[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004246826A - Mass flow controller - Google Patents

Mass flow controller Download PDF

Info

Publication number
JP2004246826A
JP2004246826A JP2003038803A JP2003038803A JP2004246826A JP 2004246826 A JP2004246826 A JP 2004246826A JP 2003038803 A JP2003038803 A JP 2003038803A JP 2003038803 A JP2003038803 A JP 2003038803A JP 2004246826 A JP2004246826 A JP 2004246826A
Authority
JP
Japan
Prior art keywords
flow
sensor
flow rate
pressure
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003038803A
Other languages
Japanese (ja)
Other versions
JP4137666B2 (en
Inventor
Masami Nishikawa
正巳 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stec KK
Original Assignee
Stec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stec KK filed Critical Stec KK
Priority to JP2003038803A priority Critical patent/JP4137666B2/en
Publication of JP2004246826A publication Critical patent/JP2004246826A/en
Application granted granted Critical
Publication of JP4137666B2 publication Critical patent/JP4137666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means

Landscapes

  • Measuring Volume Flow (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mass flow controller which is simple in configuration and nevertheless can perform flow control while confirming whether the flow rate is appropriately controlled. <P>SOLUTION: The mass flow controller comprises an opening control valve 4 which controls the flow of fluid passing in a channel 2; a pressure sensor 7b disposed on the downstream side of the control valve 4; a throttling part 6 disposed on the downstream side of the pressure sensor 7b; a flow sensor 5 which measures the flow rate F of the fluid passing in the channel 2; and a control unit 8 which uses the outputs Spb, Sf of the pressure sensor 7b and the flow sensor 5 to control the opening/closing of the control valve 4, thereby controlling the flow rate F of the fluid passing through the throttling part 6, and monitors the flow rate F. <P>COPYRIGHT: (C)2004,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、マスフローコントローラに関する。より詳細には、絞り部を用いたマスフローコントローラに関するものである。
【0002】
【従来の技術】
図3は、従来のマスフローコントローラを用いた半導体製造ライン10の例を示す図である。図3において、11は半導体製造ラインを構成するチャンバ、12はチャンバ11に異なるガスGa,Gbを供給するガス供給ライン、13,14は各ガスGa,Gbをそれぞれ供給するガスボンベである。
【0003】
ガス供給ライン12は、機械式の調圧器15と、この調圧器15の下流側のゲージ16と、フィルタ17とを有している。18はマスフローコントローラ、19a,19bはマスフローコントローラ18の上流側と下流側にそれぞれ設けた開閉弁である。また、20はガス供給ライン12に流れるガスGa,Gbの流量を測定するマスフローメータである。
【0004】
つまり、ガス供給ライン12は2つのガスGa,Gbのうち何れか一方を選択的に適宜チャンバ11に供給すると共に、マスフローコントローラ18によってその流量を調整可能とするものである。また、半導体製造プロセスに用いるガスGa,Gbは例えばプロセスガスGaと、流量確認を行うための不活性ガスGbが考えられる。
【0005】
前記マスフローコントローラ18は圧力センサ18aと音速ベンチュリなどの絞り部18bを備えたものであり、絞り部18bの上流側における圧力を調整することにより、流量を適正に制御するものである。
【0006】
【発明が解決しようとする課題】
しかしながら、前記絞り部18bは経時的な変化によって、流路が狭くなることがあり、圧力を一定に保ったとしてもそれに応じた流量のガスGaを流すことができない場合があった。
【0007】
そこで、図3に示す例のように、不活性ガスGbを流した状態でマスフローコントローラ18によって調整される不活性ガスGbの流量をモニタすることによって、マスフローコントローラ18の流量制御が適正に行われているかどうかを確認することが行われている。ところが、図3に示すようなガス供給ライン12では、マスフローコントローラ18の状態を確認するだけのために別途マスフローメータ20を設ける必要があるので、ガス供給ライン12が複雑になり、コスト高である。
【0008】
また、ガス供給ライン12が複雑になればなるほど制御が複雑になるだけでなく、ガス漏れや故障の発生率も高くなることは避けられなかった。
【0009】
加えて、上述のようなマスフローコントローラ18およびマスフローメータ20の一次側には、圧力調整用、圧力変動対策用の調圧器15が設けてあるために、部品点数も多くならざるを得ず、ガス供給パネルを小さくすることはできなかった。
【0010】
本発明は、上述の事柄を考慮に入れてなされたもので、その目的は簡単な構成でありながら、流量の制御が適正に行われているかどうかを確認しながら流量制御を行うことができるマスフローコントローラを提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するため、第1発明のマスフローコントローラは、流路中を流れる流体の流れを制御する開閉制御弁と、この開閉制御弁の下流側に配置された圧力センサと、この圧力センサの下流側に配置された絞り部と、前記流路を流れる流体の流量を測定する流量センサと、前記圧力センサおよび流量センサの出力を用いることで、開閉制御弁を開閉制御して絞り部を流れる流体の流量を制御すると共に、この流量を監視する制御部とを設けてなることを特徴としている。(請求項1)
【0012】
したがって、流量センサによって測定可能な流体の流量と、圧力センサによって測定可能な絞り部の上流側における流体の圧力とをそれぞれ測定し、2つの異なる方法で測定した流体の状態のうち一方を開閉制御弁のフィードバック制御に用い、他方をマスフローコントローラに流れる流体の流量モニタとして用いることができる。
【0013】
つまり、例えば前記制御部が、圧力センサの出力を用いて開閉制御弁を開閉制御して絞り部の上流側における圧力を調節することで絞り部を通る流体の流量を調節し、この流量を流量センサの出力を用いて監視するものである場合は、マスフローコントローラは絞り部の上流側の流体の圧力によって流量制御しながら、流量センサの出力を用いてその動作を監視することが可能となる。これによって、絞り部につまりが生じるなどの異常が発生した場合には、これを早急に見いだすことができ、より信頼性の高い流量制御を行うことができる。また、従来のようにマスフローコントローラの動作を確認するためのマスフローメータのような部材を別途設ける必要がなく、それだけガス供給ラインの構成を簡単にすることができる。
【0014】
前記流量センサを圧力センサの上流側に設けてなる場合(請求項2)には、圧力センサの直下の流路に絞り部を位置させることが可能であるから、流量センサによって生じる圧力の降下に関係なく、圧力センサの出力を用いて絞り部の直上における圧力を精度良く調整でき、それだけ流量制御の精度を向上できる。
【0015】
前記流量センサを開閉制御弁の上流側に設けてなる場合(請求項3)には、マスフローコントローラの下流側の流路内がほぼ真空状態になる程度まで真空引きが行われたとしても、マスフローコントローラの二次側流路と流量センサの間に開閉制御弁が位置するので、流量センサ内が真空引きされることがなく、この流量センサが誤動作することがないので、信頼性が向上する。
【0016】
【発明の実施の形態】
図1は本発明のマスフローコントローラ1の一例を示すブロック図である。本例のマスフローコントローラ1は流体(以下の例では流体としてガスを例示するが、この流体が気体であることを限定するものではない)を流すための流路2を形成する流路ブロック3と、この流路ブロック3に連結された開閉制御弁4と、流量センサ5と、絞り部6と、2つの圧力センサ7と、開閉制御弁4を制御する制御部8と、フィルタ9とを有している。
【0017】
前記流路2は例えば、流路ブロック3内をくり抜くように形成されており、第1流路2aおよび第2流路2bとを有している。また、流路2の上流端および下流端には配管取付け部3a,3bをそれぞれ設けている。なお、流路2の形成手順は掘削であっても、鋳型を用いたものであってもその他の方法であってもよく、第2流路2bを掘削などで形成する場合には流路ブロック3は少なくとも1か所において分離可能に形成する必要があるが、何れにしても流路ブロック3,3a,3bを全体的に一体成形することで、ガス漏れを防ぐことができる。
【0018】
開閉制御弁4は例えば流路ブロック3の一側面に形成された弁座3cに当接するダイアフラム4aとそのアクチュエータ4bとからなり、開度制御信号(圧力制御信号)Cpによって前記流路2a,2bを連通連結する開度が制御可能に構成される。
【0019】
流量センサ5は例えば第2流路2b内に挿入された整流体5aと、この第2流路2bから所定の割合1/Aの流量だけ分岐する分岐流路5bと、この分岐流路5bに設けたセンサ本体5cとを有し、総流量Fを示す流路信号Sfを出力する。
【0020】
また、絞り部6は例えばその一次側と二次側における圧力差が所定値以上であるときに一次側の圧力に応じた流量の流体を流す音速ノズルであって、この音速ノズル6は例えば内部に絞り部分6aを形成したブロックを流路2bの下流端側において流路2bに連通するように配置してなる。なお、本発明は絞り部6の構成を音速ノズルに限定されるものではなく、流路2に抵抗を形成するための絞り部分6aを形成するものであればよい。
【0021】
前記開閉制御弁4,流量センサ5は流路ブロック3の一側面(上面)に並べて配置されており、これによってマスフローコントローラ1の全体的な大きさを小さく抑えることができる。
【0022】
前記圧力センサ7は第1流路2aに臨ませるように側面に配置された第1センサ7aと、第2流路2bに臨ませるように側面に配置された第2センサ7bとからなり、両圧力センサ7a,7bは前記各部4〜5を取り付けた側面とは異なる面(本例では図1において第1流路2aの手前および前記流量センサ5を構成する整流体5aの直前に位置する第2流路の奥)にそれぞれ埋設している。これによって、マスフローコントローラ1の全体的な大きさを変えることなく圧力センサ7を設置できる。そして、前記センサ7a,7bはそれぞれ第1流路2a,第2流路2b内の圧力Pa,Pbを示す圧力信号Spa,Spbを出力する。
