[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004245963A - Continuously long body provided with rfid and method for manufacturing the same and optical fiber cable using the continuously long body - Google Patents

Continuously long body provided with rfid and method for manufacturing the same and optical fiber cable using the continuously long body Download PDF

Info

Publication number
JP2004245963A
JP2004245963A JP2003034093A JP2003034093A JP2004245963A JP 2004245963 A JP2004245963 A JP 2004245963A JP 2003034093 A JP2003034093 A JP 2003034093A JP 2003034093 A JP2003034093 A JP 2003034093A JP 2004245963 A JP2004245963 A JP 2004245963A
Authority
JP
Japan
Prior art keywords
rfid
tape
rfids
cable
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003034093A
Other languages
Japanese (ja)
Inventor
Takeshi Osato
健 大里
Kazunaga Kobayashi
和永 小林
Osamu Koyasu
修 子安
Satoru Shiobara
悟 塩原
Yukiaki Tanaka
志明 田中
Masashi Hara
昌志 原
Takeshi Honjo
武史 本庄
Keiji Ohashi
圭二 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003034093A priority Critical patent/JP2004245963A/en
Publication of JP2004245963A publication Critical patent/JP2004245963A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to easily and surely identify only the desired cable from a number of cables. <P>SOLUTION: The continuously long body 21 is composed of a long-length pipe body 25, a plurality of RFIDs 23 which are arrayed in the pipe body 25 apart suitable intervals in its longitudinal direction, and a front side caulking section 27A and rear side caulking section 27B which are disposed in the pipe body 25 in the outer side positions at both ends of the RFIDs 23 in order to fix the respective RFIDs 23 to the pipe body 25. By employing the continuously long body 21, the easy housing of the body into the cable is made possible. Since the RFIDs 23 are fixed in the front and rear of the pipe body 25 with the front side caulking section 27A and the rear side caulking section 27B, there are no more positional fluctuations in the cable and therefore identification is made easier. Since the RFIDs 23 are housed in the pipe body 25, their heat resistance is made higher and the RFIDs 23 can be identified without being affected by external temperatures. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、敷設された多数のケーブルの中から目的とするケーブルのみを容易に識別することを可能とするRFIDを備えた連長体及びその製造方法、並びに連長体を使用した光ファイバケーブルに関する。
【0002】
【従来の技術】
例えば、トラフ内には多数の光ファイバケーブルが敷設されており、2.5〜5km間隔で機器室が設けられており、上記の多数のケーブルは各機器室の接続端子に接続されている。上記の接続端子の各ケーブルの管理及びケーブル撤去時には各ケーブルの識別が確実に行われることが求められる。
【0003】
従来のケーブル識別方法としては、ケーブルの外被表面に識別用印字が施されたり、識別用タグが各ケーブルの終端部に取り付けられるという方法が取られている。上記の識別用印字は、製造者名/製造年月/ケーブル品名/長さ等のケーブル情報が、インクや熱転写、レーザなどでケーブル表面に表示される。識別用タグの場合は、例えば薄い金属板に上述したような項目のケーブル情報を刻印して各ケーブルに貼り付け、あるいは金属線などで吊り下げられている(例えば、特許文献1参照。)。
【0004】
また、他のケーブル識別方法としては、光ケーブルの布設関連情報を2次元QRコード化して印刷されたQRコード印刷紙が光ケーブルの外皮に貼着されている。メンテナンス等の際には、コードリーダーでQRコード印刷紙の上を走査することにより、記録された情報が敷設現場で読み出される。上記のQRコード印刷紙は、バーコード、磁気カード、ICカードに替えて同様に光ケーブルの情報が読み出される(例えば、特許文献2参照。)。
【0005】
【特許文献1】
特開平6−60750号公報(〔0012〕〜〔0013〕、図1)
【0006】
【特許文献2】
特開2001−21730号公報(〔0012〕〜〔0018〕、図1)
【0007】
【発明が解決しようとする課題】
ところで、従来のケーブル識別方法においては、ケーブル表面へ識別用印字が施される場合、ケーブルの長手方向に印字されるために、文字数が多くなると、トラフや地中に埋設されたケーブルを長区間露出させないと確認できないという問題点があった。トラフの蓋や土砂を長区間取り除くには、工事コストのアップとなる。そのため、識別用印字の全体の長さは1m以下が望ましくなるが、1m程度に印字できる文字数には限りがあるので、必要な情報を全て記載することは不可能であるという問題点があった。
【0008】
また、識別用印字は、長期間経過したり、擦られたりすると文字が消えてしまうことがあり、判別不能となることが生じるという問題点があった。
【0009】
また、識別用タグを取り付ける方法の場合は、長尺のケーブルに一定間隔で取り付けなければならないので、その数も膨大となり、工費もアップするという問題点があった。
【0010】
また、識別用タグに書き込める文字数にも制限があり、必要な情報を全て記載することは不可能である。また、識別用タグは刻印などで文字を書き込まれるが、識別用印字と同じように長期間経過すると文字がかすれて判別不能となることが生じるという問題点があった。
【0011】
また、QRコード印刷紙、バーコード、磁気カード、ICカードなどが光ケーブルの外皮に貼着されているものは、書き込み情報が少ないことと、長期間経過したり、擦られたりすると識別不能となることが生じるという問題点があった。
【0012】
なお、ケーブルの識別が必要となるのは、張り替えや撒去作業時に多数のケーブルから目的のケーブルを確定するためであるが、識別用印字や識別用タグやQRコード印刷紙、バーコードが不鮮明であったり、同じ内容の表示のケーブルが複数ある場合には、情報確定のために多くの時間がかかってしまうという問題点があった。
【0013】
さらに、もし、間違ったケーブルを切断してしまった場合には、そのケーブルに流れる信号で制御されていた機器の誤作動や情報の停止が発生し、重大な事故になるという問題点があった。
【0014】
この発明は上述の課題を解決するためになされたもので、その目的は、多数のケーブルの中から目的とするケーブルのみを容易にしかも確実に識別できるRFIDを備えた連長体及びその製造方法、並びに連長体を使用した光ファイバケーブルを提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成するために請求項1によるこの発明の連長体は、長尺のパイプ体と、このパイプ体の内部にその長手方向に適宜間隔を介して配列した複数のRFIDと、この各RFIDをパイプ体に固定すべく前記RFIDの両端の外側位置でパイプ体に設けたかしめ部と、からなることを特徴とするものである。
【0016】
したがって、RFIDの単体ではケーブル内に一定間隔で収納するのは難しいが、連長体にすることで、ケーブルの内部に容易に収納可能となる。しかも、パイプ体内に挿入された各RFIDの前後がかしめ部で固定されているので、ケーブル内での位置変動がなくなるために識別が容易となる。
【0017】
また、RFIDがパイプ体内に収納されているので、耐熱性を向上させることができ、RFIDは外部温度の影響を受けずに識別が可能となる。
【0018】
請求項2によるこの発明の連長体は、長尺のテープ体を筒状に設けたテープ筒状体と、このテープ筒状体の内部に長手方向に適宜間隔を介して配列した複数のRFIDと、前記各RFIDをテープ筒状体に固定するRFID固定部と、からなることを特徴とするものである。
【0019】
したがって、RFIDの単体ではケーブル内に一定間隔で収納するのは難しいが、連長体にすることで、ケーブルの内部に容易に収納可能となる。しかも、RFIDが長尺のテープ体で包み込まれてRFID固定部で固定されているので、ケーブル内での位置変動がなくなるために識別が容易となる。
【0020】
請求項3によるこの発明の連長体は、請求項2記載の連長体において、前記RFID固定部が、前記テープ筒状体の外側から粗巻きした粗巻き用線条体、又はテープ筒状体の内面に設けた接着材層、又はテープ体自体を熱融着性テープとしてなることを特徴とするものである。
【0021】
したがって、RFIDは、テープ筒状体の外側から粗巻き用線条体にて確実に粗巻き固定され、あるいはテープ筒状体の内面に設けた接着材層にて確実に固定され、あるいは熱融着性テープを加熱して確実に固定されるので、ケーブル内での位置変動がなくなる。
【0022】
請求項4によるこの発明の連長体の製造方法は、長尺のパイプ体の長手方向の所定位置に設けた第1の前側かしめ部に、前記パイプ体の一端から第1のRFIDを挿入して前記第1のRFIDを前記第1の前側かしめ部に当接し、前記第1のRFIDの後端の後側で第1のRFDを第1の後側かしめ部により固定すると共に前記第1の後側かしめ部から適宜間隔を介して後方側に設けられた第2の前側かしめ部に、前記パイプ体の一端から第2のRFIDを挿入して第2のRFIDを前記の第2の前側かしめ部に当接し、前記第2のRFIDの後端の後側で第2のRFIDを第2の後側かしめ部により固定すると共に前記第2の後側かしめ部から適宜間隔を介して後方側に設けられた第3の前側かしめ部に、第3のRFID以降も前記第1及び第2のRFIDと同様にしてパイプ体の長手方向に適宜間隔を介して配列することを特徴とするものである。
【0023】
したがって、各RFIDは長尺のパイプ体の所定位置に前側かしめ部を設けた後にパイプ体の一端から挿入されるので、RFIDは前側かしめ部で容易に位置決めされ、次いで前記RFIDの後側に後側かしめ部を設けるので各RFIDは前側かしめ部と後側かしめ部との間で容易にパイプ体に固定され、各RFIDが長手方向に位置変動のない連長体として容易に製造される。
【0024】
請求項5によるこの発明の連長体の製造方法は、長尺のテープ体の片面にその長手方向に適宜間隔を介して複数のRFIDを配列し、前記テープ体を筒状にして前記複数のRFIDを包み込んでテープ筒状体を形成し、前記各RFIDを前記テープ筒状体に固定することを特徴とするものである。
【0025】
したがって、複数の各RFIDは長尺のテープ体で包み込まれてテープ筒状体が形成されて前記テープ筒状体に固定され、長手方向に位置変動のない連長体として容易に製造される。
【0026】
請求項6によるこの発明の連長体の製造方法は、請求5記載の連長体の製造方法において、前記各RFIDを前記テープ筒状体に固定する方法が、前記テープ筒状体の外側から粗巻き線条体にて粗巻きして固定し、あるいは予め前記テープ筒状体の内面に備えた接着材層で固定し、あるいはテープ体自体を熱融着性テープとしこの熱融着性テープを加熱して固定することを特徴とするものである。
【0027】
したがって、各RFIDはテープ筒状体内に確実に固定され、各RFIDが長手方向に位置変動のない連長体として容易に製造される。
【0028】
請求項7によるこの発明の光ファイバケーブルは、ほぼ円筒形状の外皮部材を設け、この外皮部材の内部に抗張力体と複数の光ファイバ心線とを収納する収納部を設けた光ファイバケーブルにおいて、長尺の支持部材にその長手方向に複数のRFIDを適宜間隔を介して配列した連長体を、前記外皮部材の内部に縦添え又は横巻きして収納してなることを特徴とするものである。
【0029】
したがって、連長体によりRFIDを光ファイバケーブルの長尺方向に一定間隔で配列しているので、光ファイバケーブルの一部を露出すれば、RFIDに書き込まれているケーブル情報は例えばリーダ/ライタ機器により容易に識別可能となり、光ファイバケーブルの誤切断を防止可能となる。これに伴って、工事費の削減にも寄与する。
【0030】
また、RFIDの単体ではケーブル内に一定間隔で収納するのは難しいが、連長体にすることで、ケーブルの内部に容易に収納可能となる。
【0031】
請求項8によるこの発明の光ファイバケーブルは、請求項7記載の光ファイバケーブルにおいて、前記連長体が、長尺の支持部材としてのパイプ体と、このパイプ体の内部にその長手方向に適宜間隔を介して配列した複数のRFIDと、この各RFIDをパイプ体に固定すべく前記RFIDの両端の外側位置でパイプ体に設けたかしめ部と、からなることを特徴とするものである。
【0032】
したがって、パイプ体に挿入された各RFIDの前後がかしめ部で固定されているので、ケーブル内での位置変動がなくなるために識別が容易となる。
【0033】
また、RFIDがパイプ体内に収納されているので、耐熱性を向上させることができ、RFIDは外部温度の影響を受けずに識別が可能となる。
【0034】
請求項9によるこの発明の光ファイバケーブルは、請求項7記載の光ファイバケーブルにおいて、前記連長体が、長尺の支持部材としてのテープ体を筒状に設けたテープ筒状体と、このテープ筒状体の内部に長手方向に適宜間隔を介して配列した複数のRFIDと、前記各RFIDをテープ筒状体に固定するRFID固定部と、からなることを特徴とするものである。
【0035】
したがって、RFIDが長尺のテープ体で包み込まれ、RFID固定部で固定されているので、ケーブル内での位置変動がなくなるために識別が容易となる。
【0036】
請求項10によるこの発明の光ファイバケーブルは、請求項9記載の光ファイバケーブルにおいて、前記RFID固定部が、前記テープ筒状体の外側から粗巻きした粗巻き用線条体、又はテープ筒状体の内面に設けた接着材層、又はテープ体自体を熱融着性テープとしてなることを特徴とするものである。
【0037】
したがって、RFIDは、テープ筒状体の外側から粗巻き用線条体にて確実に粗巻き固定され、あるいはテープ筒状体の内面に設けた接着材層にて確実に固定され、あるいは熱融着性テープを加熱して確実に固定されるので、ケーブル内での位置変動がなくなる。
【0038】
請求項11によるこの発明の光ファイバケーブルは、請求項7〜10のうちのいずれか一つに記載の光ファイバケーブルにおいて、前記収納部がスロットロッドからなり、このスロットロッドに形成されたスロット溝内に前記連長体を収納してなることを特徴とするものである。
【0039】
したがって、スロット形ケーブルの場合、連長体のRFIDがスロット溝内に収納されるので、ケーブルの敷設中、敷設後のケーブルへの側圧等によるRFIDの故障が軽減される。
【0040】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して説明する。
【0041】
図7を参照するに、この発明の実施の形態に係る光ファイバケーブル1はスロット形のケーブルであるが、スロット形に限定されず、ストランド形やチューブ型、あるいはユニット型のケーブルであっても構わない。この実施の形態ではスロット形のケーブルで説明する。
【0042】
ケーブル1は、収納部としての例えばほぼ断面円形で長尺のスロットロッド3のほぼ中央には鋼線、FRP、高強度繊維などの材料からなる抗張力体5が挿通されており、前記スロットロッド3の外周面には複数のスロット溝7A,7B、この実施の形態では5つのスロット溝7A,7Bが当該スロットロッド3の長手方向に沿って互いに並行して設けられている。
【0043】
また、上記の5つのスロット溝のうちの4つのスロット溝7Aの内部に光ファイバ心線としての例えば4心のテープ心線9(以下、「4心テープ」という)がそれぞれ5枚ずつ収納されており、合計80心の光ファイバが収納されている。
なお、上記の4心テープ9としては、図8に示されているように4本の光ファイバ単心線11が並列に配列され、その周囲に樹脂からなる被覆層13が形成されてテープ状に一体化して製造されているのである。なお、スロット溝7A内に収納される光ファイバ心線は、上記の4心テープ9などのテープ心線に限定されるものではなく、他の形態の光ファイバ心線であっても構わない。
【0044】
さらに、スロット溝7Bの内部には、この発明の実施の形態の連長体15が収納されている。連長体15は、RFID(Radio Frequency Identification;無線周波数識別)が長尺のパイプ状の部材に長手方向に一定間隔のピッチで配列されて構成されており、詳細については後述する。
【0045】
以上のように各スロット溝7Aに複数の4心テープ9が収納されると共にスロット溝7Bに連長体15が収納された状態で、スロットロッド3の外周には樹脂テープ材からなる押え巻き17で横巻きされている。この押え巻き17の外側は例えばPE樹脂の外皮部材19でシースされている。なお、外皮部材19のシース材料としては、上記のPEの他にPVCやノンハロ難燃材、エコ材が用いられても構わない。
【0046】
次に、この発明の実施の形態の連長体15について詳しく説明する。
【0047】
図1を参照するに、連長体15としての例えば第1の実施の形態の連長体21は、複数のRFID23が長尺のパイプ体25の中にその長手方向に適宜間隔を介して配列され、パイプ体25の長手方向の両端側がパイプ体25に設けた前側かしめ部27Aと後側かしめ部27Bとからなるかしめ部27により固定されている。この第1の実施の形態では複数のRFID23は一定間隔のピッチP、例えば1mピッチで配列されており、パイプ体25は厚さ0.5mmのナイロンパイプから構成されている。なお、パイプ体25の材質としては、ポリエチレン、PVC、ポリエステル、ナイロンなどが一般に用いられる。
【0048】
上記のRFID23についてより詳しくは、図2に示されているようにこの実施の形態ではほぼ円筒形状のプラスチック製のケース29内に、ケーブル情報を記憶したICチップ31と、このICチップ31に電気的に接続したアンテナコイル33が内蔵されている。アンテナコイル33はまっすぐな棒状または板状の磁芯部材35と、この磁芯部材35に当該磁芯部材35の軸芯を中心として螺旋状に卷回されたコイル本体としての被覆銅線37とからなっている。つまり、RFID23は、電磁誘導を用いたリード/ライタ機器から発信される無線電波により、アンテナコイル33を経てICチップ31に記憶されたケーブル情報が読み出し且つ書き込み可能に構成されている。
