[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004247611A - Semiconductor device mounted board and manufacturing method of same - Google Patents

Semiconductor device mounted board and manufacturing method of same Download PDF

Info

Publication number
JP2004247611A
JP2004247611A JP2003037421A JP2003037421A JP2004247611A JP 2004247611 A JP2004247611 A JP 2004247611A JP 2003037421 A JP2003037421 A JP 2003037421A JP 2003037421 A JP2003037421 A JP 2003037421A JP 2004247611 A JP2004247611 A JP 2004247611A
Authority
JP
Japan
Prior art keywords
semiconductor element
circuit board
electrode
opening
sealing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003037421A
Other languages
Japanese (ja)
Inventor
Yoshiharu Sanagawa
佳治 佐名川
Shinobu Kida
忍 木田
Masao Kubo
雅男 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003037421A priority Critical patent/JP2004247611A/en
Publication of JP2004247611A publication Critical patent/JP2004247611A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15151Shape the die mounting substrate comprising an aperture, e.g. for underfilling, outgassing, window type wire connections

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Wire Bonding (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device mounted board and its manufacturing method wherein sealing resin can be prevented from flowing into an opening of a circuit board which a light receiving surface or a light emission surface of a semiconductor device comprising an optical device faces, and electromagnetic waves are unlikely to suffer from irregular reflection at the opening. <P>SOLUTION: The circuit board 2 includes the opening 3 through which light passes, and a protruded part 8 integrally protruding so as to surround the entire periphery of the opening 3 is provided on the surface of the circuit board in the vicinity of the opening 3, and further an electrode part 5 is formed on the outside of a portion surrounded by the protruded part 8. The semiconductor device 3 such as a solid state imaging device is disposed upward the protruded part 8 of the circuit board 2 so as to permit an imaging face thereof to face the opening 3, and is electrically connected to an electrode 11 provided on an opposite face thereof on the side of the circuit board 2 through a gold bump 4 interposed between it and the electrode part 5. The sealing resin 7 seals a junction portion composed of the electrode 11, the gold bump 4, and the electrode part 5. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体撮像素子等の光素子からなる半導体素子を実装した半導体素子実装基板及びその製造方法に関するものである。
【0002】
【従来の技術】
従来、光素子の実装構造体としては、実装される半導体素子の受光面に対向するように回路基板に形成した開口部を囲むフィルム状の樹脂製隔離壁を形成し、この隔離壁で隔離壁で開口部周辺に注入する封止樹脂を開口部から流れ出るのを防ぐようにしたものがある。(例えば特許文献1)
【0003】
【特許文献1】
特開2001−250889号公報(段落番号0061参照)
【0004】
【発明が解決しようとする課題】
上記従来例の場合、隔離壁がフィルム状樹脂であるため、注入される封止樹脂の硬化時に開口部側に撓み、隔離壁で囲繞された空間の内径が狭くなったり、内周面に変形が生じ、そのため電磁波の乱反射が生じ易くなって光ノイズが増加するという問題があった。
【0005】
本発明は、上記の点に鑑みて為されたもので、その目的とするところは、光素子からなる半導体素子の受光面や発光面が臨む回路基板の開口部に封止樹脂が流れ込むのを防ぐことができる上に、開口部での電磁波の乱反射が生じにくい半導体素子実装基板及びその半導体素子実装基板の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上述の目的を達成するために、請求項1の半導体素子実装基板の発明では、電磁波が通過する開口部を備え、該開口部の近傍の表面に前記開口部の一部乃至全周を囲むように一体突出させた凸部を設けるとともに、該凸部が囲う部位の外側に電極部を形成した回路基板と、
前記開口部に受光面若しくは発光面が臨むように前記回路基板の凸部上方に配置され、前記回路基板側に対向する面に設けた電極と前記電極部との間にバンプを介在させて電気的に接合した光素子からなる半導体素子と、から成り、
前記電極、前記バンプ及び前記電極部からなる接合部位を封止樹脂で封止していることを特徴とする。
【0007】
請求項2の半導体素子実装基板の発明では、請求項1の発明において、前記回路基板として、少なくとも前記封止樹脂が塗布硬化される部位に対応する前記凸部の上端部に前記半導体素子の対向面に圧接する緩衝部を設けている回路基板を用いていることを特徴とする。
【0008】
請求項3の半導体素子実装基板の発明では、請求項2の発明において、前記緩衝部の材料として前記回路基板の樹脂材料の弾性率よりも小さい材料を用いていることを特徴とする。
【0009】
請求項4の半導体素子実装基板の発明では、請求項2又は3の発明において、前記緩衝部の材料として熱膨張率が前記封止樹脂の熱膨張率よりも大きい材料を用いたことを特徴とする。
【0010】
請求項5の半導体素子実装基板の発明では、請求項2乃至4の何れかの発明において、前記緩衝部の材料としてガラス転移温度が前記封止樹脂の硬化温度よりも低い樹脂材料を用いたことを特徴とする。
【0011】
請求項6の半導体素子実装基板の発明では、請求項2又は3の発明において、前記緩衝部を下方にスライド可能に上記凸部の上端部に設けていることを特徴とする。
【0012】
請求項7の半導体素子実装基板の発明では、請求項2乃至6の何れかの発明において、前記緩衝部の上面の高さ位置を塗布時の封止樹脂の上面の高さ位置より高くしていることを特徴とする。
【0013】
請求項8の半導体素子実装基板の発明では、請求項2の発明において、前記記緩衝部を前記凸部の上端部に全周に亘って一体に上方へ突出形成するとともに、前記緩衝部の幅寸法を、前記凸部の幅寸法より小さく形成していることを特徴とする。
【0014】
請求項9の半導体素子実装基板の発明では、請求項8の発明において、前記凸部及び前記緩衝部を含めた前記回路基板が射出成形されたものであって、その樹脂材料として、前記緩衝部の前記幅寸法より大きな径のフィラーを混入した樹脂材料を用いていることを特徴とする。
【0015】
請求項10の半導体素子実装基板の発明では、請求項8又は9の何れかの発明において、前記緩衝部を外側に傾斜させていることを特徴とする。
【0016】
請求項11の半導体素子実装基板の発明では、請求項8の発明において、前記緩衝部の突出位置より外側に位置する前記凸部の上端部に、前記緩衝部の高さと略同じ高さの別の緩衝部を全周に亘って一体に突出形成していることを特徴とする。
【0017】
請求項12の半導体素子実装基板の発明では、請求項8の発明において、前記緩衝部の下端から上端までの高さ寸法を、上記凸部の上端開口縁から前記緩衝部の下端までの最短距離より短い寸法としていることを特徴とする。
【0018】
請求項13の半導体素子実装基板の発明では、請求項8乃至12の何れかの発明において、前記緩衝部の一部に上端より下端方向に切り欠いた切欠部を形成していることを特徴とする。
【0019】
請求項14の半導体素子実装基板の発明では、請求項8乃至13の何れかの発明において、前記緩衝部の幅寸法を略10乃至略50μmとしていることを特徴する。
【0020】
請求項15の半導体素子実装基板の発明では、請求項1乃至14の何れかの発明において、前記電極部を回路基板の表面より上方へ突出せる凸形状に形成していることを特徴とする。
【0021】
請求項16の半導体素子実装基板の発明では、請求項1乃至15の何れかの発明において、前記緩衝部の少なくとも上端近傍の内周面を黒色としていることを特徴とする。
【0022】
請求項17の半導体素子実装基板の製造方法の発明では、電磁波が通過する開口部を備え、該開口部の近傍の表面に前記開口部の一部乃至全周を囲むように一体突出させた凸部を設けるとともに、該凸部が囲う部位の外側に電極部を形成した回路基板と、
前記開口部に受光面若しくは発光面が臨むように前記回路基板の凸部上方に配置され、前記回路基板側に対向する面に設けた電極と前記電極部との間にバンプを介在させて電気的に接合した光素子からなる半導体素子と、から成り、
前記電極、前記バンプ及び前記電極部からなる接合部位を封止樹脂で封止している半導体素子実装基板の製造方法において、
前記凸部の外側周辺で且つ前記電極部を内包するように前記回路基板表面に封止樹脂を塗布する工程と、
前記凸部の上端部に突出形成した緩衝部に前記半導体素子を圧接させて前記開口部に半導体素子の受光面若しくは発光面が臨むように半導体素子を配置し、且つ前記電極部に前記半導体素子の電極をバンプを介して圧接させる工程と、
前記封止樹脂を硬化させ、前記半導体素子の電極、バンプ、回路基板の電極部による接合部位を封止樹脂で封止する工程とから成ることを特徴とする。
【0023】
請求項18の半導体素子実装基板の製造方法の発明では、電磁波が通過する開口部を備え、該開口部の近傍の表面に前記開口部の一部乃至全周を囲むように一体突出させた凸部を設けるとともに、該凸部が囲う部位の外側に電極部を形成した回路基板と、
前記開口部に受光面若しくは発光面が臨むように前記回路基板の凸部上方に配置され、前記回路基板側に対向する面に設けた電極と前記電極部との間にバンプを介在させて電気的に接合した光素子からなる半導体素子と、から成り、
前記電極、前記バンプ及び前記電極部からなる接合部位を前記半導体素子と前記回路基板との間で塗布させた封止樹脂により封止する半導体素子実装基板の製造方法において、
前記電極部の外側に位置する回路基板の表面に前記電極部の外側部に沿うように第1の封止樹脂を塗布する工程と、
この塗布後に前記半導体素子を前記凸部の上部に接しないように前記電極をバンプを介して前記電極部に圧接させながら第1の封止樹脂を硬化させて半導体素子を仮実装する工程と、
この仮実装の後、前記電極部と前記凸部との間の前記回路基板表面に前記電極部に沿うように第2の封止樹脂を塗布して硬化させ半導体素子を本実装する工程とから成ることを特徴とする。
【0024】
請求項19の半導体素子実装基板の製造方法の発明では、請求項18の発明において、前記本実装の工程における封止樹脂注入時に前記開口部内を加圧することを特徴とする。
【0025】
請求項20の半導体素子実装基板の製造方法の発明では、請求項18の発明において、前記加圧は、前記開口部を密閉状態とした後、前記開口部内の空気を加熱して空気を膨張させることで行うことを特徴とする。
【0026】
請求項21の半導体素子実装基板の製造方法の発明では、請求項18乃至20の何れかの発明において、前記回路基板として、凸部と前記電極部との間の表面に凹溝を形成している回路基板を用いることを特徴とする。
【0027】
請求項22の半導体素子実装基板の製造方法の発明では、請求項18乃至21の何れかの発明において、前記回路基板として、前記凸部と前記電極部との間の表面に前記凸部と並行するように別の凸部を形成している回路基板を用いることを特徴とする。
【0028】
請求項23の半導体素子実装基板の製造方法の発明では、電磁波が通過する開口部を備え、該開口部の近傍の表面に前記開口部の一部乃至全周を囲むように一体突出させた凸部を設けるとともに、該凸部が囲う部位の外側に電極部を形成した回路基板と、
前記開口部に受光面若しくは発光面が臨むように前記回路基板の凸部上方に配置され、前記回路基板側に対向する面に設けた電極と前記電極部との間にバンプを介在させて電気的に接合した光素子からなる半導体素子と、から成り、
前記電極、前記バンプ及び前記電極部からなる接合部位を樹脂で封止する半導体素子実装基板の製造方法において、
前記凸部の外側周辺の前記回路基板表面に、前記電極部を内包するように載置するとともに加圧・加熱により異方性導電フィルムを前記回路基板表面に貼り付ける工程と、
この工程後に、前記半導体素子の前記電極に形成しているバンプを異方性導電フィルムを貫通させて前記電極部に圧接させながら半導体素子を異方性導電フィルム上に載置し、加圧・加熱により異方性導電フィルムの上面に半導体素子を貼り付け固定し且つ異方性導電フィルムで前記電極、バンプ、電極部からなる接合部を封止する工程と、から成ることを特徴とする。
【0029】
【発明の実施の形態】
以下本発明を実施形態により説明する。
【0030】
(実施形態1)
本実施形態は、本発明の基本となるものであって、半導体素子実装基板10の製造工程を概説する。
【0031】
図1は光素子、例えば撮像素子からなるフェースダウンタイプの半導体素子(半導体チップ)1を樹脂成形された立体回路基板(MID;Molded Interconection Device)からなる回路基板2に実装して半導体素子実装基板10を得るまでの製造工程を示しており、この図示例ではまず図1(a)は、回路基板2に対して実装する半導体素子1を整列させ、半導体素子1の受光部側を回路基板2の開口部3に対置するとともに、受光部側の面(以後下面という)に設けた各電極(図示せず)に形成してある金バンプ4を、回路基板2の表面(以下上面という)側に設けた電極部5に対向させる整列工程を示す。尚電極部5は回路基板2の上面に形成した回路パターン6の一部で構成される。
【0032】
この整列工程を経た後、電極部5を内包する形で開口部3の周辺に封止樹脂7を塗布し(図1(b))、この塗布後に上記金バンプ4を電極部5に圧接させて電極部5と半導体素子1の電極とを電気的に接続するように半導体素子1を回路基板2上に載置実装する(図1(c))。この実装後封止樹脂7を硬化させて封止樹脂7で電極部5と金バンプ4との接合部位を内包し封止することで、所望の半導体素子実装基板10が完成することになる。
【0033】
このような製造工程において半導体素子1を回路基板2の表面に載置実装する際に、硬化前の封止樹脂7が半導体素子1の下面に押されて周辺へ広がることになる。この際に開口部3内に封止樹脂7が流れ込む恐れがある。
【0034】
そこで本実施形態に用いる回路基板2は、開口部3を囲むように環状の凸部8を一体に形成し、この凸部8が堰となって、封止樹脂7が開口部3側へ流れ込むのを防ぐようになっている。
【0035】
また凸部8は回路基板2と同じ樹脂材料で成形されたものであって、その剛性は高く、そのため半導体素子1の回路基板2への実装時や封止樹脂7の硬化時に生じる凸部8への応力によって凸部8の内周面が変形することも殆どなく、それにより電磁波の乱反射などが生じ難く、そのために光ノイズの増加も殆どない。
【0036】
尚本実施形態の回路基板2及び凸部8の樹脂材料としては、芳香族ポリアミド系樹脂(例えば線膨張率が25ppm/℃、弾性率が13GPa、ガラス転移温度が120℃のポリフタルアミド)を用いている。
【0037】
(実施形態2)
上記実施形態1では実装される半導体素子1の下面と凸部8との間に微小な隙間があるため封止樹脂7の塗布量によっては開口部3側へ漏洩する恐れがある。そこで、本実施形態に用いる回路基板2としては図2(a)(b)に示すように上記の凸部8の上端面に緩衝部9を突出形成したものを用いる。
【0038】
この緩衝部9は例えば回路基板2の樹脂材料とは異なる別の樹脂材料を用いられ、二色成形によりで凸部8の上端部に一体的に突出形成されている。
【0039】
而して本実施形態では半導体素子実装基板3を製造するに当たっては、封止樹脂塗布工程において、図3(a)及び図4(a)に示すように環状の凸部8の各辺近傍の回路基板2上面に封止樹脂7を塗布する。
【0040】
次に受光部周辺の半導体素子1の下面を緩衝部9の上端面に密接させて、半導体素子1を押し下げる。これにより半導体素子1の下面に緩衝部9が圧接した状態で緩衝部9が撓みながら各電極11に形成してある金バンプ4が回路基板2の上面の対応する電極部5に圧接して電極11と対応する電極部5との間を電気的に接合する。半導体基板1の押し下げにより半導体素子1の下面により凸部8の周辺に塗布した封止樹脂7が押し流されて凸部8周辺の回路基板2の表面に広がり、凸部8周辺の半導体基板1と回路基板2との間に充満し、電極11、金バンプ4、電極部5からなる接合部位を封止樹脂7に内包させる。
【0041】
この状態で210℃で10秒間加熱して封止樹脂7を硬化させることで、回路基板2の上面と半導体素子1の下面との間で硬化した封止樹脂7により上記接合部位を封止した所定の半導体素子実装基板10が完成することになる(図3(b)、4(b)参照)。
【0042】
尚金バンプ4一個当たりの荷重の大きさを40g〜150gとしている。
【0043】
本実施形態では、緩衝部9が半導体素子1の下面に密接するため、半導体素子1を押し下げながら金バンプ4を電極部5に圧接させる際に、封止樹脂7が凸部8を乗り越えて開口部3側へ流れ込むことがない。
【0044】
例1
凸部8を含む回路基板2の樹脂材料として弾性率が13Gpaの芳香族ポリイミド系樹脂(例えばポリフタルアミド)を用い、他方緩衝部9の樹脂材料として弾性率が5Gpaのエポキシ系樹脂を用いた。
【0045】
これにより半導体素子1の下面に緩衝部9が弾接して密着度を高め封止樹脂7の開口部3側への漏洩を確実に防止でき、また半導体素子1の実装時の緩衝能力が高くなり半導体素子1が傷つけくのを防止することができた。
【0046】
例2
上記例1では回路基板2の樹脂材料として用いる樹脂の弾性率に比して弾性率が小さい樹脂を緩衝部9の樹脂材料として用いたが、本実施例では、凸部8を含む回路基板2の樹脂材料として熱膨張率が25ppm/℃の芳香族ポリイミド系樹脂(例えばポリフタルアミド)を用い、他方緩衝部9の樹脂材料として熱膨張率が35ppm/℃のエポキシ系樹脂を用いた。
【0047】
これにより緩衝部9が半導体素子1に負荷する応力が、封止樹脂7の硬化後の冷却時の温度加工による緩衝部9と封止樹脂7との間の熱膨張差により緩和されるので、応力の半導体素子1へ影響を軽減して信頼性が向上させることができた。
【0048】
例3
上記例1では弾性率に、また実施例2では熱膨張率に着目して、凸部8を含めた回路基板2の樹脂材料と、緩衝部9の樹脂材料とを選定しているが、本実施例では、ガラス転移温度に着目し、凸部8を含む回路基板2の樹脂材料としてガラス転移温度が120℃の芳香族ポリイミド系樹脂(例えばポリフタルアミド)を、また緩衝部9の樹脂材料としてガラス転移温度が138℃のエポキシ系樹脂を用いた。
【0049】
これにより封止樹脂7を硬化させるときに、同時に半導体素子1、緩衝部9間の応力が緩和され、応力の半導体素子1へ影響を軽減して信頼性が向上させることができた。
【0050】
尚上記例1〜3の夫々の特性を全て持つを芳香族ポリイミド系樹脂を用いて凸部8を含む回路基板2を、また例1〜3の夫々の特性を全て持つエポキシ系樹脂を用いて緩衝部9を夫々形成すれば、例1〜3の全ての特徴を有する半導体素子実装基板10を得ることができる。
【0051】
また上記各例1〜3において回路基板2の下面から緩衝部9の上端面までの高さ寸法L2を、図5に示すように回路基板2の上面に塗布する封止樹脂7の上端の回路基板2の下面からの高さ寸法L1より高くすると、封止樹脂7が回路基板2の実装時に押し流されても、開口部3側へ流れ込むのを確実に防止できる。
【0052】
更に図6に示すように緩衝部9の内周面に黒色のフィルムFを貼り付け内周面での乱反射を抑制し、光ノイズの増加を防ぐようにしても良い。このフィルムFを貼り付ける構成は、上記実施形態1は勿論のこと、後述する実施形態3以降に適用できる構成であるので、図6の例に限定されるものではない。
【0053】
(実施形態3)
上記実施形態1では、凸部8に緩衝部9を二色成形により一体的に突出形成した回路基板2を用いているが、本実施形態では図7(a)に示すように凸部8の上端部の周方向に全周に亘るように例えば上向き開口の環状の凹溝12を形成し、この溝12に環状の緩衝部9を嵌合して凸部8の上端部に取り付けた回路基板2を用いる。
【0054】
この場合緩衝部9としては、例えばシリコン系ゴムのような弾性材料を用いて、図7(b)に示すように直径0.3mmという微小なものを用い、半導体素子1の実装前は凸部8の上方に高さhの略2/3程度を突出させた状態で溝12に保持させる。
【0055】
而して本実施形態では、半導体素子1を実装する工程では半導体素子1の下面が緩衝部9を押圧して、緩衝部9を凹溝12内に押し下げ金バンプ5を回路基板2側の電極部5に圧接させる。
【0056】
従って、半導体素子1と緩衝部9との間の応力の発生を防止でき、そのため応力の半導体素子1へ影響がなく信頼性が向上させることができるのである。
【0057】
尚封止樹脂7の塗布、硬化の夫々工程は実施形態2に準ずるので、ここでの説明は省略する。
【0058】
(実施形態4)
上記実施形態2に用いる回路基板2では緩衝部9を凸部8とは異なる樹脂材料で形成しているが、本実施形態では、図8(a)に示すように凸部8,緩衝部9を、同じ樹脂材料(上記実施形態1,2と同様な芳香族ポリイミド系樹脂<ポリフタルアミド>)を用いて一体に形成した回路基板2を用い、例えば図8(b)で示すように凸部8の幅aを0.1mm、厚さdを0.1mmとし、緩衝部9の厚さ(幅)bを0.05mm、緩衝部9の高さeを0.1mm〜0.2mmとし、更に回路基板2の下面から緩衝部9の上端までの高さcを1.3mmとし、凸部8には剛性を、緩衝部9には可撓性を持たせている。
【0059】
而して本実施形態によれば、緩衝部9は、上記実施形態1乃至3の緩衝部9と同様に半導体素子1の実装工程時に半導体素子1を傷つけることなく、半導体素子1の下面に圧接し、封止樹脂7の開口部3側への漏洩を防止する。
【0060】
尚封止樹脂7の塗布、硬化の夫々工程は実施形態2に準ずるので、ここでの説明は省略する。
【0061】
また凸部8,回路基板2と同じ樹脂で成形できるため、緩衝部9,凸部8を含む回路基板2の成形が容易に行える。
【0062】
また一体形成する緩衝部9の厚さ(幅)としては、略0.01mm〜略0.05mmであれば、半導体素子1の実装時に押し流される封止樹脂7からの圧力によっても割れが生じず、しかも半導体素子1を傷つけることがないことを本発明者らは確認しており、そのため上述の0.05mmには限定されるものではない。
【0063】
(実施形態5)
上記実施形態4では同じ樹脂材料を用いて緩衝部9,凸部8とともに射出成形により形成された回路基板2を用いているが、本実施形態では、図9に示すように樹脂材料に混入する例えばシリカ等のフィラー13(図では●により示す)に緩衝部9の幅以上の粒径を持つものを使用して成形した回路基板2を用いる点に特徴があり、この回路基板2は緩衝部9,凸部8を含む回路基板2を射出成形する際に緩衝部9にフィラー13が入らず、緩衝部9の剛性が小さくて可撓性が富んでいる。
【0064】
而して本実施形態によれば、半導体素子1の実装工程において、半導体素子1の下面を緩衝部9の上端に圧接させたときに、緩衝部9の剛性が小さいため半導体素子1を傷つけることがなく、また半導体素子1の下面に密接し、封止樹脂7の開口部3側への漏洩を防止するという役割を果たす。
【0065】
尚封止樹脂7の塗布、硬化の夫々工程は実施形態2に準ずるので、ここでの説明は省略する。
【0066】
また凸部8,回路基板2と同じ樹脂で成形できるため、緩衝部9,凸部8を含む回路基板2の成形が容易に行える。
【0067】
(実施形態6)
上記実施形態4,5に用いる回路基板2は緩衝部9を凸部8の上面に垂立させているが、本実施形態に用いる回路基板2は図10(a)(b)に示すよう下端から上端にかけて外方向へ傾斜させて緩衝部9を形成している。尚傾斜角度θとしては例えば30°程度としている。
【0068】
緩衝部9の幅寸法などは実施形態5の回路基板2に準ずるものとする。またフィラー13を樹脂材料に混入する場合には、粒径が緩衝部9の幅寸法より大きなフィラーを用いる。
【0069】
而して本実施形態によれば、半導体素子1の実装工程において、半導体素子1の下面を緩衝部9の上端に圧接させたときに、緩衝部9が内側に倒れることがなく、そのため封止樹脂7が緩衝部9を越えて内側へ漏出するのを確実に防止できる。
【0070】
尚封止樹脂7の塗布、硬化の夫々工程は実施形態2に準ずるので、ここでの説明は省略する。
【0071】
(実施形態7)
上記実施形態4〜6に用いる回路基板2は緩衝部9はその内周面が凸部8の内周面と連続するように一体形成しているが、本実施形態では図11(a)に示すように緩衝部9の外側に位置する凸部8の上端面に緩衝部9と同様な環状の緩衝部9’を一体に形成した回路基板2を用いる。つまり緩衝部9,9’で二重の緩衝部を構成したもの回路基板2を用いる。尚両緩衝部9,9’は例えば図11(b)に示すように夫々の厚み(幅)寸法a,a’を0.05mm、両緩衝部9,9’間の距離bを0.1mm、高さ寸法cを0.1mm〜0.2mmとしている。
【0072】
而して本実施形態によれば、半導体素子1の実装工程において、半導体素子1の下面を緩衝部9の上端に圧接させる際に、半導体素子1の下面により押し流される封止樹脂7を外側の緩衝部9’によって規制する。
【0073】
更に万が一封止樹脂9’を越えて内側へ封止樹脂7が漏れ出たとしても両緩衝部9’,9間に滞留させることで、緩衝部9を越えて内側へ封止樹脂7が漏れ出るのを防ぐ。これにより封止樹脂7が開口部3側へ漏れ出るのを確実に防止できるのである。また半導体素子実装基板の製造生産性を向上させることもできる。
【0074】
尚封止樹脂7の塗布、硬化の夫々工程は実施形態2に準ずるので、ここでの説明は省略する。
【0075】
(実施形態8)
上記実施形態4に用いる回路基板2は緩衝部9の内周面が凸部8の内周面と同一面となるように緩衝部9を突出形成しているが、本実施形態では図12(a)に示すように凸部8の上端面の内縁から離れた位置から一体突出させ、半導体素子1を緩衝部9に圧接したときに、緩衝部9が万が一に内側へ倒れてもその先部が開口部3側へはみ出さないようにした回路基板2を用いる。
【0076】
図12(b)は本実施形態に用いる回路基板2の一例を示しており、凸部8の内縁から緩衝部9の外縁までの距離L2を、緩衝部9の高さL1の寸法より大きくし、緩衝部9が内側に倒れても凸部8の内縁より、緩衝部9の先部がはみ出さないようにしてある。尚本例ではL1=0.2mm、L2=1.5mmとし、緩衝部9自体の厚さL3を0.05mmとしている。
【0077】
而して本実施形態によれば、半導体素子1の実装工程において、半導体素子1の下面を緩衝部9の上端に圧接させたときに、半導体素子1の下面で押し流される封止樹脂7を緩衝部9により規制して、内側へ漏れ出るの防ぐ。
【0078】
また緩衝部9が内側に倒れてもその先部が凸部8の内縁より内側にはみ出すことがない。従って緩衝部9の開口部3側へのはみ出しが、光ノイズの原因となるのを防ぐことができる。
【0079】
尚封止樹脂7の塗布、硬化の夫々工程は実施形態2に準ずるので、ここでの説明は省略する。
【0080】
(実施形態9)
上記実施形態2乃至8に用いる回路基板2は緩衝部9(及び9’)を環状に形成しているが、本実施形態に用いる回路基板2は、図13に示すように実施形態4の構成において、緩衝部9に適宜間隔で上下方向の切欠いた切欠部14を形成している。
【0081】
尚図13の例では実施形態4の回路基板2と同様に緩衝部9を、凸部8,回路基板2と同じ樹脂を用いて一体成形したものであるが、実施形態2、3の回路基板2のように別の樹脂材料を用いて二色成形により緩衝部9を形成した回路基板2の場合にも本実施形態に用いる回路基板2のように切欠部14を設けても良い。また実施形態5〜8の構成にも適用しても良いの勿論である。
【0082】
尚半導体素子実装基板の製造工程については実施形態2に準ずるので、ここでの説明は省略する。
【0083】
(実施形態10)
上記実施形態2乃至9の実施形態では、緩衝部9(及び9’)に、半導体素子1の下面を圧接させて半導体素子1を実装することで、封止樹脂7が凸部8を越えて開口部3側へ漏れ出るのを防いでいる。一方実施形態1では、半導体素子1を実装する際に、先に塗布されている封止樹脂7が押し流されて開口部3側へ漏れ出るのを凸部8のみで堰き止めるので、実施形態2〜9に比して封止樹脂7の漏れ出るのを防ぐ能力はやや劣る。
【0084】
そこで本実施形態は、実施形態1と同様に開口部3を囲むように凸部8を形成しているが緩衝部9を設けていない回路基板2を用いながら確実に封止樹脂7が開口部3側へ漏れ出ないようにした製造方法にかかる。
【0085】
つまり本実施形態は、図14(a)、図15(a)に示すように凸部8を一体成形した回路基板2を用い、まず半導体素子1を実装する前の工程において、両側に設けた電極部5よりも外側の回路基板2上面に一部の電極部5上に乗るように第1の封止樹脂7a(例えば粘度が40Pa・sのエポキシ系樹脂)を夫々塗布する。この塗布工程終了後に半導体素子1の各電極11に形成した金バンプ4を対応する電極部5に圧接させる。このとき半導体素子1の両側の下面に封止樹脂7aが広がるように接することになる。この状態で210℃で10秒間加熱し封止樹脂7aを硬化させ、図14(b)、図15(b)に示すように半導体基板1を金バンプ4と電極部5の接合部位の外側から仮封止する。
【0086】
この仮封止の工程が終了した後接合部位と凸部8の間の空間に図14(c)、図15(c)に示すように第2の封止樹脂7b(例えば粘度が15Pa・sのエポキシ系樹脂)を注入塗布する。この注入塗布後に100℃で1時間加熱した後、更に150℃で3時間加熱して第2の封止樹脂7bを硬化させ、接合部位を内側から封止する。この際第2の封止樹脂7bが第1の封止樹脂7aに接する部分は第2の封止樹脂7bが硬化することで一体となる。
【0087】
これにより半導体素子1を金バンプ4と電極部5の接合部位が第1,第2の封止樹脂7a、7bにより本封止されて所定の半導体素子実装基板3が完成することになる。
【0088】
以上のように本実施形態の製造方法によれば、内側に塗布する第2の封止材料7bは半導体素子1からの圧力を受けることがないため、押し流されて凸部8を越えて開口部3側へ漏れ出ることがなく、また緩衝部を形成する必要がないため、生産性が向上する。
【0089】
(実施形態11)
本実施形態は、上記実施形態10において、第2の封止樹脂7bを注入塗布する際に、図16に示すように開口部3を介して加圧空気Aを回路基板2の下面側から開口部3内に送り込んで開口部3内を加圧するとともに、更に凸部8で囲まれた空間の上面開口より加圧空気Aを半導体素子1と回路基板2との間に噴出させて第2の封止樹脂7bが凸部8を越えて開口部3内へ流れ込むのを防ぐことができる。
【0090】
尚仮封止までの工程及び、第2の封止樹脂7bの塗布後の硬化工程は実施形態10に準ずるものとする。
【0091】
(実施形態12)
