[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004247529A - Switching element - Google Patents

Switching element Download PDF

Info

Publication number
JP2004247529A
JP2004247529A JP2003035997A JP2003035997A JP2004247529A JP 2004247529 A JP2004247529 A JP 2004247529A JP 2003035997 A JP2003035997 A JP 2003035997A JP 2003035997 A JP2003035997 A JP 2003035997A JP 2004247529 A JP2004247529 A JP 2004247529A
Authority
JP
Japan
Prior art keywords
organic
switching element
electrode
current
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003035997A
Other languages
Japanese (ja)
Inventor
Haruo Kawakami
春雄 川上
Hisato Kato
久人 加藤
Takuji Iwamoto
卓治 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003035997A priority Critical patent/JP2004247529A/en
Publication of JP2004247529A publication Critical patent/JP2004247529A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a switching element that has an organic bistable material between two electrodes a greater ON/OFF current ratio with a small leakage current. <P>SOLUTION: In the switching element, the organic bistable material is placed at least between two electrodes. The organic bistable material has two kinds of stable resistance values with respect to an applied voltage, and employs an insulating substrate the side of which in contact with the electrodes uses an organic substance such as a glass substrate coated with an organic substance or an organic group high polymer film. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、有機ELディスプレーパネルの駆動用スイッチング素子や、高密度メモリ等に利用される、有機双安定材料を2つの電極間に配置したスイッチング素子に関する。
【0002】
【従来の技術】
近年、有機電子材料の特性は目覚しい進展をみせている。特に電荷移動錯体などの低次元導体のなかには、金属―絶縁体遷移などの特徴ある性質を持つものがあり、有機ELディスプレーパネルの駆動用スイッチング素子や、高密度メモリなどへの適用が検討されている。
上記のスイッチング素子への適用が可能な材料として、有機双安定材料が注目されている。有機双安定材料とは、材料に電圧を印加していくと、ある電圧以上で急激に回路の電流が増加してスイッチング現象が観測される、いわゆる非線形応答を示す有機材料である。
【0003】
図6には、上記のようなスイッチング挙動を示す有機双安定材料の、電圧−電流特性の一例が示されている。
図6に示すように、有機双安定材料においては、高抵抗特性51(off状態)と、低抵抗特性52(on状態)との2つの電流電圧特性を持つものであり、あらかじめVbのバイアスをかけた状態で、電圧をVth2以上にすると、off状態からon状態へ遷移し、Vth1以下にすると、on状態からoff状態へと遷移して抵抗値が変化する、非線形応答特性を有している。つまり、この有機双安定材料に、Vth2以上、又はVth1以下の電圧を印加することにより、いわゆるスイッチング動作を行なうことができる。ここで、Vth1、Vth2は、パルス状の電圧として印加することもできる。
【0004】
このような非線形応答を示す有機双安定材料としては、各種の有機錯体が知られている。例えば、R.S.Potember等は、Cu−TCNQ(銅−テトラシアノキノジメタン)錯体を用い、電圧に対して、2つの安定な抵抗値を持つスイッチング素子を試作している(非特許文献1)。
また、熊井等は、K−TCNQ(カリウム−テトラシアノキノジメタン)錯体の単結晶を用い、非線形応答によるスイッチング挙動を観測している(非特許文献2)。
更に、安達等は、真空蒸着法を用いてCu−TCNQ錯体薄膜を形成し、そのスイッチング特性を明らかにして、有機ELマトリックスへの適用可能性の検討を行なっている(非特許文献3)。
【0005】
最近、上記のような2成分からなる電荷移動錯体に対して、Yangらは、きわめて薄いAl膜を2−アミノ−4,5−イミダゾール−ジカーボニトリルの薄膜で挟む事により、単一成分からなる有機膜で上記電荷移動錯体と同様なスイッチング特性を得ている(非特許文献4)。
この構成では、それぞれが単一成分からなる薄膜であるため、従来の2成分系である電荷移動錯体と比較して、組成制御性が格段に改善されている。
また、我々も、鋭意検討を重ねた結果、薄いAl膜を用いずに、単一成分からなる有機材料のみを用いた有機膜で上記電荷移動錯体と同様なスイッチング特性を得ている(特願2002−271911等)。
【0006】
【非特許文献1】
R.S.Potember,他1名, Appl. Phys. Lett.34(6), 15 March 1979,P.405−407
【非特許文献2】
熊井 玲児、他2名、「固体物理」,vol35,No1(2000),P.33−40
【非特許文献3】
安達 千波矢、他3名, 応用物理学会予稿集,2002年春 第3分冊, P.1236
【非特許文献4】
Yang Yang,他3名,Appl.Phys.Lett., Vol.80, No.3,(21/Jan/2002) p.362−364
【0007】
【発明が解決しようとする課題】
しかしながら、上記のような単一分子からなる有機材料を用いたスイッチング素子にも以下の問題点があった。
すなわち、有機ELディスプレーパネルやメモリなどに応用する場合、上記の双安定材料は単純マトリクスの構成で用いられる事が通常である。このような単純マトリクスの構成では、下地として絶縁性基板(通常はガラス基板が用いられる)と電極とが交互に現れるため、上記の有機双安定材料は異なった2種類の物質上に蒸着される。
【0008】
ここで、上記の有機双安定材料は電子供与基、電子受容基の両方をもった分子量の比較的小さな分子であるために、粒状に成長しやすいという特徴があり、金属電極上では小さな粒で緻密な膜を形成するものの、特にガラスのような平坦でアモルファス構造をもった基板上では大きな粒を形成しやすいという特徴があった。
このため従来の単純マトリクス構成では、ガラス基板上の有機双安定膜が大きな粒を形成するために、電極に隣接しているガラス基板上の有機双安定膜の粒界に起因する大きな漏れ電流が発生し、これがオフ電流を大きくするのでスイッチングのオン電流とオフ電流の比が非常に小さくなる、という問題点があった。