【0023】
なお、本例ではセンサ7a,7bを側面に設ける例を示しているが、圧力センサ7は流路2に臨ませるように取り付けられるものであれば、その取付け面を限定するものではない。つまり、流路ブロック3の下面に埋設しても、上面で前記制御弁4,流量センサ5の邪魔にならない位置に埋設してもよいことはいうまでもない。
【0024】
前記制御部8は、前記圧力センサ7からの圧力信号Spa,Spb(出力)および流量センサ5からの流量制御信号Sf(出力)をフィードバックして開度制御信号Cpを出力することで開閉制御弁4をフィードバック制御する処理部8aと、外部とのインターフェース8bとを有している。
【0025】
また、図示を省略するが本例のマスフローコントローラ1は各センサ5,7a,7bによって測定された値F,Pa,Pbを表示する表示部を有している。さらに、センサ5,7a,7bによって測定された値F,Pa,Pbは何れもインターフェース8bを介して外部に出力可能としている。なお、本例ではインターフェース8bはアナログ的な値の入出力を行うものである例を示しているが、これがデジタル的に通信するものであってもよい。
【0026】
加えて、開閉制御弁4の開閉制御は圧力センサ7bの出力信号Spbだけを用いてフィードバック制御するものに限られるものではなく、圧力センサ7aの出力信号Spaも用いて制御してもよい。なお、本例に示すように圧力センサ7aを設けることにより、マスフローコントローラ1に入力されているガスの圧力をモニタすることも可能であるが、この圧力センサ7aを省略してもよいことはいうまでもない。
【0027】
また、本例のマスフローコントローラ1はフィルタ9を内蔵しているので、従来のように別途のフィルタ16を連通連結する必要もない。すなわち、それだけガス供給ラインの簡素化を図ることができ、設置面積を少なくすることができる。なお、本例ではフィルタ9を流路2の最上流端に設けることで異物の進入による誤動作を防止する例を示しているが、本発明はフィルタ9の位置を限定するものではない。また、場合によってはフィルタ9を省略することも可能である。
【0028】
上記構成のマスフローコントローラ1において、処理部8aはインターフェース8bを介して流量設定信号Fsを入力し、マスフローコントローラ1に流れる流体の流量Fを流量設定信号Fsに合うように調整するものである。また、本例のマスフローコントローラ1では、処理部8が圧力センサ7bの出力(圧力信号Spb)を用いて開閉制御弁4をフィードバックしてその開閉を制御することにより音速ノズル6を流れる流体の流量Fを制御すると共に、このときの流量センサ5の出力(流量信号Sf)を用いて実際に流れている流量Fの測定を行って、その動作を確認するものである。
【0029】
なお、本例の場合は、開閉制御弁4の開閉制御のために圧力センサ7bの出力Spbを用いているので、流量制御の高速応答を達成できるが、本発明はこの点に限定されるものではない。すなわち、処理部8は流量センサ5の出力Sfを用いて開閉制御弁4の開閉制御を行うと同時に、圧力センサ7bの出力Spbによって実際に音速ノズル6に流れる流体の流量Fを別の測定方法で確認することも可能である。
【0030】
何れの場合においても、制御部8は流量制御に用いるセンサ5または7bと流量の監視に用いるセンサ7bまたは5の流量の測定原理を異ならせることで、設定された流量Fsが確かに流れているかどうかを、より確実に確認することができる。つまり、マスフローコントローラ1の信頼性を向上でき、従来のようにマスフローコントローラ1に流れる流体の流量Fを確認するためのマスフローメータ20を別途取り付ける必要が全くなくなり、それだけガス供給ラインの簡素化を達成できる。
【0031】
また、本例の場合は流量センサ5が圧力センサ7bの上流側に配置されているので、圧力センサ7bを絞り部6の直上の流路に配置できるので、この流量センサ5を流れる流体の流れによって生じる圧力降下が、圧力センサ7bによって測定される絞り部6の直上における圧力Pbの制御に悪影響を与えることがなく、それだけ精度の高い制御を行うことができる。
【0032】
しかしながら、本発明は流量センサ5が圧力センサ7bの上流側に配置される構成に限定されるものではなく、この圧力センサセンサを流量センサ5の上流側に設けてもよい。この場合、流量センサ5に流れ込む流体の圧力を一定に保つことができるので、流量センサ5はより正確な流量測定を行うことができる。なお、圧力センサ7を流量センサ5の上流側と下流側の両方に設けてもよいことはいうまでもない。この場合、流量測定を流量センサ5と圧力センサ7bに加えて、流量センサ5の直上および直下における圧力差によって測定することも可能となり、これを用いることでさらに信頼性の高いマスフローメータ1を形成することができる。
【0033】
また、本例に示すように、開閉制御弁4と流量センサ5を並べて配置し、その間に位置する第2流路2bをできるだけ短くしているので、開閉制御弁4の開度制御信号Cの出力に対する圧力Pbの時間的な遅れを可及的に小さくし圧力Pbの変動をできるだけ小さくできる。
【0034】
さらに、前記圧力センサ7bを開閉制御弁4と流量センサ5の間における第2流路2bにおいてできるだけ流量センサ5に近い位置(直前を構成する流路)に配置することにより、乱流などの影響の少ない圧力Pbを測定することができる。すなわち、それだけマスフローコントローラ1による流量の制御精度および安定性を向上できる。
【0035】
加えて、前記開閉制御弁4と流量センサ5の間における第2流路2b内から、継手や配管を排除することで、流路の抵抗による圧力低下やガス漏れリスクを無くすことができる。
【0036】
図2は前記マスフローコントローラ1の変形例を示すブロック図である。図2において、図1と同じ符号を付した部分は同一または同等の部分であるから、その詳細な説明を省略する。本例に示す例が図1に示した例を異なる点は流量センサ5を開閉制御弁4の上流側の流路2aに設けてなる点にある。
【0037】
本例のように構成することにより、マスフローコントローラ1の二次側における圧力が真空ポンプなどによってほゞ真空状態になったとしても、開閉制御弁4の上流側に配置された流量センサ5内まで真空引きされることがなく、この流路センサ5内には流体が存在するので、この流路センサ5が誤動作を起こすことがない。つまり、前記少流量制御時において二次側圧力の低下に影響されることのない流量制御を行なうことができ、それだけ流量制御の信頼性を向上できる。
【0038】
また、本例の場合は流量センサ5の一次側に圧力センサ7aを配置することで、マスフローコントローラ1に供給される流体の圧力Paを求めることができる。すなわち、制御部8がこの圧力センサ7aの出力(圧力信号Spa)を用いて流量センサ5の出力(流量信号Sf)を補正することで、一次側圧力の変動による影響を小さくすることが可能となり、より精度の高い流量制御を行なうことができる。
【0039】
【発明の効果】以上説明したように本発明は、簡単な構成のマスフローコントローラでありながら、2つの異なるセンサで測定された物理量を用いて流量を制御しながら、この流量を監視するので、常に極めて信頼性の高い流量制御を行うことができる。
【図面の簡単な説明】
【図1】本発明のマスフローコントローラの一例を示す図である。
【図2】前記マスフローコントローラの変形例を示す図である。
【図3】従来のマスフローコントローラを用いた半導体製造ラインの例を示す図である。
【符号の説明】
1…マスフローコントローラ、2…流路、4…開閉制御弁(圧力制御弁)、5…流量センサ、6…絞り部、7b…圧力センサ、8…制御部。
[0001]
[0001] The present invention relates to a mass flow controller. More specifically, the present invention relates to a mass flow controller using a throttle unit.
[0002]
[Prior art]
FIG. 3 is a diagram showing an example of a semiconductor manufacturing line 10 using a conventional mass flow controller. In FIG. 3, reference numeral 11 denotes a chamber constituting a semiconductor manufacturing line, 12 denotes a gas supply line for supplying different gases Ga and Gb to the chamber 11, and 13 and 14 denote gas cylinders for supplying the respective gases Ga and Gb.
[0003]
The gas supply line 12 includes a mechanical pressure regulator 15, a gauge 16 on the downstream side of the pressure regulator 15, and a filter 17. Reference numeral 18 denotes a mass flow controller, and reference numerals 19a and 19b denote on-off valves provided upstream and downstream of the mass flow controller 18, respectively. Reference numeral 20 denotes a mass flow meter that measures the flow rates of the gases Ga and Gb flowing through the gas supply line 12.
[0004]
That is, the gas supply line 12 selectively supplies one of the two gases Ga and Gb to the chamber 11 as appropriate, and allows the flow rate thereof to be adjusted by the mass flow controller 18. Further, as the gases Ga and Gb used in the semiconductor manufacturing process, for example, a process gas Ga and an inert gas Gb for confirming a flow rate can be considered.
[0005]
The mass flow controller 18 includes a pressure sensor 18a and a throttle 18b such as a sonic venturi, and controls the flow rate appropriately by adjusting the pressure on the upstream side of the throttle 18b.
[0006]
[Problems to be solved by the invention]
However, the flow path of the narrowed portion 18b may be narrowed due to a change with time, and even if the pressure is kept constant, it may not be possible to flow the gas Ga at a flow rate corresponding thereto.
[0007]