上記実施形態11では、第2の封止樹脂7bを注入塗布する際に、開口部3内に加圧空気を送り込んでいたが、本実施形態では、図17に示すように第2の封止樹脂7bを注入塗布する前に開口部3の下面開口を例えばポリイミド製のシール15で閉塞して100℃で1時間程度加熱して開口部3内の空気を加熱膨張させて、開口部3を大気に対して正圧とする。従って実施形態11の場合と同様に、半導体素子1と回路基板2との間に第2の封止樹脂7bを注入塗布する際に、第2の封止樹脂7bが凸部8を越えて開口部3内へ流れ込むのを防ぐことができる。
【0092】
尚仮封止までの工程及び、第2の封止樹脂7bの塗布後の硬化工程は実施形態10に準ずるものとする。
【0093】
(実施形態13)
本実施形態では、図18に示すように凸部8の基部、特に第2の封止樹脂7bを注入塗布する部位に対応する基部に少なくとも凹溝16(例えば0.1mmの深さの溝)を形成した回路基板2を用い、第2の封止樹脂7bを注入塗布させる際に、凸部8側へ流れようとうする第2の封止樹脂7bを凹溝16で滞留させることで、第2の封止樹脂7bが凸部8を越えて開口部3内へ流れ込むのを防止するのである。
【0094】
尚この回路基板21を用いる製造方法は、上記実施形態10〜12の何れでも良い。
【0095】
勿論この凹溝16を設ける構成は、実施形態1〜9の何れにも適用できる。
【0096】
(実施形態14)
本実施形態では、図19に示すように回路基板21の凸部8と電極部5との間の上面、特に第2の封止樹脂7bを注入塗布する部位に対応する上面に少なくとも別の凸部8’を形成した回路基板2を用い、第2の封止樹脂7bを注入塗布さする際にこの凸部8’で封止樹脂7bの流れを規制し、仮に凸部8’を越えても両凸部8,8’間で第2の封止樹脂7bを滞留させて凸部8を越えるのを防止するようになっている。尚本実施形態においては凸部8,8’間の距離を0.05mmとしている。またこの回路基板21を用いる製造方法は、上記実施形態10〜12の何れでも良い。
【0097】
勿論この凹溝16を設ける構成は、実施形態1〜9の何れにも適用できる。
【0098】
(実施形態15)
上記実施形態1〜14は半導体素子1の電極11に形成した金バンプ4と回路基板21側の電極部5との接合部位を封止するのにエポキシ系の封止樹脂を用いているが、本実施形態はACF(異方性導電フィルム)17を封止樹脂として用いて接合部位を封止するものである。
【0099】
この場合図20(a)に示すようにまず中央部に凸部8が嵌り込む貫通孔18を穿設し、厚さが凸部8の高さより大きなACF17を回路基板2上に載置した上で、押圧板19を介して100℃の雰囲気下で、1.0MPaの圧力で3.0秒間加圧し、ACF17を回路基板2上に貼り付ける。この貼り付け工程が終了した後、半導体素子1を図20(b)に示すように電極11に形成した金バンプ4が回路基板2の上面の電極部5に金バンプ一個当たり40g〜150gの荷重で圧接するよう加圧しながら回路基板2上に載置する。この際金バンプ4がACF17を突き抜ける。そしてその後250℃で100秒間加熱してACF17で接合部位を封止するのである。
【0100】
ここでACF17に圧力が加わることでACF17が側方へ膨らもうとするが、凸部8側では凸部8で規制されるため開口部3へははみ出ない。また凸部8の剛性により凸部8が開口部3側に変形することがなく、内周面の変形による光ノイズの増加もない。
【0101】
(実施形態16)
上記実施形態1乃至15の何れの電極部5も平坦な回路基板2の表面に形成しているが本実施形態は、図21(a)に示すように断面が台形の凸状部20を回路基板2の表面に一体形成し、この凸状部20の表面に電極部5を形成することで、回路基板2の表面より上方へ電極部5を突出させて凸形状とした点に特徴がある。
【0102】
而して本実施形態では電極部5を凸状部20の表面に形成して凸形状とすることで、封止樹脂7の厚みを増加させることができ、そのため封止樹脂7が硬化収縮時に電極部5と電極11との接合部位に押し付ける力が増加して接合の信頼性が向上し、また半導体素子1と回路基板2との間の熱膨張差による電極剥離を防止することができる。
【0103】
図21(b)に示す凸状部20の各辺a〜cの寸法は、実施例として、例えばa=0.15mm、b=0.2mm、c=0.15mmに設定した。
【0104】
本実施形態16の電極部5の構成は封止樹脂としてACFを用いる場合にも適用できるのは勿論である。
【0105】
上記各実施形態では凸部8を開口部3の全周を囲むように形成しているが、この凸部8は少なくとも封止樹脂7の塗布位置やACF17の貼り付け位置に対応する部位に突出形成すればよい。
【0106】
【発明の効果】
請求項1の半導体素子実装基板の発明では、電磁波が通過する開口部を備え、該開口部の近傍の表面に前記開口部の一部乃至全周を囲むように一体突出させた凸部を設けるとともに、該凸部が囲う部位の外側に電極部を形成した回路基板と、
前記開口部に受光面若しくは発光面が臨むように前記回路基板の凸部上方に配置され、前記回路基板側に対向する面に設けた電極と前記電極部との間にバンプを介在させて電気的に接合した光素子からなる半導体素子と、から成り、
前記電極、前記バンプ及び前記電極部からなる接合部位を封止樹脂で封止しているので、凸部が回路基板と同様にに硬くて剛性を持つことになって、凸部の形成位置周辺の強度が向上し、そのため半導体素子実装時や封止樹脂硬化時などにおいて生じる凸部への応力による変形が少なくなり、開口部の内周面の表面形状が維持され、そのため光ノイズの原因である開口部の内周面における電磁波の乱反射などが生じにくいという効果がある。
【0107】
請求項2の半導体素子実装基板の発明では、請求項1の発明において、前記回路基板として、少なくとも前記封止樹脂が塗布硬化される部位に対応する前記凸部の上端部に前記半導体素子の対向面に圧接する緩衝部を設けている回路基板を用いているので、半導体素子と緩衝部との密接により封止樹脂が開口部側に漏洩するのを確実に防ぐことができ、そのため生産性が向上するという効果がある。
【0108】
請求項3の半導体素子実装基板の発明では、請求項2の発明において、前記緩衝部の材料として前記回路基板の樹脂材料の弾性率よりも小さい材料を用いているので、半導体素子と緩衝部との密接により封止樹脂が開口部側に漏洩するのを一層確実に防ぐことができ、しかも緩衝部が半導体素子に圧接する際に半導体素子に傷が付かないという効果がある。
【0109】
請求項4の半導体素子実装基板の発明では、請求項2又は3の発明において、前記緩衝部の材料として熱膨張率が前記封止樹脂の熱膨張率よりも大きい材料を用いたので、緩衝部が半導体素子に負荷を加える応力が、封止樹脂の硬化後の冷却時の温度下降による緩衝部と封止樹脂との間の熱膨張差により緩和されるので、応力の影響を半導体素子に与えず、半導体素子の信頼性が向上する
請求項5の半導体素子実装基板の発明では、請求項2乃至4の何れかの発明において、前記緩衝部の材料としてガラス転移温度が前記封止樹脂の硬化温度よりも低い樹脂材料を用いたので、封止樹脂を硬化させるときに、同時に半導体素子、と緩衝部との間の応力が緩和され、そのため応力の影響を半導体素子に与えず、半導体素子の信頼性が向上するという効果がある。
【0110】
請求項6の半導体素子実装基板の発明では、請求項2又は3の発明において、前記緩衝部を下方にスライド可能に上記凸部の上端部に設けているので、フリップチップ実装時において半導体素子と緩衝部との間の応力の発生を防止でき、そのため応力の影響を半導体素子に与えず、半導体素子の信頼性が向上するという効果がある。
【0111】
請求項7の半導体素子実装基板の発明では、請求項2乃至6の何れかの発明において、前記緩衝部の上面の高さ位置を塗布時の封止樹脂の上面の高さ位置より高くしているので、封止樹脂が半導体素子に押し流された際に緩衝部の高さ位置に封止樹脂が至ることがなく、そのため封止樹脂の開口部側への漏洩を確実に防止でき、その結果生産性が向上するという効果がある。
【0112】
請求項8の半導体素子実装基板の発明では、請求項2の発明において、前記記緩衝部を前記凸部の上端部に全周に亘って一体に上方へ突出形成するとともに、前記緩衝部の幅寸法を、前記凸部の幅寸法より小さく形成しているので、緩衝部によって請求項2の発明と同様に封止樹脂の開口部側への漏洩を防ぐことができるのは勿論のこと、回路基板の成形時に凸部及び緩衝部も同時に同じ樹脂成形材料で成形することが可能となって回路基板の生産性が向上し、しかも緩衝部に可撓性を持たせることができるから、半導体素子が緩衝部に圧接したときにも半導体基板に傷を付けることがないという効果がある。
【0113】
請求項9の半導体素子実装基板の発明では、請求項8の発明において、前記凸部及び前記緩衝部を含めた前記回路基板が射出成形されたものであって、その樹脂材料として、前記緩衝部の前記幅寸法より大きな径のフィラーを混入した樹脂材料を用いているので、射出成形時に緩衝部にはフィラーが入らず、そのため凸部や回路基板の剛性を維持しながら緩衝部の剛性を弱くして可撓性を持たせることができ、そのため半導体素子が圧接したときにも半導体素子に傷を付けることがない緩衝部を回路基板の成形と同時により形成することができる。
【0114】
請求項10の半導体素子実装基板の発明では、請求項8又は9の何れかの発明において、前記緩衝部を外側に傾斜させているので、半導体素子が緩衝部に圧接するときに、緩衝部が内側に倒れることがなく、そのため封止樹脂が開口部側に漏洩するのを確実に防止でき、生産性が向上するという効果がある。
【0115】
請求項11の半導体素子実装基板の発明では、請求項8の発明において、前記緩衝部の突出位置より外側に位置する前記凸部の上端部に、前記緩衝部の高さと略同じ高さの別の緩衝部を全周に亘って一体に突出形成しているので、緩衝部が二重となることにより、封止樹脂が開口部側に漏洩するのを確実に防止でき、生産性が向上するという効果がある。
【0116】
請求項12の半導体素子実装基板の発明では、請求項8の発明において、前記緩衝部の下端から上端までの高さ寸法を、上記凸部の上端開口縁から前記緩衝部の下端までの最短距離より短い寸法としているので、半導体素子を緩衝部に圧接させたときに、緩衝部が開口部側へはみ出すことがなく、そのため緩衝部のはみ出しが光ノイズの原因となるのを防ぐことができるという効果がある。
【0117】
請求項13の半導体素子実装基板の発明では、請求項8乃至12の何れかの発明において、前記緩衝部の一部に上端より下端方向に切り欠いた切欠部を形成ているので、半導体素子が緩衝部に圧接したときに緩衝部の切欠部間の部位が開くことになり、そのため半導体素子を緩衝部に小さな力で圧接させることで、所定の高さに半導体素子を実装可能となり、半導体素子の信頼性が向上するという効果がある。
【0118】
請求項14の半導体素子実装基板の発明では、請求項8乃至13の何れかの発明において、前記緩衝部の幅寸法を略10乃至略50μmとしているので、半導体素子を緩衝部に圧接させる際に押し流される封止樹脂からの圧力によって割れが報じず、また半導体素子にも傷つけることなく半導体素子の実装ができるという効果がある。
【0119】
請求項15の半導体素子実装基板の発明では、請求項1乃至14の何れかの発明において、前記電極部を回路基板の表面より上方へ突出せる凸形状に形成しているので、封止樹脂7の厚みを増加させることができ、そのため封止樹脂7が硬化収縮時に電極部5と電極11との接合部位に押し付ける力が増加して接合の信頼性が向上し、また半導体素子と回路基板2との間の熱膨張差による電極剥離を防止することができるという効果がある。
【0120】
請求項16の半導体素子実装基板の発明では、請求項1乃至15の何れかの発明において、前記緩衝部の少なくとも上端近傍の内周面を黒色としているので、乱反射等が生じにくくなり、ノイズの発生を防止できるという効果がある。
【0121】
請求項17の半導体素子実装基板の製造方法の発明では、電磁波が通過する開口部を備え、該開口部の近傍の表面に前記開口部の一部乃至全周を囲むように一体突出させた凸部を設けるとともに、該凸部が囲う部位の外側に電極部を形成した回路基板と、
前記開口部に受光面若しくは発光面が臨むように前記回路基板の凸部上方に配置され、前記回路基板側に対向する面に設けた電極と前記電極部との間にバンプを介在させて電気的に接合した光素子からなる半導体素子と、から成り、
前記電極、前記バンプ及び前記電極部からなる接合部位を封止樹脂で封止している半導体素子実装基板の製造方法において、
前記凸部の外側周辺で且つ前記電極部を内包するように前記回路基板表面に封止樹脂を塗布する工程と、
前記凸部の上端部に突出形成した緩衝部に前記半導体素子を圧接させて前記開口部に半導体素子の受光面若しくは発光面が臨むように半導体素子を配置し、且つ前記電極部に前記半導体素子の電極をバンプを介して圧接させる工程と、
前記封止樹脂を硬化させ、前記半導体素子の電極、バンプ、回路基板の電極部による接合部位を封止樹脂で封止する工程とから成るので、請求項2の発明の効果を奏する半導体素子実装基板を得ることができる。
【0122】
請求項18の半導体素子実装基板の製造方法の発明では、電磁波が通過する開口部を備え、該開口部の近傍の表面に前記開口部の一部乃至全周を囲むように一体突出させた凸部を設けるとともに、該凸部が囲う部位の外側に電極部を形成した回路基板と、
前記開口部に受光面若しくは発光面が臨むように前記回路基板の凸部上方に配置され、前記回路基板側に対向する面に設けた電極と前記電極部との間にバンプを介在させて電気的に接合した光素子からなる半導体素子と、から成り、
前記電極、前記バンプ及び前記電極部からなる接合部位を前記半導体素子と前記回路基板との間で塗布させた封止樹脂により封止する半導体素子実装基板の製造方法において、
前記電極部の外側に位置する回路基板の表面に前記電極部の外側部に沿うように第1の封止樹脂を塗布する工程と、
この塗布後に前記半導体素子を前記凸部の上部に接しないように前記電極をバンプを介して前記電極部に圧接させながら第1の封止樹脂を硬化させて半導体素子を仮実装する工程と、
この仮実装の後、前記電極部と前記凸部との間の前記回路基板表面に前記電極部に沿うように第2の封止樹脂を塗布して硬化させ半導体素子を本実装する工程とから成るので、開口部への封止樹脂の漏洩を防止しながら半導体素子を実装することができ、特に回路基板の凸部側に半導体素子に圧接させる緩衝部などを設ける必要がなく、そのため半導体素子が傷つけく恐れが全くなく、生産性が向上するという効果がある。
【0123】
請求項19の半導体素子実装基板の製造方法の発明では、請求項18の発明において、前記本実装の工程における封止樹脂注入時に前記開口部内を加圧するので第2の封止樹脂の開口部への漏洩を確実に防止することができ、生産性を一層向上させることができるという効果がある。
【0124】
請求項20の半導体素子実装基板の製造方法の発明では、請求項18の発明において、前記加圧は、前記開口部を密閉状態とした後、前記開口部内の空気を加熱して空気を膨張させるので、請求項19と同様な効果があり、しかも実施するのも容易であるという効果がある。
【0125】
請求項21の半導体素子実装基板の製造方法の発明では、請求項18乃至20の何れかの発明において、前記回路基板として、凸部と前記電極部との間の表面に凹溝を形成している回路基板を用いるので、第2の封止樹脂が開口部側へ漏洩するのを一層確実に防止できるという効果がある。
【0126】
請求項22の半導体素子実装基板の製造方法の発明では、請求項18乃至21の何れかの発明において、前記回路基板として、前記凸部と前記電極部との間の表面に前記凸部と並行するように別の凸部を形成している回路基板を用いるので、半導体素子を傷つけることなく、第2の封止樹脂が開口部側へ漏洩するのを一層確実に防止できるという効果がある。
【0127】
請求項23の半導体素子実装基板の製造方法の発明では、電磁波が通過する開口部を備え、該開口部の近傍の表面に前記開口部の一部乃至全周を囲むように一体突出させた凸部を設けるとともに、該凸部が囲う部位の外側に電極部を形成した回路基板と、
前記開口部に受光面若しくは発光面が臨むように前記回路基板の凸部上方に配置され、前記回路基板側に対向する面に設けた電極と前記電極部との間にバンプを介在させて電気的に接合した光素子からなる半導体素子と、から成り、
前記電極、前記バンプ及び前記電極部からなる接合部位を樹脂で封止する半導体素子実装基板の製造方法において、
前記凸部の外側周辺の前記回路基板表面に、前記電極部を内包するように載置するとともに加圧・加熱により異方性導電フィルムを前記回路基板表面に貼り付ける工程と、
この工程後に、前記半導体素子の前記電極に形成しているバンプを異方性導電フィルムを貫通させて前記電極部に圧接させながら半導体素子を異方性導電フィルム上に載置し、加圧・加熱により異方性導電フィルムの上面に半導体素子を貼り付け固定し且つ異方性導電フィルムで前記電極、バンプ、電極部からなる接合部を封止する工程と、から成るので、封止樹脂液のような漏洩が全く発生する余地がないので、生産性が向上し、しかも凸部で異方性導電フィルムが開口部側へはみ出すことがないため、光ノイズの増加もないという効果がある。
【図面の簡単な説明】
【図1】本発明の実施形態1の製造方法の工程説明図である。
【図2】(a)は本発明の実施形態2に用いる回路基板の正面断面図である。
(b)は同上に用いる回路基板の上面図である。
【図3】同上の製造方法の工程説明図である。
【図4】同上の製造方法の工程説明図である。
【図5】同上に用いる回路基板例を示す半導体素子実装基板の製造における封止樹脂塗布工程での半導体素子及び回路基板の正面断面図である。
【図6】同上に用いる別の回路基板例を示す半導体素子実装基板の製造における封止樹脂塗布工程での半導体素子及び回路基板の正面断面図である。
【図7】(a)は本発明の実施形態3に対応する半導体素子実装基板の製造における封止樹脂塗布工程での半導体素子及び回路基板の正面断面図である。
(b)は同上に用いる回路基板の要部説明用の一部省略せる断面図である。
【図8】(a)は本発明の実施形態4に対応する半導体素子実装基板の製造における封止樹脂塗布工程での半導体素子及び回路基板の正面断面図である。
(b)は同上に用いる回路基板の要部説明用の一部省略せる断面図である。
【図9】本発明の実施形態5に対応する半導体素子実装基板の製造における封止樹脂塗布工程での半導体素子及び回路基板の正面断面図である。
【図10】(a)は本発明の実施形態6に対応する半導体素子実装基板の製造における封止樹脂塗布工程での半導体素子及び回路基板の正面断面図である。
(b)は同上に用いる回路基板の要部説明用の一部省略せる正面断面図である。
【図11】(a)は本発明の実施形態7に対応する半導体素子実装基板の製造における封止樹脂塗布工程での半導体素子及び回路基板の正面断面図である。
(b)は同上に用いる回路基板の要部説明用の一部省略せる断面図である。
【図12】(a)は本発明の実施形態8に対応する半導体素子実装基板の製造における封止樹脂塗布工程での半導体素子及び回路基板の正面断面図である。
(b)は同上に用いる回路基板の要部説明用の一部省略せる正面断面図である。
【図13】本発明の実施形態9に用いる回路基板の上面図である。
【図14】本発明の実施形態10の製造方法の工程説明図である。
【図15】同上の製造方法の工程説明図である。
【図16】本発明の実施形態11の第2の封止樹脂の塗布時の工程説明図である。
【図17】本発明の実施形態12の第2の封止樹脂の塗布時の工程説明図である。
【図18】本発明の実施形態13における第1の封止樹脂の塗布工程での半導体素子及び回路基板の正面断面図である。
【図19】本発明の実施形態14における第1の封止樹脂の塗布工程での半導体素子及び回路基板の正面断面図である。
【図20】本発明の実施形態15の製造方法の工程説明図である。
【図21】(a)は本発明の実施形態16に対応する半導体素子実装基板の製造における封止樹脂塗布工程での半導体素子及び回路基板の正面断面図である。
(b)は同上に用いる回路基板の要部説明用の一部省略せる正面断面図である
【符号の説明】
1 半導体素子
2 回路基板
3 開口部
4 金バンプ
5 電極部
6 回路パターン
7 封止樹脂
8 凸部
10 半導体素子実装基板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device mounting substrate on which a semiconductor device including an optical device such as a solid-state imaging device is mounted, and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, as a mounting structure for an optical element, a film-shaped resin isolation wall surrounding an opening formed in a circuit board is formed so as to face a light receiving surface of a semiconductor element to be mounted, and the isolation wall is formed by the isolation wall. In some cases, the sealing resin injected around the opening is prevented from flowing out of the opening. (For example, Patent Document 1)
[0003]
[Patent Document 1]
JP 2001-250889 A (see paragraph 0061)
[0004]
[Problems to be solved by the invention]
In the case of the above conventional example, since the isolation wall is a film-shaped resin, it is bent toward the opening when the injected sealing resin is cured, and the inner diameter of the space surrounded by the isolation wall is reduced or the inner peripheral surface is deformed. This causes a problem that irregular reflection of an electromagnetic wave is likely to occur and optical noise increases.
[0005]
The present invention has been made in view of the above points, and an object of the present invention is to prevent a sealing resin from flowing into an opening of a circuit board facing a light receiving surface or a light emitting surface of a semiconductor element including an optical element. It is another object of the present invention to provide a semiconductor element mounting board which can prevent the electromagnetic wave from being diffused at the opening, and a method for manufacturing the semiconductor element mounting board.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, an opening through which an electromagnetic wave passes is provided, and a surface near the opening surrounds a part or the entire periphery of the opening. And a circuit board having an electrode portion formed outside the portion surrounded by the projection portion.
The light-receiving surface or the light-emitting surface faces the opening, and is disposed above the convex portion of the circuit board, and an electrical connection is provided by interposing a bump between the electrode provided on the surface facing the circuit board and the electrode portion. A semiconductor element comprising an optical element which has been bonded together,
A joint portion including the electrode, the bump, and the electrode portion is sealed with a sealing resin.
[0007]
According to the second aspect of the present invention, in the first aspect of the present invention, the semiconductor element faces the circuit board at least at an upper end portion of the convex portion corresponding to a portion where the sealing resin is applied and cured. The present invention is characterized in that a circuit board provided with a buffer portion which is in pressure contact with the surface is used.
[0008]
According to a third aspect of the present invention, in the invention of the second aspect, a material having a smaller elastic modulus than a resin material of the circuit board is used as a material of the buffer portion.
[0009]
According to a fourth aspect of the present invention, in the second or third aspect, a material having a coefficient of thermal expansion larger than that of the sealing resin is used as a material of the buffer portion. I do.
[0010]
According to a fifth aspect of the present invention, in the invention of any one of the second to fourth aspects, a resin material having a glass transition temperature lower than a curing temperature of the sealing resin is used as the material of the buffer portion. It is characterized by.
[0011]
According to a sixth aspect of the present invention, in the second or third aspect of the present invention, the buffer portion is provided at an upper end portion of the convex portion so as to be slidable downward.
[0012]
According to a seventh aspect of the present invention, in the invention of any one of the second to sixth aspects, the height position of the upper surface of the buffer portion is higher than the height position of the upper surface of the sealing resin at the time of application. It is characterized by having.
[0013]
According to an eighth aspect of the present invention, in the invention of the second aspect, the buffer portion is integrally formed on an upper end portion of the convex portion so as to protrude upward over the entire circumference, and the width of the buffer portion is formed. The size is formed smaller than the width of the projection.
[0014]
According to a ninth aspect of the present invention, in the invention of the eighth aspect, the circuit board including the protruding portion and the buffer portion is injection-molded, and as the resin material, the buffer portion is provided. Characterized in that a resin material mixed with a filler having a diameter larger than the width is used.
[0015]
According to a tenth aspect of the invention, there is provided a semiconductor device mounting board according to the eighth aspect, wherein the buffer portion is inclined outward.
[0016]
According to the eleventh aspect of the present invention, in the invention of the eighth aspect, an upper end portion of the convex portion located outside the projecting position of the buffer portion has a height substantially equal to the height of the buffer portion. Is formed so as to protrude integrally over the entire circumference.
[0017]
In a twelfth aspect of the present invention, the height dimension from the lower end to the upper end of the buffer portion is set to be the shortest distance from the upper end opening edge of the convex portion to the lower end of the buffer portion. It is characterized by having shorter dimensions.
[0018]
According to a thirteenth aspect of the present invention, in any one of the eighth to twelfth aspects of the present invention, a cutout is formed in a part of the buffer in a direction from the upper end to the lower end. I do.
[0019]