【0009】
本発明は、上記従来技術の問題点を鑑みてなされたもので、漏れ電流が少なく、オン電流とオフ電流との比が大きなスイッチング素子を得ることを目的とする。
【0010】
【課題を解決するための手段】
すなわち、本発明のスイッチング素子は、印加される電圧に対して2種類の安定な抵抗値を持つ有機双安定材料を、絶縁性基板上に配置される電極と、他の電極との間に配置してなるスイッチング素子において、前記絶縁性基板の電極と接する面が有機物であるものとする。
また、本発明のスイッチング素子の絶縁性基板として、電極と接する面に有機物をコーティングしたガラス、もしくは、有機系の高分子フィルムを用いることができる。
【0011】
さらに、前記有機双安定材料は、一つの分子内に、電子供与性の官能基と電子受容性の官能基とを有する化合物を少なくとも含有するものであることが好ましい。
本発明のスイッチング素子によれば、有機双安定材料は、電極の有機物上に成膜されることとなり、従来のように絶縁性基板上で大きな粒を形成する事もなく、絶縁性基板、金属電極上ともに小さな粒で緻密な膜を形成できる。
このために、絶縁性基板と金属電極との境界に存在する有機膜の粒界に起因した漏れ電流を低減させることができ、オン電流とオフ電流との比が大きなスイッチング素子を得る事ができる。
【0012】
【発明の実施の形態】
以下、図面を用いて本発明を詳細に説明する。図1は、本発明のスイッチング素子の一実施形態を示す概略構成図である。
図1に示すように、このスイッチング素子は、基板10上に、電極層21a、双安定材料層30、電極層21bが順次積層された構成となっている。
本発明においては、基板10としては電極21aと接触する面が有機物であるものとし、このために有機物をコーティングしたガラス、もしくは有機系の高分子フィルム等を用いる。
【0013】
電極層21a、21bとしては、アルミニウム、金、銀、ニッケル、鉄などの金属材料や、ITO、カーボン等の無機材料、共役系有機材料、液晶等の有機材料、シリコンなどの半導体材料などが適宜選択可能であり、特に限定されない。
双安定材料層30には、一つの分子内に電子供与性の官能基と、電子受容性の官能基とを有する化合物を少なくとも含有する化合物を用いるが、このような化合物としてアミノイミダゾール系化合物、ジシアノ系化合物、ピリドン系化合物、イミン系化合物、キノン系化合物等が挙げられる。
上記の電極層21a、双安定材料層30、電極層21bは、基板10上に順次薄膜として形成されることが好ましい。薄膜を形成する方法としては、電極層21a、21bとしては、真空蒸着法等の従来公知の方法が好ましく用いられ、特に限定されない。
【0014】
また、双安定材料層30の形成方法としては、スピンコート法、電解重合法、化学蒸気堆積法(CVD法)、単分子膜累積法(LB法)等の有機薄膜の製法が用いられ特に限定されないが、上記の電極層と同じ成膜方法を利用できる、真空蒸着法を用いることが好ましい。
蒸着時の基板温度は、使用する電極材料及び双安定材料によって適宜選択されるが、電極層21a、21bの形成においては0〜150?が好ましく、双安定材料層30の形成においては、0〜100?が好ましい。
また、各層の膜厚は、電極層21a、21bとしては50〜200nmが好ましく、双安定材料層30としては20〜150nmが好ましい。
【0015】
上記の製造方法によって得られる本発明のスイッチング素子では、有機双安定材料は大きな粒を形成する事なく、小さな粒径の膜を形成するために、膜全体にわたって緻密な膜を得る事が出来る。
これにより、単一の分子組成においてドナーとアクセプタの両方の機能を持った有機双安定材料を用いたスイッチング素子においても、絶縁性基板と金属電極との境界に存在する有機膜の粒界に起因した漏れ電流を低減させることができ、オン電流とオフ電流との比が大きなスイッチング素子を得る事ができる。
図2には、本発明のスイッチング素子の、他の実施形態が示されている。この実施形態においては、双安定材料層30内に、更に第3電極22が設けられた3端子素子となっている点が上記の図1の実施形態と異なっている。これにより、電極層21a、21bを付加電流を流す電極として、上記の図6におけるバイアスVbを印加し、更に、第3電極22を、双安定材料層30の抵抗状態を制御する電極として、図6における低閾値電圧Vth1、又は高閾値電圧Vth2を印加することができる。
【0016】
【実施例】
以下、実施例を用いて、本発明のスイッチング素子について更に詳細に説明する。
実施例1
以下の手順で、図1に示すような構成のスイッチング素子を作成した。
基板10としてガラスの表面にスピンコート法によりポリビニルアルコール膜を形成したものを用い、真空蒸着法により、電極層21aとしてアルミニウムを、双安定材料層30として2−アミノ−4,5−イミダゾール−ジカーボニトリルを、電極層21bとしてアルミニウムを順次連続して薄膜を形成し、実施例1のスイッチング素子を形成した。
【0017】
なお、ポリビニルアルコール膜は、溶媒として水を用い、溶媒中に3重量%溶かした溶液をスピンコート法により膜厚300nmとなるように塗布し、120℃で1時間乾燥させた。
また、電極層21a、双安定材料層30、電極層21bは、それぞれ、100nm、80nm、100nmの厚さとなるように成膜した。また、蒸着装置は拡散ポンプ排気で、3×10−6torrの真空度で行なった。また、アルミニウムの蒸着は、抵抗加熱方式により成膜速度は3A/sec、2−アミノ−4,5−イミダゾール−ジカーボニトリルの蒸着は、抵抗加熱方式で成膜速度は2A/secで行った。各層の蒸着は同一蒸着装置で連続して行い、蒸着中に試料が空気と接触しない条件で行った。
【0018】
実施例2
ポリビニルアルコール膜の膜厚を100nmとなるように塗布し、各蒸着層の厚さを、電極層21a、双安定材料層30、電極層21bが、それぞれ100nm、80nm、100nmの厚さとなるように、実施例1と同一の条件で成膜して、実施例2のスイッチング素子を得た。
実施例3
基板10としてガラスの表面にスピンコート法によりポリスチレン膜を形成したものを用い、各蒸着層の厚さを、電極層21a、双安定材料層30、電極層21bが、それぞれ100nm、80nm、100nmの厚さとなるように、実施例1と同一の条件で成膜して、実施例3のスイッチング素子を得た。
【0019】
なお、ポリスチレン膜は、溶媒としてジクロロメタンを用い、溶媒中に3重量%溶かした溶液をスピンコート法により膜厚300nmとなるように塗布し、90℃で1時間乾燥させた。
実施例4
基板10としてポリイミドフィルム(カプトンフィルム:東レ・デュポン社製)を用い、各蒸着層の厚さを、電極層21a、双安定材料層30、電極層21bが、それぞれ100nm、80nm、100nmの厚さとなるように、実施例1と同一の条件で成膜して、実施例4のスイッチング素子を得た。
【0020】
また、比較対照用として、基板10としてガラス基板を用い、各蒸着層の厚さを、電極層21a、双安定材料層30、電極層21bが、それぞれ100nm、80nm、100nmの厚さとなるように、実施例1と同一の条件で成膜した従来例のスイッチング素子も作成した。
試験例
上記の実施例1〜4、および従来例のスイッチング素子について、マトリクス電極を用いて電流−電圧特性を室温環境で測定し、高抵抗状態から低抵抗状態への遷移を観測した。このときの、高抵抗状態から低抵抗状態へ遷移するしきい電圧Vth2、および図6におけるバイアス電圧Vbにおける、低抵抗状態での電流値(on電流)Ion、高抵抗状態での電流値(OFF電流)Ioffを測定した結果をまとめて表1に示す。なお、測定条件として、各スイッチング素子には、1MΩの範囲の電気抵抗を直列に接続し、ON状態の電流を制限して過電流による素子の損傷を抑制した。また、Vbとしてはしきい電圧Vth2の半分の電圧を用いた。
【0021】
【表1】