Therefore, as in the example shown in FIG. 3, by monitoring the flow rate of the inert gas Gb adjusted by the mass flow controller 18 with the inert gas Gb flowing, the flow rate control of the mass flow controller 18 is performed properly. To see if it has been done. However, in the gas supply line 12 as shown in FIG. 3, it is necessary to provide a separate mass flow meter 20 only for checking the state of the mass flow controller 18, so that the gas supply line 12 is complicated and the cost is high. .
[0008]
In addition, the more complicated the gas supply line 12 is, the more complicated the control becomes. In addition, it is inevitable that the rate of occurrence of gas leakage and failure increases.
[0009]
In addition, the primary side of the mass flow controller 18 and the mass flow meter 20 as described above is provided with the pressure regulator 15 for pressure adjustment and pressure fluctuation countermeasures. The supply panel could not be reduced.
[0010]
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-described matters, and has a simple configuration, and is capable of performing a flow control while confirming whether or not a flow control is properly performed. To provide a controller.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a mass flow controller according to a first aspect of the present invention includes an opening / closing control valve for controlling a flow of a fluid flowing in a flow path, a pressure sensor disposed downstream of the opening / closing control valve, A throttle disposed on the downstream side, a flow sensor for measuring the flow rate of the fluid flowing through the flow path, and using the outputs of the pressure sensor and the flow sensor to control the opening / closing control valve to flow through the throttle. It is characterized in that a control unit for controlling the flow rate of the fluid and for monitoring the flow rate is provided. (Claim 1)
[0012]
Therefore, the flow rate of the fluid measurable by the flow sensor and the pressure of the fluid upstream of the throttle portion measurable by the pressure sensor are respectively measured, and one of the states of the fluid measured by two different methods is opened and closed. It can be used for feedback control of the valve, and the other can be used as a flow rate monitor of the fluid flowing to the mass flow controller.
[0013]
That is, for example, the control unit controls the opening and closing of the on-off control valve using the output of the pressure sensor to adjust the pressure on the upstream side of the throttle unit, thereby adjusting the flow rate of the fluid passing through the throttle unit. In the case of monitoring using the output of the sensor, the mass flow controller can monitor the operation using the output of the flow sensor while controlling the flow by the pressure of the fluid on the upstream side of the throttle unit. Thus, when an abnormality such as clogging occurs in the throttle unit, the abnormality can be quickly found, and more reliable flow control can be performed. Further, it is not necessary to separately provide a member such as a mass flow meter for confirming the operation of the mass flow controller as in the related art, and the configuration of the gas supply line can be simplified accordingly.
[0014]
In the case where the flow sensor is provided on the upstream side of the pressure sensor (claim 2), since the throttle portion can be located in the flow path immediately below the pressure sensor, the pressure drop caused by the flow sensor is reduced. Irrespective of this, the pressure immediately above the throttle unit can be accurately adjusted using the output of the pressure sensor, and the accuracy of flow control can be improved accordingly.
[0015]
In the case where the flow rate sensor is provided on the upstream side of the on-off control valve (Claim 3), even if the evacuation is performed to such an extent that the inside of the flow path on the downstream side of the mass flow controller is substantially in a vacuum state, Since the open / close control valve is located between the secondary flow path of the controller and the flow sensor, the inside of the flow sensor is not evacuated, and the flow sensor does not malfunction, thereby improving reliability.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a block diagram showing an example of the mass flow controller 1 of the present invention. The mass flow controller 1 of the present embodiment includes a flow path block 3 forming a flow path 2 for flowing a fluid (a gas is exemplified as a fluid in the following example, but the fluid is not limited to a gas). An opening / closing control valve 4 connected to the flow path block 3, a flow sensor 5, a throttle section 6, two pressure sensors 7, a control section 8 for controlling the opening / closing control valve 4, and a filter 9. are doing.
[0017]
The flow path 2 is formed, for example, so as to hollow out the inside of the flow path block 3, and has a first flow path 2a and a second flow path 2b. Further, pipe attachment portions 3a and 3b are provided at the upstream end and the downstream end of the flow path 2, respectively. The flow path 2 may be formed by excavation, by using a mold, or by another method. When the second flow path 2b is formed by excavation or the like, a flow path block is formed. 3 needs to be formed in at least one place so as to be separable, but in any case, gas leakage can be prevented by integrally molding the flow path blocks 3, 3a, 3b.
[0018]
The opening / closing control valve 4 includes, for example, a diaphragm 4a abutting on a valve seat 3c formed on one side surface of the flow path block 3 and an actuator 4b thereof, and the flow paths 2a, 2b are controlled by an opening control signal (pressure control signal) Cp. Is configured to be controllable.