According to a fourteenth aspect of the invention, there is provided a semiconductor device mounting board according to any one of the eighth to thirteenth aspects, wherein the buffer has a width dimension of about 10 to about 50 μm.
[0020]
According to a fifteenth aspect of the present invention, in any one of the first to fourteenth aspects, the electrode portion is formed in a convex shape protruding above the surface of the circuit board.
[0021]
According to a sixteenth aspect of the present invention, in any one of the first to fifteenth aspects, at least the inner peripheral surface near the upper end of the buffer is black.
[0022]
In the method for manufacturing a semiconductor element mounting board according to the seventeenth aspect of the present invention, an opening through which an electromagnetic wave passes is provided, and a projection is formed integrally on a surface near the opening so as to surround a part or the entire circumference of the opening. And a circuit board having an electrode portion formed outside a portion surrounded by the convex portion,
The light-receiving surface or the light-emitting surface faces the opening, and is disposed above the convex portion of the circuit board, and an electrical connection is provided by interposing a bump between the electrode provided on the surface facing the circuit board and the electrode portion. A semiconductor element comprising an optical element which has been bonded together,
In the method for manufacturing a semiconductor element mounting substrate, wherein a bonding portion formed of the electrode, the bump, and the electrode portion is sealed with a sealing resin,
A step of applying a sealing resin to the surface of the circuit board so as to include the electrode portion around the outer periphery of the convex portion,
The semiconductor element is pressed into contact with a buffer portion formed at the upper end of the convex portion so that the light receiving surface or the light emitting surface of the semiconductor element faces the opening, and the semiconductor element is disposed on the electrode portion. Press-contacting the electrodes via bumps;
Curing the sealing resin and sealing the joints between the electrodes of the semiconductor element, the bumps, and the electrode portions of the circuit board with the sealing resin.
[0023]
In the method for manufacturing a semiconductor element mounting substrate according to the eighteenth aspect of the present invention, there is provided an opening through which an electromagnetic wave passes, and a projection integrally projecting from a surface near the opening so as to surround a part or the entire circumference of the opening. And a circuit board having an electrode portion formed outside a portion surrounded by the convex portion,
The light-receiving surface or the light-emitting surface faces the opening, and is disposed above the convex portion of the circuit board, and an electrical connection is provided by interposing a bump between the electrode provided on the surface facing the circuit board and the electrode portion. A semiconductor element comprising an optical element which has been bonded together,
In the method for manufacturing a semiconductor element mounting board, wherein a bonding portion including the electrode, the bump and the electrode portion is sealed with a sealing resin applied between the semiconductor element and the circuit board,
Applying a first sealing resin to the surface of the circuit board located outside the electrode portion along the outside portion of the electrode portion;
A step of temporarily mounting the semiconductor element by curing the first sealing resin while pressing the electrode against the electrode part via a bump so that the semiconductor element does not contact the upper part of the projection after the application,
After the provisional mounting, a step of applying and curing a second sealing resin along the electrode portion on the circuit board surface between the electrode portion and the convex portion to completely mount the semiconductor element. It is characterized by comprising.
[0024]
According to a nineteenth aspect of the invention, there is provided a method of manufacturing a semiconductor element mounting substrate according to the eighteenth aspect, wherein the inside of the opening is pressurized when the sealing resin is injected in the main mounting step.
[0025]
According to a twentieth aspect of the present invention, in the invention of the eighteenth aspect, the pressurizing causes the air in the opening to expand by heating the air in the opening after closing the opening. It is characterized by doing.
[0026]
According to a twenty-first aspect of the present invention, in the method of any one of the eighteenth to twentieth aspects, a concave groove is formed as a surface of the circuit board between the convex part and the electrode part. Is used.
[0027]
In the invention of the method for manufacturing a semiconductor element mounting board according to claim 22, in the invention according to any one of claims 18 to 21, the circuit board is provided on a surface between the projection and the electrode portion in parallel with the projection. In this case, a circuit board having another convex portion is used.
[0028]
In the invention of the method for manufacturing a semiconductor element mounting board according to claim 23, an opening through which an electromagnetic wave passes is provided, and a projection integrally formed on a surface near the opening so as to surround a part or the entire circumference of the opening. And a circuit board having an electrode portion formed outside a portion surrounded by the convex portion,
The light-receiving surface or the light-emitting surface faces the opening, and is disposed above the convex portion of the circuit board, and an electrical connection is provided by interposing a bump between the electrode provided on the surface facing the circuit board and the electrode portion. A semiconductor element comprising an optical element which has been bonded together,
In a method for manufacturing a semiconductor element mounting substrate for sealing a bonding portion formed of the electrode, the bump and the electrode portion with a resin,
Attaching an anisotropic conductive film to the surface of the circuit board by pressing and heating while placing the electrode portion on the surface of the circuit board around the outer periphery of the convex portion,
After this step, the semiconductor element is placed on the anisotropic conductive film while the bumps formed on the electrodes of the semiconductor element are passed through the anisotropic conductive film and pressed against the electrode portion, and the Bonding the semiconductor element to the upper surface of the anisotropic conductive film by heating, and sealing the joint comprising the electrodes, bumps, and electrode portions with the anisotropic conductive film.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to embodiments.
[0030]
(Embodiment 1)
The present embodiment is the basis of the present invention and outlines a manufacturing process of the semiconductor element mounting substrate 10.
[0031]
FIG. 1 shows a semiconductor element mounting substrate in which an optical element, for example, a face-down type semiconductor element (semiconductor chip) 1 composed of an imaging element is mounted on a circuit board 2 composed of a resin-molded three-dimensional circuit board (MID; Molded Interconnection Device). FIG. 1 (a) shows that the semiconductor element 1 to be mounted is aligned with the circuit board 2 and the light receiving portion side of the semiconductor element 1 is connected to the circuit board 2. The gold bumps 4 formed on the electrodes (not shown) provided on the surface (hereinafter referred to as the lower surface) on the light-receiving unit side are disposed opposite to the openings 3 of the circuit board 2 on the surface (hereinafter referred to as the upper surface) of the circuit board 2. 5 shows an alignment step of facing the electrode unit 5 provided in the first embodiment. The electrode portion 5 is constituted by a part of the circuit pattern 6 formed on the upper surface of the circuit board 2.
[0032]
After this alignment step, a sealing resin 7 is applied around the opening 3 so as to include the electrode 5 (FIG. 1B). After this application, the gold bump 4 is pressed against the electrode 5. The semiconductor element 1 is placed and mounted on the circuit board 2 so as to electrically connect the electrode portion 5 to the electrode of the semiconductor element 1 (FIG. 1C). After the mounting, the sealing resin 7 is cured, and the sealing resin 7 encloses and seals the joint portion between the electrode portion 5 and the gold bump 4, whereby a desired semiconductor element mounting substrate 10 is completed.
[0033]
When the semiconductor element 1 is placed and mounted on the surface of the circuit board 2 in such a manufacturing process, the sealing resin 7 before being cured is pushed by the lower surface of the semiconductor element 1 and spreads to the periphery. At this time, the sealing resin 7 may flow into the opening 3.
[0034]
Therefore, the circuit board 2 used in the present embodiment integrally forms the annular convex portion 8 so as to surround the opening 3, and the convex portion 8 functions as a weir, and the sealing resin 7 flows into the opening 3 side. It is designed to prevent
[0035]
The protrusion 8 is formed of the same resin material as the circuit board 2 and has high rigidity. Therefore, the protrusion 8 generated when the semiconductor element 1 is mounted on the circuit board 2 or when the sealing resin 7 is cured. The inner peripheral surface of the convex portion 8 is hardly deformed by the stress applied thereto, so that irregular reflection of the electromagnetic wave is unlikely to occur, and therefore, there is almost no increase in optical noise.
[0036]
As the resin material of the circuit board 2 and the protrusions 8 of the present embodiment, an aromatic polyamide resin (for example, polyphthalamide having a linear expansion coefficient of 25 ppm / ° C., an elastic modulus of 13 GPa, and a glass transition temperature of 120 ° C.) is used. Used.
[0037]
(Embodiment 2)
In the first embodiment, since there is a small gap between the lower surface of the semiconductor element 1 to be mounted and the projection 8, there is a possibility that the semiconductor element 1 may leak to the opening 3 depending on the amount of the sealing resin 7 applied. Therefore, as the circuit board 2 used in the present embodiment, the one in which the buffer portion 9 is formed so as to protrude from the upper end surface of the convex portion 8 as shown in FIGS. 2A and 2B is used.
[0038]
The buffer portion 9 is made of, for example, another resin material different from the resin material of the circuit board 2, and is formed integrally with the upper end of the convex portion 8 by two-color molding.
[0039]
Thus, in the present embodiment, in manufacturing the semiconductor element mounting substrate 3, in the sealing resin application step, as shown in FIGS. 3A and 4A, the vicinity of each side of the annular convex portion 8 is determined. A sealing resin 7 is applied on the upper surface of the circuit board 2.
[0040]
Next, the lower surface of the semiconductor element 1 around the light receiving unit is brought into close contact with the upper end surface of the buffer unit 9 and the semiconductor element 1 is pushed down. As a result, the gold bumps 4 formed on the respective electrodes 11 are pressed against the corresponding electrode portions 5 on the upper surface of the circuit board 2 while the buffer portions 9 are bent while the buffer portions 9 are pressed against the lower surface of the semiconductor element 1. 11 and the corresponding electrode unit 5 are electrically connected. When the semiconductor substrate 1 is pushed down, the sealing resin 7 applied around the protrusion 8 is pushed down by the lower surface of the semiconductor element 1 and spreads on the surface of the circuit board 2 around the protrusion 8, and the semiconductor substrate 1 around the protrusion 8 and The sealing resin 7 is filled with the space between the circuit board 2 and the electrode 11, the gold bump 4, and the electrode portion 5.
[0041]
In this state, by heating at 210 ° C. for 10 seconds to cure the sealing resin 7, the above-described joint portion was sealed with the sealing resin 7 cured between the upper surface of the circuit board 2 and the lower surface of the semiconductor element 1. A predetermined semiconductor element mounting substrate 10 is completed (see FIGS. 3B and 4B).
[0042]
The size of the load per four gold bumps is set to 40 g to 150 g.
[0043]
In the present embodiment, since the buffer portion 9 is in close contact with the lower surface of the semiconductor element 1, when the gold bump 4 is pressed against the electrode section 5 while the semiconductor element 1 is being pressed down, the sealing resin 7 passes over the convex section 8 and is opened. It does not flow to the part 3 side.
[0044]
Example 1
An aromatic polyimide resin having an elastic modulus of 13 Gpa (for example, polyphthalamide) was used as a resin material of the circuit board 2 including the convex portions 8, and an epoxy resin having an elastic modulus of 5 Gpa was used as a resin material of the buffer portion 9. .
[0045]
As a result, the buffer portion 9 resiliently contacts the lower surface of the semiconductor element 1 to increase the degree of adhesion, so that it is possible to reliably prevent the sealing resin 7 from leaking to the opening 3 side, and to increase the buffer capacity when the semiconductor element 1 is mounted. It was possible to prevent the semiconductor element 1 from being damaged.
[0046]
Example 2
In the first embodiment, a resin having a smaller elastic modulus than the resin used as the resin material of the circuit board 2 is used as the resin material of the buffer portion 9. An aromatic polyimide-based resin (for example, polyphthalamide) having a thermal expansion coefficient of 25 ppm / ° C. was used as the resin material, and an epoxy-based resin having a thermal expansion coefficient of 35 ppm / ° C. was used as the resin material of the buffer section 9.
[0047]
As a result, the stress applied to the semiconductor element 1 by the buffer 9 is reduced by the difference in thermal expansion between the buffer 9 and the sealing resin 7 due to the temperature processing during cooling after the sealing resin 7 is cured. The influence of the stress on the semiconductor element 1 was reduced, and the reliability was improved.
[0048]
Example 3