Figure 2004247529
また、図3の(a)、(b)及び(c)には、それぞれ、実施例1および従来例のスイッチング素子についての原子間力顕微鏡で観察した有機膜の表面形状を示す。
図3(a)に示す有機膜の表面形状写真から明らかなように、実施例1のポリビニルアルコール膜上の有機膜は、アルミ電極上の有機膜と遜色のない、緻密な膜となっている事がわかる。これに対し、(c)の従来例では、ガラス基板上の有機膜は非常に大きな粒径となっており、その結果粒界は非常に疎になっている事がわかる。
【0022】
さらに、それぞれ実施例及び従来例のスイッチング素子についての電流‐電圧特性を示す図4、5の結果より、実施例1及び従来例のスイッチング素子いずれにおいても高抵抗状態71、81、及び低抵抗状態72、82と双安定性が得られているが、高抵抗状態における電流値(off電流)の値は明らかに本発明による実施例1の方が小さく抑えられている事がわかる。
すなわち、図4の実施例1において、高抵抗状態71ではoff電流(高抵抗状態での電流)は3.9×10−8A/cm程度となっているが、Vth1において高抵抗状態71から低抵抗状態72へ遷移し、低抵抗状態におけるon電流(低抵抗状態での電流)は1.1×10−4A/cmとなっている。この際の低抵抗状態/高抵抗状態の比として、約10が得られた。
【0023】
これに対し従来例では、高抵抗状態81から低抵抗状態へと双安定性が得られているものの、off電流(高抵抗状態での電流)は9.0×10−6A/cm程度と実施例1と比較しても2桁大きく、このために低抵抗状態/高抵抗状態の比も約10と大変小さくなっている。
また、実施例1〜4のすべてのスイッチング素子において双安定性は得られており、表1に示すようにoff電流はおおよそ(4〜13)×10−8A/cmの範囲であり従来例と比較して約2桁小さくなっている。
【0024】
【発明の効果】
以上説明したように、本発明によれば、単一の分子組成においてドナーとアクセプタの両方の機能を持った有機双安定材料を用いたスイッチング素子においても、絶縁性基板と金属電極との境界に存在する有機膜の粒界に起因した漏れ電流を低減させることができ、オン電流とオフ電流との比が大きなスイッチング素子を得る事ができる。したがって、このスイッチング素子は、有機ELディスプレーパネルの駆動用スイッチング素子や、高密度メモリ等に好適に利用できる。
【図面の簡単な説明】
【図1】本発明のスイッチング素子の一実施形態を示す概略構成図
【図2】本発明のスイッチング素子の他の実施形態を示す概略構成図
【図3】実施例1、および従来例におけるスイッチング素子の有機膜表面の原子間力顕微鏡写真
【図4】実施例1におけるスイッチング素子の電流−電圧特性を示す図
【図5】従来例におけるスイッチング素子の電流−電圧特性を示す図
【図6】従来のスイッチング素子の電圧−電流特性の概念図
【符号の説明】
10:基板
21a、21b:電極層
22:第3電極層
30:双安定材料層
51、71、81:高抵抗状態
52、72、82:低抵抗状態
Vth1:低閾値電圧
Vth2:高閾値電圧[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a switching element for driving an organic EL display panel, and a switching element used for a high-density memory or the like, in which an organic bistable material is disposed between two electrodes.
[0002]
[Prior art]
In recent years, the properties of organic electronic materials have made remarkable progress. In particular, some low-dimensional conductors such as charge-transfer complexes have characteristic properties such as metal-insulator transition, and their application to switching elements for driving organic EL display panels and high-density memories has been studied. I have.
As a material applicable to the above-described switching element, an organic bistable material has been attracting attention. An organic bistable material is an organic material exhibiting a so-called non-linear response in which, when a voltage is applied to a material, a current of a circuit rapidly increases at a certain voltage or more and a switching phenomenon is observed.
[0003]
FIG. 6 shows an example of the voltage-current characteristics of the organic bistable material exhibiting the switching behavior as described above.
As shown in FIG. 6, the organic bistable material has two current-voltage characteristics, a high resistance characteristic 51 (off state) and a low resistance characteristic 52 (on state). When the voltage is Vth2 or more in the applied state, the state transits from the off state to the on state, and when the voltage is Vth1 or less, the state transits from the on state to the off state and the resistance value changes, and has a nonlinear response characteristic. . That is, a so-called switching operation can be performed by applying a voltage of Vth2 or higher or Vth1 or lower to this organic bistable material. Here, Vth1 and Vth2 can be applied as pulsed voltages.
[0004]
Various organic complexes are known as organic bistable materials exhibiting such a nonlinear response. For example, R. S. Have prototyped a switching element having two stable resistance values with respect to voltage using a Cu-TCNQ (copper-tetracyanoquinodimethane) complex (Non-Patent Document 1).
Kumai et al. Have observed switching behavior due to non-linear response using a single crystal of a K-TCNQ (potassium-tetracyanoquinodimethane) complex (Non-Patent Document 2).
Furthermore, Adachi et al. Formed a Cu-TCNQ complex thin film using a vacuum deposition method, clarified the switching characteristics thereof, and studied the applicability to an organic EL matrix (Non-Patent Document 3).
[0005]
Recently, in contrast to the above-described two-component charge transfer complex, Yang et al. Disclose a very thin Al film with a thin film of 2-amino-4,5-imidazole-dicarbonitrile to form a single component. A switching characteristic similar to that of the above-described charge transfer complex is obtained by the organic film (Non-Patent Document 4).
In this configuration, since each is a thin film composed of a single component, the composition controllability is remarkably improved as compared with a conventional two-component charge transfer complex.
In addition, as a result of intensive studies, we have obtained switching characteristics similar to those of the above charge transfer complex with an organic film using only a single-component organic material without using a thin Al film (see Japanese Patent Application Laid-Open No. H10-163,873). 2002-271911).
[0006]
[Non-patent document 1]
R. S. Potember, 1 other, Appl. Phys. Lett. 34 (6), 15 March 1979, p. 405-407
[Non-patent document 2]
Reiji Kumai and 2 others, "Solid State Physics", vol. 35, No. 1 (2000), P.K. 33-40
[Non-Patent Document 3]
Chihaya Adachi and 3 others, Proceedings of the Japan Society of Applied Physics, Spring 2002, 3rd volume, p. 1236