[0019]
The flow sensor 5 includes, for example, a rectifier 5a inserted into the second flow path 2b, a branch flow path 5b that branches from the second flow path 2b by a flow rate of a predetermined ratio 1 / A, and a flow path 5b. And a flow path signal Sf indicating the total flow rate F.
[0020]
The throttle unit 6 is, for example, a sonic nozzle that flows a fluid having a flow rate corresponding to the pressure on the primary side when the pressure difference between the primary side and the secondary side is equal to or greater than a predetermined value. The block in which the throttle portion 6a is formed is arranged so as to communicate with the flow path 2b at the downstream end side of the flow path 2b. In the present invention, the configuration of the throttle section 6 is not limited to the sonic nozzle, but may be any as long as the throttle section 6a for forming a resistance in the flow path 2 is formed.
[0021]
The opening / closing control valve 4 and the flow sensor 5 are arranged side by side on one side surface (upper surface) of the flow path block 3, so that the overall size of the mass flow controller 1 can be reduced.
[0022]
The pressure sensor 7 includes a first sensor 7a disposed on a side surface facing the first flow path 2a and a second sensor 7b disposed on a side surface facing the second flow path 2b. The pressure sensors 7a and 7b are provided on a surface different from the side surface on which the components 4 to 5 are attached (in this example, a first surface located in front of the first flow path 2a and a position located immediately before the rectifier 5a constituting the flow sensor 5 in FIG. 1). (Back of two flow paths). Thereby, the pressure sensor 7 can be installed without changing the overall size of the mass flow controller 1. The sensors 7a and 7b output pressure signals Spa and Spb indicating the pressures Pa and Pb in the first flow path 2a and the second flow path 2b, respectively.
[0023]
In this example, the sensors 7a and 7b are provided on the side surfaces. However, the mounting surface of the pressure sensor 7 is not limited as long as the pressure sensor 7 can be mounted so as to face the flow path 2. In other words, it goes without saying that the control valve 4 and the flow rate sensor 5 may be embedded in the lower surface of the flow path block 3 or at a position where they do not interfere with the flow sensor 5.
[0024]
The control unit 8 outputs the opening control signal Cp by feeding back the pressure signals Spa and Spb (output) from the pressure sensor 7 and the flow control signal Sf (output) from the flow sensor 5 to thereby open and close the control valve. 4 has a processing unit 8a for performing feedback control of the control unit 4 and an external interface 8b.
[0025]
Although not shown, the mass flow controller 1 of this example has a display unit for displaying values F, Pa, and Pb measured by the sensors 5, 7a, and 7b. Further, the values F, Pa, Pb measured by the sensors 5, 7a, 7b can be output to the outside via the interface 8b. In this example, an example is shown in which the interface 8b inputs and outputs analog values. However, the interface 8b may communicate digitally.
[0026]
In addition, the open / close control of the open / close control valve 4 is not limited to the feedback control using only the output signal Spb of the pressure sensor 7b, and may be controlled using the output signal Spa of the pressure sensor 7a. By providing the pressure sensor 7a as shown in this example, it is possible to monitor the pressure of the gas input to the mass flow controller 1, but it is also possible to omit the pressure sensor 7a. Not even.
[0027]
Further, since the mass flow controller 1 of the present embodiment has the built-in filter 9, there is no need to connect and connect a separate filter 16 unlike the conventional case. That is, the gas supply line can be simplified accordingly, and the installation area can be reduced. In this example, an example is shown in which the filter 9 is provided at the most upstream end of the flow path 2 to prevent a malfunction due to entry of foreign matter, but the present invention does not limit the position of the filter 9. In some cases, the filter 9 can be omitted.
[0028]
In the mass flow controller 1 having the above configuration, the processing unit 8a inputs the flow rate setting signal Fs via the interface 8b, and adjusts the flow rate F of the fluid flowing through the mass flow controller 1 to match the flow rate setting signal Fs. Further, in the mass flow controller 1 of the present embodiment, the processing unit 8 feeds back the open / close control valve 4 using the output (pressure signal Spb) of the pressure sensor 7b to control the open / close of the valve 4, thereby controlling the flow rate of the fluid flowing through the sonic nozzle 6. In addition to controlling the flow rate F, the flow rate F actually flowing using the output (flow rate signal Sf) of the flow rate sensor 5 at this time is measured to confirm the operation.
[0029]
In the case of this example, since the output Spb of the pressure sensor 7b is used for opening / closing control of the opening / closing control valve 4, a high-speed response of the flow rate control can be achieved, but the present invention is not limited to this point. is not. That is, the processing unit 8 controls the opening / closing of the opening / closing control valve 4 using the output Sf of the flow rate sensor 5 and, at the same time, determines the flow rate F of the fluid actually flowing through the sonic nozzle 6 by another method using the output Spb of the pressure sensor 7b. It is also possible to confirm with.