【0049】
上記構成により、例えば、鉄道沿線には多数の光ファイバケーブルが敷設されており、この発明の実施の形態の光ファイバケーブル1が上記の鉄道沿線の多数の光ファイバケーブルとして用いられる場合を例として説明すると、線路沿いには2.5〜5km間隔で機器室が設けられており、上記の多数のケーブル1は各機器室の接続端子に接続されている。
【0050】
上記の接続端子の各ケーブル1の管理及びケーブル撤去時には、各ケーブル1の識別を行う必要がある。この各ケーブル1の識別時、各ケーブル1には長尺方向に例えば1mの一定間隔でRFID23が配列されているので、ケーブル1の一部が露出すればRFID23を見つけることができ、電磁誘導を用いたリード/ライタ機器で容易にRFID23に書き込まれているケーブル情報を得ることができる。また、上記のリード/ライタ機器でRFID23内のICチップ31に読み書きが容易に行われる。しかも、RFID23に書き込まれた情報は時間経過によって消滅することはなく、リード/ライタ機器で、短時間で容易に目的のケーブル1を識別可能となる。したがって、光ファイバケーブル1の誤切断を防止可能となり、これに伴って、工事費の削減にも寄与する。
【0051】
また、上述したようにRFID23の単体では、数mmから数10mmと小さいので、ケーブル1内に一定間隔で収納するのは難しいが、上記のように連長体15(21)にすることにより、ケーブルの製造工程中にケーブル1内に容易に収納可能となる。しかも、RFID23は連長体21のパイプ体25の中で前後を前側かしめ部27Aと後側かしめ部27Bとからなるかしめ部27で固定されているので、ケーブル1の内部での位置変動がなくなるために識別が容易となる。
【0052】
また、一般的にRFID23は、ケーブル化時の熱で破壊されたり、ケーブル敷設後の環境において熱による誤動作、破壊が生じる可能性があるが、この第1の実施の形態の連長体21はRFID23がパイプ体25の内部に収納されているので、耐熱性を向上させることができ、外部熱から保護される。したがって、RFID23は外部温度の影響を受けずに識別が可能となる。
【0053】
また、上記のケーブル1はスロット形であるので、スロット溝7B内にRFID23が収納されることにより、ケーブル1の敷設中、敷設後のケーブル1への側圧等によるRFIDの故障が軽減される。
【0054】
なお、ケーブル1の外皮部材19の表面には品名や条長が1m間隔で印刷表示されている。前記各表示が連長体21の各RFID23の位置と位相を合わせることにより、RFID23がどこにあるかの確認が簡単である。
【0055】
次に、上記の第1の実施の形態の連長体21の製造方法について説明する。なお、前述した連長体21と同様の部分の詳細な説明は省略する。
【0056】
図3(A),(B)を参照するに、厚さ0.5mmのナイロンパイプからなる長尺のパイプ体25は、最初の第1のRFID23を設けるべき所定位置に、例えばプレス機械により第1の前側かしめ部27Aが成形される。次いで、第1のRFID23がパイプ体25の一端から挿入され、パイプ体25の内部に気流としての例えばエアが吹き込まれることによって図3(A)に示されているように前記第1のRFID23がパイプ体25の中をエアで運ばれて、第1の前側かしめ部27Aに当接して停止する。
【0057】
次いで、前記第1のRFID23の後側〔図3(B)において右側〕に第1の後側かしめ部27Bがプレス機械により成形される。また、前記第1のRFID23より後側に例えば1mピッチで2番目の第2のRFID23を設けるべき所定位置に、第2の前側かしめ部27Aが成形される。次いで、第2のRFID23がパイプ体25の一端から挿入され、パイプ体25の内部にエアが吹き込まれることによって図3(B)に示されているように前記第2のRFID23がエアで運ばれて、第2の前側かしめ部27Aで停止する。
【0058】
以下同様に、前記第2のRFID23の後側〔図3(B)において右側〕に第2の後側かしめ部27B(図示されていない)が成形されると共に前記2番目のRFID23より後側に例えば1mピッチで3番目の第3のRFID23(図示されていない)を設けるべき所定位置に、第3の前側かしめ部27Aが成形される。以上のようにして、以下3番目のRFID23、4番目のRFID23という具合に例えば1mピッチで多数のRFID23が固定され、連長体21が製造される。
【0059】
以上のように、各RFID23はエアで容易に送られ、前側かしめ部27Aと後側かしめ部27Bとの間で容易にパイプ体25に固定され、各RFID23が長手方向に位置変動のない連長体21として容易に製造される。
【0060】
次に、この発明の第2の実施の形態の連長体39について詳しく説明する。
【0061】
図4を参照するに、連長体39は、複数のRFID23が長尺のテープ体としての例えば樹脂テープ41にその長手方向に適宜間隔を介して配列され、複数のRFID23が前記樹脂テープ41で包み込まれるようにテープ筒状体43に形成される。このテープ筒状体43の外側には、粗巻き線条体としての例えば粗巻き糸45にて粗巻きされることにより、前記複数の各RFID23が連長体39の長手方向の各位置に固定されている。この第2の実施の形態では複数のRFID23は一定間隔のピッチP、例えば1mピッチで配列されており、上記の樹脂テープ41は、厚さ0.1mmのPETテープである。
【0062】
なお、テープ体としては、上記の樹脂テープ41の他に熱融着性テープや接着層を有するテープ、あるいはその他の樹脂テープが用いられても構わない。熱融着性テープは加熱することにより熱融着性テープがわずかに溶融してRFID23が確実に固定される。また、テープ筒状体の内面に設けた接着材層にて確実に固定される。また、この第2の実施の形態ではRFID23は直径2.12mmφである。
【0063】
次に、上記の第2の実施の形態の連長体39の製造方法について説明する。なお、前述した連長体39と同様の部分の詳細な説明は省略する。
【0064】
図5を参照するに、長尺の樹脂テープ41の片面には長手方向に予めピッチP(この実施の形態では1mピッチ)の一定間隔でRFID23がRFID供給装置47から供給される。
【0065】
次いで、上記の樹脂テープ41は、例えば外周面に円周方向に向けて無端状の凹部49を設けた包込み用ローラ51と、この包込み用ローラ51の凹部49の図5において上側からRFID23を押さえ可能な間隔を介して設けられた押えローラ53との間を通過する。このとき、樹脂テープ41は前記凹部49により幅方向にほぼU字形状に湾曲するので、RFID23が樹脂テープ41にほぼ包み込まれるようにガイドされる。
【0066】
さらに樹脂テープ41は前方(図5において右方)に設けられている粗巻き装置55の回転体57の回転中心のガイド穴部59の中を通過するときに筒状となるようにガイドされ、RFID23が図6に示されているように樹脂テープ41により完全に包み込まれることになる。
【0067】
さらに、粗巻き装置55の回転体57の外側には粗巻き糸45のボビン61が装着されており、上記の筒状とされた樹脂テープ41が前方(図5において右方)に送られる速度に合わせた回転速度で回転体57がガイド穴部59を中心に図6の矢印方向に回転することにより、上記のボビン61の粗巻き糸45が筒状の樹脂テープ41の周囲に粗巻きされ、各RFID23が例えば1mピッチで固定され、連長体39が製造されることになる。
【0068】
ここで、上記の連長体39がケーブル1内に縦添えされたときの作用について説明する。前述した連長体21が用いられて場合とほぼ同様である。
【0069】
複数のケーブル1を識別する時、各ケーブル1には長尺方向に例えば1mの一定間隔でRFID23が配列されているので、ケーブル1の一部が露出すればRFID23を見つけることができ、電磁誘導を用いたリード/ライタ機器で容易にRFID23に書き込まれているケーブル情報を得ることができる。また、上記のリード/ライタ機器でRFID23内のICチップ31に読み書きが容易に行われる。光ファイバケーブル1の誤切断を防止可能となり、これに伴って、工事費の削減にも寄与する。
【0070】
また、上述したようにRFID23の単体では、数mmから数10mmと小さいので、ケーブル1内に一定間隔で収納するのは難しいが、上記のように連長体にすることにより、ケーブルの製造工程中にケーブル1内に容易に収納可能となる。しかも、RFID23は連長体39のテープ筒状体43となった樹脂テープ41の中で前後が粗巻き糸45で固定されているので、ケーブル1の内部での位置変動がなくなるために識別が容易となる。
【0071】
なお、ケーブル1の外皮の表面には品名や条長が例えば1m間隔で印刷表示されている。前記各表示が連長体の各RFID23の位置と移送を合わせることにより、RFID23がどこにあるかの確認が簡単である。
【0072】
次に、この発明の他の実施の形態の光ファイバケーブル63について図面を参照して説明する。なお、前述した光ファイバケーブル1と同様の部分は同符号にて説明する。
【0073】
図9を参照するに、光ファイバケーブル63はユニット形ケーブルであり、ケーブル63の収納部64におけるほぼ中央に鋼線、FRP、高強度繊維などの材料からなる抗張力体65が挿通されており、前記抗張力体65の周囲には6本の光ファイバユニット部67と共に1本の連長体15が縦添えされている。また、6本の光ファイバユニット部67及び1本の連長体15の外側すなわち、前記収納部64の外周には例えばPE樹脂の外皮部材19でシースされている。なお、上記の連長体15としては、前述した第1,第2の実施の形態の連長体21,39のいずれが用いられても構わない。また、上記の外皮部材19のシース材料としては、上記のPEの他にPVCやノンハロ難燃材、エコ材が用いられても構わない。
【0074】
図10を参照するに、上記の各光ファイバユニット部67としては、例えばユニット中心部材69の周囲に5本の光ファイバ心線71が縦添えされており、5本の光ファイバ心線71の外側には緩衝材73が横巻きされ、この緩衝材73の外側には樹脂テープ材からなる押え巻き75で横巻きされている。したがって、上記のケーブル63は30心ケーブルである。
【0075】
次に、この発明の別の実施の形態の光ファイバケーブル77について図面を参照して説明する。なお、前述した光ファイバケーブル1と同様の部分は同符号にて説明する。
【0076】
図11を参照するに、光ファイバケーブル77はストランド形の11心構内ケーブルであり、ケーブル77の収納部78におけるほぼ中央には鋼線、FRP、高強度繊維などの材料からなる抗張力体79が挿通されており、前記抗張力体79の外周には被覆材81を介して11本の光ファイバ心線71と共に1本の連長体15が縦添えされている。また、11本の光ファイバユニット心線71及び1本の連長体15の外側は樹脂テープ材からなる押え巻き17で横巻きされており、この押え巻き17の外側は例えばPE樹脂の外皮部材19でシースされている。
【0077】
なお、上記の連長体15としては、前述した第1,第2の実施の形態の連長体21,39のいずれが用いられても構わない。また、上記の外皮部材19のシース材料としては、上記のPEの他にPVCやノンハロ難燃材、エコ材が用いられても構わない。
【0078】
なお、この発明は前述した実施の形態に限定されることなく、適宜な変更を行うことによりその他の態様で実施し得るものである。
【0079】
【発明の効果】
以上のごとき発明の実施の形態の説明から理解されるように、請求項1の発明によれば、RFIDの単体ではケーブル内に一定間隔で収納するのは難しいが、連長体にしたのでケーブル内に容易に収納できる。しかも、RFIDをパイプ体内でその前後をかしめ部で固定したので、ケーブル内での位置変動がなくなるため容易に識別できる。
【0080】
また、パイプ体内にRFIDを収納したので、耐熱性を向上させることができ、RFIDは外部温度の影響を受けずに識別できる。
【0081】
請求項2の発明によれば、RFIDの単体ではケーブル内に一定間隔で収納するのは難しいが、連長体にしたのでケーブル内に容易に収納できる。しかも、長尺のテープ体でRFIDを包み込んでRFID固定部で固定しているので、ケーブル内での位置変動がなくなるため容易に識別できる。
【0082】
請求項3の発明によれば、RFIDは、テープ筒状体の外側から粗巻き用線条体にて確実に粗巻き固定でき、あるいはテープ筒状体の内面に設けた接着材層にて確実に固定でき、あるいは熱融着性テープを加熱して確実に固定できるので、ケーブル内での位置変動をなくすことができる。
【0083】
請求項4の発明によれば、長尺のパイプ体の所定位置に前側かしめ部を設けた後にパイプ体の一端から気流でRFIDを送るので、RFIDを前側かしめ部で容易に位置決めでき、次いで前記RFIDの後側に後側かしめ部を設けるので、各RFIDを前側かしめ部と後側かしめ部との間で容易にパイプ体に固定でき、各RFIDを長手方向に位置変動のない連長体として容易に製造できる。
【0084】
請求項5の発明によれば、長尺のテープ体で複数のRFIDを包み込んでテープ筒状体とし、RFID固定部で固定できるので、各RFIDを長手方向に位置変動のない連長体として容易に製造できる。
【0085】
請求項6の発明によれば、各RFIDはテープ筒状体内に確実に固定でき、各RFIDを長手方向に位置変動のない連長体として容易に製造できる。
【0086】
請求項7の発明によれば、連長体によりRFIDを光ファイバケーブルの長尺方向に一定間隔で配列しているので、光ファイバケーブルの一部を露出すれば、RFIDに書き込まれているケーブル情報は例えばリーダ/ライタ機器により容易に識別でき、光ファイバケーブルの誤切断を防止でき、工事費の削減を図ることができる。
【0087】
また、RFIDの単体ではケーブル内に一定間隔で収納するのは難しいが、連長体にすることで、ケーブル内に容易に収納できる。
【0088】
請求項8の発明によれば、RFIDの単体ではケーブル内に一定間隔で収納するのは難しいが、連長体にしたのでケーブルの内部に容易に収納できる。しかも、RFIDをパイプ体内でその前後をかしめ部で固定したので、ケーブル内での位置変動がなくなるため容易に識別できる。
【0089】
また、パイプ体の内部にRFIDを収納したので、耐熱性を向上させることができ、RFIDは外部温度の影響を受けずに識別できる。
【0090】
請求項9の発明によれば、長尺のテープ体でRFIDを包み込んでRFID固定部で固定したので、ケーブル内での位置変動がなくなるため容易に識別できる。
【0091】
請求項10の発明によれば、RFIDを、テープ筒状体の外側から粗巻き用線条体にて確実に粗巻き固定でき、あるいはテープ筒状体の内面に設けた接着材層にて確実に固定でき、あるいは熱融着性テープを加熱して確実に固定できるので、ケーブル内での位置変動をなくすことができる。
【0092】
請求項11の発明によれば、スロット形ケーブルの場合、連長体のRFIDをスロット溝内に収納したので、ケーブルの敷設中、敷設後のケーブルへの側圧等によるRFIDの故障を軽減できる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態の連長体の長手方向の部分的な縦断面図である。
【図2】図1で用いるRFIDの概略的な斜視図である。
【図3】図1の連長体の製造工程の概略的な説明図で、(A)は第1のRFIDをパイプ体内に装着する工程を示し、(B)は第2のRFIDをパイプ体内に装着する工程を示すものである。
【図4】この発明の第2の実施の形態の連長体の長手方向の部分的な縦断面図である。
【図5】図4の連長体の製造工程の概略的な説明図である。
【図6】図5の矢視VI−VI線の断面図である。
【図7】この発明の実施の形態のスロット形光ファイバケーブルの断面図である。
【図8】図7の光ファイバケーブル内に収納される光ファイバ心線としての例えば4心テープの断面図である。
【図9】この発明の実施の形態のユニット形光ファイバケーブルの断面図である。
【図10】図9の光ファイバユニット部の断面図である。
【図11】この発明の実施の形態のストランド形光ファイバケーブルの断面図である。
【符号の説明】
1 光ファイバケーブル(スロット形のケーブル)
3 スロットロッド(収納部)
7A、7B スロット溝
9 4心テープ(光ファイバ心線)
15 連長体
19 外皮部材
21 連長体(第1の実施の形態の)
23 RFID
25 パイプ体
27 かしめ部
27A 前側かしめ部
27B 後側かしめ部
39 第2の実施の形態の連長体
41 樹脂テープ(テープ体)
43 テープ筒状体
45 粗巻き糸(粗巻き線条体)
47 RFID供給装置
55 粗巻き装置
57 回転体
59 ガイド穴部
63 光ファイバケーブル(ユニット形ケーブル)
67 光ファイバユニット部
77 光ファイバケーブル(ストランド形の11心構内ケーブル)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous body provided with an RFID capable of easily identifying only a target cable from a large number of cables laid, a manufacturing method thereof, and an optical fiber cable using the continuous body About.
[0002]
[Prior art]
For example, a number of optical fiber cables are laid in the trough, and equipment rooms are provided at intervals of 2.5 to 5 km, and the above-mentioned many cables are connected to connection terminals of each equipment room. The management of each cable of the connection terminal and the removal of the cable are required to reliably identify each cable.
[0003]
As a conventional cable identification method, a method of performing identification printing on the outer surface of a cable, or attaching an identification tag to the end of each cable has been adopted. In the above-described identification print, cable information such as a manufacturer name / manufacturing date / cable product name / length is displayed on the cable surface by ink, thermal transfer, laser, or the like. In the case of the identification tag, for example, the cable information of the above-described items is engraved on a thin metal plate and attached to each cable, or is suspended by a metal wire or the like (for example, see Patent Document 1).
[0004]
As another cable identification method, a QR code printing paper in which the installation related information of the optical cable is converted into a two-dimensional QR code and printed is attached to the outer cover of the optical cable. At the time of maintenance or the like, the recorded information is read out at the installation site by scanning the QR code printed paper with a code reader. The information of the optical cable is similarly read from the above-described QR code printing paper in place of the bar code, the magnetic card, and the IC card (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP-A-6-60750 ([0012]-[0013], FIG. 1)