Although the resin material of the circuit board 2 including the convex portions 8 and the resin material of the buffer portion 9 are selected by focusing on the elastic modulus in Example 1 and the thermal expansion coefficient in Example 2, In the embodiment, focusing on the glass transition temperature, an aromatic polyimide resin (for example, polyphthalamide) having a glass transition temperature of 120 ° C. as a resin material of the circuit board 2 including the protrusions 8, and a resin material of the buffer unit 9. An epoxy resin having a glass transition temperature of 138 ° C. was used.
[0049]
As a result, when the sealing resin 7 is cured, the stress between the semiconductor element 1 and the buffer portion 9 is reduced at the same time, and the influence of the stress on the semiconductor element 1 is reduced, thereby improving the reliability.
[0050]
Note that the circuit board 2 including the convex portions 8 using the aromatic polyimide resin having all the properties of the above Examples 1 to 3 and the epoxy resin having all the properties of the Examples 1 to 3 are used. If the buffer portions 9 are respectively formed, the semiconductor element mounting substrate 10 having all the features of Examples 1 to 3 can be obtained.
[0051]
In each of the above Examples 1 to 3, the height L2 from the lower surface of the circuit board 2 to the upper end surface of the buffer portion 9 is set at the upper end of the sealing resin 7 applied to the upper surface of the circuit board 2 as shown in FIG. When the height L1 is higher than the height L1 from the lower surface of the substrate 2, it is possible to reliably prevent the sealing resin 7 from flowing into the opening 3 side even when the sealing resin 7 is flushed when the circuit substrate 2 is mounted.
[0052]
Further, as shown in FIG. 6, a black film F may be adhered to the inner peripheral surface of the buffer section 9 to suppress irregular reflection on the inner peripheral surface and prevent an increase in optical noise. The configuration of attaching the film F is not limited to the example of FIG. 6 since it is a configuration that can be applied not only to the first embodiment but also to a third embodiment and later described later.
[0053]
(Embodiment 3)
In the first embodiment, the circuit board 2 in which the buffer portion 9 is integrally formed and protruded by two-color molding is used as the convex portion 8, but in the present embodiment, as shown in FIG. An annular concave groove 12 having, for example, an upward opening is formed so as to cover the entire circumference in the circumferential direction of the upper end portion, and a circuit board mounted on the upper end portion of the convex portion 8 by fitting an annular buffer portion 9 into the groove 12. 2 is used.
[0054]
In this case, as the buffer section 9, for example, an elastic material such as silicon rubber is used, and as shown in FIG. 7B, a minute one having a diameter of 0.3 mm is used. 8 is held in the groove 12 so as to protrude approximately 2 of the height h above the groove 8.
[0055]
Thus, in the present embodiment, in the step of mounting the semiconductor element 1, the lower surface of the semiconductor element 1 presses the buffer 9, which pushes the buffer 9 into the concave groove 12 and pushes the gold bump 5 to the electrode on the circuit board 2 side. It is pressed against the part 5.
[0056]
Therefore, generation of stress between the semiconductor element 1 and the buffer section 9 can be prevented, so that the stress does not affect the semiconductor element 1 and reliability can be improved.
[0057]
Since the respective steps of applying and curing the sealing resin 7 are the same as those in the second embodiment, description thereof will be omitted.
[0058]
(Embodiment 4)
In the circuit board 2 used in the second embodiment, the buffer portion 9 is formed of a resin material different from that of the convex portion 8, but in the present embodiment, as shown in FIG. Is integrally formed using the same resin material (the same aromatic polyimide resin <polyphthalamide> as in the first and second embodiments), and for example, as shown in FIG. The width a of the portion 8 is 0.1 mm, the thickness d is 0.1 mm, the thickness (width) b of the buffer portion 9 is 0.05 mm, and the height e of the buffer portion 9 is 0.1 mm to 0.2 mm. Further, the height c from the lower surface of the circuit board 2 to the upper end of the buffer portion 9 is 1.3 mm, the convex portion 8 has rigidity, and the buffer portion 9 has flexibility.
[0059]
Thus, according to the present embodiment, the buffer section 9 presses against the lower surface of the semiconductor element 1 without damaging the semiconductor element 1 during the mounting process of the semiconductor element 1 as in the buffer sections 9 of the first to third embodiments. Then, leakage of the sealing resin 7 to the opening 3 side is prevented.
[0060]
Since the respective steps of applying and curing the sealing resin 7 are the same as those in the second embodiment, description thereof will be omitted.
[0061]
In addition, since the protrusion 8 and the circuit board 2 can be formed of the same resin, the circuit board 2 including the buffer 9 and the protrusion 8 can be easily formed.
[0062]
If the thickness (width) of the integrally formed buffer portion 9 is approximately 0.01 mm to approximately 0.05 mm, no crack is generated even by the pressure from the sealing resin 7 that is flushed when the semiconductor element 1 is mounted. In addition, the present inventors have confirmed that the semiconductor element 1 will not be damaged, and thus the present invention is not limited to the above-described 0.05 mm.
[0063]
(Embodiment 5)
In the fourth embodiment, the circuit board 2 formed by injection molding together with the buffer portion 9 and the convex portion 8 using the same resin material is used, but in the present embodiment, the circuit board 2 is mixed into the resin material as shown in FIG. For example, the circuit board 2 is formed by using a filler 13 such as silica (indicated by a circle in the figure) having a particle size larger than the width of the buffer section 9. When the circuit board 2 including the projections 9 is injection-molded, the filler 13 does not enter the buffer 9 and the buffer 9 has low rigidity and high flexibility.
[0064]
According to this embodiment, when the lower surface of the semiconductor element 1 is pressed against the upper end of the buffer section 9 in the mounting step of the semiconductor element 1, the semiconductor element 1 may be damaged due to the low rigidity of the buffer section 9. And has a role of preventing leakage of the sealing resin 7 to the opening 3 side because of being in close contact with the lower surface of the semiconductor element 1.
[0065]
Since the respective steps of applying and curing the sealing resin 7 are the same as those in the second embodiment, description thereof will be omitted.
[0066]
In addition, since the protrusion 8 and the circuit board 2 can be formed of the same resin, the circuit board 2 including the buffer 9 and the protrusion 8 can be easily formed.
[0067]
(Embodiment 6)
The circuit board 2 used in the fourth and fifth embodiments has the buffer portion 9 suspended from the upper surface of the projection 8, but the circuit board 2 used in the present embodiment has a lower end as shown in FIGS. The buffer portion 9 is formed by inclining outward from the upper end to the upper end. The inclination angle θ is, for example, about 30 °.
[0068]
The width and the like of the buffer section 9 conform to the circuit board 2 of the fifth embodiment. When the filler 13 is mixed into the resin material, a filler having a particle size larger than the width of the buffer portion 9 is used.
[0069]
According to the present embodiment, when the lower surface of the semiconductor element 1 is pressed against the upper end of the buffer section 9 in the mounting process of the semiconductor element 1, the buffer section 9 does not fall inward, so that the sealing is performed. It is possible to reliably prevent the resin 7 from leaking inward beyond the buffer portion 9.
[0070]
Since the respective steps of applying and curing the sealing resin 7 are the same as those in the second embodiment, description thereof will be omitted.
[0071]
(Embodiment 7)
In the circuit board 2 used in the fourth to sixth embodiments, the buffer portion 9 is integrally formed so that the inner peripheral surface thereof is continuous with the inner peripheral surface of the convex portion 8, but in this embodiment, FIG. As shown, a circuit board 2 is used in which an annular buffer 9 'similar to the buffer 9 is integrally formed on the upper end surface of the projection 8 located outside the buffer 9. In other words, the circuit board 2 in which the buffer portions 9 and 9 'form a double buffer portion is used. For example, as shown in FIG. 11 (b), each of the buffer portions 9, 9 'has a thickness (width) dimension a, a' of 0.05 mm and a distance b between the buffer portions 9, 9 'of 0.1 mm. , And the height c is 0.1 mm to 0.2 mm.
[0072]
Thus, according to the present embodiment, when the lower surface of the semiconductor element 1 is pressed against the upper end of the buffer section 9 in the mounting process of the semiconductor element 1, the sealing resin 7 that is flushed by the lower surface of the semiconductor element 1 is moved outward. It is regulated by the buffer 9 '.
[0073]
Furthermore, even if the sealing resin 7 leaks inward beyond the sealing resin 9 ′, the sealing resin 7 leaks inward beyond the buffering part 9 by staying between the buffer portions 9 ′ and 9. Prevent leaving. Thereby, it is possible to reliably prevent the sealing resin 7 from leaking to the opening 3 side. Further, it is possible to improve the manufacturing productivity of the semiconductor element mounting substrate.
[0074]
Since the respective steps of applying and curing the sealing resin 7 are the same as those in the second embodiment, description thereof will be omitted.
[0075]
(Embodiment 8)
In the circuit board 2 used in the fourth embodiment, the buffer portion 9 is formed so as to protrude such that the inner peripheral surface of the buffer portion 9 is flush with the inner peripheral surface of the convex portion 8, but in the present embodiment, FIG. As shown in a), when the semiconductor element 1 is pressed against the buffer section 9 when the semiconductor element 1 is pressed against the buffer section 9, even if the buffer section 9 falls down inward by any chance, the tip portion is protruded. The circuit board 2 is used so as not to protrude toward the opening 3 side.
[0076]
FIG. 12B shows an example of the circuit board 2 used in the present embodiment. The distance L2 from the inner edge of the projection 8 to the outer edge of the buffer 9 is set to be larger than the height L1 of the buffer 9. The tip of the buffer 9 does not protrude from the inner edge of the projection 8 even if the buffer 9 falls down. In this example, L1 = 0.2 mm, L2 = 1.5 mm, and the thickness L3 of the buffer 9 itself is 0.05 mm.
[0077]
According to the present embodiment, when the lower surface of the semiconductor element 1 is pressed against the upper end of the buffer section 9 in the mounting step of the semiconductor element 1, the sealing resin 7 that is flushed down on the lower surface of the semiconductor element 1 is buffered. It is regulated by the part 9 to prevent leakage to the inside.
[0078]
Further, even if the buffer portion 9 falls down, the tip portion does not protrude inside the inner edge of the convex portion 8. Therefore, it is possible to prevent the protrusion of the buffer section 9 toward the opening section 3 from causing optical noise.
[0079]
Since the respective steps of applying and curing the sealing resin 7 are the same as those in the second embodiment, description thereof will be omitted.
[0080]
(Embodiment 9)
The circuit board 2 used in the second to eighth embodiments has the buffer portion 9 (and 9 ′) formed in a ring shape. The circuit board 2 used in the present embodiment has the configuration of the fourth embodiment as shown in FIG. In the above, notches 14 which are notched in the vertical direction are formed in the buffer 9 at appropriate intervals.
[0081]
In the example of FIG. 13, the buffer 9 is integrally formed using the same resin as the protrusion 8 and the circuit board 2, similarly to the circuit board 2 of the fourth embodiment. In the case of the circuit board 2 in which the buffer portion 9 is formed by two-color molding using another resin material as in 2, the cutout portion 14 may be provided as in the circuit board 2 used in the present embodiment. Further, it is needless to say that the present invention may be applied to the configurations of the fifth to eighth embodiments.
[0082]
Note that the manufacturing process of the semiconductor element mounting board is the same as that of the second embodiment, and the description is omitted here.
[0083]
(Embodiment 10)
In the second to ninth embodiments, the lower surface of the semiconductor element 1 is pressed against the buffer section 9 (and 9 ′) to mount the semiconductor element 1, so that the sealing resin 7 extends beyond the protrusion 8. Leakage to the opening 3 side is prevented. On the other hand, in the first embodiment, when the semiconductor element 1 is mounted, the sealing resin 7 previously applied is prevented from being pushed out and leaking to the opening 3 side only by the projection 8, and thus the second embodiment is used. The ability to prevent the sealing resin 7 from leaking out is slightly inferior to that of Nos. 9 to 9.
[0084]
Therefore, in the present embodiment, the convex portion 8 is formed so as to surround the opening portion 3 as in the first embodiment, but the sealing resin 7 is securely used while using the circuit board 2 without the buffer portion 9. The present invention relates to a manufacturing method that does not leak to the third side.
[0085]
That is, in the present embodiment, as shown in FIGS. 14 (a) and 15 (a), the circuit board 2 in which the protrusions 8 are integrally formed is used, and is first provided on both sides in a process before the semiconductor element 1 is mounted. A first sealing resin 7a (for example, an epoxy resin having a viscosity of 40 Pa · s) is applied on the upper surface of the circuit board 2 outside the electrode portion 5 so as to cover a part of the electrode portion 5. After the application step, the gold bumps 4 formed on the respective electrodes 11 of the semiconductor element 1 are pressed against the corresponding electrode portions 5. At this time, the sealing resin 7a comes into contact with the lower surface on both sides of the semiconductor element 1 so as to spread. In this state, the sealing resin 7a is cured by heating at 210 ° C. for 10 seconds. As shown in FIGS. 14B and 15B, the semiconductor substrate 1 is moved from the outside of the bonding portion between the gold bump 4 and the electrode portion 5. Temporarily seal.
[0086]
