavity mold 1 side and the core side 2 are replaced with the cooling plate 6 in FIG. And the total amount of cooling water flowing through the cooling liquid paths 6-2A and 6-2B is equalized to 15 L / min, and the amount of cooling water flowing through the cooling liquid paths 6-3A, 6-3B and 6-3C is equalized. The total cooling water amount was adjusted to 15 L / min to a constant flow rate by the flow control valve 6-4.
On the other hand, while controlling all the electric heaters inserted into the heater plate 5 on the cavity mold 1 side and the core side 2 at the same temperature, a pressure of 0.5 MPa is applied so as to follow the shrinkage of the resin from 240 ° C. to 100 ° C. The molded body 7 was gradually cooled in the added state over 40 minutes to form the molded body 7, and then the molded body 7 was taken out of the mold at 100 ° C.
The temperature difference between the mold minimum thickness (H 2 ) portion and the mold maximum thickness (H 1 + H 2 ) portion in the cavity mold 1 at the time when the resin temperature reaches 100 ° C. after gradual cooling is 10 ° C. The maximum deviation of the transfer surface of the molded body 7 thus obtained from the reference shape was 60 μm.
[0021]
(Comparative Example 2)
In Example 1, in the step of gradually cooling the molten resin at 240 ° C. in the mold to a resin temperature of 100 ° C. to obtain a molded body 7, the cooling plates 6 on the cavity mold 1 side and the core side 2 are replaced with the cooling plate 6 in FIG. And the total amount of cooling water flowing through the cooling liquid paths 6-2A and 6-2B is equalized to 15 L / min, and the amount of cooling water flowing through the cooling liquid paths 6-3A, 6-3B and 6-3C is equalized. The total cooling water amount was adjusted to 15 L / min to a constant flow rate by the flow control valve 6-4.
On the other hand, while controlling all the electric heaters inserted into the heater plate 5 on the cavity mold 1 side and the core side 2 at the same temperature, a pressure of 0.5 MPa is applied so as to follow the shrinkage of the resin from 240 ° C. to 100 ° C. With added, 15 minutes from 240 ° C to 160 ° C, 30 minutes at 160 ° C, 10 minutes from 160 ° C to 140 ° C, 30 minutes at 140 ° C, 30 minutes from 140 ° C to 100 ° C, and 30 minutes at 100 ° C By gradually cooling over a total of 145 minutes, the temperature difference between the mold minimum thickness (H 2 ) portion and the mold maximum thickness (H 1 + H 2 ) portion in the cavity mold 1 is maintained within 4 ° C. After forming the molded body 7 by pressing, the molded body 7 was taken out of the mold at 100 ° C. The maximum deviation of the transfer surface of the molded body 7 thus obtained from the reference shape was 40 μm.
[0022]
【The invention's effect】
The mold cooling device of the present invention does not require expensive initial equipment investment and has a relatively short molding cycle, and thus has excellent productivity.
Further, since the maximum deviation of the transfer surface of the obtained molded body 7 from the reference shape is small, it can be suitably used as a mold cooling device for plastics optical components requiring high accuracy.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of one embodiment of a cooling device for a mold for a high-precision plastics optical component.
FIG. 2 is a longitudinal sectional view of another embodiment of a cooling device for a mold for an optical component made of high-precision plastics.
FIG. 3 is a plan perspective view of one embodiment of a heater plate.
FIG. 4 is a plan sectional view of one embodiment of a cooling plate.
FIG. 5 is a plan sectional view of another embodiment of the cooling plate.
FIG. 6 is a schematic view of a cavity mold.
FIG. 7 is a longitudinal sectional view of one embodiment in which an electric heater and a cooling liquid passage are provided inside a high-precision plastics mold for an optical component.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Cavity type | mold 2 ... Core type | mold 3, 4 ... Peripheral frame 5 ... Heater plate 5-1 ... Hole 5-2A, 5-2B, 5-2C for electric heater insertion ... Electric heater 6 ... Cooling plate 6-1. 6-2, 6-3 ... Cooling fluid path 6-2A, 6-2B, 6-3A, 6-3B, 6-3C ... Cooling fluid path 6-4 ... Flow control valve 7 ... Thermoplastic resin molded body