[0030]
In any case, the control unit 8 makes the set flow rate Fs surely flow by making the measurement principle of the flow rate of the sensor 5b or 5 used for flow rate control different from that of the sensor 5 or 7b used for flow rate control. Can be confirmed more reliably. In other words, the reliability of the mass flow controller 1 can be improved, and there is no need to separately attach a mass flow meter 20 for checking the flow rate F of the fluid flowing through the mass flow controller 1 as in the related art, thereby achieving simplification of the gas supply line. it can.
[0031]
Further, in the case of this example, since the flow sensor 5 is disposed on the upstream side of the pressure sensor 7b, the pressure sensor 7b can be disposed in the flow path immediately above the throttle section 6, so that the flow of the fluid flowing through the flow sensor 5 The pressure drop caused by the pressure sensor 7b does not adversely affect the control of the pressure Pb just above the throttle unit 6 measured by the pressure sensor 7b, and thus, the control can be performed with higher accuracy.
[0032]
However, the present invention is not limited to the configuration in which the flow sensor 5 is disposed on the upstream side of the pressure sensor 7b, and this pressure sensor may be provided on the upstream side of the flow sensor 5. In this case, since the pressure of the fluid flowing into the flow sensor 5 can be kept constant, the flow sensor 5 can perform more accurate flow measurement. Needless to say, the pressure sensor 7 may be provided on both the upstream side and the downstream side of the flow sensor 5. In this case, in addition to the flow rate measurement in addition to the flow rate sensor 5 and the pressure sensor 7b, it is also possible to measure the flow rate by a pressure difference immediately above and immediately below the flow rate sensor 5, and by using this, a more reliable mass flow meter 1 is formed. can do.
[0033]
Further, as shown in this example, the opening / closing control valve 4 and the flow rate sensor 5 are arranged side by side, and the second flow path 2b located therebetween is made as short as possible. The time delay of the pressure Pb with respect to the output can be made as small as possible, and the fluctuation of the pressure Pb can be made as small as possible.
[0034]
Further, by arranging the pressure sensor 7b at a position as close to the flow sensor 5 as possible in the second flow path 2b between the opening / closing control valve 4 and the flow sensor 5 (flow path immediately preceding the flow sensor 5), the influence of turbulence and the like is obtained. Pressure Pb can be measured. That is, the control accuracy and stability of the flow rate by the mass flow controller 1 can be improved accordingly.
[0035]
In addition, by eliminating a joint or a pipe from the inside of the second flow path 2b between the opening / closing control valve 4 and the flow rate sensor 5, it is possible to eliminate the risk of pressure drop and gas leakage due to resistance of the flow path.
[0036]
FIG. 2 is a block diagram showing a modification of the mass flow controller 1. In FIG. 2, portions denoted by the same reference numerals as those in FIG. 1 are the same or equivalent portions, and thus detailed description thereof will be omitted. The example shown in this example differs from the example shown in FIG. 1 in that a flow rate sensor 5 is provided in the flow path 2 a on the upstream side of the on-off control valve 4.
[0037]
With the configuration as in the present example, even if the pressure on the secondary side of the mass flow controller 1 is reduced to a substantially vacuum state by a vacuum pump or the like, the inside of the flow sensor 5 disposed upstream of the on-off control valve 4 is not affected. Since there is no evacuation and fluid is present in the flow path sensor 5, the flow path sensor 5 does not malfunction. That is, the flow rate control can be performed without being affected by the decrease in the secondary pressure during the small flow rate control, and the reliability of the flow rate control can be improved accordingly.
[0038]
In the case of this example, the pressure Pa of the fluid supplied to the mass flow controller 1 can be obtained by disposing the pressure sensor 7a on the primary side of the flow sensor 5. That is, the control section 8 corrects the output (flow signal Sf) of the flow sensor 5 using the output (pressure signal Spa) of the pressure sensor 7a, thereby making it possible to reduce the influence of the fluctuation of the primary pressure. Thus, the flow rate control with higher accuracy can be performed.
[0039]
As described above, the present invention monitors the flow rate while controlling the flow rate using physical quantities measured by two different sensors, even though the mass flow controller has a simple configuration. Extremely reliable flow control can be performed.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a mass flow controller of the present invention.
FIG. 2 is a diagram showing a modification of the mass flow controller.
FIG. 3 is a diagram showing an example of a semiconductor manufacturing line using a conventional mass flow controller.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Mass flow controller, 2 ... Flow path, 4 ... Opening / closing control valve (pressure control valve), 5 ... Flow rate sensor, 6 ... Throttle part, 7b ... Pressure sensor, 8 ... Control part.