After the temporary sealing step is completed, a second sealing resin 7b (for example, having a viscosity of 15 Pa · s) is provided in the space between the joint portion and the convex portion 8 as shown in FIGS. 14 (c) and 15 (c). Epoxy resin). After heating at 100 ° C. for 1 hour after the injection coating, the substrate is further heated at 150 ° C. for 3 hours to cure the second sealing resin 7b, and the joint is sealed from the inside. At this time, the portion where the second sealing resin 7b is in contact with the first sealing resin 7a is integrated by the curing of the second sealing resin 7b.
[0087]
As a result, the bonding portion of the semiconductor element 1 between the gold bump 4 and the electrode portion 5 is completely sealed by the first and second sealing resins 7a and 7b, and the predetermined semiconductor element mounting substrate 3 is completed.
[0088]
As described above, according to the manufacturing method of the present embodiment, since the second sealing material 7b applied to the inside does not receive the pressure from the semiconductor element 1, the second sealing material 7b is swept away and exceeds the convex portion 8 to form the opening. Since there is no leakage to the third side and there is no need to form a buffer, productivity is improved.
[0089]
(Embodiment 11)
In the tenth embodiment, when the second sealing resin 7b is injected and applied in the tenth embodiment, the pressurized air A is opened from the lower surface side of the circuit board 2 through the opening 3 as shown in FIG. The pressurized air A is sent into the portion 3 to pressurize the inside of the opening 3, and the pressurized air A is blown out between the semiconductor element 1 and the circuit board 2 from the upper surface opening of the space surrounded by the convex portion 8 to form the second It is possible to prevent the sealing resin 7b from flowing into the opening 3 beyond the projection 8.
[0090]
The steps up to temporary sealing and the curing step after the application of the second sealing resin 7b are based on those in Embodiment 10.
[0091]
(Embodiment 12)
In the eleventh embodiment, when the second sealing resin 7b is injected and applied, the pressurized air is sent into the opening 3. However, in the present embodiment, as shown in FIG. Before injecting and applying the resin 7b, the lower surface opening of the opening 3 is closed with, for example, a polyimide seal 15 and heated at 100 ° C. for about 1 hour to heat and expand the air in the opening 3, thereby opening the opening 3 A positive pressure is applied to the atmosphere. Accordingly, as in the case of Embodiment 11, when the second sealing resin 7b is injected and applied between the semiconductor element 1 and the circuit board 2, the second sealing resin 7b It can be prevented from flowing into the section 3.
[0092]
The steps up to temporary sealing and the curing step after the application of the second sealing resin 7b are based on those in Embodiment 10.
[0093]
(Embodiment 13)
In the present embodiment, as shown in FIG. 18, at least a groove 16 (for example, a groove having a depth of 0.1 mm) is formed at the base of the convex portion 8, particularly, at the base corresponding to the portion where the second sealing resin 7 b is injected and applied. When the second sealing resin 7b is injected and applied by using the circuit board 2 on which the second sealing resin 7b is formed, the second sealing resin 7b which is about to flow toward the convex portion 8 is retained in the concave groove 16 so that This prevents the second sealing resin 7b from flowing into the opening 3 beyond the projection 8.
[0094]
The manufacturing method using the circuit board 21 may be any of the above-described embodiments 10 to 12.
[0095]
Of course, the configuration in which the concave groove 16 is provided can be applied to any of the first to ninth embodiments.
[0096]
(Embodiment 14)
In the present embodiment, as shown in FIG. 19, at least another protrusion is provided on the upper surface between the convex portion 8 and the electrode portion 5 of the circuit board 21, particularly, on the upper surface corresponding to the portion where the second sealing resin 7b is applied. Using the circuit board 2 on which the portion 8 'is formed, when the second sealing resin 7b is applied by injection, the flow of the sealing resin 7b is regulated by the convex portion 8'. Also, the second sealing resin 7b stays between the two convex portions 8, 8 'to prevent the second sealing resin 7b from passing over the convex portions 8. In this embodiment, the distance between the projections 8 and 8 'is 0.05 mm. The manufacturing method using the circuit board 21 may be any of the above-described embodiments 10 to 12.
[0097]
Of course, the configuration in which the concave groove 16 is provided can be applied to any of the first to ninth embodiments.
[0098]
(Embodiment 15)
In the first to 14th embodiments, an epoxy-based sealing resin is used to seal the joint between the gold bump 4 formed on the electrode 11 of the semiconductor element 1 and the electrode portion 5 on the circuit board 21 side. In the present embodiment, the joining portion is sealed using an ACF (anisotropic conductive film) 17 as a sealing resin.
[0099]
In this case, as shown in FIG. 20A, first, a through hole 18 into which the convex portion 8 is fitted is formed in the center, and an ACF 17 having a thickness larger than the height of the convex portion 8 is placed on the circuit board 2. Then, under the atmosphere of 100 ° C. through the pressing plate 19, a pressure of 1.0 MPa is applied for 3.0 seconds, and the ACF 17 is attached on the circuit board 2. After the bonding step is completed, the gold bump 4 formed on the electrode 11 of the semiconductor element 1 is applied to the electrode portion 5 on the upper surface of the circuit board 2 by a load of 40 g to 150 g per gold bump as shown in FIG. It is placed on the circuit board 2 while applying pressure so as to be pressed. At this time, the gold bump 4 penetrates the ACF 17. Then, it is heated at 250 ° C. for 100 seconds, and the joint is sealed with ACF17.
[0100]
Here, when pressure is applied to the ACF 17, the ACF 17 tries to expand to the side, but does not protrude into the opening 3 because the ACF 17 is restricted by the convex 8 on the convex 8 side. Further, the rigidity of the convex portion 8 does not cause the convex portion 8 to be deformed toward the opening 3 side, and there is no increase in optical noise due to deformation of the inner peripheral surface.
[0101]
(Embodiment 16)
Although the electrode portions 5 in any of the first to fifteenth embodiments are formed on the flat surface of the circuit board 2, in this embodiment, as shown in FIG. The electrode portion 5 is formed integrally on the surface of the substrate 2 and the electrode portion 5 is formed on the surface of the convex portion 20, so that the electrode portion 5 protrudes upward from the surface of the circuit board 2 to form a convex shape. .
[0102]
Thus, in the present embodiment, the thickness of the sealing resin 7 can be increased by forming the electrode portion 5 on the surface of the convex portion 20 to have a convex shape. The force pressing against the joint portion between the electrode portion 5 and the electrode 11 is increased, so that the reliability of the joint is improved, and the separation of the electrode due to the difference in thermal expansion between the semiconductor element 1 and the circuit board 2 can be prevented.
[0103]
The dimensions of each side a to c of the convex portion 20 shown in FIG. 21B are set to, for example, a = 0.15 mm, b = 0.2 mm, and c = 0.15 mm as an example.
[0104]
The configuration of the electrode section 5 of the sixteenth embodiment can of course be applied to the case where ACF is used as the sealing resin.
[0105]
In each of the above embodiments, the convex portion 8 is formed so as to surround the entire circumference of the opening 3, but the convex portion 8 projects at least at a position corresponding to the application position of the sealing resin 7 or the ACF 17 attachment position. It may be formed.
[0106]
【The invention's effect】
According to the first aspect of the present invention, the semiconductor device mounting substrate is provided with an opening through which an electromagnetic wave passes, and a projection integrally protruding on a surface near the opening so as to surround a part or the entire circumference of the opening. Together with a circuit board having an electrode portion formed outside a portion surrounded by the convex portion,
The light-receiving surface or the light-emitting surface faces the opening, and is disposed above the convex portion of the circuit board, and an electrical connection is provided by interposing a bump between the electrode provided on the surface facing the circuit board and the electrode portion. A semiconductor element comprising an optical element which has been bonded together,
Since the bonding portion composed of the electrode, the bump and the electrode portion is sealed with a sealing resin, the convex portion is hard and rigid like the circuit board, and the vicinity of the position where the convex portion is formed And the deformation due to the stress on the projections that occurs when mounting the semiconductor element or curing the sealing resin is reduced, and the surface shape of the inner peripheral surface of the opening is maintained. There is an effect that irregular reflection of electromagnetic waves on the inner peripheral surface of a certain opening is unlikely to occur.
[0107]
According to the second aspect of the present invention, in the first aspect of the present invention, the semiconductor element faces the circuit board at least at an upper end portion of the convex portion corresponding to a portion where the sealing resin is applied and cured. Since the circuit board is provided with a buffer portion that is in pressure contact with the surface, it is possible to reliably prevent the sealing resin from leaking to the opening side due to the close contact between the semiconductor element and the buffer portion. There is an effect of improving.
[0108]
According to a third aspect of the present invention, in the second aspect of the present invention, since the material of the buffer portion is smaller than the elastic modulus of the resin material of the circuit board, the semiconductor device and the buffer portion are not used. The sealing resin can more reliably prevent the sealing resin from leaking to the opening side, and has the effect that the semiconductor element is not damaged when the buffer section is pressed against the semiconductor element.
[0109]
According to the fourth aspect of the present invention, in the second or third aspect of the present invention, a material having a coefficient of thermal expansion higher than that of the sealing resin is used as a material of the buffer. However, the stress that applies a load to the semiconductor element is reduced by the difference in thermal expansion between the buffer section and the sealing resin due to the temperature drop during cooling after the sealing resin is hardened, so that the stress is exerted on the semiconductor element. The reliability of the semiconductor device is improved
In the invention of the semiconductor element mounting substrate according to claim 5, in any one of claims 2 to 4, a resin material having a glass transition temperature lower than a curing temperature of the sealing resin is used as a material of the buffer portion. In addition, when the sealing resin is cured, the stress between the semiconductor element and the buffer portion is relaxed at the same time, so that the effect of the stress is not exerted on the semiconductor element, and the reliability of the semiconductor element is improved.
[0110]
In the invention of the semiconductor element mounting board of claim 6, in the invention of claim 2 or 3, the buffer portion is provided at the upper end of the convex portion so as to be slidable downward. It is possible to prevent the generation of stress between the buffer portion and the semiconductor device, so that the effect of the stress is not exerted on the semiconductor device, thereby improving the reliability of the semiconductor device.
[0111]
According to a seventh aspect of the present invention, in the invention of any one of the second to sixth aspects, the height position of the upper surface of the buffer portion is higher than the height position of the upper surface of the sealing resin at the time of application. Since the sealing resin does not reach the height position of the buffer when the sealing resin is flushed to the semiconductor element, it is possible to reliably prevent the sealing resin from leaking to the opening side. This has the effect of improving productivity.
[0112]
According to an eighth aspect of the present invention, in the invention of the second aspect, the buffer portion is integrally formed on an upper end portion of the convex portion so as to protrude upward over the entire circumference, and the width of the buffer portion is formed. Since the size is formed to be smaller than the width of the convex portion, it is possible to prevent the sealing resin from leaking to the opening side similarly to the second aspect of the invention by the buffer portion. When the substrate is formed, the convex portion and the buffer portion can be formed simultaneously with the same resin molding material, thereby improving the productivity of the circuit board and, furthermore, allowing the buffer portion to have flexibility. Has the effect that the semiconductor substrate is not damaged even when pressed against the buffer.
[0113]
According to a ninth aspect of the present invention, in the invention of the eighth aspect, the circuit board including the protruding portion and the buffer portion is injection-molded, and as the resin material, the buffer portion is provided. Since the resin material mixed with a filler having a diameter larger than the width dimension is used, the filler does not enter the buffer portion during injection molding, so that the rigidity of the buffer portion is reduced while maintaining the rigidity of the convex portion and the circuit board. Thus, a buffer portion that does not damage the semiconductor element even when the semiconductor element is pressed against the semiconductor element can be formed simultaneously with the formation of the circuit board.
[0114]
In the invention of the semiconductor element mounting board of claim 10, in any one of the inventions of claims 8 and 9, the buffer section is inclined outward, so that when the semiconductor element is pressed against the buffer section, the buffer section is It does not fall inward, so that the sealing resin can be reliably prevented from leaking to the opening side, and there is an effect that productivity is improved.
[0115]