Claims (4)

キャビティー型とコア型との一対からなる熱可塑性樹脂用金型の該キャビティー型及びコア型の外側に、ヒータープレートと冷却プレートとを順次に配置し、ヒータープレートは並行した多数本の電熱ヒーターを有していて該ヒータの長手方向に温度分布調整可能な機能を具備しており、かつ冷却プレートは並行した多数本の冷却液路を有していて該冷却液路のうちの何本かの冷却液路を流れる冷却液とその他の冷却液路を流れる冷却液が互いに向流になるように配置したことを特徴とする高精度プラスチックス製光学部品用金型の冷却装置。A heater plate and a cooling plate are sequentially arranged on the outside of the cavity mold and the core mold of the thermoplastic resin mold composed of a pair of a cavity mold and a core mold. It has a heater and has a function of adjusting the temperature distribution in the longitudinal direction of the heater, and the cooling plate has a large number of parallel cooling liquid passages. A cooling device for a high-precision plastics optical component mold, wherein the cooling liquid flowing through the cooling liquid path and the cooling liquid flowing through the other cooling liquid paths are arranged to be countercurrent to each other. キャビティー型とコア型との一対からなる熱可塑性樹脂用金型の該キャビティー型及びコア型の内部に、電熱ヒーターと冷却液路とを並行して複数本を設け、電熱ヒーターはその長手方向に温度分布調整可能な機能を具備しており、かつ冷却液路のうちの何本かの冷却液路を流れる冷却液とその他の冷却液路を流れる冷却液が互いに向流になるように配置したことを特徴とする高精度プラスチックス製光学部品用金型の冷却装置。A plurality of electric heaters and cooling fluid passages are provided in parallel in the cavity mold and the core mold of the thermoplastic resin mold composed of a pair of a cavity mold and a core mold, and the electric heater has a longitudinal axis. It has a function of adjusting the temperature distribution in the direction, and so that the coolant flowing through some of the coolant passages and the coolant flowing through the other coolant passages are countercurrent to each other. A cooling device for a mold for optical components made of high-precision plastics, which is arranged. 電熱ヒーターは、長手方向に二箇所以上のコントロールが可能なものであることを特徴とする請求項1〜2の何れかに記載の高精度プラスチックス製光学部品用金型の冷却装置。The cooling device for a high-precision plastics optical component mold according to any one of claims 1 to 2, wherein the electric heater can control two or more locations in the longitudinal direction. 冷却液路の各々には、流量調整バルブを設けたことを特徴とする請求項1〜3の何れかに記載の高精度プラスチックス製光学部品用金型の冷却装置。4. The cooling device for a high-precision plastics optical component mold according to claim 1, wherein a flow rate adjusting valve is provided in each of the cooling liquid passages.
JP2003043756A 2003-02-21 2003-02-21 Cooling device of mold for high-precision plastic optical component Pending JP2004249640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043756A JP2004249640A (en) 2003-02-21 2003-02-21 Cooling device of mold for high-precision plastic optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043756A JP2004249640A (en) 2003-02-21 2003-02-21 Cooling device of mold for high-precision plastic optical component

Publications (2)

Publication Number Publication Date
JP2004249640A true JP2004249640A (en) 2004-09-09
JP2004249640A5 JP2004249640A5 (en) 2006-02-02

Family

ID=33026669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043756A Pending JP2004249640A (en) 2003-02-21 2003-02-21 Cooling device of mold for high-precision plastic optical component

Country Status (1)