[Non-patent document 4]
Yang Yang, 3 others, Appl. Phys. Lett. , Vol. 80, no. 3, (21 / Jan / 2002) p. 362-364
[0007]
[Problems to be solved by the invention]
However, a switching element using an organic material composed of a single molecule as described above also has the following problems.
That is, when applied to an organic EL display panel or a memory, the above bistable material is usually used in a simple matrix configuration. In such a simple matrix configuration, an insulating substrate (usually, a glass substrate is used) and an electrode alternately appear as bases, so the organic bistable material is deposited on two different substances. .
[0008]
Here, since the organic bistable material is a molecule having both an electron donating group and an electron accepting group and having a relatively small molecular weight, the organic bistable material has a feature that it is easy to grow in a granular form. Although a dense film is formed, there is a feature that large grains are easily formed, particularly on a substrate having a flat and amorphous structure such as glass.
For this reason, in the conventional simple matrix configuration, since the organic bistable film on the glass substrate forms large grains, a large leakage current due to the grain boundary of the organic bistable film on the glass substrate adjacent to the electrode is generated. This causes a problem that the ratio of the on-current to the off-current of the switching becomes very small because the off-current increases.
[0009]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the related art, and has as its object to obtain a switching element having a small leakage current and a large ratio between an on-state current and an off-state current.
[0010]
[Means for Solving the Problems]
That is, the switching element of the present invention includes an organic bistable material having two kinds of stable resistance values with respect to an applied voltage between an electrode disposed on an insulating substrate and another electrode. In the switching element, the surface of the insulating substrate in contact with the electrode is made of an organic material.
Further, as the insulating substrate of the switching element of the present invention, glass having an organic substance coated on a surface in contact with an electrode, or an organic polymer film can be used.
[0011]
Further, the organic bistable material preferably contains at least a compound having an electron donating functional group and an electron accepting functional group in one molecule.
According to the switching element of the present invention, the organic bistable material is formed on the organic substance of the electrode, without forming large grains on the insulating substrate as in the related art, and the insulating substrate, metal A dense film can be formed with small particles on both electrodes.
For this reason, it is possible to reduce the leakage current caused by the grain boundary of the organic film existing at the boundary between the insulating substrate and the metal electrode, and to obtain a switching element having a large ratio between the on-current and the off-current. .
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing one embodiment of the switching element of the present invention.
As shown in FIG. 1, the switching element has a configuration in which an electrode layer 21a, a bistable material layer 30, and an electrode layer 21b are sequentially stacked on a substrate 10.
In the present invention, the surface of the substrate 10 in contact with the electrode 21a is made of an organic material. For this purpose, glass coated with an organic material, an organic polymer film, or the like is used.
[0013]
As the electrode layers 21a and 21b, a metal material such as aluminum, gold, silver, nickel, and iron; an inorganic material such as ITO and carbon; an organic material such as a conjugated organic material, a liquid crystal; and a semiconductor material such as silicon are appropriately used. It is selectable and is not particularly limited.
For the bistable material layer 30, a compound containing at least a compound having an electron-donating functional group and an electron-accepting functional group in one molecule is used. As such a compound, an aminoimidazole compound, Dicyano compounds, pyridone compounds, imine compounds, quinone compounds and the like.
Preferably, the electrode layer 21a, the bistable material layer 30, and the electrode layer 21b are sequentially formed as thin films on the substrate 10. As a method of forming a thin film, a conventionally known method such as a vacuum deposition method is preferably used for the electrode layers 21a and 21b, and is not particularly limited.
[0014]
As a method for forming the bistable material layer 30, a method for producing an organic thin film such as a spin coating method, an electrolytic polymerization method, a chemical vapor deposition method (CVD method), and a monomolecular film accumulation method (LB method) is used, and is particularly limited. Although not required, it is preferable to use a vacuum evaporation method that can use the same film formation method as the above-described electrode layer.
The substrate temperature at the time of vapor deposition is appropriately selected depending on the electrode material and the bistable material to be used. However, in forming the electrode layers 21a and 21b, 0 to 150? Preferably, in the formation of the bistable material layer 30, 0-100? Is preferred.
The thickness of each layer is preferably 50 to 200 nm for the electrode layers 21 a and 21 b, and 20 to 150 nm for the bistable material layer 30.
[0015]
In the switching element of the present invention obtained by the above-described manufacturing method, the organic bistable material forms a film having a small particle size without forming a large particle, so that a dense film can be obtained over the entire film.
As a result, even in a switching element using an organic bistable material having both functions of a donor and an acceptor in a single molecular composition, it is caused by a grain boundary of an organic film present at a boundary between an insulating substrate and a metal electrode. Leakage current can be reduced, and a switching element having a large ratio of on-current to off-current can be obtained.
FIG. 2 shows another embodiment of the switching element of the present invention. This embodiment is different from the above-described embodiment of FIG. 1 in that a three-terminal element in which a third electrode 22 is further provided in a bistable material layer 30 is provided. Thereby, the bias Vb in FIG. 6 described above is applied by using the electrode layers 21 a and 21 b as electrodes through which an additional current flows, and the third electrode 22 is used as an electrode for controlling the resistance state of the bistable material layer 30. 6, the low threshold voltage Vth1 or the high threshold voltage Vth2 can be applied.
[0016]
【Example】
Hereinafter, the switching element of the present invention will be described in more detail using examples.
Example 1
By the following procedure, a switching element having a configuration as shown in FIG. 1 was created.
A substrate having a polyvinyl alcohol film formed on the surface of glass by spin coating is used as the substrate 10, and aluminum is used as the electrode layer 21 a and 2-amino-4,5-imidazole-diethyl is used as the bistable material layer 30 by vacuum evaporation. A thin film was successively formed from carbononitrile and aluminum as the electrode layer 21b to form a switching element of Example 1.
[0017]
Note that the polyvinyl alcohol film was formed by applying a solution in which 3 wt% was dissolved in a solvent using water as a solvent so as to have a thickness of 300 nm by a spin coating method, and dried at 120 ° C. for 1 hour.
The electrode layer 21a, the bistable material layer 30, and the electrode layer 21b were formed to have thicknesses of 100 nm, 80 nm, and 100 nm, respectively. In addition, the deposition apparatus was evacuated with a diffusion pump to a degree of vacuum of 3 × 10 −6 torr. The deposition rate of aluminum was 3 A / sec by a resistance heating method, and the deposition rate of 2-amino-4,5-imidazole-dicarbonitrile was 2 A / sec by a resistance heating method. . The vapor deposition of each layer was continuously performed by the same vapor deposition apparatus, and was performed under the condition that the sample did not come into contact with air during the vapor deposition.
[0018]
Example 2
The polyvinyl alcohol film is coated so as to have a thickness of 100 nm, and the thickness of each vapor deposition layer is set so that the electrode layer 21a, the bistable material layer 30, and the electrode layer 21b have a thickness of 100 nm, 80 nm, and 100 nm, respectively. A film was formed under the same conditions as in Example 1 to obtain a switching element of Example 2.
Example 3
As a substrate 10, a substrate in which a polystyrene film is formed on a glass surface by a spin coating method is used, and the thickness of each vapor deposition layer is set such that the electrode layer 21a, the bistable material layer 30, and the electrode layer 21b have a thickness of 100 nm, 80 nm, and 100 nm, respectively. A film was formed under the same conditions as in Example 1 so as to have a thickness, and a switching element of Example 3 was obtained.
[0019]
The polystyrene film was prepared by applying a solution prepared by dissolving 3% by weight in a solvent using dichloromethane as a solvent so as to have a thickness of 300 nm by a spin coating method, and dried at 90 ° C. for 1 hour.
Example 4
A polyimide film (Kapton film: manufactured by Du Pont-Toray Co., Ltd.) was used as the substrate 10, and the thickness of each vapor-deposited layer was set to 100 nm, 80 nm, and 100 nm, respectively, for the electrode layer 21a, the bistable material layer 30, and the electrode layer 21b. Thus, a film was formed under the same conditions as in Example 1 to obtain a switching element of Example 4.
[0020]