According to the eleventh aspect of the present invention, in the invention of the eighth aspect, an upper end portion of the convex portion located outside the projecting position of the buffer portion has a height substantially equal to the height of the buffer portion. Is integrally formed so as to protrude over the entire circumference, so that the double buffer portion can reliably prevent the sealing resin from leaking to the opening side, thereby improving the productivity. This has the effect.
[0116]
In a twelfth aspect of the present invention, the height dimension from the lower end to the upper end of the buffer portion is set to be the shortest distance from the upper end opening edge of the convex portion to the lower end of the buffer portion. Since the dimensions are shorter, when the semiconductor element is pressed against the buffer, the buffer does not protrude to the opening side, so that it is possible to prevent the protrusion of the buffer from causing optical noise. effective.
[0117]
In the invention of the semiconductor element mounting board of claim 13, in any of the inventions of claims 8 to 12, the notch portion cut out from the upper end toward the lower end is formed in a part of the buffer portion. When the semiconductor device is pressed against the buffer portion, the portion between the cutout portions of the buffer portion is opened. Therefore, by pressing the semiconductor device against the buffer portion with a small force, the semiconductor device can be mounted at a predetermined height, and the semiconductor device can be mounted. This has the effect of improving the reliability of the device.
[0118]
In the invention of the semiconductor element mounting board of claim 14, in any of the inventions of claims 8 to 13, the width of the buffer is set to about 10 to about 50 μm, so that when the semiconductor element is pressed against the buffer, There is an effect that a semiconductor element can be mounted without reporting a crack due to the pressure from the sealing resin that is swept away and without damaging the semiconductor element.
[0119]
In the invention of a semiconductor element mounting board according to a fifteenth aspect, in the invention according to any one of the first to fourteenth aspects, the electrode portion is formed in a convex shape protruding upward from the surface of the circuit board. Therefore, the force of the sealing resin 7 pressing against the joint portion between the electrode portion 5 and the electrode 11 at the time of curing shrinkage is increased, and the reliability of the joining is improved. This has the effect of preventing electrode peeling due to a difference in thermal expansion between the electrodes.
[0120]
In the invention of the semiconductor device mounting board of claim 16, in any one of the inventions of claims 1 to 15, at least the inner peripheral surface near the upper end of the buffer portion is black, so that irregular reflection and the like hardly occur, and noise is reduced. There is an effect that generation can be prevented.
[0121]
In the method for manufacturing a semiconductor element mounting board according to the seventeenth aspect of the present invention, an opening through which an electromagnetic wave passes is provided, and a projection is formed integrally on a surface near the opening so as to surround a part or the entire circumference of the opening. And a circuit board having an electrode portion formed outside a portion surrounded by the convex portion,
The light-receiving surface or the light-emitting surface faces the opening, and is disposed above the convex portion of the circuit board, and an electrical connection is provided by interposing a bump between the electrode provided on the surface facing the circuit board and the electrode portion. A semiconductor element comprising an optical element which has been bonded together,
In the method for manufacturing a semiconductor element mounting substrate, wherein a bonding portion formed of the electrode, the bump, and the electrode portion is sealed with a sealing resin,
A step of applying a sealing resin to the surface of the circuit board so as to include the electrode portion around the outer periphery of the convex portion,
The semiconductor element is pressed into contact with a buffer portion formed at the upper end of the convex portion so that the light receiving surface or the light emitting surface of the semiconductor element faces the opening, and the semiconductor element is disposed on the electrode portion. Press-contacting the electrodes via bumps;
A step of curing the sealing resin and sealing a joint portion of the electrode of the semiconductor element, the bump, and the electrode portion of the circuit board with the sealing resin. A substrate can be obtained.
[0122]
In the method for manufacturing a semiconductor element mounting substrate according to the eighteenth aspect of the present invention, there is provided an opening through which an electromagnetic wave passes, and a projection integrally projecting from a surface near the opening so as to surround a part or the entire circumference of the opening. And a circuit board having an electrode portion formed outside a portion surrounded by the convex portion,
The light-receiving surface or the light-emitting surface faces the opening, and is disposed above the convex portion of the circuit board, and an electrical connection is provided by interposing a bump between the electrode provided on the surface facing the circuit board and the electrode portion. A semiconductor element comprising an optical element which has been bonded together,
In the method for manufacturing a semiconductor element mounting board, wherein a bonding portion including the electrode, the bump and the electrode portion is sealed with a sealing resin applied between the semiconductor element and the circuit board,
Applying a first sealing resin to the surface of the circuit board located outside the electrode portion along the outside portion of the electrode portion;
A step of temporarily mounting the semiconductor element by curing the first sealing resin while pressing the electrode against the electrode part via a bump so that the semiconductor element does not contact the upper part of the projection after the application,
After the provisional mounting, a step of applying and curing a second sealing resin along the electrode portion on the circuit board surface between the electrode portion and the convex portion to completely mount the semiconductor element. Therefore, the semiconductor element can be mounted while preventing the sealing resin from leaking into the opening. In particular, it is not necessary to provide a buffer portion for press-contacting the semiconductor element on the projecting side of the circuit board. However, there is no danger of damage, and there is an effect that productivity is improved.
[0123]
In the method for manufacturing a semiconductor element mounting board according to the nineteenth aspect, in the invention according to the eighteenth aspect, the inside of the opening is pressurized at the time of injecting the sealing resin in the main mounting step. Leakage can be reliably prevented, and the productivity can be further improved.
[0124]
According to a twentieth aspect of the present invention, in the invention of the eighteenth aspect, the pressurizing causes the air in the opening to expand by heating the air in the opening after closing the opening. Therefore, the present invention has the same effect as that of the nineteenth aspect, and also has the effect of being easy to implement.
[0125]
According to a twenty-first aspect of the present invention, in the method of any one of the eighteenth to twentieth aspects, a concave groove is formed as a surface of the circuit board between the convex part and the electrode part. Since the second circuit board is used, it is possible to more reliably prevent the second sealing resin from leaking to the opening side.
[0126]
In the invention of the method for manufacturing a semiconductor element mounting board according to claim 22, in the invention according to any one of claims 18 to 21, the circuit board is provided on a surface between the projection and the electrode portion in parallel with the projection. Since the circuit board having another convex portion is used, the second sealing resin can be more reliably prevented from leaking to the opening without damaging the semiconductor element.
[0127]
In the invention of the method for manufacturing a semiconductor element mounting board according to claim 23, an opening through which an electromagnetic wave passes is provided, and a projection integrally formed on a surface near the opening so as to surround a part or the entire circumference of the opening. And a circuit board having an electrode portion formed outside a portion surrounded by the convex portion,
The light-receiving surface or the light-emitting surface faces the opening, and is disposed above the convex portion of the circuit board, and an electrical connection is provided by interposing a bump between the electrode provided on the surface facing the circuit board and the electrode portion. A semiconductor element comprising an optical element which has been bonded together,
In a method for manufacturing a semiconductor element mounting substrate for sealing a bonding portion formed of the electrode, the bump and the electrode portion with a resin,
Attaching an anisotropic conductive film to the surface of the circuit board by pressing and heating while placing the electrode portion on the surface of the circuit board around the outer periphery of the convex portion,
After this step, the semiconductor element is placed on the anisotropic conductive film while the bumps formed on the electrodes of the semiconductor element are passed through the anisotropic conductive film and pressed against the electrode portion, and the A process in which a semiconductor element is adhered and fixed on the upper surface of the anisotropic conductive film by heating, and a joint portion composed of the electrodes, bumps, and electrode portions is sealed with the anisotropic conductive film. Since there is no room for such leakage as described above, the productivity is improved, and the anisotropic conductive film does not protrude toward the opening at the convex portion, so that there is no increase in optical noise.
[Brief description of the drawings]
FIG. 1 is a process explanatory view of a manufacturing method according to a first embodiment of the present invention.
FIG. 2A is a front sectional view of a circuit board used in a second embodiment of the present invention.
(B) is a top view of the circuit board used for the same.
FIG. 3 is a process explanatory view of the manufacturing method.
FIG. 4 is a process explanatory view of the manufacturing method.
FIG. 5 is a front sectional view of the semiconductor element and the circuit board in a sealing resin applying step in the manufacture of the semiconductor element mounting board showing the example of the circuit board used in the above.
FIG. 6 is a front sectional view of a semiconductor element and a circuit board in a sealing resin applying step in the manufacture of a semiconductor element mounting board showing another example of a circuit board used in the above.
FIG. 7A is a front sectional view of a semiconductor element and a circuit board in a sealing resin application step in manufacturing a semiconductor element mounting board corresponding to Embodiment 3 of the present invention.
(B) is a partially omitted cross-sectional view for explaining a main part of the circuit board used in the above.
FIG. 8A is a front sectional view of a semiconductor element and a circuit board in a sealing resin applying step in manufacturing a semiconductor element mounting board corresponding to Embodiment 4 of the present invention.
(B) is a partially omitted cross-sectional view for explaining a main part of the circuit board used in the above.
FIG. 9 is a front sectional view of a semiconductor element and a circuit board in a sealing resin applying step in manufacturing a semiconductor element mounting board corresponding to Embodiment 5 of the present invention.
FIG. 10A is a front sectional view of a semiconductor element and a circuit board in a sealing resin applying step in manufacturing a semiconductor element mounting board corresponding to Embodiment 6 of the present invention.
(B) is a partially omitted front cross-sectional view for explaining a main part of the circuit board used in the above.
FIG. 11A is a front sectional view of a semiconductor element and a circuit board in a sealing resin applying step in manufacturing a semiconductor element mounting board corresponding to Embodiment 7 of the present invention.
(B) is a partially omitted cross-sectional view for explaining a main part of the circuit board used in the above.
FIG. 12A is a front sectional view of a semiconductor element and a circuit board in a sealing resin applying step in manufacturing a semiconductor element mounting board corresponding to Embodiment 8 of the present invention;
(B) is a partially omitted front cross-sectional view for explaining a main part of the circuit board used in the above.
FIG. 13 is a top view of a circuit board used in Embodiment 9 of the present invention.
FIG. 14 is an explanatory diagram showing steps of the manufacturing method according to the tenth embodiment of the present invention.
FIG. 15 is a process explanatory view of the manufacturing method.
FIG. 16 is an explanatory diagram of a process when applying a second sealing resin according to the eleventh embodiment of the present invention.
FIG. 17 is an explanatory diagram of a step during application of a second sealing resin according to the twelfth embodiment of the present invention.
FIG. 18 is a front sectional view of a semiconductor element and a circuit board in a step of applying a first sealing resin in Embodiment 13 of the present invention.
FIG. 19 is a front sectional view of a semiconductor element and a circuit board in a step of applying a first sealing resin in Embodiment 14 of the present invention.
FIG. 20 is an explanatory diagram showing steps of the manufacturing method according to the fifteenth embodiment of the present invention.
FIG. 21A is a front sectional view of a semiconductor element and a circuit board in a sealing resin applying step in manufacturing a semiconductor element mounting board corresponding to Embodiment 16 of the present invention;
(B) is a partially omitted front sectional view for explaining a main part of the circuit board used in the above.
[Explanation of symbols]
1 Semiconductor element
2 Circuit board
3 opening
4 Gold bump
5 Electrode section
6 Circuit pattern
7 sealing resin
8 convex part
10. Semiconductor element mounting board