Country Link
JP (1) JP2004249640A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026456A1 (en) * 2006-08-30 2008-03-06 Konica Minolta Opto, Inc. Device for and method of manufacturing optical part
KR100850308B1 (en) * 2005-10-25 2008-08-04 야마시타 덴끼 가부시키가이샤 Synthetic resin molding mold
WO2010103491A1 (en) * 2009-03-13 2010-09-16 Suzhou Red Maple Wind Blade Mould Co., Ltd Electrical heating and air cooling system for mold
JP2010253792A (en) * 2009-04-24 2010-11-11 Konica Minolta Opto Inc Mold for optical element
JP2021115768A (en) * 2020-01-27 2021-08-10 株式会社アイシン Injection molding mold

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100850308B1 (en) * 2005-10-25 2008-08-04 야마시타 덴끼 가부시키가이샤 Synthetic resin molding mold
US7484953B2 (en) 2005-10-25 2009-02-03 Yamashita Electric Co. Ltd. Synthetic resin injection molding assembly
WO2008026456A1 (en) * 2006-08-30 2008-03-06 Konica Minolta Opto, Inc. Device for and method of manufacturing optical part
JPWO2008026456A1 (en) * 2006-08-30 2010-01-21 コニカミノルタオプト株式会社 Optical component manufacturing apparatus and manufacturing method thereof
CN101505943B (en) * 2006-08-30 2012-09-05 柯尼卡美能达精密光学株式会社 Device for and method of manufacturing optical part
JP5083215B2 (en) * 2006-08-30 2012-11-28 コニカミノルタアドバンストレイヤー株式会社 Optical component manufacturing apparatus and manufacturing method thereof
TWI406751B (en) * 2006-08-30 2013-09-01 Konica Minolta Opto Inc Optical part manufacturing apparatus and manufacturing method thereof
KR101377809B1 (en) 2006-08-30 2014-03-25 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 Device for and method of manufacturing optical part
WO2010103491A1 (en) * 2009-03-13 2010-09-16 Suzhou Red Maple Wind Blade Mould Co., Ltd Electrical heating and air cooling system for mold
JP2010253792A (en) * 2009-04-24 2010-11-11 Konica Minolta Opto Inc Mold for optical element
JP2021115768A (en) * 2020-01-27 2021-08-10 株式会社アイシン Injection molding mold

Similar Documents

Publication Publication Date Title
JPH09234774A (en) Method of injection molding plastics lens
WO2011081016A1 (en) Casting method and casting device for cast-metal object
KR20210109613A (en) Manufacturing apparatus and manufacturing method of resin container
JP2004249640A (en) Cooling device of mold for high-precision plastic optical component
US6695607B2 (en) Mold half-block for injection molding an optical article out of thermoplastic material, and a mold including such a half-block
JPH0825428A (en) Injection molds for thermoplastic resin
TW200817164A (en) Device for and method of manufacturing optical part
US9452558B2 (en) Mold apparatus and manufacturing method thereof
JP2828161B2 (en) Plastic molding equipment
JP2009113423A (en) Mold for injection molding
JP4714491B2 (en) Manufacturing method of resin molded product, mold for resin molding, plastic optical element and display device, and image forming apparatus
JPH0724890A (en) Injection mold and injection molding method
JP2005219280A (en) Mold
JPH02164730A (en) Optical element forming mold and method for forming optical element
JPH11268081A (en) Mold for plastic molding
JP2005001917A (en) Mold press-forming apparatus and method of manufacturing optical device
JP2006232635A (en) Device for forming thermoplastic member and method for forming the same
JPS61290024A (en) Mold for molding plastic lens
JP2001096578A (en) Plastic molding apparatus
JPH0248498B2 (en) KOGAKUBUHINNOSEIKEISOCHI
JP2000318011A (en) Mold
JPS62191128A (en) Pressure mold of optical element
JPS62208916A (en) Method and apparatus for molding precision form
JP2002086517A (en) Method for manufacturing plastic molded product and mold therefor
JPH03133616A (en) Injection mold

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401