[0006]
[Patent Document 2]
JP 2001-21730 A ([0012] to [0018], FIG. 1)
[0007]
[Problems to be solved by the invention]
By the way, in the conventional cable identification method, when the identification printing is performed on the cable surface, the printing is performed in the longitudinal direction of the cable. There was a problem that it could not be confirmed unless it was exposed. Removal of long sections of trough lids and soil will increase construction costs. For this reason, the entire length of the identification print is desirably 1 m or less, but the number of characters that can be printed to about 1 m is limited, so that it is impossible to describe all necessary information. .
[0008]
In addition, in the identification printing, characters may disappear when a long period of time elapses or is rubbed.
[0009]
In addition, in the case of the method of attaching the identification tag, since it is necessary to attach the tag to a long cable at a constant interval, there is a problem that the number of the tag becomes enormous and the construction cost is increased.
[0010]
Further, the number of characters that can be written in the identification tag is limited, and it is impossible to describe all necessary information. In addition, characters are written on the identification tag by engraving or the like, but there is a problem that the characters may be blurred after a long period of time, as in the case of the identification printing, and may not be distinguished.
[0011]
In addition, when a QR code printing paper, a bar code, a magnetic card, an IC card, or the like is stuck on the outer cover of the optical cable, the writing information is small, and it becomes indistinguishable after a long period of time or rubbing. There is a problem that this occurs.
[0012]
The identification of cables is necessary to determine the target cable from a large number of cables at the time of re-laying or spreading work. However, the identification printing, identification tag, QR code printing paper, and barcode are unclear. Or when there are a plurality of cables having the same display, there is a problem that it takes much time to determine the information.
[0013]
Furthermore, if the wrong cable is disconnected, the device controlled by the signal flowing through the cable may malfunction or stop the information, resulting in a serious accident. .
[0014]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a continuous body provided with an RFID capable of easily and surely identifying only a target cable from a large number of cables, and a method of manufacturing the same , And an optical fiber cable using a continuous body.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, a continuous body according to the present invention according to claim 1 includes a long pipe body, a plurality of RFIDs arranged inside the pipe body at appropriate intervals in a longitudinal direction thereof, and And a caulking portion provided on the pipe body at positions outside both ends of the RFID in order to fix the RFID to the pipe body.
[0016]
Therefore, it is difficult to store the RFID alone at a constant interval in the cable, but by using a continuous body, the RFID can be easily stored in the cable. Moreover, since the front and rear of each RFID inserted into the pipe body is fixed by the caulking portion, the position is not changed in the cable, so that the identification becomes easy.
[0017]
Further, since the RFID is housed in the pipe, the heat resistance can be improved, and the RFID can be identified without being affected by the external temperature.
[0018]
According to a second aspect of the present invention, there is provided a continuous-length body comprising: a tape cylindrical body having a long tape body provided in a cylindrical shape; and a plurality of RFIDs arranged inside the tape cylindrical body at appropriate intervals in the longitudinal direction. And an RFID fixing portion for fixing each of the RFIDs to the tape cylindrical body.
[0019]
Therefore, it is difficult to store the RFID alone at a constant interval in the cable, but by using a continuous body, the RFID can be easily stored in the cable. In addition, since the RFID is wrapped in a long tape body and fixed by the RFID fixing portion, the position is not changed in the cable, so that the identification becomes easy.
[0020]
According to a third aspect of the present invention, in the continuous length body according to the second aspect, the RFID fixing portion is a roughly wound linear body or a tape cylindrical shape roughly wound from the outside of the tape cylindrical body. The adhesive layer provided on the inner surface of the body or the tape body itself may be formed as a heat-fusible tape.
[0021]
Therefore, the RFID is securely fixed by the coarsely wound filament from the outside of the tape cylindrical body, or is securely fixed by the adhesive layer provided on the inner surface of the tape cylindrical body, or is thermally fused. Since the adhesive tape is heated and securely fixed, there is no positional change in the cable.
[0022]
According to a fourth aspect of the present invention, there is provided a continuous elongated body manufacturing method, comprising inserting a first RFID from one end of the pipe body into a first front caulking portion provided at a predetermined position in a longitudinal direction of the long pipe body. The first RFID is brought into contact with the first front caulking portion, and the first RFD is fixed by the first rear caulking portion behind the rear end of the first RFID. A second RFID is inserted from one end of the pipe body into a second front caulking portion provided on the rear side at an appropriate distance from the rear caulking portion, and the second RFID is caulked to the second front caulking. The second RFID is fixed by a second rear caulking portion behind the rear end of the second RFID and at the rear side with an appropriate interval from the second rear caulking portion. In the third front caulking portion provided, the first and subsequent RFIDs are also provided. It is characterized in that arranged over the appropriate intervals in the longitudinal direction of the pipe in the same manner as the second RFID.
[0023]
Therefore, since each RFID is inserted from one end of the pipe body after the front caulking part is provided at a predetermined position of the long pipe body, the RFID is easily positioned at the front caulking part, and then the RFID is rearwardly placed at the rear side of the RFID. Since the side caulking portion is provided, each RFID is easily fixed to the pipe body between the front caulking portion and the rear caulking portion, and each RFID is easily manufactured as a continuous body having no positional change in the longitudinal direction.
[0024]
According to a fifth aspect of the present invention, there is provided a continuous elongated body manufacturing method, wherein a plurality of RFIDs are arranged on one surface of a long tape body at appropriate intervals in a longitudinal direction thereof, and the plurality of RFIDs are formed into a tubular shape. The present invention is characterized in that an RFID is wrapped to form a tape cylindrical body, and the RFIDs are fixed to the tape cylindrical body.
[0025]
Therefore, each of the plurality of RFIDs is wrapped in a long tape body to form a tape cylindrical body, fixed to the tape cylindrical body, and easily manufactured as a continuous body having no positional change in the longitudinal direction.
[0026]
According to a sixth aspect of the present invention, in the method for manufacturing a continuous body according to the fifth aspect, the method of fixing each of the RFIDs to the tape cylindrical body is performed from the outside of the tape cylindrical body. The tape is roughly wound with a coarsely wound wire and fixed, or is fixed in advance with an adhesive layer provided on the inner surface of the tape cylindrical body, or the tape itself is used as a heat-fusible tape. Is heated and fixed.
[0027]
Therefore, each RFID is securely fixed in the tape cylindrical body, and each RFID is easily manufactured as a continuous body having no positional fluctuation in the longitudinal direction.
[0028]
The optical fiber cable according to the present invention according to claim 7, wherein an optical fiber cable provided with a substantially cylindrical outer cover member and a storage portion for storing a tensile strength member and a plurality of optical fiber cores inside the outer cover member, A continuous body in which a plurality of RFIDs are arranged on a long supporting member at appropriate intervals in the longitudinal direction thereof, which is vertically attached or horizontally wound and stored inside the outer cover member. is there.
[0029]
Therefore, since the RFIDs are arranged at regular intervals in the longitudinal direction of the optical fiber cable by the continuous body, if a part of the optical fiber cable is exposed, the cable information written in the RFID can be read, for example, by a reader / writer device. Thus, the optical fiber cable can be easily identified and erroneous cutting of the optical fiber cable can be prevented. Along with this, it will also contribute to the reduction of construction costs.
[0030]
Further, it is difficult to store the RFID alone at a constant interval in the cable, but by using a continuous body, the RFID can be easily stored in the cable.
[0031]
According to an eighth aspect of the present invention, there is provided the optical fiber cable according to the seventh aspect, wherein the continuous body has a pipe body as a long support member and a pipe member inside the pipe body in a longitudinal direction thereof. It is characterized by comprising a plurality of RFIDs arranged at intervals, and caulking portions provided on the pipe at positions outside both ends of the RFID to fix each RFID to the pipe.
[0032]
Therefore, since the front and rear of each RFID inserted into the pipe body is fixed by the caulked portion, the position is not changed in the cable, and the identification is easy.
[0033]
Further, since the RFID is housed in the pipe, the heat resistance can be improved, and the RFID can be identified without being affected by the external temperature.
[0034]
An optical fiber cable according to a ninth aspect of the present invention is the optical fiber cable according to the seventh aspect, wherein the continuous body has a tape cylindrical body provided with a tape body as a long support member. It is characterized by comprising a plurality of RFIDs arranged at appropriate intervals in the longitudinal direction inside the tape cylindrical body, and an RFID fixing portion for fixing each of the RFIDs to the tape cylindrical body.
[0035]
Therefore, since the RFID is wrapped in a long tape body and fixed by the RFID fixing portion, there is no positional change in the cable, and the identification is easy.
[0036]
An optical fiber cable according to a tenth aspect of the present invention is the optical fiber cable according to the ninth aspect, wherein the RFID fixing portion is a roughly wound linear member or a tape cylindrical member roughly wound from the outside of the tape cylindrical member. The adhesive layer provided on the inner surface of the body or the tape body itself may be formed as a heat-fusible tape.
[0037]
Therefore, the RFID is securely fixed by the coarsely wound filament from the outside of the tape cylindrical body, or is securely fixed by the adhesive layer provided on the inner surface of the tape cylindrical body, or is thermally fused. Since the adhesive tape is heated and securely fixed, there is no positional change in the cable.
[0038]
According to an eleventh aspect of the present invention, there is provided the optical fiber cable according to any one of the seventh to tenth aspects, wherein the housing portion is formed of a slot rod, and a slot groove formed in the slot rod. Characterized in that the continuous body is housed therein.
[0039]
Therefore, in the case of the slot type cable, since the continuous-length RFID is stored in the slot groove, the failure of the RFID due to side pressure on the cable after the cable is laid during the cable laying is reduced.
[0040]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0041]
Referring to FIG. 7, the optical fiber cable 1 according to the embodiment of the present invention is a slot type cable, but is not limited to the slot type, and may be a strand type, tube type or unit type cable. I do not care. In this embodiment, a slot type cable will be described.
[0042]
In the cable 1, for example, a tensile member 5 made of a material such as a steel wire, FRP, or high-strength fiber is inserted substantially at the center of a long slot rod 3 having a substantially circular cross section as a storage portion. Are provided with a plurality of slot grooves 7A, 7B, in this embodiment, five slot grooves 7A, 7B in parallel with each other along the longitudinal direction of the slot rod 3.
[0043]
Further, for example, four tape cores 9 (hereinafter, referred to as “four-core tapes”) as optical fiber cores are stored in the four slot grooves 7A among the five slot grooves, respectively. And a total of 80 optical fibers are accommodated.
As shown in FIG. 8, the four-core tape 9 includes four optical fiber single-core wires 11 arranged in parallel, and a coating layer 13 made of resin is formed around the single-core optical fiber 11 to form a tape. It is manufactured in one piece. The optical fiber core housed in the slot groove 7A is not limited to a tape core such as the above-described four-core tape 9, but may be another type of optical fiber core.
[0044]
Further, the elongated body 15 according to the embodiment of the present invention is housed inside the slot groove 7B. The continuous body 15 is configured by arranging RFIDs (Radio Frequency Identification; radio frequency identification) on a long pipe-shaped member at a constant pitch in the longitudinal direction, which will be described in detail later.
[0045]
As described above, with the plurality of four-core tapes 9 stored in each slot groove 7A and the elongated body 15 stored in the slot groove 7B, a presser winding 17 made of a resin tape material is formed on the outer periphery of the slot rod 3. It is wound horizontally. The outer side of the presser winding 17 is sheathed by a skin member 19 made of, for example, PE resin. In addition, as the sheath material of the outer cover member 19, PVC, non-halo flame-retardant material, or eco-friendly material may be used in addition to the above PE.
[0046]
Next, the continuous body 15 according to the embodiment of the present invention will be described in detail.
[0047]
Referring to FIG. 1, for example, in the elongated body 21 of the first embodiment as the elongated body 15, a plurality of RFIDs 23 are arranged in a long pipe body 25 at appropriate intervals in the longitudinal direction thereof. Both ends in the longitudinal direction of the pipe body 25 are fixed by a caulking portion 27 including a front caulking portion 27A and a rear caulking portion 27B provided on the pipe body 25. In the first embodiment, the plurality of RFIDs 23 are arranged at a constant pitch P, for example, at a pitch of 1 m, and the pipe body 25 is formed of a 0.5 mm thick nylon pipe. In addition, as a material of the pipe body 25, polyethylene, PVC, polyester, nylon, or the like is generally used.
[0048]
More specifically, as shown in FIG. 2, in this embodiment, the RFID 23 has an IC chip 31 storing cable information in a substantially cylindrical plastic case 29, and the IC chip 31 is electrically connected to the IC chip 31. The antenna coil 33 which is connected to each other is built in. The antenna coil 33 includes a straight rod-shaped or plate-shaped magnetic core member 35, and a coated copper wire 37 serving as a coil body spirally wound around the magnetic core member 35 around the axis of the magnetic core member 35. Consists of That is, the RFID 23 is configured so that the cable information stored in the IC chip 31 via the antenna coil 33 can be read and written by a radio wave transmitted from a read / writer device using electromagnetic induction.
[0049]
With the above configuration, for example, a case where a large number of optical fiber cables are laid along a railway line, and the optical fiber cable 1 according to the embodiment of the present invention is used as a large number of optical fiber cables along the railway line as an example Explaining, equipment rooms are provided along the track at intervals of 2.5 to 5 km, and the large number of cables 1 are connected to connection terminals of each equipment room.
[0050]
It is necessary to identify each cable 1 when managing and removing the cables 1 of the connection terminals. At the time of identification of each cable 1, the RFID 23 is arranged at a constant interval of, for example, 1 m in the long direction in each cable 1. Therefore, if a part of the cable 1 is exposed, the RFID 23 can be found, and the electromagnetic induction can be detected. The cable information written in the RFID 23 can be easily obtained by the read / writer device used. Further, reading / writing to / from the IC chip 31 in the RFID 23 is easily performed by the above read / writer device. In addition, the information written in the RFID 23 does not disappear with the passage of time, and the target cable 1 can be easily identified in a short time by a read / writer device. Therefore, erroneous cutting of the optical fiber cable 1 can be prevented, which also contributes to reduction of construction costs.
[0051]
Further, as described above, since the RFID 23 alone is as small as several millimeters to several tens of millimeters, it is difficult to store the RFID 23 at a constant interval in the cable 1. However, by using the continuous body 15 (21) as described above, The cable can be easily stored in the cable 1 during the cable manufacturing process. In addition, since the RFID 23 is fixed by the caulking portion 27 including the front caulking portion 27A and the rear caulking portion 27B at the front and rear in the pipe body 25 of the continuous elongated body 21, the position fluctuation inside the cable 1 is eliminated. Therefore, identification becomes easy.
[0052]
In general, the RFID 23 may be destroyed by the heat generated when the cable is formed, or may malfunction or break due to heat in an environment after the cable is laid. However, the continuous body 21 of the first embodiment is Since the RFID 23 is housed inside the pipe body 25, the heat resistance can be improved, and the RFID 23 is protected from external heat. Therefore, the RFID 23 can be identified without being affected by the external temperature.
[0053]
Further, since the cable 1 is a slot type, the RFID 23 is stored in the slot groove 7B, so that the failure of the RFID due to the side pressure on the cable 1 after the cable 1 is laid down during the laying of the cable 1 is reduced.
[0054]
In addition, on the surface of the outer cover member 19 of the cable 1, a product name and a line length are printed and displayed at intervals of 1 m. By matching the position and the phase of each RFID 23 of the elongated body 21 with each display, it is easy to confirm where the RFID 23 is.
[0055]
Next, a method of manufacturing the elongated body 21 of the first embodiment will be described. A detailed description of the same parts as those of the aforementioned elongated body 21 will be omitted.
[0056]
3A and 3B, a long pipe body 25 made of a nylon pipe having a thickness of 0.5 mm is placed at a predetermined position where the first first RFID 23 is to be provided, for example, by a press machine. One front caulking portion 27A is formed. Next, the first RFID 23 is inserted from one end of the pipe body 25, and, for example, air as an airflow is blown into the inside of the pipe body 25 so that the first RFID 23 is inserted as shown in FIG. The inside of the pipe body 25 is carried by air, and comes into contact with the first front caulking portion 27A and stops.
[0057]
Next, a first rear caulking portion 27B is formed on the rear side (the right side in FIG. 3B) of the first RFID 23 by a press machine. Further, a second front caulking portion 27A is formed at a predetermined position where the second second RFID 23 is to be provided at a pitch of, for example, 1 m behind the first RFID 23. Next, the second RFID 23 is inserted from one end of the pipe body 25, and air is blown into the pipe body 25, so that the second RFID 23 is carried by air as shown in FIG. And stops at the second front caulking portion 27A.
[0058]
Similarly, a second rear caulking portion 27B (not shown) is formed on the rear side (the right side in FIG. 3B) of the second RFID 23, and the rear side of the second RFID 23 is formed on the rear side of the second RFID 23. For example, a third front caulking portion 27A is formed at a predetermined position where a third third RFID 23 (not shown) is to be provided at a pitch of 1 m. As described above, a number of RFIDs 23 are fixed at, for example, a 1-m pitch in the following manner, for example, the third RFID 23 and the fourth RFID 23, and the continuous body 21 is manufactured.
[0059]
As described above, each RFID 23 is easily sent by air, easily fixed to the pipe body 25 between the front caulking portion 27A and the rear caulking portion 27B, and each RFID 23 has a continuous length with no positional fluctuation in the longitudinal direction. It is easily manufactured as body 21.
[0060]
Next, a continuous body 39 according to a second embodiment of the present invention will be described in detail.
[0061]
Referring to FIG. 4, in the continuous body 39, a plurality of RFIDs 23 are arranged at appropriate intervals in a longitudinal direction on a resin tape 41 as a long tape body, for example, and the plurality of RFIDs 23 are The tape cylindrical body 43 is formed so as to be wrapped. The plurality of RFIDs 23 are fixed to respective positions in the longitudinal direction of the elongated body 39 by being coarsely wound around the outside of the tape cylindrical body 43 by, for example, a coarsely wound yarn 45 as a coarsely wound linear body. Have been. In the second embodiment, the plurality of RFIDs 23 are arranged at a constant pitch P, for example, 1 m pitch, and the resin tape 41 is a PET tape having a thickness of 0.1 mm.
[0062]
As the tape body, in addition to the resin tape 41, a heat-fusible tape, a tape having an adhesive layer, or another resin tape may be used. By heating the heat-fusible tape, the heat-fusible tape slightly melts, and the RFID 23 is securely fixed. Also, the tape is securely fixed by the adhesive layer provided on the inner surface of the tubular body. In the second embodiment, the RFID 23 has a diameter of 2.12 mmφ.
[0063]
Next, a method of manufacturing the elongated body 39 according to the second embodiment will be described. The detailed description of the same parts as those of the aforementioned elongated body 39 will be omitted.
[0064]
Referring to FIG. 5, the RFID 23 is supplied to the one surface of the long resin tape 41 from the RFID supply device 47 at a constant pitch P (1 m pitch in this embodiment) in the longitudinal direction in advance.
[0065]
Next, the resin tape 41 is, for example, provided with an enclosing roller 51 provided with an endless concave portion 49 on the outer peripheral surface in the circumferential direction, and the RFID 23 from the upper side of the concave portion 49 of the encapsulating roller 51 in FIG. And passes between the pressing rollers 53 provided with an interval capable of pressing. At this time, since the resin tape 41 is bent in a substantially U-shape in the width direction by the concave portion 49, the RFID 23 is guided so as to be substantially wrapped in the resin tape 41.
[0066]
Further, the resin tape 41 is guided so as to have a cylindrical shape when passing through the guide hole 59 at the center of rotation of the rotating body 57 of the coarse winding device 55 provided on the front (right side in FIG. 5). The RFID 23 is completely wrapped by the resin tape 41 as shown in FIG.
[0067]
Further, a bobbin 61 of the coarsely wound yarn 45 is mounted on the outer side of the rotating body 57 of the coarsely wound device 55, and the speed at which the cylindrical resin tape 41 is fed forward (to the right in FIG. 5). When the rotating body 57 rotates in the direction of the arrow in FIG. 6 around the guide hole 59 at a rotational speed according to the above, the coarsely wound yarn 45 of the bobbin 61 is coarsely wound around the cylindrical resin tape 41. The RFIDs 23 are fixed at a pitch of, for example, 1 m, and the continuous body 39 is manufactured.
[0068]
Here, the operation when the above-described continuous body 39 is vertically attached in the cable 1 will be described. This is almost the same as the case where the aforementioned elongated body 21 is used.
[0069]
When the plurality of cables 1 are identified, the RFIDs 23 are arranged at regular intervals of, for example, 1 m in the lengthwise direction of each of the cables 1. The cable information written in the RFID 23 can be easily obtained by a read / writer device using the. Further, reading / writing to / from the IC chip 31 in the RFID 23 is easily performed by the above read / writer device. This makes it possible to prevent the optical fiber cable 1 from being erroneously cut, thereby contributing to a reduction in construction costs.
[0070]
Further, as described above, since the RFID 23 alone is as small as several millimeters to several tens of millimeters, it is difficult to store it in the cable 1 at a constant interval. It can be easily stored in the cable 1 inside. Further, since the RFID 23 is fixed with the coarse winding thread 45 at the front and rear in the resin tape 41 which has become the tape cylindrical body 43 of the continuous elongated body 39, the RFID 23 does not change its position inside the cable 1, so the identification is not performed. It will be easier.
[0071]
The product name and the length of the cable 1 are printed and displayed at, for example, 1 m intervals on the outer surface of the cable 1. By matching the position of each RFID 23 of the prolonged body with the transfer of each display, it is easy to confirm where the RFID 23 is.
[0072]
Next, an optical fiber cable 63 according to another embodiment of the present invention will be described with reference to the drawings. Parts similar to those of the above-described optical fiber cable 1 will be described with the same reference numerals.
[0073]
Referring to FIG. 9, the optical fiber cable 63 is a unit-type cable, and a tensile strength member 65 made of a material such as a steel wire, FRP, or high-strength fiber is inserted substantially in the center of a storage portion 64 of the cable 63. Along the periphery of the strength member 65, one continuous body 15 is vertically attached together with six optical fiber unit parts 67. In addition, the outside of the six optical fiber unit portions 67 and the one continuous body 15, that is, the outer periphery of the storage portion 64, is sheathed with a sheath member 19 made of, for example, PE resin. Note that any of the elongated bodies 21 and 39 of the first and second embodiments described above may be used as the elongated body 15 described above. Further, as the sheath material of the outer cover member 19, PVC, a non-halo flame retardant material, or an eco material may be used in addition to the PE.
[0074]
Referring to FIG. 10, as each of the optical fiber unit sections 67, for example, five optical fiber cores 71 are vertically attached around a unit center member 69, and the five optical fiber cores 71 A cushioning material 73 is wound horizontally on the outside, and a holding material 75 made of a resin tape is wound around the outside of the cushioning material 73. Therefore, the above-mentioned cable 63 is a 30-core cable.
[0075]
Next, an optical fiber cable 77 according to another embodiment of the present invention will be described with reference to the drawings. Parts similar to those of the above-described optical fiber cable 1 will be described with the same reference numerals.
[0076]
Referring to FIG. 11, the optical fiber cable 77 is a strand-shaped 11-fiber premises cable, and a tensile member 79 made of a material such as a steel wire, FRP, or high-strength fiber is provided substantially at the center of the storage portion 78 of the cable 77. One continuous body 15 is vertically attached to the outer periphery of the tensile strength member 79 together with eleven optical fiber core wires 71 via a coating material 81. Further, the outside of the eleven optical fiber unit core wires 71 and the one continuous body 15 is horizontally wound by a holding roll 17 made of a resin tape material. Sheathed at 19.
[0077]
Note that any of the elongated bodies 21 and 39 of the first and second embodiments described above may be used as the elongated body 15 described above. Further, as the sheath material of the outer cover member 19, PVC, a non-halo flame retardant material, or an eco material may be used in addition to the PE.
[0078]
The present invention is not limited to the above-described embodiment, but can be embodied in other modes by making appropriate changes.
[0079]
【The invention's effect】
As can be understood from the above description of the embodiment of the invention, according to the invention of claim 1, it is difficult to store the RFID alone at a constant interval in the cable, Can be easily stored inside. In addition, since the RFID is fixed at the caulked portion at the front and rear in the pipe, there is no positional change in the cable, so that the RFID can be easily identified.
[0080]
Further, since the RFID is housed in the pipe, the heat resistance can be improved, and the RFID can be identified without being affected by the external temperature.
[0081]
According to the second aspect of the present invention, it is difficult to store the RFID alone at a constant interval in the cable, but since it is a continuous body, it can be easily stored in the cable. In addition, since the RFID is wrapped in a long tape body and fixed by the RFID fixing portion, there is no positional change in the cable, so that the RFID can be easily identified.
[0082]
According to the third aspect of the present invention, the RFID can be securely fixed by the coarsely wound filament from the outside of the tape cylindrical body, or can be securely fixed by the adhesive layer provided on the inner surface of the tape cylindrical body. , Or the heat-fusible tape can be heated and securely fixed, so that positional fluctuation in the cable can be eliminated.
[0083]
According to the invention of claim 4, since the RFID is sent by airflow from one end of the pipe body after the front caulking part is provided at a predetermined position of the long pipe body, the RFID can be easily positioned by the front caulking part, and then the Since the rear caulking part is provided on the rear side of the RFID, each RFID can be easily fixed to the pipe body between the front caulking part and the rear caulking part, and each RFID is a continuous body having no positional fluctuation in the longitudinal direction. Can be easily manufactured.
[0084]
According to the fifth aspect of the present invention, since a plurality of RFIDs are wrapped in a long tape body to form a tape cylindrical body and can be fixed by the RFID fixing part, each RFID can be easily formed as a continuous body having no positional fluctuation in the longitudinal direction. Can be manufactured.
[0085]
According to the invention of claim 6, each RFID can be reliably fixed in the tape cylindrical body, and each RFID can be easily manufactured as a continuous body having no positional fluctuation in the longitudinal direction.
[0086]
According to the seventh aspect of the present invention, since the RFIDs are arranged at regular intervals in the longitudinal direction of the optical fiber cable by the continuous body, if a part of the optical fiber cable is exposed, the cable written on the RFID can be used. The information can be easily identified by, for example, a reader / writer device, erroneous cutting of the optical fiber cable can be prevented, and construction costs can be reduced.
[0087]
Further, it is difficult to store a single RFID in a cable at regular intervals, but by using a continuous body, the RFID can be easily stored in the cable.
[0088]
According to the invention of claim 8, it is difficult to store the RFID alone at a constant interval in the cable, but since it is a continuous body, it can be easily stored in the cable. In addition, since the RFID is fixed at the caulked portion at the front and rear in the pipe, there is no positional change in the cable, so that the RFID can be easily identified.
[0089]
In addition, since the RFID is stored inside the pipe, the heat resistance can be improved, and the RFID can be identified without being affected by the external temperature.
[0090]
According to the ninth aspect of the present invention, since the RFID is wrapped by the long tape and fixed by the RFID fixing portion, the position is not changed in the cable, so that the RFID can be easily identified.
[0091]
According to the tenth aspect of the present invention, it is possible to reliably fix the RFID from the outside of the tape tubular body by the roughly wound striated wire, or to secure the RFID by the adhesive layer provided on the inner surface of the tape tubular body. , Or the heat-fusible tape can be heated and securely fixed, so that positional fluctuation in the cable can be eliminated.
[0092]
According to the eleventh aspect of the present invention, in the case of the slot type cable, since the continuous-length RFID is stored in the slot groove, it is possible to reduce a failure of the RFID due to a side pressure on the cable after the cable is laid during the cable laying.
[Brief description of the drawings]
FIG. 1 is a partial longitudinal sectional view in a longitudinal direction of an elongated body according to a first embodiment of the present invention.
FIG. 2 is a schematic perspective view of the RFID used in FIG.
3A and 3B are schematic explanatory views of a manufacturing process of the continuous body of FIG. 1, wherein FIG. 3A shows a process of mounting a first RFID in a pipe, and FIG. 3B shows a process of mounting a second RFID in a pipe. 3 shows a process of mounting the device.
FIG. 4 is a partial longitudinal sectional view in the longitudinal direction of an elongated body according to a second embodiment of the present invention.
FIG. 5 is a schematic explanatory view of a manufacturing process of the continuous body of FIG. 4;
6 is a sectional view taken along line VI-VI in FIG.
FIG. 7 is a sectional view of the slot type optical fiber cable according to the embodiment of the present invention.
8 is a sectional view of, for example, a four-core tape as an optical fiber core housed in the optical fiber cable of FIG. 7;
FIG. 9 is a sectional view of a unit type optical fiber cable according to the embodiment of the present invention.
FIG. 10 is a sectional view of the optical fiber unit shown in FIG. 9;
FIG. 11 is a sectional view of a strand type optical fiber cable according to an embodiment of the present invention.
[Explanation of symbols]
1 Optical fiber cable (slot type cable)
3 Slot rod (storage part)
7A, 7B Slot groove
9 4-core tape (optical fiber core)
15 Climax
19 Skin material
21 Run-length body (of the first embodiment)
23 RFID
25 pipe body
27 Caulking part
27A Front caulking part
27B Rear caulking part
39 Elongate body of the second embodiment
41 Resin tape (tape body)
43 Tape cylindrical body
45 Coarse-wound yarn (coarse-wound filament)
47 RFID supply device
55 Coarse winding device
57 rotating body
59 Guide hole
63 Optical fiber cable (unit type cable)
67 Optical fiber unit
77 Optical fiber cable (Strand type 11-fiber premises cable)

Claims (11)

長尺のパイプ体と、このパイプ体の内部にその長手方向に適宜間隔を介して配列した複数のRFIDと、この各RFIDをパイプ体に固定すべく前記RFIDの両端の外側位置でパイプ体に設けたかしめ部と、からなることを特徴とする連長体。A long pipe body, a plurality of RFIDs arranged inside the pipe body at appropriate intervals in the longitudinal direction, and a pipe body at positions outside both ends of the RFID to fix each RFID to the pipe body. An elongated body characterized by comprising a caulking portion provided. 長尺のテープ体を筒状に設けたテープ筒状体と、このテープ筒状体の内部に長手方向に適宜間隔を介して配列した複数のRFIDと、この各RFIDをテープ筒状体に固定するRFID固定部と、からなることを特徴とする連長体。A tape cylindrical body in which a long tape body is provided in a cylindrical shape, a plurality of RFIDs arranged inside the tape cylindrical body at appropriate intervals in the longitudinal direction, and each of the RFIDs is fixed to the tape cylindrical body. And a fixed RFID part. 前記RFID固定部が、前記テープ筒状体の外側から粗巻きした粗巻き用線条体、又はテープ筒状体の内面に設けた接着材層、又はテープ体自体を熱融着性テープとしてなることを特徴とする請求項2記載の連長体。The RFID fixing portion is a heat-fusible tape using the roughly wound linear body roughly wound from the outside of the tape tubular body, or an adhesive layer provided on the inner surface of the tape tubular body, or the tape body itself. 3. The continuous body according to claim 2, wherein: 長尺のパイプ体の長手方向の所定位置に設けた第1の前側かしめ部に、前記パイプ体の一端から第1のRFIDを挿入してこの第1のRFIDを前記第1の前側かしめ部に当接し、前記第1のRFIDの後端の後側で第1のRFIDを第1の後側かしめ部により固定すると共に前記第1の後側かしめ部から適宜間隔を介して後方側に設けられた第2の前側かしめ部に、前記パイプ体の一端から第2のRFIDを挿入して第2のRFIDを前記の第2の前側かしめ部に当接し、前記第2のRFIDの後端の後側で第2のRFIDを第2の後側かしめ部により固定すると共に前記第2の後側かしめ部から適宜間隔を介して後方側に設けられた第3の前側かしめ部に、第3のRFID以降も前記第1及び第2のRFIDと同様にしてパイプ体の長手方向に適宜間隔を介して配列することを特徴とする連長体の製造方法。A first RFID is inserted from one end of the pipe body into a first front caulking section provided at a predetermined position in a longitudinal direction of the long pipe body, and the first RFID is inserted into the first front caulking section. The first RFID is fixed by a first rear caulking portion at the rear side of the rear end of the first RFID, and is provided on the rear side at an appropriate distance from the first rear caulking portion. A second RFID is inserted into the second front caulking portion from one end of the pipe body, and the second RFID is brought into contact with the second front caulking portion, and the rear end of the second RFID is rearward. Side, the second RFID is fixed by a second rear caulking portion, and a third RFID is attached to a third front caulking portion provided on the rear side at an appropriate distance from the second rear caulking portion. Thereafter, in the same manner as the first and second RFIDs, the length of the pipe Method for producing a run-length body, characterized in that the sequence via appropriate intervals countercurrent. 長尺のテープ体の片面にその長手方向に適宜間隔を介して複数のRFIDを配列し、前記テープ体を筒状にして前記複数のRFIDを包み込んでテープ筒状体を形成し、前記各RFIDを前記テープ筒状体に固定することを特徴とする連長体の製造方法。A plurality of RFIDs are arranged on one surface of a long tape body at appropriate intervals in the longitudinal direction, the tape body is formed into a tube, and the plurality of RFIDs are wrapped to form a tape cylindrical body. Is fixed to the tape cylindrical body. 前記各RFIDを前記テープ筒状体に固定する方法が、前記テープ筒状体の外側から粗巻き線条体にて粗巻きして固定し、あるいは予め前記テープ筒状体の内面に備えた接着材層で固定し、あるいはテープ体自体を熱融着性テープとしこの熱融着性テープを加熱して固定することを特徴とする請求項5記載の連長体の製造方法。The method of fixing each of the RFIDs to the tape cylindrical body is performed by roughly winding the outer periphery of the tape cylindrical body with a coarsely wound wire and fixing the RFID, or an adhesive provided in advance on the inner surface of the tape cylindrical body. 6. The method for producing a continuous body according to claim 5, wherein the heat-fusible tape is fixed by heating the heat-fusible tape by fixing the material with a material layer. ほぼ円筒形状の外皮部材を設け、この外皮部材の内部に抗張力体と複数の光ファイバ心線とを収納する収納部を設けた光ファイバケーブルにおいて、長尺の支持部材にその長手方向に複数のRFIDを適宜間隔を介して配列した連長体を、前記外皮部材の内部に縦添え又は横巻きして収納してなることを特徴とする光ファイバケーブル。In an optical fiber cable provided with a substantially cylindrical outer cover member and a storage portion for storing a tensile strength member and a plurality of optical fiber core wires inside the outer cover member, a plurality of elongated support members are provided in the longitudinal direction. An optical fiber cable, comprising: a continuous body in which RFIDs are arranged at appropriate intervals, vertically attached or horizontally wound inside the outer cover member. 前記連長体が、長尺の支持部材としてのパイプ体と、このパイプ体の内部にその長手方向に適宜間隔を介して配列した複数のRFIDと、この各RFIDをパイプ体に固定すべく前記RFIDの両端の外側位置でパイプ体に設けたかしめ部と、からなることを特徴とする請求項7記載の光ファイバケーブル。The continuous body is a pipe body as a long support member, a plurality of RFIDs arranged inside the pipe body at appropriate intervals in the longitudinal direction thereof, and the RFID is fixed to the pipe body. 8. The optical fiber cable according to claim 7, comprising: a caulking portion provided on the pipe body at positions outside both ends of the RFID. 前記連長体が、長尺の支持部材としてのテープ体を筒状に設けたテープ筒状体と、このテープ筒状体の内部に長手方向に適宜間隔を介して配列した複数のRFIDと、この各RFIDをテープ筒状体に固定するRFID固定部と、からなることを特徴とする請求項7記載の光ファイバケーブル。The continuous body, a tape cylindrical body provided with a tape body as a long support member in a cylindrical shape, and a plurality of RFIDs arranged at appropriate intervals in the longitudinal direction inside the tape cylindrical body, The optical fiber cable according to claim 7, comprising an RFID fixing portion for fixing each of the RFIDs to the tape cylindrical body. 前記RFID固定部が、前記テープ筒状体の外側から粗巻きした粗巻き用線条体、又はテープ筒状体の内面に設けた接着材層、又はテープ体自体を熱融着性テープとしてなることを特徴とする請求項9記載の光ファイバケーブル。The RFID fixing portion is a heat-fusible tape using the roughly wound linear body roughly wound from the outside of the tape tubular body, or an adhesive layer provided on the inner surface of the tape tubular body, or the tape body itself. The optical fiber cable according to claim 9, wherein: 前記収納部がスロットロッドからなり、このスロットロッドに形成されたスロット溝内に前記連長体を収納してなることを特徴とする請求項7〜10のうちのいずれか一つに記載の光ファイバケーブル。The light according to any one of claims 7 to 10, wherein the storage portion is formed of a slot rod, and the elongated body is stored in a slot groove formed in the slot rod. Fiber cable.
JP2003034093A 2003-02-12 2003-02-12 Continuously long body provided with rfid and method for manufacturing the same and optical fiber cable using the continuously long body Pending JP2004245963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034093A JP2004245963A (en) 2003-02-12 2003-02-12 Continuously long body provided with rfid and method for manufacturing the same and optical fiber cable using the continuously long body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034093A JP2004245963A (en) 2003-02-12 2003-02-12 Continuously long body provided with rfid and method for manufacturing the same and optical fiber cable using the continuously long body

Publications (1)

Publication Number Publication Date
JP2004245963A true JP2004245963A (en) 2004-09-02

Family

ID=33019879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034093A Pending JP2004245963A (en) 2003-02-12 2003-02-12 Continuously long body provided with rfid and method for manufacturing the same and optical fiber cable using the continuously long body

Country Status (1)

Country Link
JP (1) JP2004245963A (en)

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1748383A2 (en) 2005-07-21 2007-01-31 Siderca S.A.I.C. Metal tube assembly and radio frequency identification (RFID) tag
US7782202B2 (en) 2006-10-31 2010-08-24 Corning Cable Systems, Llc Radio frequency identification of component connections
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8017797B2 (en) 2007-03-23 2011-09-13 Meiji Seika Kaisha Ltd. Method for producing phosphorus-containing α-keto acid
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8172468B2 (en) 2010-05-06 2012-05-08 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8264355B2 (en) 2006-12-14 2012-09-11 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US8264366B2 (en) 2009-03-31 2012-09-11 Corning Incorporated Components, systems, and methods for associating sensor data with component location
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8731405B2 (en) 2008-08-28 2014-05-20 Corning Cable Systems Llc RFID-based systems and methods for collecting telecommunications network information
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9159012B2 (en) 2009-11-30 2015-10-13 Corning Incorporated RFID condition latching
US9165232B2 (en) 2012-05-14 2015-10-20 Corning Incorporated Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9563832B2 (en) 2012-10-08 2017-02-07 Corning Incorporated Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods
US9652707B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Radio frequency identification (RFID) connected tag communications protocol and related systems and methods
US9652709B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10032102B2 (en) 2006-10-31 2018-07-24 Fiber Mountain, Inc. Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
KR102717528B1 (en) * 2024-02-14 2024-10-15 홍기정 Radio Frequency Identification tag assembly

Cited By (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557716B2 (en) 2005-07-21 2009-07-07 Sindera Saic Metal tube assembly and radio frequency identification (RFID) tag
EP1748383A2 (en) 2005-07-21 2007-01-31 Siderca S.A.I.C. Metal tube assembly and radio frequency identification (RFID) tag
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US9652709B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods
US7782202B2 (en) 2006-10-31 2010-08-24 Corning Cable Systems, Llc Radio frequency identification of component connections
US9652707B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Radio frequency identification (RFID) connected tag communications protocol and related systems and methods
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods
US10032102B2 (en) 2006-10-31 2018-07-24 Fiber Mountain, Inc. Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods
US8264355B2 (en) 2006-12-14 2012-09-11 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US9130613B2 (en) 2006-12-19 2015-09-08 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8017797B2 (en) 2007-03-23 2011-09-13 Meiji Seika Kaisha Ltd. Method for producing phosphorus-containing α-keto acid
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US9058529B2 (en) 2008-08-28 2015-06-16 Corning Optical Communications LLC RFID-based systems and methods for collecting telecommunications network information
US8731405B2 (en) 2008-08-28 2014-05-20 Corning Cable Systems Llc RFID-based systems and methods for collecting telecommunications network information
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8264366B2 (en) 2009-03-31 2012-09-11 Corning Incorporated Components, systems, and methods for associating sensor data with component location
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9159012B2 (en) 2009-11-30 2015-10-13 Corning Incorporated RFID condition latching
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8831428B2 (en) 2010-02-15 2014-09-09 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9270374B2 (en) 2010-05-02 2016-02-23 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US8172468B2 (en) 2010-05-06 2012-05-08 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US8333518B2 (en) 2010-05-06 2012-12-18 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11224014B2 (en) 2010-10-13 2022-01-11 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11212745B2 (en) 2010-10-13 2021-12-28 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US8913892B2 (en) 2010-10-28 2014-12-16 Coring Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
US10205538B2 (en) 2011-02-21 2019-02-12 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10349156B2 (en) 2012-04-25 2019-07-09 Corning Optical Communications LLC Distributed antenna system architectures
US9165232B2 (en) 2012-05-14 2015-10-20 Corning Incorporated Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems
US9973968B2 (en) 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9563832B2 (en) 2012-10-08 2017-02-07 Corning Incorporated Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US10361782B2 (en) 2012-11-30 2019-07-23 Corning Optical Communications LLC Cabling connectivity monitoring and verification
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US11792776B2 (en) 2013-06-12 2023-10-17 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11291001B2 (en) 2013-06-12 2022-03-29 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10397929B2 (en) 2014-08-29 2019-08-27 Corning Optical Communications LLC Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10523326B2 (en) 2014-11-13 2019-12-31 Corning Optical Communications LLC Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10361783B2 (en) 2014-12-18 2019-07-23 Corning Optical Communications LLC Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10523327B2 (en) 2014-12-18 2019-12-31 Corning Optical Communications LLC Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
KR102717528B1 (en) * 2024-02-14 2024-10-15 홍기정 Radio Frequency Identification tag assembly

Similar Documents

Publication Publication Date Title
JP2004245963A (en) Continuously long body provided with rfid and method for manufacturing the same and optical fiber cable using the continuously long body
JP2004245958A (en) Optical fiber cable and method and apparatus for manufacturing optical fiber cable
WO2004073130A1 (en) Long continuous body, process for producing the same and cable
US6973243B2 (en) Cable
US7824118B2 (en) Printer comprising a flexible member extending over the antennas of RFID labels wound on a roll
US20080204235A1 (en) Fiber optic cable with integral radio frequency identification system
ES2374177T3 (en) VALIDATION OF CONSUMABLES.
JP2009215083A (en) Consumable and printer using the same
JP2004317737A (en) Mt connector, guide members used in the same and optical fiber management method using the same connector
JP2004146068A (en) String length body equipped with information storage element and cable
JP2008522326A (en) Radio frequency identification (RFID) device programming system and method
CN1125359C (en) Optic cable and its mfg. method
JP4754398B2 (en) Printer
JP2005522792A (en) Magnetic marking system, apparatus and method for manufacturing magnetic marking system
WO2004072988A1 (en) Rf id prolonged body and cable
WO2004073129A1 (en) Rfid-equipped identification member and method of producing the same, and optical fiber cable using identification member
JP2004343834A (en) Outdoor wire anchor and outdoor wire managing method using the same
JP2004265861A (en) Cable and rfid elongated body
JP4323338B2 (en) cable
JP3006601B1 (en) Optical cable
KR20000029526A (en) Thermo-tape unit having a thermo-tape provided with at least one marking stripe configuration
WO2024134732A1 (en) Cable, information management system for cable, and information management method for cable
JP2006286396A (en) Sign display device and display method for long-sized body
JP3019082B1 (en) Method for manufacturing optical cable and method for extracting optical fiber from optical cable
JP2009086177A (en) Optical cable unit, optical cable assembly, and method of detecting optical cable unit