For comparison, a glass substrate was used as the substrate 10, and the thickness of each deposition layer was adjusted so that the electrode layer 21a, the bistable material layer 30, and the electrode layer 21b had a thickness of 100 nm, 80 nm, and 100 nm, respectively. A switching element of a conventional example formed under the same conditions as in Example 1 was also prepared.
Test Example Regarding the switching elements of Examples 1 to 4 and the conventional example, current-voltage characteristics were measured at room temperature using a matrix electrode, and a transition from a high resistance state to a low resistance state was observed. At this time, the current value (on-current) Ion in the low-resistance state and the current value (OFF) in the high-resistance state at the threshold voltage Vth2 for transition from the high-resistance state to the low-resistance state and the bias voltage Vb in FIG. Table 1 summarizes the measurement results of the current (Ioff). As a measurement condition, an electric resistance in a range of 1 MΩ was connected in series to each switching element, and a current in an ON state was limited to suppress damage to the element due to an overcurrent. Further, a voltage half of the threshold voltage Vth2 was used as Vb.
[0021]
[Table 1]
Figure 2004247529
FIGS. 3A, 3B, and 3C show the surface shapes of the organic films of the switching elements of Example 1 and the conventional example, respectively, observed by an atomic force microscope.
As is clear from the photograph of the surface shape of the organic film shown in FIG. 3A, the organic film on the polyvinyl alcohol film of Example 1 is a dense film comparable to the organic film on the aluminum electrode. I understand that. On the other hand, in the conventional example (c), it can be seen that the organic film on the glass substrate has a very large particle size, and as a result, the grain boundaries are very sparse.
[0022]
Further, from the results of FIGS. 4 and 5 showing the current-voltage characteristics of the switching element of the embodiment and the conventional example, respectively, the high resistance states 71 and 81 and the low resistance state of each of the switching elements of the embodiment 1 and the conventional example are shown. Although the bistability is obtained as 72 and 82, it is apparent that the value of the current value (off current) in the high resistance state is clearly smaller in Example 1 according to the present invention.
That is, in the first embodiment of FIG. 4, the off current (current in the high resistance state) is about 3.9 × 10 −8 A / cm 2 in the high resistance state 71, but the high resistance state 71 in Vth1. To the low-resistance state 72, and the on-current (current in the low-resistance state) in the low-resistance state is 1.1 × 10 −4 A / cm 2 . As the ratio of the low-resistance state / high-resistance state at this time, about 103 were obtained.
[0023]
On the other hand, in the conventional example, although the bistability is obtained from the high resistance state 81 to the low resistance state, the off current (current in the high resistance state) is about 9.0 × 10 −6 A / cm 2. In comparison with Example 1, the ratio is two orders of magnitude larger, and therefore, the ratio of the low resistance state / high resistance state is very small, about 10.
Bistability was obtained in all the switching elements of Examples 1 to 4. As shown in Table 1, the off current was approximately in the range of (4 to 13) × 10 −8 A / cm 2. It is about two orders of magnitude smaller than the example.
[0024]
【The invention's effect】
As described above, according to the present invention, even in a switching element using an organic bistable material having both functions of a donor and an acceptor in a single molecular composition, even at a boundary between an insulating substrate and a metal electrode, It is possible to reduce a leakage current caused by a grain boundary of an existing organic film, and to obtain a switching element having a large ratio between an on-state current and an off-state current. Therefore, the switching element can be suitably used for a switching element for driving an organic EL display panel, a high-density memory, and the like.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing one embodiment of a switching element of the present invention. FIG. 2 is a schematic configuration diagram showing another embodiment of a switching element of the present invention. FIG. 3 Switching in Example 1 and a conventional example. Atomic force micrograph of the organic film surface of the device. FIG. 4 is a diagram showing current-voltage characteristics of a switching device in Example 1. FIG. 5 is a diagram showing current-voltage characteristics of a switching device in a conventional example. Conceptual diagram of voltage-current characteristics of conventional switching element [Explanation of symbols]
10: substrate 21a, 21b: electrode layer 22: third electrode layer 30: bistable material layer 51, 71, 81: high resistance state 52, 72, 82: low resistance state Vth1: low threshold voltage Vth2: high threshold voltage