Claims (3)

流路中を流れる流体の流れを制御する開閉制御弁と、
この開閉制御弁の下流側に配置された圧力センサと、
この圧力センサの下流側に配置された絞り部と、
前記流路を流れる流体の流量を測定する流量センサと、
前記圧力センサおよび流量センサの出力を用いることで、開閉制御弁を開閉制御して絞り部を流れる流体の流量を制御すると共に、この流量を監視する制御部とを設けてなることを特徴とするマスフローコントローラ。
An on-off control valve for controlling the flow of a fluid flowing in the flow path;
A pressure sensor arranged downstream of the on-off control valve,
A restrictor disposed downstream of the pressure sensor;
A flow sensor for measuring the flow rate of the fluid flowing through the flow path,
The output of the pressure sensor and the flow rate sensor is used to control the flow rate of the fluid flowing through the throttle section by controlling the opening / closing control valve to open and close, and a control section for monitoring the flow rate is provided. Mass flow controller.
前記流量センサを圧力センサの上流側に設けてなる請求項1に記載のマスフローコントローラ。The mass flow controller according to claim 1, wherein the flow sensor is provided on an upstream side of the pressure sensor. 前記流量センサを開閉制御弁の上流側に設けてなる請求項1または2に記載のマスフローコントローラ。3. The mass flow controller according to claim 1, wherein the flow rate sensor is provided on an upstream side of the on-off control valve.
JP2003038803A 2003-02-17 2003-02-17 Mass flow controller Expired - Fee Related JP4137666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038803A JP4137666B2 (en) 2003-02-17 2003-02-17 Mass flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038803A JP4137666B2 (en) 2003-02-17 2003-02-17 Mass flow controller