Claims (23)

電磁波が通過する開口部を備え、該開口部の近傍の表面に前記開口部の一部乃至全周を囲むように一体突出させた凸部を設けるとともに、該凸部が囲う部位の外側に電極部を形成した回路基板と、
前記開口部に受光面若しくは発光面が臨むように前記回路基板の凸部上方に配置され、前記回路基板側に対向する面に設けた電極と前記電極部との間にバンプを介在させて電気的に接合した光素子からなる半導体素子と、から成り、
前記電極、前記バンプ及び前記電極部からなる接合部位を封止樹脂で封止していることを特徴とする半導体素子実装基板。
An opening through which the electromagnetic wave passes is provided, and a projection integrally protruding so as to surround a part or the entire periphery of the opening is provided on a surface near the opening, and an electrode is provided outside a portion surrounded by the projection. A circuit board formed with a part,
The light-receiving surface or the light-emitting surface faces the opening, and is disposed above the convex portion of the circuit board, and an electrical connection is provided by interposing a bump between the electrode provided on the surface facing the circuit board and the electrode portion. A semiconductor element comprising an optical element which has been bonded together,
A semiconductor element mounting board, wherein a joint portion formed of the electrode, the bump, and the electrode portion is sealed with a sealing resin.
前記回路基板として、少なくとも前記封止樹脂が塗布硬化される部位に対応する前記凸部の上端部に前記半導体素子の対向面に圧接する緩衝部を設けている回路基板を用いていることを特徴とする請求項1記載の半導体素子実装基板。As the circuit board, a circuit board provided with a buffer portion at least at an upper end portion of the convex portion corresponding to a portion where the sealing resin is applied and cured, which is in pressure contact with the facing surface of the semiconductor element, is used. The semiconductor element mounting board according to claim 1. 前記緩衝部の材料として前記回路基板の樹脂材料の弾性率よりも小さい材料を用いていることを特徴とする請求項2記載の半導体素子実装基板。3. The semiconductor element mounting board according to claim 2, wherein a material smaller than an elastic modulus of a resin material of the circuit board is used as a material of the buffer portion. 前記緩衝部の材料として熱膨張率が前記封止樹脂の熱膨張率よりも大きな材料を用いたことを特徴とする請求項2又は3記載の半導体素子実装基板。4. The semiconductor element mounting board according to claim 2, wherein a material having a coefficient of thermal expansion higher than that of the sealing resin is used as a material of the buffer portion. 前記緩衝部の材料としてガラス転移温度が前記封止樹脂の硬化温度よりも低い材料を用いたことを特徴とする請求項2乃至4の何れか記載の半導体素子実装基板。5. The semiconductor element mounting substrate according to claim 2, wherein a material having a glass transition temperature lower than a curing temperature of said sealing resin is used as a material of said buffer portion. 前記緩衝部を下方にスライド可能に上記凸部の上端部に設けていることを特徴とする請求項2又は3記載の半導体素子実装基板。4. The semiconductor element mounting board according to claim 2, wherein said buffer portion is slidably provided at an upper end portion of said convex portion. 前記緩衝部の上面の高さ位置を塗布時の封止樹脂の上面の高さ位置より高くしていることを特徴とする請求項2乃至6の何れか記載の半導体素子実装基板。The semiconductor element mounting substrate according to claim 2, wherein a height position of an upper surface of the buffer portion is higher than a height position of an upper surface of the sealing resin at the time of application. 前記記緩衝部を前記凸部の上端部に全周に亘って一体に上方へ突出形成するとともに、前記緩衝部の幅寸法を、前記凸部の幅寸法より小さく形成していることを特徴とする請求項2記載の半導体素子実装基板。The buffer portion is integrally formed at the upper end portion of the convex portion so as to protrude upward over the entire circumference, and the width of the buffer portion is formed to be smaller than the width of the convex portion. The substrate for mounting a semiconductor element according to claim 2. 前記凸部及び前記緩衝部を含めた前記回路基板が射出成形されたものであって、その樹脂材料として、前記緩衝部の前記幅寸法より大きな径のフィラーを混入した樹脂材料を用いていることを特徴とする請求項8記載の半導体素子実装基板。The circuit board including the projections and the buffer portion is injection-molded, and as the resin material, a resin material mixed with a filler having a diameter larger than the width dimension of the buffer portion is used. The semiconductor element mounting board according to claim 8, wherein: 前記緩衝部を外側に傾斜させていることを特徴とする請求項8又は9の何れか記載の半導体素子実装基板。10. The semiconductor element mounting board according to claim 8, wherein the buffer is inclined outward. 前記緩衝部の突出位置より外側に位置する前記凸部の上端部に、前記緩衝部の高さと略同じ高さの別の緩衝部を全周に亘って一体に突出形成していることを特徴とする請求項8記載の半導体素子実装基板。At the upper end portion of the convex portion located outside the projecting position of the buffer portion, another buffer portion having substantially the same height as the buffer portion is integrally formed so as to protrude over the entire circumference. The semiconductor element mounting board according to claim 8, wherein 前記緩衝部の下端から上端までの高さ寸法を、上記凸部の上端開口縁から前記緩衝部の下端までの最短距離より短い寸法としていることを特徴とする請求項8記載の半導体素子実装基板。9. The semiconductor element mounting board according to claim 8, wherein the height from the lower end to the upper end of the buffer is shorter than the shortest distance from the upper edge of the opening to the lower end of the buffer. . 前記緩衝部の一部に上端より下端方向に切り欠いた切欠部を形成していることを特徴とする請求項8乃至12の何れか記載の半導体素子実装基板。13. The semiconductor element mounting board according to claim 8, wherein a cutout portion cut out from an upper end to a lower end direction is formed in a part of the buffer portion. 前記緩衝部の幅寸法を略10乃至略50μmとしていることを特徴する請求項8乃至13の何れか記載の半導体素子実装基板。14. The semiconductor element mounting board according to claim 8, wherein a width dimension of said buffer portion is set to be about 10 to about 50 μm. 前記電極部を回路基板の表面より上方へ突出せる凸形状に形成していることを特徴とする請求項1乃至14の何れか記載の半導体素子実装基板。15. The semiconductor element mounting board according to claim 1, wherein the electrode portion is formed in a convex shape protruding above a surface of the circuit board. 前記緩衝部の少なくとも上端近傍の内周面を黒色としていることを特徴とする請求項1乃至15の何れか記載の半導体素子実装基板。16. The semiconductor element mounting board according to claim 1, wherein at least an inner peripheral surface near an upper end of said buffer portion is black. 電磁波が通過する開口部を備え、該開口部の近傍の表面に前記開口部の一部乃至全周を囲むように一体突出させた凸部を設けるとともに、該凸部が囲う部位の外側に電極部を形成した回路基板と、
前記開口部に受光面若しくは発光面が臨むように前記回路基板の凸部上方に配置され、前記回路基板側に対向する面に設けた電極と前記電極部との間にバンプを介在させて電気的に接合した光素子からなる半導体素子と、から成り、
前記電極、前記バンプ及び前記電極部からなる接合部位を封止樹脂で封止している半導体素子実装基板の製造方法において、
前記凸部の外側周辺で且つ前記電極部を内包するように前記回路基板表面に封止樹脂を塗布する工程と、
前記凸部の上端部に突出形成した緩衝部に前記半導体素子を圧接させて前記開口部に半導体素子の受光面若しくは発光面が臨むように半導体素子を配置し、且つ前記電極部に前記半導体素子の電極をバンプを介して圧接させる工程と、
前記封止樹脂を硬化させ、前記半導体素子の電極、バンプ、回路基板の電極部による接合部位を封止樹脂で封止する工程とから成ることを特徴とする半導体素子実装基板の製造方法。
An opening through which the electromagnetic wave passes is provided, and a projection integrally protruding so as to surround a part or the entire periphery of the opening is provided on a surface near the opening, and an electrode is provided outside a portion surrounded by the projection. A circuit board formed with a part,
The light-receiving surface or the light-emitting surface faces the opening, and is disposed above the convex portion of the circuit board, and an electrical connection is provided by interposing a bump between the electrode provided on the surface facing the circuit board and the electrode portion. A semiconductor element comprising an optical element which has been bonded together,
In the method for manufacturing a semiconductor element mounting substrate, wherein a bonding portion formed of the electrode, the bump, and the electrode portion is sealed with a sealing resin,
A step of applying a sealing resin to the surface of the circuit board so as to include the electrode portion around the outer periphery of the convex portion,
The semiconductor element is pressed into contact with a buffer portion formed at the upper end of the convex portion so that the light receiving surface or the light emitting surface of the semiconductor element faces the opening, and the semiconductor element is disposed on the electrode portion. Press-contacting the electrodes via bumps;
Curing the sealing resin, and sealing the joint of the semiconductor element electrodes, bumps, and electrode portions of the circuit board with the sealing resin.
電磁波が通過する開口部を備え、該開口部の近傍の表面に前記開口部の一部乃至全周を囲むように一体突出させた凸部を設けるとともに、該凸部が囲う部位の外側に電極部を形成した回路基板と、
前記開口部に受光面若しくは発光面が臨むように前記回路基板の凸部上方に配置され、前記回路基板側に対向する面に設けた電極と前記電極部との間にバンプを介在させて電気的に接合した光素子からなる半導体素子と、から成り、
前記電極、前記バンプ及び前記電極部からなる接合部位を前記半導体素子と前記回路基板との間で塗布させた封止樹脂により封止する半導体素子実装基板の製造方法において、
前記電極部の外側に位置する回路基板の表面に前記電極部の外側部に沿うように第1の封止樹脂を塗布する工程と、
この塗布後に前記半導体素子を前記凸部の上部に接しないように前記電極をバンプを介して前記電極部に圧接させながら第1の封止樹脂を硬化させて半導体素子を仮実装する工程と、
この仮実装の後、前記電極部と前記凸部との間の前記回路基板表面に前記電極部に沿うように第2の封止樹脂を塗布して硬化させ半導体素子を本実装する工程とから成ることを特徴とする半導体素子実装基板の製造方法。
An opening through which the electromagnetic wave passes is provided, and a projection integrally protruding so as to surround a part or the entire periphery of the opening is provided on a surface near the opening, and an electrode is provided outside a portion surrounded by the projection. A circuit board formed with a part,
The light-receiving surface or the light-emitting surface faces the opening, and is disposed above the convex portion of the circuit board, and an electrical connection is provided by interposing a bump between the electrode provided on the surface facing the circuit board and the electrode portion. A semiconductor element comprising an optical element which has been bonded together,
In the method for manufacturing a semiconductor element mounting board, wherein a bonding portion including the electrode, the bump and the electrode portion is sealed with a sealing resin applied between the semiconductor element and the circuit board,
Applying a first sealing resin to the surface of the circuit board located outside the electrode portion along the outside portion of the electrode portion;
A step of temporarily mounting the semiconductor element by curing the first sealing resin while pressing the electrode against the electrode part via a bump so that the semiconductor element does not contact the upper part of the projection after the application,
After the provisional mounting, a step of applying and curing a second sealing resin along the electrode portion on the circuit board surface between the electrode portion and the convex portion to completely mount the semiconductor element. A method for manufacturing a semiconductor element mounting substrate, comprising:
前記本実装の工程における封止樹脂注入時に前記開口部内を加圧することを特徴とする請求項18記載の半導体素子実装基板の製造方法。19. The method according to claim 18, wherein the inside of the opening is pressurized when the sealing resin is injected in the main mounting step. 前記加圧は、前記開口部を密閉状態とした後、前記開口部内の空気を加熱して空気を膨張させることで行うことを特徴とする請求項18記載の半導体素子実装基板の製造方法。19. The method according to claim 18, wherein the pressurizing is performed by heating the air in the opening to expand the air after the opening is sealed. 前記回路基板として、凸部と前記電極部との間の表面に凹溝を形成している回路基板を用いることを特徴とする請求項18乃至20の何れか記載の記載の半導体素子実装基板の製造方法。21. The semiconductor element mounting board according to claim 18, wherein a circuit board having a concave groove formed on a surface between the convex portion and the electrode portion is used as the circuit board. Production method. 前記回路基板として、前記凸部と前記電極部との間の表面に前記凸部と並行するように別の凸部を形成している回路基板を用いることを特徴とする請求項18乃至21の何れか記載の記載の半導体素子実装基板の製造方法。22. The circuit board according to claim 18, wherein a circuit board having another projecting portion formed on the surface between the projecting portion and the electrode portion so as to be parallel to the projecting portion is used as the circuit board. A method for manufacturing a semiconductor element mounting board according to any one of the preceding claims. 電磁波が通過する開口部を備え、該開口部の近傍の表面に前記開口部の一部乃至全周を囲むように一体突出させた凸部を設けるとともに、該凸部が囲う部位の外側に電極部を形成した回路基板と、
前記開口部に受光面若しくは発光面が臨むように前記回路基板の凸部上方に配置され、前記回路基板側に対向する面に設けた電極と前記電極部との間にバンプを介在させて電気的に接合した光素子からなる半導体素子と、から成り、
前記電極、前記バンプ及び前記電極部からなる接合部位を樹脂で封止する半導体素子実装基板の製造方法において、
前記凸部の外側周辺の前記回路基板表面に、前記電極部を内包するように載置するとともに加圧・加熱により異方性導電フィルムを前記回路基板表面に貼り付ける工程と、
この工程後に、前記半導体素子の前記電極に形成しているバンプを異方性導電フィルムを貫通させて前記電極部に圧接させながら半導体素子を異方性導電フィルム上に載置し、加圧・加熱により異方性導電フィルムの上面に半導体素子を貼り付け固定し且つ異方性導電フィルムで前記電極、バンプ、電極部からなる接合部を封止する工程と、から成ることを特徴とする半導体素子実装基板の製造方法。
An opening through which the electromagnetic wave passes is provided, and a projection integrally protruding so as to surround a part or the entire periphery of the opening is provided on a surface near the opening, and an electrode is provided outside a portion surrounded by the projection. A circuit board formed with a part,
The light-receiving surface or the light-emitting surface faces the opening, and is disposed above the convex portion of the circuit board, and an electrical connection is provided by interposing a bump between the electrode provided on the surface facing the circuit board and the electrode portion. A semiconductor element comprising an optical element which has been bonded together,
In a method for manufacturing a semiconductor element mounting substrate for sealing a bonding portion formed of the electrode, the bump and the electrode portion with a resin,
Attaching an anisotropic conductive film to the surface of the circuit board by pressing and heating while placing the electrode portion on the surface of the circuit board around the outer periphery of the convex portion,
After this step, the semiconductor element is placed on the anisotropic conductive film while the bumps formed on the electrodes of the semiconductor element are passed through the anisotropic conductive film and pressed against the electrode portion, and the Bonding a semiconductor element to the upper surface of the anisotropic conductive film by heating and sealing the joint comprising the electrodes, bumps, and electrode portions with the anisotropic conductive film. A method for manufacturing an element mounting board.
JP2003037421A 2003-02-14 2003-02-14 Semiconductor device mounted board and manufacturing method of same Withdrawn JP2004247611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037421A JP2004247611A (en) 2003-02-14 2003-02-14 Semiconductor device mounted board and manufacturing method of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037421A JP2004247611A (en) 2003-02-14 2003-02-14 Semiconductor device mounted board and manufacturing method of same

Publications (1)

Publication Number Publication Date
JP2004247611A true JP2004247611A (en) 2004-09-02

Family

ID=33022233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037421A Withdrawn JP2004247611A (en) 2003-02-14 2003-02-14 Semiconductor device mounted board and manufacturing method of same

Country Status (1)

Country Link
JP (1) JP2004247611A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031870A1 (en) * 2003-09-25 2005-04-07 Hamamatsu Photonics K.K. Semiconductor device
JP2011086670A (en) * 2009-10-13 2011-04-28 Renesas Electronics Corp Manufacturing method of solid-state image pickup device
JP2012113796A (en) * 2010-11-02 2012-06-14 Aoi Electronics Co Ltd Light receiving device and method for manufacturing the same
US8300124B2 (en) 2005-11-25 2012-10-30 Samsung Electro-Mechanics Co., Ltd. Image sensor module and camera module package having the same
WO2013065729A1 (en) * 2011-10-31 2013-05-10 アオイ電子株式会社 Photoreception device, and method for producing photoreception device
JP2014212188A (en) * 2013-04-18 2014-11-13 株式会社ディスコ Method for sticking plate-like object
JP2016012685A (en) * 2014-06-30 2016-01-21 株式会社リコー Semiconductor device
JP2017194720A (en) * 2017-08-02 2017-10-26 富士通オプティカルコンポーネンツ株式会社 Optical device and method for manufacturing optical device
WO2018216092A1 (en) * 2017-05-23 2018-11-29 オリンパス株式会社 Imaging module and endoscope
JP2021136396A (en) * 2020-02-28 2021-09-13 キヤノン株式会社 Packages and semiconductor devices
WO2023042615A1 (en) * 2021-09-14 2023-03-23 ローム株式会社 Semiconductor device and mounting structure for semiconductor element

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101326A (en) * 2003-09-25 2005-04-14 Hamamatsu Photonics Kk Semiconductor device
US7612442B2 (en) 2003-09-25 2009-11-03 Hamamatsu Photonics K.K. Semiconductor device
JP4494746B2 (en) * 2003-09-25 2010-06-30 浜松ホトニクス株式会社 Semiconductor device
WO2005031870A1 (en) * 2003-09-25 2005-04-07 Hamamatsu Photonics K.K. Semiconductor device
US8300124B2 (en) 2005-11-25 2012-10-30 Samsung Electro-Mechanics Co., Ltd. Image sensor module and camera module package having the same
JP2011086670A (en) * 2009-10-13 2011-04-28 Renesas Electronics Corp Manufacturing method of solid-state image pickup device
JP2013153215A (en) * 2010-11-02 2013-08-08 Aoi Electronics Co Ltd Light receiving device
JP2012113796A (en) * 2010-11-02 2012-06-14 Aoi Electronics Co Ltd Light receiving device and method for manufacturing the same
WO2013065729A1 (en) * 2011-10-31 2013-05-10 アオイ電子株式会社 Photoreception device, and method for producing photoreception device
US9448102B2 (en) 2011-10-31 2016-09-20 Aoi Electronics Co., Ltd. Photoreception device with an insulating resin mass, and method for producing photoreception device
JP2014212188A (en) * 2013-04-18 2014-11-13 株式会社ディスコ Method for sticking plate-like object
JP2016012685A (en) * 2014-06-30 2016-01-21 株式会社リコー Semiconductor device
WO2018216092A1 (en) * 2017-05-23 2018-11-29 オリンパス株式会社 Imaging module and endoscope
US11133341B2 (en) 2017-05-23 2021-09-28 Olympus Corporation Image pickup apparatus and manufacturing method of image pickup apparatus
JP2017194720A (en) * 2017-08-02 2017-10-26 富士通オプティカルコンポーネンツ株式会社 Optical device and method for manufacturing optical device
JP2021136396A (en) * 2020-02-28 2021-09-13 キヤノン株式会社 Packages and semiconductor devices
JP7458825B2 (en) 2020-02-28 2024-04-01 キヤノン株式会社 Packages and semiconductor devices
WO2023042615A1 (en) * 2021-09-14 2023-03-23 ローム株式会社 Semiconductor device and mounting structure for semiconductor element

Similar Documents

Publication Publication Date Title
KR100343413B1 (en) Techniques for wafer level molding of underfill encapsulant
JP5415823B2 (en) Electronic circuit device and manufacturing method thereof
JP5746919B2 (en) Semiconductor package
JP5039058B2 (en) Semiconductor device mounting structure
US6166434A (en) Die clip assembly for semiconductor package
TWI415235B (en) Semiconductor device and manufacturing method thereof
JP3604248B2 (en) Method for manufacturing semiconductor device
US7906857B1 (en) Molded integrated circuit package and method of forming a molded integrated circuit package
US6856015B1 (en) Semiconductor package with heat sink
CN101246938A (en) Lead frame based package for solid state light emitting devices and method of forming same
US6002171A (en) Integrated heat spreader/stiffener assembly and method of assembly for semiconductor package
JP2004247611A (en) Semiconductor device mounted board and manufacturing method of same
KR20080015725A (en) Plastic overmolded packages with mechanically separated lead attachments
JP2012049414A (en) Method and apparatus for manufacturing resin encapsulation molded article having substrate exposure face
JP2010199494A (en) Semiconductor device and manufacturing method of the same
US20100142169A1 (en) Electronic device and process for manufacturing electronic device
US20130015488A1 (en) Light emitting diode package and method for fabricating the same
JP3520208B2 (en) Method of mounting semiconductor element on circuit board and semiconductor device
JP2003229443A (en) Semiconductor device and its manufacturing method
KR102081612B1 (en) Semiconductor package and method for manufacturing the same
US6046506A (en) Semiconductor device with package
JP3932279B2 (en) Mounting structure, optical sensor module and optical sensor module mounting structure
JP3539528B2 (en) Semiconductor device and manufacturing method thereof
CN103378011A (en) Optoelectronic package and manufacturing method thereof
KR20070085145A (en) Apparatus and method for the manufacture of semiconductor packages capable of potting thermosetting resins while being heated

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509