Claims (4)

印加される電圧に対して2種類の安定な抵抗値を持つ有機双安定材料を、絶縁性基板上に配置される電極と、他の電極との間に配置してなるスイッチング素子において、前記絶縁性基板の電極と接する面が有機物である事を特徴とするスイッチング素子。In a switching element, an organic bistable material having two kinds of stable resistance values with respect to an applied voltage is disposed between an electrode disposed on an insulating substrate and another electrode. A switching element characterized in that the surface of the conductive substrate in contact with the electrode is made of an organic substance. 前記絶縁性基板が、電極と接する面に有機物をコーティングしたガラスである事を特徴とする請求項1のスイッチング素子。2. The switching element according to claim 1, wherein the insulating substrate is glass having a surface in contact with an electrode coated with an organic substance. 前記絶縁性基板が、有機系の高分子フィルムである事を特徴とする請求項1のスイッチング素子。2. The switching element according to claim 1, wherein the insulating substrate is an organic polymer film. 前記有機双安定材料が、一つの分子内に、電子供与性の官能基と電子受容性の官能基とを有する化合物を少なくとも含有することを特徴とする請求項1〜3の何れかに記載のスイッチング素子。The organic bistable material according to any one of claims 1 to 3, wherein at least one compound having an electron-donating functional group and an electron-accepting functional group is contained in one molecule. Switching element.
JP2003035997A 2003-02-14 2003-02-14 Switching element Withdrawn JP2004247529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035997A JP2004247529A (en) 2003-02-14 2003-02-14 Switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035997A JP2004247529A (en) 2003-02-14 2003-02-14 Switching element

Publications (1)

Publication Number Publication Date
JP2004247529A true JP2004247529A (en) 2004-09-02

Family

ID=33021212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035997A Withdrawn JP2004247529A (en) 2003-02-14 2003-02-14 Switching element

Country Status (1)

Country Link
JP (1) JP2004247529A (en)

Similar Documents

Publication Publication Date Title
Park et al. Multilevel nonvolatile small-molecule memory cell embedded with Ni nanocrystals surrounded by a NiO tunneling barrier
Bozano et al. Organic materials and thin‐film structures for cross‐point memory cells based on trapping in metallic nanoparticles
Yang et al. Electrical switching and bistability in organic/polymeric thin films and memory devices
JP6746586B2 (en) Electronic parts
Tu et al. Memory effect in the current-voltage characteristic of 8-hydroquinoline aluminum salt films
WO2004073079A1 (en) Switching device
WO2004070789A2 (en) Rewritable nano-surface organic electrical bistable devices
Li et al. Single crystal halide perovskite film for nonlinear resistive memory with ultrahigh switching ratio
Ramana et al. Solution based-spin cast processed organic bistable memory device
JP4254228B2 (en) Switching element and manufacturing method thereof
JP2004088066A (en) Sandwich-type field effect transistor including organic semiconductor and its manufacturing method
Ha et al. Electrode-material-dependent switching characteristics of organic nonvolatile memory devices based on poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) film
Das et al. Switching between different conformers of a molecule: Multilevel memory elements
WO2004006351A1 (en) Switching element
JP4835158B2 (en) Switching element
Kim et al. Current-dependent switching characteristics of PI-Diphenyl carbamyl films
JP4826254B2 (en) Switching element
JP2004247529A (en) Switching element
JP5000516B2 (en) Transistor having a dust electrode for tunneling
KR100821691B1 (en) Material and cell structure for memory applications
Agrawal et al. Mechanism of resistive switching in 3, 4, 9, 10 perylenetetracarboxylic dianhydride (PTCDA) sandwiched between metal electrodes
Lee et al. Organic memory cells based on the switching by nanoparticles containing thin films
JP2005123394A (en) Switching element and its manufacturing method
JP2005332977A (en) Switching element
JP2006339473A (en) Method for forming organic semiconductor layer, organic semiconductor structure and organic semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080925

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081126