Publications (2)

Publication Number Publication Date
JP2004246826A true JP2004246826A (en) 2004-09-02
JP4137666B2 JP4137666B2 (en) 2008-08-20

Family

ID=33023221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038803A Expired - Fee Related JP4137666B2 (en) 2003-02-17 2003-02-17 Mass flow controller

Country Status (1)

Country Link
JP (1) JP4137666B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089373A (en) * 2006-09-29 2008-04-17 Oval Corp Flow measurement by coriolis flowmeter, and flow controller
JP2010091320A (en) * 2008-10-06 2010-04-22 Horiba Stec Co Ltd Mass flowmeter and mass flow controller
WO2012153455A1 (en) * 2011-05-10 2012-11-15 株式会社フジキン Pressure-based flow control device with flow monitor
KR20130040742A (en) * 2011-10-14 2013-04-24 가부시키가이샤 호리바 에스텍 Flow rate control device, diagnostic device for use in flow rate measuring mechanism or for use in flow rate control device including the flow rate measuring mechanism and recording medium having diagnostic program recorded thereon for use in the same
JP2013088944A (en) * 2011-10-14 2013-05-13 Horiba Stec Co Ltd Flow control device, flow measurement mechanism, and diagnosis device and diagnosis program used for flow control device including flow measurement mechanism
JP2013088946A (en) * 2011-10-14 2013-05-13 Horiba Stec Co Ltd Flow control device, and diagnosis device and diagnosis program used for flow control device
WO2013109443A1 (en) 2012-01-20 2013-07-25 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
KR20140004583A (en) * 2012-07-03 2014-01-13 가부시키가이샤 호리바 에스텍 Pressure control device, flow rate control device and recording medium having programs used for pressure control device, recording medium having programs used for flow rate control device
JP2014089205A (en) * 2006-11-17 2014-05-15 Lam Research Corporation Methods for performing actual flow verification
KR20140098840A (en) * 2012-01-30 2014-08-08 가부시키가이샤 후지킨 Gas split-flow supply device for semiconductor production device
CN104281163A (en) * 2014-10-29 2015-01-14 北京堀场汇博隆精密仪器有限公司 Flow controller
US9471066B2 (en) 2012-01-20 2016-10-18 Mks Instruments, Inc. System for and method of providing pressure insensitive self verifying mass flow controller
KR20160122732A (en) 2014-02-13 2016-10-24 엠케이에스 인스트루먼츠, 인코포레이티드 System for and method of providing pressure insensitive self verifying mass flow controller
KR20160132404A (en) 2014-03-11 2016-11-18 엠케이에스 인스트루먼츠, 인코포레이티드 System for and method of monitoring flow through mass flow controllers in real time
US9556518B2 (en) 2011-07-08 2017-01-31 Fujikin Incorporated Raw material gas supply apparatus for semiconductor manufacturing equipment
US9557744B2 (en) 2012-01-20 2017-01-31 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US9631777B2 (en) 2011-09-06 2017-04-25 Fujikin Incorporated Raw material vaporizing and supplying apparatus equipped with raw material concentration
US9733649B2 (en) 2012-05-31 2017-08-15 Fujikin Incorporated Flow control system with build-down system flow monitoring
US10031005B2 (en) 2012-09-25 2018-07-24 Mks Instruments, Inc. Method and apparatus for self verification of pressure-based mass flow controllers
KR102101426B1 (en) * 2018-12-05 2020-04-16 엠케이피 주식회사 Pressure-type flow rate control device and flow rate control method using thereof
CN114110247A (en) * 2020-08-26 2022-03-01 费斯托股份两合公司 Flow regulator, valve assembly and method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188989B1 (en) 2011-08-20 2015-11-17 Daniel T. Mudd Flow node to deliver process gas using a remote pressure measurement device
US9958302B2 (en) 2011-08-20 2018-05-01 Reno Technologies, Inc. Flow control system, method, and apparatus
JP5847106B2 (en) 2013-03-25 2016-01-20 株式会社フジキン Pressure flow control device with flow monitor.
JP5797246B2 (en) 2013-10-28 2015-10-21 株式会社フジキン Flow meter and flow control device including the same
CN104329495B (en) * 2014-10-29 2017-01-18 北京堀场汇博隆精密仪器有限公司 Pressure flow controller
US10838437B2 (en) 2018-02-22 2020-11-17 Ichor Systems, Inc. Apparatus for splitting flow of process gas and method of operating same
US11144075B2 (en) 2016-06-30 2021-10-12 Ichor Systems, Inc. Flow control system, method, and apparatus
US10679880B2 (en) 2016-09-27 2020-06-09 Ichor Systems, Inc. Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same
US10303189B2 (en) 2016-06-30 2019-05-28 Reno Technologies, Inc. Flow control system, method, and apparatus
US10663337B2 (en) 2016-12-30 2020-05-26 Ichor Systems, Inc. Apparatus for controlling flow and method of calibrating same

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089373A (en) * 2006-09-29 2008-04-17 Oval Corp Flow measurement by coriolis flowmeter, and flow controller
JP4684202B2 (en) * 2006-09-29 2011-05-18 株式会社オーバル Flow measurement and flow control device with Coriolis flow meter
JP2014089205A (en) * 2006-11-17 2014-05-15 Lam Research Corporation Methods for performing actual flow verification
JP2010091320A (en) * 2008-10-06 2010-04-22 Horiba Stec Co Ltd Mass flowmeter and mass flow controller
JP4705140B2 (en) * 2008-10-06 2011-06-22 株式会社堀場エステック Mass flow meter and mass flow controller
US9494947B2 (en) 2011-05-10 2016-11-15 Fujikin Incorporated Pressure type flow control system with flow monitoring
TWI492014B (en) * 2011-05-10 2015-07-11 Fujikin Kk And a method of detecting a flow abnormality when the flow rate is abnormally detected by the flow rate monitoring device and the fluid supply system using the flow control device
US9632511B2 (en) 2011-05-10 2017-04-25 Fujikin Incorporated Pressure type flow control system with flow monitoring, and method for detecting anomaly in fluid supply system and handling method at abnormal monitoring flow rate using the same
US9870006B2 (en) 2011-05-10 2018-01-16 Fujikin Incorporated Pressure type flow control system with flow monitoring
US10386861B2 (en) 2011-05-10 2019-08-20 Fujikin Incorporated Pressure type flow control system with flow monitoring, and method for detecting anomaly in fluid supply system and handling method at abnormal monitoring flow rate using the same
KR101599343B1 (en) * 2011-05-10 2016-03-03 가부시키가이샤 후지킨 Pressure-based flow control device with flow monitor
KR20140003611A (en) * 2011-05-10 2014-01-09 가부시키가이샤 후지킨 Pressure-based flow control device with flow monitor
WO2012153454A1 (en) * 2011-05-10 2012-11-15 株式会社フジキン Pressure-based flow control device with flow monitor, fluid-supply-system anomaly detection method using same, and method for handling monitor flow anomalies
CN103518165A (en) * 2011-05-10 2014-01-15 株式会社富士金 Pressure-based flow control device with flow monitor
WO2012153455A1 (en) * 2011-05-10 2012-11-15 株式会社フジキン Pressure-based flow control device with flow monitor
KR101550255B1 (en) * 2011-05-10 2015-09-04 가부시키가이샤 후지킨 Pressure-based flow control device with flow monitor, fluid-supply-system anomaly detection method using same, and method for handling monitor flow anomalies
JP5605969B2 (en) * 2011-05-10 2014-10-15 株式会社フジキン Pressure type flow rate control device with flow rate monitor, fluid supply system abnormality detection method using the same, and treatment method for monitor flow rate abnormality
TWI488017B (en) * 2011-05-10 2015-06-11 Fujikin Kk Pressure flow control device with flow monitor, and its memory method and actual gas monitoring flow output confirmation method
JP5727596B2 (en) * 2011-05-10 2015-06-03 株式会社フジキン Memory method of initial value of actual gas monitor flow rate of pressure type flow control device with flow rate monitor and method of confirming output of actual gas monitor flow rate
US9556518B2 (en) 2011-07-08 2017-01-31 Fujikin Incorporated Raw material gas supply apparatus for semiconductor manufacturing equipment
US9631777B2 (en) 2011-09-06 2017-04-25 Fujikin Incorporated Raw material vaporizing and supplying apparatus equipped with raw material concentration
KR101994373B1 (en) 2011-10-14 2019-06-28 가부시키가이샤 호리바 에스텍 Flow rate control device, diagnostic device for use in flow rate measuring mechanism or for use in flow rate control device including the flow rate measuring mechanism and recording medium having diagnostic program recorded thereon for use in the same
KR20130040742A (en) * 2011-10-14 2013-04-24 가부시키가이샤 호리바 에스텍 Flow rate control device, diagnostic device for use in flow rate measuring mechanism or for use in flow rate control device including the flow rate measuring mechanism and recording medium having diagnostic program recorded thereon for use in the same
JP2013088944A (en) * 2011-10-14 2013-05-13 Horiba Stec Co Ltd Flow control device, flow measurement mechanism, and diagnosis device and diagnosis program used for flow control device including flow measurement mechanism
JP2013088945A (en) * 2011-10-14 2013-05-13 Horiba Stec Co Ltd Flow control device, flow measurement mechanism, and diagnosis device and diagnosis program used for flow control device including flow measurement mechanism
JP2013088946A (en) * 2011-10-14 2013-05-13 Horiba Stec Co Ltd Flow control device, and diagnosis device and diagnosis program used for flow control device
US9471066B2 (en) 2012-01-20 2016-10-18 Mks Instruments, Inc. System for and method of providing pressure insensitive self verifying mass flow controller
JP2016189219A (en) * 2012-01-20 2016-11-04 エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated Mass flow rate controller
JP2018010696A (en) * 2012-01-20 2018-01-18 エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated Mass flow rate controller
US10606285B2 (en) 2012-01-20 2020-03-31 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US9557744B2 (en) 2012-01-20 2017-01-31 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
WO2013109443A1 (en) 2012-01-20 2013-07-25 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US20170199529A1 (en) 2012-01-20 2017-07-13 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US9846074B2 (en) 2012-01-20 2017-12-19 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
KR101677971B1 (en) * 2012-01-30 2016-11-21 가부시키가이샤 후지킨 Gas split-flow supply device for semiconductor production device
KR20140098840A (en) * 2012-01-30 2014-08-08 가부시키가이샤 후지킨 Gas split-flow supply device for semiconductor production device
US9733649B2 (en) 2012-05-31 2017-08-15 Fujikin Incorporated Flow control system with build-down system flow monitoring
KR20140004583A (en) * 2012-07-03 2014-01-13 가부시키가이샤 호리바 에스텍 Pressure control device, flow rate control device and recording medium having programs used for pressure control device, recording medium having programs used for flow rate control device
KR101990155B1 (en) 2012-07-03 2019-06-17 가부시키가이샤 호리바 에스텍 Pressure control device, flow rate control device and recording medium having programs used for pressure control device, recording medium having programs used for flow rate control device
US10031005B2 (en) 2012-09-25 2018-07-24 Mks Instruments, Inc. Method and apparatus for self verification of pressure-based mass flow controllers
US10801867B2 (en) 2012-09-25 2020-10-13 Mks Instruments, Inc. Method and apparatus for self verification of pressured based mass flow controllers
CN106104402A (en) * 2014-02-13 2016-11-09 Mks 仪器公司 The system and method for the mass flow controller of the insensitive self-authentication of pressure are provided
KR20160122732A (en) 2014-02-13 2016-10-24 엠케이에스 인스트루먼츠, 인코포레이티드 System for and method of providing pressure insensitive self verifying mass flow controller
CN106104402B (en) * 2014-02-13 2020-03-24 Mks 仪器公司 System and method for providing a pressure insensitive self-verifying mass flow controller
KR20160132404A (en) 2014-03-11 2016-11-18 엠케이에스 인스트루먼츠, 인코포레이티드 System for and method of monitoring flow through mass flow controllers in real time
CN104281163A (en) * 2014-10-29 2015-01-14 北京堀场汇博隆精密仪器有限公司 Flow controller
KR102101426B1 (en) * 2018-12-05 2020-04-16 엠케이피 주식회사 Pressure-type flow rate control device and flow rate control method using thereof
CN114110247A (en) * 2020-08-26 2022-03-01 费斯托股份两合公司 Flow regulator, valve assembly and method
CN114110247B (en) * 2020-08-26 2024-04-26 费斯托股份两合公司 Flow regulator, valve assembly and method

Also Published As

Publication number Publication date
JP4137666B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP4137666B2 (en) Mass flow controller
EP1489477B1 (en) Mass flow controller
WO2014156042A1 (en) Flow volume control device equipped with flow rate monitor
KR101930304B1 (en) Flow meter
TWI485540B (en) Flow control device with attenuated flow monitor
TWI451220B (en) Method and apparatus for pressure and mix ratio control
JP5727596B2 (en) Memory method of initial value of actual gas monitor flow rate of pressure type flow control device with flow rate monitor and method of confirming output of actual gas monitor flow rate
KR102028372B1 (en) Pressure Flow Control System and More Detection Methods
WO2011047361A4 (en) Method and apparatus for gas flow control
JP4146746B2 (en) Mass flow controller
KR20120081221A (en) System and method for flow monitoring and control
JP2004157719A (en) Mass-flow controller
JP2007133829A (en) Fluid control apparatus, pressure regulating valve and control method
JP5442413B2 (en) Semiconductor manufacturing apparatus and flow rate control apparatus
US11003197B2 (en) Flow rate control device
JP4137665B2 (en) Mass flow controller
JP3913048B2 (en) Back pressure control valve
JP2002115800A (en) Pressure controller equipped with flow measuring function
JP2625637B2 (en) Fluidic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A131 Notification of reasons for refusal

Effective date: 20071016

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110613

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees