JP2004244246A - Inorganic material and shift reaction catalyst using the same - Google Patents
Inorganic material and shift reaction catalyst using the same Download PDFInfo
- Publication number
- JP2004244246A JP2004244246A JP2003034117A JP2003034117A JP2004244246A JP 2004244246 A JP2004244246 A JP 2004244246A JP 2003034117 A JP2003034117 A JP 2003034117A JP 2003034117 A JP2003034117 A JP 2003034117A JP 2004244246 A JP2004244246 A JP 2004244246A
- Authority
- JP
- Japan
- Prior art keywords
- inorganic material
- highest peak
- cerium
- cerium oxide
- material according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910010272 inorganic material Inorganic materials 0.000 title claims abstract description 95
- 239000011147 inorganic material Substances 0.000 title claims abstract description 95
- 239000007809 chemical reaction catalyst Substances 0.000 title abstract 2
- 239000003054 catalyst Substances 0.000 claims abstract description 88
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 35
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 35
- 238000006243 chemical reaction Methods 0.000 claims abstract description 34
- 239000010955 niobium Substances 0.000 claims abstract description 28
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 25
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 23
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 20
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910000484 niobium oxide Inorganic materials 0.000 claims abstract description 14
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims abstract description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 38
- 239000000446 fuel Substances 0.000 claims description 27
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 18
- 239000002131 composite material Substances 0.000 claims description 17
- 229910052697 platinum Inorganic materials 0.000 claims description 17
- 238000001035 drying Methods 0.000 claims description 16
- 229910000510 noble metal Inorganic materials 0.000 claims description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 239000001257 hydrogen Substances 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 9
- 229910052741 iridium Inorganic materials 0.000 claims description 9
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 9
- 229910052762 osmium Inorganic materials 0.000 claims description 9
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 9
- 229910052763 palladium Inorganic materials 0.000 claims description 9
- 239000010948 rhodium Substances 0.000 claims description 9
- 229910052703 rhodium Inorganic materials 0.000 claims description 9
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 9
- 229910052707 ruthenium Inorganic materials 0.000 claims description 9
- 238000010304 firing Methods 0.000 claims description 8
- 238000002407 reforming Methods 0.000 claims description 8
- 150000001785 cerium compounds Chemical class 0.000 claims description 7
- 150000002822 niobium compounds Chemical class 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000002562 thickening agent Substances 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 3
- 239000008107 starch Substances 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 abstract description 21
- 230000003197 catalytic effect Effects 0.000 abstract description 6
- 230000009257 reactivity Effects 0.000 abstract description 2
- 230000006866 deterioration Effects 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 description 23
- 239000002994 raw material Substances 0.000 description 21
- 239000007789 gas Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 238000009499 grossing Methods 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 5
- -1 halogen salts Chemical class 0.000 description 5
- 150000002823 nitrates Chemical class 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- YLGXILFCIXHCMC-JHGZEJCSSA-N methyl cellulose Chemical compound COC1C(OC)C(OC)C(COC)O[C@H]1O[C@H]1C(OC)C(OC)C(OC)OC1COC YLGXILFCIXHCMC-JHGZEJCSSA-N 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 230000004580 weight loss Effects 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 229910001361 White metal Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- PUUPYXQOFNNGRK-UHFFFAOYSA-N cerium niobium Chemical compound [Nb].[Ce] PUUPYXQOFNNGRK-UHFFFAOYSA-N 0.000 description 2
- RCFVMJKOEJFGTM-UHFFFAOYSA-N cerium zirconium Chemical compound [Zr].[Ce] RCFVMJKOEJFGTM-UHFFFAOYSA-N 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 150000002826 nitrites Chemical class 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000006057 reforming reaction Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000010969 white metal Substances 0.000 description 2
- 244000144730 Amygdalus persica Species 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000002453 autothermal reforming Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002913 oxalic acids Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000002915 spent fuel radioactive waste Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical group [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Fuel Cell (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、セリウムとニオブとの複合酸化物からなる無機材料および、COにH2Oを作用させて水素ガスを発生させ、同時にCOをCO2に変換するいわゆるシフト反応に使用するシフト触媒、および該触媒の製造方法、該触媒を搭載した自動車などに関し、より詳細には、耐熱性に優れ、メタン生成率が低く、CO転化率が高いシフト触媒等に関する。
【0002】
【従来の技術】
水素−酸素燃料電池は、電解質の種類や電極の種類等により種々のタイプに分類され、代表的なものとしてはアルカリ型、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型がある。この中でも低温(通常100℃以下)で作動可能な固体高分子型燃料電池が注目を集め、近年自動車用低公害動力源としての開発・実用化が進んでいる。
【0003】
固体高分子型燃料電池は、純粋な水素を燃料源として用いることがエネルギー効率からは最も好ましい。しかし、現段階においては、安全性・インフラ等を考慮して、メタノール、天然ガス、ガソリン等を燃料源として用い、これらを改質装置において水素リッチな改質ガスとする方法が模索されている。しかしながら、例えばメタノールを原料とする場合には、下記に示すメタノール改質反応
【0004】
【化2】
【0005】
によって一酸化炭素が発生し、このCOは燃料電池の電極の白金系触媒の触媒毒として作用する。このため、このCOを白金電極触媒に無害なCO2に転化する必要があり、シフト反応(CO+H2O→CO2+H2)を利用して、改質ガス中に含まれるCO濃度を1体積%程度にまで低減させている。
【0006】
従来から、上記シフト反応にはCu/Zn系触媒、Cu/Zn/Al系触媒、Cu/Cr系触媒等のCu触媒が使用されている。しかしながらCu触媒は、操業停止時に還元雰囲気下に置かないと、触媒自身が酸化され活性が低下するという問題があった。また、空間速度SV(Space Velocity)の増大とともにCO低減率が急激に低下する場合がある。また、従来の触媒は、耐熱温度が低く、シンタリング、すなわち触媒を構成する金属の溶融および結合現象が生じ、触媒としての性能を著しく低下させる場合があった。シンタリングは不可逆的な現象であるため、過渡的な温度上昇が生じるとその後はシフト触媒の性能の著しい低下を招く。このためシフト反応部でCOを十分に処理できず、燃料ガス中の水素分圧の低下、燃料電池の電極の被毒などの弊害を招くことになる。そこで、CO低減率の向上、SV増による性能低下の抑制、耐熱性の向上を目的として、所定の酸化物が添加されたTiO2の多孔体にPtが担持されたシフト触媒が開示されている(特許文献1参照)。該文献1では、触媒性能が向上する原因は、酸化物を添加することによってPtを担持する担体の比表面積が向上することが一因と推察している。なお、酸化物としては、Al、Si、P、S、Vの少なくとも一種の酸化物を用いている。
【0007】
【特許文献1】
特開2002−66320号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上記公報記載の触媒を使用しても還元雰囲気下での活性の低下を防止するには不十分であり、SV増加の際のシフト反応(CO+H2O→CO2+H2)も十分でない。特に、搭載スペースが制限される燃料改質式燃料電池自動車等に使用するには、よりCO低減率の高いシフト触媒の開発が望まれる。
【0009】
【課題を解決するための手段】
本発明は、シフト触媒を構成する元素の種類、組成割合等について詳細に検討した結果、少なくともセリウムとニオブとを含有する複合酸化物からなる無機材料は、極めて耐熱性に優れる無機材料であること、および該無機材料を担体として調製したCOシフト触媒は、還元雰囲気下でもその活性を失わないことを見出し本発明を完成させた。
【0010】
【発明の効果】
本発明の無機材料の製造方法によれば、耐熱性に優れる無機材料を調製することができる。該無機材料は、ハニカムモノリスとすることができ、該ハニカムに触媒活性成分を担持させるとCOシフト活性に優れる触媒を得る事ができる。特に、該無機材料を担体とするシフト触媒は、還元雰囲気下でも触媒活性を低下させることが少ない。
【0011】
本発明のシフト触媒は、50,000hr−1以上の空間速度でも十分にシフト触媒活性が確保でき、シフト反応装置の小型化が可能で、自動車などの収納体積が制限されるものにおいて特に有効である。更に、耐熱性に優れ、起動停止時の触媒安定性にも優れる。
【0012】
本発明のシフト触媒は、上記無機材料からなるハニカムモノリスに白金、ロジウム、パラジウム、ルテニウム、イリジウム、並びにオスミウムからなる群から選ばれる少なくとも1種類の元素を担持させ、これを乾燥および焼成することで得られ、調製が簡便である。しかも該方法によるシフト触媒はメタン生成率が低く、水素の無駄な消費がない。
【0013】
【発明の実施の形態】
本発明の第一は、少なくともセリウムとニオブとを含有する複合酸化物からなり、CuKα線を用いたX線回折分析による酸化ニオブ由来の最高ピーク高さが、酸化セリウム由来の最高ピーク高さの10分の1以下であることを特徴とする無機材料である。
【0014】
セリウムは、希土類元素で展性・延性があり、発火合金としても用いられている鋼鉄状の金属である。一方、ニオブは周期律表第5族(バナジウム族)の元素で、展性、延性に富む金属である。従来からセリウムやニオブは触媒成分として使用されてきたが、本発明においてセリウムとニオブとの複合酸化物を調製したところ、該複合酸化物がセリウムやニオブ単独では得られない優れた耐熱性を有することを見出した。原料化合物のセリウム化合物とニオブ化合物から複合酸化物が形成されたことは、X線回折分析において該無機材料の酸化セリウム由来の最高ピークが、酸化セリウム単独の最高ピークよりも面間隔にして高間隔側にシフトしていることで確認することができる。なお、上記X線回折の数値は、以下の条件でX線回折分析を行った場合の値である。
【0015】
分析機器は、装置:マックサイエンス製広角X線回折装置(MXP18VAHF型)によった。X線源:CuKα、印加電圧:40KV、印加電流:300mA、測定変化角度:2θ、走査速度:4.000deg/min、分析刻み幅:0.020deg、カウント時間:0.50sec、カウント単位:CPS、発散スリット:1.00deg、散乱スリット:1.00deg、受光スリット:0.30mm。
【0016】
該分析は、データを平滑化し、規格化し、および差分を回折して得た数値である。
【0017】
平滑化として、測定して得られた分析生データを、下記式に示す加重平均法を用いて該当分析角度におけるピーク強度の加重平均値を算出した。
【0018】
【数1】
【0019】
Y[x]:分析角度x°での加重平均カウント数
Y(x):分析角度x°での検出カウント数
加重平均処理を施す際の1点の平均値を求めるにあたり使用する数値の範囲は、より広角の分析値の加重平均を求めると確からしさが増大するが、きわめて微細な検出ピークを扱うには重要な情報を見失う場合がある。また、より狭角の分析値の加重平均を求めるとノイズが増加する。そこで本発明においては、上記式に従い、0.08°の範囲内に入った値を元に加重平均値を算出した。
【0020】
得られた平滑化処理結果は、例えば原料化合物として酸化セリウムと酸化ニオブを使用した場合に、得られた無機材料に含まれる酸化セリウムの最高ピークを例にすると、以下に示す方法で規格化した。図2に後記する実施例1〜5で得た無機材料および比較例1の担体の平滑化規格化したデータを示す。
【0021】
【数2】
【0022】
A:定数
Y0(main):無機材料中の酸化セリウムの最高ピークの加重平均値
Y(main):酸化セリウムの最高ピークの加重平均カウント数
得られた平滑化処理結果は、該原料化合物に由来する回折ピークを含んでいる。担持量や相対強度、粒度などにもよるが、一般に原料化合物由来の回折ピークの方が強く観察され、場合によっては、求める無機材料の酸化セリウム由来の回折ピークはその強大なる原料化合物由来のピークに干渉し消滅したかのように観察される場合もある。そこで規格化した後、原料化合物由来の回折ピークとの差スペクトルを求め、無機材料に含まれる酸化セリウム由来の回折ピークと分離する。セリウム化合物とニオブ化合物とからセリウム−ニオブの複合酸化物が形成されると原料化合物由来のピークの固有ピークの存在比が低下する。そこで、原料化合物の最高ピークの回折強度が同一になるように上記式で定義する定数Aを乗じて、規格化した。
【0023】
差分とは、規格化して得られた分析結果から、同様に処理された原料化合物の分析結果を差し引き、差分回折ピークを作成して無機材料に含まれる酸化セリウム由来の回折ピークのみを抽出することである。図3〜5に後記する実施例1〜5で得た無機材料および比較例1の担体の差分回折パターンを示す。
【0024】
本発明の無機材料は、酸化セリウム由来のX線回折ピークが、酸化セリウム自体のX線回折ピークより面間隔側にシフトする。このようなシフトは、原料化合物に含まれるセリウムとニオブとが複合酸化物を形成していることを示すものである。すなわち、原料化合物(セリウム化合物、ニオブ化合物)自体は、セリウム−ニオブ複合酸化物領域(界面)を持たないことから、ピークシフトする可能性は考えられない。しかし、後記する図3からも明らかなように複合酸化物を形成することで、明らかに高面間隔側にピークシフトしており、ニオブとセリウムとの間に結晶内酸素原子を通じての結合関係が形成されたと判断できる。複合酸化物の形成によって酸化ニオブと酸化セリウムとの結合が密になるため、格子欠陥酸素位置への母材からの酸素原子の供給がより行われ易くなり、効果的に結合構造を維持することができる。なお、第2番の高さのピークや第3番の高さのピーク、酸化ニオブの各ピークについても上記と同様にデータを平滑化、規格化および差分を回折して得た数値を使用する。
【0025】
本発明の無機材料に使用できる原料化合物としては、これらの硝酸塩、硫酸塩、アンモニウム塩、アミン、炭酸塩、重炭酸塩、ハロゲン塩、亜硝酸塩、蓚酸などの無機塩類、ギ酸塩などのカルボン酸塩および水酸化物、アルコキサイドなどが例示でき、これらを溶解する溶媒の種類やpHなどによって適宜選択することができる。これらの中でも、工業的に使用するにあっては硝酸塩、炭酸塩、酸化物、水酸化物などが好ましい。本発明では原料化合物としてこれらのゾルを用いることもできる。
【0026】
本発明では、上記原料化合物からなる複合酸化物であり、上記X線回折分析による酸化ニオブ由来の最高ピーク高さが、酸化セリウム由来の最高ピーク高さの10分の1以下であることを特徴とする。無機材料に含まれる酸化ニオブ由来のピークと酸化セリウム由来のピークとは必ずしも無機材料中の酸化セリウムと酸化ニオブの配合量に比例するものではないが、この範囲で特に耐熱性に優れるからである。
【0027】
また、本発明の無機材料は、上記X線回折分析によって、該無機材料の酸化セリウム由来の最高ピークが、原料として使用した酸化セリウム単独の最高ピークよりも面間隔にして高間隔側にシフトしている。原料化合物の酸化セリウムの該ピークよりも面間隔にして高間隔側にシフトということは、ニオブとの複合酸化物が形成されたことを意味するものである。
【0028】
該X線回折分析による該無機材料の酸化セリウム由来の最高ピークは、2θにして28.44〜28.66°の範囲にはいることが好ましい。
【0029】
また、該X線回折分析による該無機材料の酸化セリウム由来の第2番に高いピークが、面間隔にして1.63Åであることが好ましい。
【0030】
更に、該X線回折分析による該無機材料の酸化セリウム由来の第3番に高いピークが、面間隔にして1.9Åに存在することがこのましい。
【0031】
また、本発明の無機材料は、Ce/Nb比が1以上、より好ましくは1.0〜5.0、特には3.0〜5.0であることが好ましい。Ce/Nb比が1を下回るとセリウムによる酸素移動能の効果が低下する場合がある。本発明の無機材料に使用できる他の元素としては、Si、Al、Zr、Ti等がある。
【0032】
また、本発明の無機材料は、BET比表面積が、40m2/g以上であることが好ましく、より好ましくは60m2/g以上、さらに好ましくは80m2/g以上である。特に40m2/g以上の比表面積があれば、十分な触媒活性が確保できる。
【0033】
本発明の無機材料の製造方法には制限はないが、水溶性セリウム化合物またはそのゾルと、水溶性ニオブ化合物またはそのゾルとを含む水溶液に、有機増粘剤または澱粉質を分散した後、蒸発乾固後焼成することで製造できる。水溶性セリウム化合物や水溶性ニオブ化合物としては、上記したセリウム化合物、ニオブ化合物の中から水溶性の化合物を選択して使用することができる。このように水溶性の化合物を使用すれば有機溶媒を使用せずに調製でき取り扱いが容易となり、廃液処理などの問題を回避することができる。また、有機増粘剤を添加することで、乾燥時のCeとNbの分離を抑制し、かつ微細な細孔を有するより安定した複合酸化物を得ることができる。なお、使用できる有機増粘剤としては、メチルセルロースエーテル、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロースがあり、澱粉質としてはコーンスターチ等がある。
【0034】
本発明の無機材料を製造するには、場合により水に分散させたセリウムとニオブ原料を十分攪拌し、これに有機増粘剤を添加して該増粘剤の粘度によって攪拌が困難となるまで混合する。乾燥方法は、例えば自然乾燥、蒸発乾固法、ロータリーエバポレーター、噴霧乾燥機、ドラムドライヤー、または沿送風乾燥機による乾燥などを用いることができる。乾燥時間は、使用する方法に応じて適宜選択すればよい。場合によっては、乾燥工程を行わずに、焼成工程において乾燥させることとしてもよい。また、該複合体の焼成は、温度200〜1000℃で30〜480分で十分である。
【0035】
本発明の無機材料を用いれば、下記式(1)で示されるシフト反応に使用されるシフト触媒であって、
【0036】
【化3】
【0037】
上記無機材料を担体として使用することを特徴とする、一酸化炭素シフト触媒を得ることができる。上記無機材料は耐熱性に優れるため触媒活性の低下を防止することができる。
【0038】
本発明では、該無機材料を担体して使用するが、該触媒には、白金、ロジウム、パラジウム、ルテニウム、イリジウム、並びにオスミウムからなる群から選ばれる少なくとも1種類の貴金属元素を触媒成分として含むことが好ましい。これらの元素の供給源としては特に制限されず広くこれらの元素を含有する化合物を使用することができる。このような化合物としては、これらの硝酸塩、硫酸塩、アンモニウム塩、アミン、炭酸塩、重炭酸塩、ハロゲン塩、亜硝酸塩、蓚酸などの無機塩類、ギ酸塩などのカルボン酸塩および水酸化物、アルコキサイド、酸化物などが例示でき、これらを溶解する溶媒の種類やpHなどによって適宜選択することができる。これらの中でも、工業的に使用するにあっては硝酸塩、炭酸塩、酸化物、水酸化物などが好ましい。
【0039】
上記無機材料を使用したシフト触媒が優れる理由については明確ではないが、耐熱性に優れる無機材料を担体に使用することのほかに、該無機材料に含まれるセリウムの酸素運搬能が関与していると考えられる。まず、上記式(1)で示されるシフト反応は、下記式に分解して理解することができる。
【0040】
【化4】
【0041】
該(i)に基づく活性酸素(O)がCO酸化触媒の酸化活性点に存在すれば、上記式(ii)が効率的に進行する。この活性酸素(O)の運搬能に優れたセリウム元素を使用すると、(i)と(ii)との循環が円滑に回転し、水素生成反応が効率的に進行する。すなわち、H2OからH2を取り出すことのできる活性種(A)としてニオブを使用し、COの酸化能を有する活性種(B)として白金、ロジウム、パラジウム、ルテニウム、イリジウムおよび/またはオスミウム元素、およびセリウム元素という酸素運搬能に優れる活性種(C)とが触媒中に存在することで、低温でもシフト反応性に優れる触媒となる。なお、上記活性種(A)、(B)および(C)とは触媒中に存在すれば、気体状態のH2OからH2を生成することができ、触媒中でのこれらの成分の分散性などは問わない。活性種(A)と(B)とが隣接しない場合でも、セリウム元素を介して活性酸素(O)が運搬され、円滑な反応の進行が確保できるからである。また、酸化セリウムやセリウム−ジルコニウム複合体は、結晶内の酸素原子が移動できる酸化還元能のある金属であり、これらの使用によってシフト反応で生成したH2を消費するいわゆるメタネーション反応を抑制し得る。すなわち、上記式(1)によってCO2と共にH2が生成するが、改質反応ガスは高温であるため、逆シフト反応(CO2+H2→CO+H2O)やメタネーション反応(CO+3H2→CH4+H2O)が発生し、水素燃料が消費される場合がある。上記メタネーション反応はシフト反応とは独立した反応であるため、単にシフト触媒のCO転化率を評価しただけでは最終的な水素製造率への寄与率を知ることはできない。
【0042】
本発明では、上記元素に加え、白金、ロジウム、パラジウム、ルテニウム、イリジウムおよびオスミウムから選ばれる貴金属元素を含有する。使用する原料化合物のうち、白金原料としてはジニトロジアミン白金、塩化白金などを用いることができるが、特にジニトロジアミン白金が好ましい。分散性に優れるからである。また、塩化物を使用するには大規模工業的に触媒を製造するに際して、その焼成排ガスによる大気汚染等を考えなければならないほか、排気配管の塩素腐食は多大な悪影響を与える。同様に、ロジウム、パラジウム、ルテニウム、イリジウムおよびオスミウム等は、硝酸塩、アンモニウム塩等を使用することが好ましい。これらの元素の配合量は質量換算で、該シフト触媒中に0.01〜20.0質量%であることが好ましく、より好ましくは1.0〜20.0質量%、特に好ましくは10.0〜15.0質量%である。0.01質量%を下回ると、CO転化率が十分でない場合がある。これらの元素は該触媒の活性成分と考えられ、CO転化率を向上させるにはこれらいわゆる貴金属元素を触媒表面に分布させることが好ましい。低温でもCOとの接触率が向上し、CO転化率が向上するからである。本発明では、特にCO転化率に優れる点で白金元素を含むことが好ましい。しかしながら、多大なる担持量では、経済性を考えるに不利となる場合がある。本発明では、特にCO転化率に優れる点で白金元素を含むことが好ましい。
【0043】
上記以外に、粘土鉱物や有機バインダー等を添加してもよい。有機バインダーとしては、メチルセルロースエーテル、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、コーンスターチなどがある。有機バインダーと共に、クルミ粒子、桃種粒子などを均一粒径に揃えたもの、あるいは粒子径が均一な高分子粒子など、焼成により消失する物質を気孔形成剤として用いてもよい。
【0044】
本発明の触媒を調製する方法としては特に制限はなく、一般的な触媒調製方法で製造できる。例えば、予め上記無機材料に貴金属元素以外の化合物を含む複合体を形成、乾燥、焼成し、ついで該焼成物に上記貴金属元素を担持させる方法が採用できる。
【0045】
該方法は、貴金属元素がより触媒外表面に多く存在し、少量でCO転化率を向上できる点で経済的に有利である。予め上記無機材料を担体として、これに貴金属元素を担持させるが、このような調製方法としては、上記貴金属を溶解または分散した溶液を調製し、該無機材料にこれら元素を含浸させ、次いで該溶液を乾燥してこれら元素を担持させ、これを乾燥、焼成して目的触媒を得る。
【0046】
該方法において、乾燥方法は、例えば自然乾燥、蒸発乾固法、ロータリーエバポレーター、噴霧乾燥機、ドラムドライヤーによる乾燥などを用いることができる。乾燥時間は、使用する方法に応じて適宜選択すればよい。場合によっては、乾燥工程を行わずに、焼成工程において乾燥させることとしてもよい。また、焼成は、温度200〜1000℃で30〜480分で十分である。なお、上記貴金属元素を担持させるには、必要により、減圧、加熱、スプレー吹付けなどを併せ行なってもよい。また、貴金属元素の担持後の熱処理は、貴金属元素が触媒上に析出するに必要な温度と時間を選定して実施するが、貴金属元素ができるだけ均一に、微少な粒子で存在するような条件を選ぶことが最も好ましい。一般的に高温あるいは長時間の熱処理は、析出した白金族粒子の凝集を促進するので好ましくない。従って300〜600℃に加熱した空気(または窒素などの不活性ガス)または過熱スチームを使用して10〜240分の短時間で処理するのが好ましい方法である。上記の短時間の熱処理は、触媒調製工程の時間短縮という観点からも好ましい。
【0047】
また、本発明のシフト触媒は、上記無機材料を粒状物とした場合には、粒状物とすることができ、更に種々の外形を採用することができ、ペレット状、リング状、馬蹄状、リボン状などの任意の形状に成型してもよい。更に、第一の発明の無機材料から予めハニカムモノリスを形成し、該ハニカムモノリスに、白金、ロジウム、パラジウム、ルテニウム、イリジウムおよびオスミウムから選ばれる少なくとも1種類の貴金属元素をを担持させて、シフト触媒を製造してもよい。本発明の触媒は、粒状物、ペレット状、リング状、馬蹄状、リボン状などの不定形の場合には、該シフト触媒を反応容器に収納し、該容器に改質ガスを流入させれば、改質ガスに含まれるCOを効率的にCO2に変換することができる。また、このような反応容器を使用せずに、上記のようにハニカムモノリスに上記貴金属元素をコーティングした場合には、そのまま反応器型のシフト触媒とすることができる。
【0048】
本発明のシフト触媒は空間速度50,000hr−1以上で使用することができCO転化率に優れるため、シフト触媒反応器を小型化でき特に有利である。なお、ハニカムモノリスへの該貴金属元素のコーティングは、例えば、上記無機材料からなるハニカムモノリスに、白金、ロジウム、パラジウム、ルテニウム、イリジウムおよびオスミウムから選ばれる少なくとも1種の元素を担持させ、該ハニカムモノリスを乾燥および焼成して製造することができる。更に、予め調製した貴金属元素を、バインダーを配合して上記無機材料からなるハニカムモノリスにコーティングしてもよい。
【0049】
本発明のシフト触媒は、BET比表面積が、40m2/g以上であることが好ましく、より好ましくは60m2/g以上、さらに好ましくは80m2/g以上である。特に40m2/g以上の比表面積があれば、十分な触媒活性が確保できる。なお、触媒寿命の面では十分な白金属元素含有量および微細な白金属元素を焼成物に担持させることが重要であるが、40m2/g未満の低い比表面積の担体はこの両方の因子を満足させることは難しい。また、このようなBET比表面積を有することで、本発明のシフト触媒は、空間速度50,000hr−1以上、より好ましくは100,000hr−1以上で使用することができる。なお、本発明のシフト触媒は、その平均粒径がレーザー回折法で分析した場合において、1.0〜50μmであることが好ましい。この範囲で、CO転化率に優れるからである。
【0050】
本願発明のシフト触媒やシフト触媒反応器を搭載して、燃料改質式水素発生システム、燃料電池システム、または燃料改質式燃料電池自動車とすることできる。図1に、燃料改質式水素発生システムのシステムフロー図を示す。図面を参照しながら説明すると、まず、燃料タンクにメタノール、ガソリン、炭化水素などの燃料を供給する。この燃料は気化器によって気化し、脱硫器によって含まれる硫黄分を除去する。改質部では、通常は水蒸気を用いた水蒸気改質によって、該燃料を水素リッチな改質ガスへと改質する。また、水蒸気に加え、酸素を含むガスを同時に供給し、部分酸化反応を併発したオートサーマル改質によっても、水素リッチな改質ガスを得ることができる。次に、改質ガスをシフト反応器に送り、改質ガス中に含まれるCOをCO2に変換してCO濃度を1体積%程度にまで低減する。CO濃度が1体積%程度にまで低減された改質ガスを、続いてCO除去器に移送し、CO濃度をppmオーダーに低減する。このCO濃度をppmオーダーにまで低減した改質ガスおよび酸化剤(通常は空気)を燃料電池発電機に供給し、発電反応を進行させる。なお、燃料電池発電機からは使用済み燃料および酸化剤が排出される。
【0051】
本発明に係るシフト触媒は、上述の通り低温であっても優れたCO転化率を発現しうる。このような特性を有するシフト触媒を燃料改質ガス中のCO転化に用いることによって、燃料電池に供給される燃料ガス中のCO濃度を効率よく低下させることが可能である。特に、空間速度が高くてもCO濃度を極めて低濃度にまで低減させることができるため、搭載範囲の制限される自動車などでも有効に使用することができる。
【0052】
【実施例】
以下、本発明を実施例を用いて説明する。
【0053】
実施例1(Ce80Nb20)
炭酸セリウム26.1gに対し、10質量%酸化ニオブゾル18.0g、濃硝酸30mlを加え十分攪拌した。これにメチルセルロースエーテル(信越化学工業製、商品名「Hi−メトローズ」)0.5gを添加し、メチルセルロースエーテルの粘性により攪拌子が回らなくなるまで攪拌混合した。これを150℃にて一昼夜乾燥および粉砕した。その後500℃にて1時間焼成し、BET比表面積約100m2/gの無機材料1を得た。該無機材料の組成は、それぞれの元素換算で、セリウム80モル%、ニオブ20モル%であった。
【0054】
得られた無機材料のX線回折結果を図2〜5に示す。
【0055】
また、該無機材料についてTG−DTA分析を行なった。まず、室温から150℃まで昇温後30分保持し、10℃/分で600℃まで昇温した。重量減少率は200℃に到達したときから、600℃に到達したときの質量減少分を観測した。質量減少は0.7質量%であった。結果を図6にも示す。
【0056】
実施例2(Ce80Nb20)
炭酸セリウム26.1gに対し、10質量%酸化ニオブゾル18.0g、濃硝酸30mlを加え十分攪拌した。これに等量の尿素を添加し、攪拌しながら3時間で98℃まで昇温し次いで2時間温度を保持した。これを室温まで冷却した後にろ過し、150℃にて一昼夜乾燥および粉砕した。その後500℃にて1時間焼成し、BET比表面積約100m2/gの無機材料2を得た。該無機材料の組成は、それぞれの元素換算で、セリウム80モル%、ニオブ20モル%であった。
【0057】
得られた無機材料のX線回折結果を図2〜5に示す。
【0058】
実施例3(Ce50Nb50)
実施例1において、炭酸セリウムを26.1g、濃硝酸を30ml、10質量%酸化ニオブゾルを80g使用する以外は実施例1と同じ方法で無機材料3を得た。該無機材料の組成は、それぞれの元素換算で、セリウム50モル%、ニオブ50モル%であった。
【0059】
得られた無機材料のX線回折結果を図2〜5に示す。
【0060】
実施例4(Ce20Nb80)
実施例1において、炭酸セリウムを25.0g、濃硝酸を30ml、10質量%、酸化ニオブゾルを300g使用する以外は実施例1と同じ方法で無機材料4を得た。該無機材料の組成は、それぞれの元素換算で、セリウム20モル%、ニオブ80モル%であった。
【0061】
得られた無機材料のX線回折結果を図2〜5に示す。
【0062】
実施例5(Ce50Nb50)
炭酸セリウムを26.1g、濃硝酸を30ml、10質量%、酸化ニオブゾルを80g使用し、10gの尿素を添加後、還流しながら100℃まで昇温し、沈殿物を得た。それを乾燥して無機材料5を得た。該無機材料の組成は、それぞれの元素換算で、セリウム50モル%、ニオブ50モル%であった。
【0063】
得られた無機材料のX線回折結果を図2〜5に示す。
【0064】
実施例6
実施例1〜5で得た無機材料を使用し、以下の手法で触媒化した。Pt金属含有量が8.451質量%のジニトロジアミン白金錯塩13.15gと、該無機材料10gとを加え十分に攪拌した。これを150℃で一昼夜乾燥したのち粉砕し、400℃にて1時間焼成し、実施触媒例1〜5を得た。該触媒の組成は元素換算で、白金10質量%であった。
【0065】
比較例1
比較担体例1として酸化セリウム(BET比表面積:約130m2/g)のX線回折結果を図2〜5に示す。
【0066】
また、無機材料に代えて上記酸化セリウムを使用したこと以外は、実施例6と同じ方法で比較触媒例1を得た。
【0067】
また、該化合物について実施例1と同様にしてTG−DTA分析を行なった。質量減少は2.4であった。結果を図6に示す。
【0068】
比較例2
比較担体例2としてCe/Zr=68/32(モル比)のセリウムジルコニウム複合酸化物粉末(BET比表面積70m2/g)を調製した。
【0069】
また、該化合物について実施例1と同様にしてTG−DTA分析を行なった。質量減少は4.1であった。結果を図6に示す。
【0070】
活性試験1
実施触媒例1〜4および比較触媒例1で調製した触媒をディスク上で圧縮した後破砕し、70〜36μmの粒径に整粒した。該触媒0.1gとケイ砂0.13gとを混合した後にガラス管に充填し、空間速度60,000hr−1の流速で2%水素含有窒素雰囲気を流し、400℃にて30分活性化処理を行った。次いで、窒素雰囲気下で該触媒を150℃に冷却し、200℃より昇温しながらガスクロマトグラフィーにて出口ガスを分析した。なお、投入ガス組成はいずれの触媒を使用した場合にも、CO/CO2/H2/H2O/N2が、10/13.3/40/16.8/19.9体積%とした。出口CO濃度を測定し、下記式に基づいてCO転化率を求めた。
【0071】
【数3】
【0072】
また、CH4生成率は規定のCH4ボンベガスから検定された検量線を元に計算した。表1に実施例および比較例で調製した触媒の組成、温度300℃での該触媒のCO転化率を示す。結果を図7にも示す。
【0073】
【表1】
【図面の簡単な説明】
【図1】本発明のシフト触媒を使用した燃料改質式水素発生システムのシステムフロー図である。
【図2】図2は、比較例1、実施例1〜5で調製した無機材料のX線回折データの平滑化および規格化した後のデータである。
【図3】図3は、比較例1、実施例1〜5で調製した無機材料の、27〜30°の差分回折パターンを示す図である。
【図4】図4は、比較例1、実施例1〜5で調製した無機材料の、55〜58°の差分回折パターンを示す図である。
【図5】図5は、比較例1、実施例1〜5で調製した無機材料の、46〜49°の差分回折パターンを示す図である。
【図6】図6は、実施例1の無機材料、比較例1,2で使用する比較担体1,2のTG−DTA分析の結果を示す図である。
【図7】図7は、実施例6、比較例1で調製した触媒のCO転化率を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inorganic material comprising a composite oxide of cerium and niobium, 2 O acts to generate hydrogen gas, while at the same time reducing CO to CO 2 More specifically, the present invention relates to a shift catalyst for use in a so-called shift reaction, a method for producing the catalyst, an automobile equipped with the catalyst, and the like. More specifically, the shift is excellent in heat resistance, low in methane generation rate, and high in CO conversion rate. It relates to a catalyst and the like.
[0002]
[Prior art]
Hydrogen-oxygen fuel cells are classified into various types according to the type of electrolyte, the type of electrode, and the like. Representative examples include an alkaline type, a phosphoric acid type, a molten carbonate type, a solid electrolyte type, and a solid polymer type. is there. Among them, a polymer electrolyte fuel cell that can operate at a low temperature (usually 100 ° C. or lower) has attracted attention, and has recently been developed and put into practical use as a low-pollution power source for automobiles.
[0003]
It is most preferable that the solid polymer fuel cell uses pure hydrogen as a fuel source from the viewpoint of energy efficiency. However, at this stage, in consideration of safety, infrastructure, etc., a method of using methanol, natural gas, gasoline, etc. as a fuel source and converting them to hydrogen-rich reformed gas in a reformer is being sought. . However, for example, when methanol is used as a raw material, the methanol reforming reaction shown below
[0004]
Embedded image
[0005]
As a result, carbon monoxide is generated, and this CO acts as a catalyst poison for the platinum-based catalyst of the electrode of the fuel cell. Therefore, this CO is harmless to the platinum electrode catalyst. 2 , And the shift reaction (CO + H 2 O → CO 2 + H 2 ), The concentration of CO contained in the reformed gas is reduced to about 1% by volume.
[0006]
Conventionally, a Cu catalyst such as a Cu / Zn catalyst, a Cu / Zn / Al catalyst, or a Cu / Cr catalyst has been used for the shift reaction. However, if the Cu catalyst is not placed in a reducing atmosphere when the operation is stopped, there is a problem that the catalyst itself is oxidized and its activity is reduced. Further, the CO reduction rate may suddenly decrease as the space velocity SV (Space Velocity) increases. Further, the conventional catalyst has a low heat-resistant temperature, and sintering, that is, melting and bonding of the metal constituting the catalyst occurs, and the performance as a catalyst may be significantly reduced. Since sintering is an irreversible phenomenon, a transient rise in temperature causes a significant decrease in the performance of the shift catalyst thereafter. For this reason, CO cannot be sufficiently processed in the shift reaction section, which causes adverse effects such as a decrease in the partial pressure of hydrogen in the fuel gas and poisoning of the electrode of the fuel cell. Therefore, for the purpose of improving the CO reduction rate, suppressing performance degradation due to an increase in SV, and improving heat resistance, TiO to which a predetermined oxide is added is used. 2 A shift catalyst in which Pt is supported on a porous body is disclosed (see Patent Document 1). In the
[0007]
[Patent Document 1]
JP-A-2002-66320
[0008]
[Problems to be solved by the invention]
However, even if the catalyst described in the above publication is used, it is not enough to prevent a decrease in activity under a reducing atmosphere, and the shift reaction (CO + H 2 O → CO 2 + H 2 Is not enough. In particular, development of a shift catalyst having a higher CO reduction rate is desired for use in a fuel reforming fuel cell vehicle or the like in which the mounting space is limited.
[0009]
[Means for Solving the Problems]
In the present invention, as a result of examining in detail the types, composition ratios, and the like of the elements constituting the shift catalyst, the inorganic material composed of a composite oxide containing at least cerium and niobium is an inorganic material having extremely excellent heat resistance. And that the CO shift catalyst prepared using the inorganic material as a carrier does not lose its activity even under a reducing atmosphere, thereby completing the present invention.
[0010]
【The invention's effect】
According to the method for producing an inorganic material of the present invention, an inorganic material having excellent heat resistance can be prepared. The inorganic material can be a honeycomb monolith, and when a catalytically active component is supported on the honeycomb, a catalyst having excellent CO shift activity can be obtained. In particular, the shift catalyst using the inorganic material as a carrier hardly lowers the catalytic activity even under a reducing atmosphere.
[0011]
The shift catalyst of the present invention has a viscosity of 50,000 hours. -1 Even at the above space velocities, the shift catalyst activity can be sufficiently ensured, the size of the shift reaction apparatus can be reduced, and the present invention is particularly effective in a case where the storage volume of an automobile is limited. Further, it has excellent heat resistance and excellent catalyst stability at the time of starting and stopping.
[0012]
The shift catalyst of the present invention supports at least one element selected from the group consisting of platinum, rhodium, palladium, ruthenium, iridium, and osmium on a honeycomb monolith made of the above inorganic material, and then drying and calcining the element. Obtained and easy to prepare. Moreover, the shift catalyst according to the method has a low methane production rate and does not wastefully consume hydrogen.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The first of the present invention consists of a composite oxide containing at least cerium and niobium, the highest peak height derived from niobium oxide by X-ray diffraction analysis using CuKα radiation, the highest peak height derived from cerium oxide An inorganic material characterized by being 1/10 or less.
[0014]
Cerium is a rare-earth element that is malleable and ductile, and is a steel-like metal that is also used as an ignition alloy. On the other hand, niobium is an element of the fifth group of the periodic table (vanadium group), and is a metal with high malleability and ductility. Conventionally, cerium and niobium have been used as catalyst components, but when a composite oxide of cerium and niobium is prepared in the present invention, the composite oxide has excellent heat resistance that cannot be obtained by cerium or niobium alone. I found that. The formation of the composite oxide from the cerium compound and the niobium compound as the raw material compounds indicates that the highest peak derived from cerium oxide of the inorganic material in the X-ray diffraction analysis was more closely spaced than the highest peak of cerium oxide alone. It can be confirmed by shifting to the side. In addition, the numerical value of the said X-ray diffraction is a value when X-ray diffraction analysis is performed on condition of the following.
[0015]
The analytical instrument was an apparatus: a Mac Science wide angle X-ray diffractometer (MXP18VAHF type). X-ray source: CuKα, applied voltage: 40 KV, applied current: 300 mA, measurement change angle: 2θ, scanning speed: 4.000 deg / min, analysis step width: 0.020 deg, count time: 0.50 sec, count unit: CPS Divergence slit: 1.00 deg, scattering slit: 1.00 deg, light receiving slit: 0.30 mm.
[0016]
The analysis is a numerical value obtained by smoothing, normalizing, and diffracting the difference.
[0017]
As smoothing, the raw raw data obtained by the measurement was used to calculate the weighted average value of the peak intensities at the corresponding analysis angle using the weighted average method shown in the following equation.
[0018]
(Equation 1)
[0019]
Y [x]: weighted average count number at analysis angle x °
Y (x): number of detection counts at analysis angle x °
The range of numerical values used to obtain the average value of one point when performing weighted averaging processing increases the likelihood if a weighted average of the analysis values of a wider angle is obtained, but it is important to handle extremely fine detection peaks. Information may be lost. Further, when a weighted average of the analysis values at narrower angles is obtained, noise increases. Therefore, in the present invention, a weighted average value was calculated based on a value falling within the range of 0.08 ° according to the above equation.
[0020]
The obtained smoothing result is, for example, when cerium oxide and niobium oxide are used as the raw material compounds, when the highest peak of cerium oxide contained in the obtained inorganic material is taken as an example, it was standardized by the method shown below. . FIG. 2 shows data obtained by smoothing and normalizing the inorganic materials obtained in Examples 1 to 5 and the carrier of Comparative Example 1 described later.
[0021]
(Equation 2)
[0022]
A: Constant
Y 0 (main) : Weighted average of the highest peak of cerium oxide in inorganic materials
Y (Main) : Weighted average count of the highest peak of cerium oxide
The obtained smoothing result includes a diffraction peak derived from the raw material compound. In general, the diffraction peak derived from the raw material compound is more strongly observed, depending on the loading amount, relative intensity, particle size, etc., and in some cases, the diffraction peak derived from cerium oxide of the inorganic material to be obtained is a peak derived from the stronger raw material compound. In some cases, it is observed as if it has interfered with and disappeared. Then, after normalization, a difference spectrum from a diffraction peak derived from the raw material compound is obtained, and separated from a diffraction peak derived from cerium oxide contained in the inorganic material. When a cerium-niobium compound oxide is formed from a cerium compound and a niobium compound, the ratio of the intrinsic peaks of the peaks derived from the raw material compounds decreases. Therefore, the raw material compounds were normalized by multiplying them by the constant A defined by the above equation so that the highest peak diffraction intensity of the starting compound was the same.
[0023]
The difference is to subtract the analysis result of the raw material compound similarly processed from the analysis result obtained by normalization, create a difference diffraction peak, and extract only the diffraction peak derived from cerium oxide contained in the inorganic material. It is. 3 to 5 show differential diffraction patterns of the inorganic material obtained in Examples 1 to 5 described later and the carrier of Comparative Example 1.
[0024]
In the inorganic material of the present invention, the X-ray diffraction peak derived from cerium oxide shifts to the plane spacing side from the X-ray diffraction peak of cerium oxide itself. Such a shift indicates that cerium and niobium contained in the raw material compound form a composite oxide. That is, since the raw material compounds (cerium compound, niobium compound) themselves do not have a cerium-niobium composite oxide region (interface), there is no possibility of peak shifting. However, as is apparent from FIG. 3 described later, the peak shift toward the higher interplanar spacing was apparently caused by forming the composite oxide, and the bonding relationship between niobium and cerium through oxygen atoms in the crystal was found. It can be determined that it was formed. The formation of the composite oxide makes the bond between niobium oxide and cerium oxide denser, making it easier for oxygen atoms to be supplied from the base material to the lattice defect oxygen positions, and effectively maintaining the bond structure. Can be. For the second peak, the third peak, and the niobium oxide peak, numerical values obtained by smoothing, normalizing, and diffracting the difference are used in the same manner as described above. .
[0025]
The raw material compounds that can be used in the inorganic material of the present invention include inorganic salts such as nitrates, sulfates, ammonium salts, amines, carbonates, bicarbonates, halogen salts, nitrites, oxalic acids, and carboxylic acids such as formates. Salts, hydroxides, alkoxides, and the like can be exemplified, and can be appropriately selected depending on the type and pH of the solvent in which these are dissolved. Among these, nitrates, carbonates, oxides, hydroxides and the like are preferable for industrial use. In the present invention, these sols can be used as a raw material compound.
[0026]
The present invention is a composite oxide comprising the above-mentioned raw material compound, wherein the highest peak height derived from niobium oxide by the X-ray diffraction analysis is 1/10 or less of the highest peak height derived from cerium oxide. And The peak derived from niobium oxide and the peak derived from cerium oxide contained in the inorganic material are not necessarily proportional to the blending amount of cerium oxide and niobium oxide in the inorganic material, but are particularly excellent in heat resistance in this range. .
[0027]
Further, in the inorganic material of the present invention, by the X-ray diffraction analysis, the highest peak derived from cerium oxide of the inorganic material is shifted to a higher interval side with a plane interval higher than the highest peak of cerium oxide alone used as a raw material. ing. The fact that the peak of cerium oxide as the raw material compound is shifted to a higher interval side with respect to the plane interval from the peak means that a composite oxide with niobium has been formed.
[0028]
The highest peak derived from cerium oxide of the inorganic material by the X-ray diffraction analysis preferably falls within a range of 28.44 to 28.66 ° in terms of 2θ.
[0029]
In addition, the second highest peak derived from cerium oxide of the inorganic material in the X-ray diffraction analysis is preferably 1.63 ° in terms of plane spacing.
[0030]
Further, it is preferable that the third highest peak derived from cerium oxide of the inorganic material in the X-ray diffraction analysis exists at 1.9 ° in terms of the plane spacing.
[0031]
In addition, the inorganic material of the present invention preferably has a Ce / Nb ratio of 1 or more, more preferably 1.0 to 5.0, and particularly preferably 3.0 to 5.0. If the Ce / Nb ratio is less than 1, the effect of cerium on the oxygen transfer ability may decrease. Other elements that can be used in the inorganic material of the present invention include Si, Al, Zr, Ti, and the like.
[0032]
Further, the inorganic material of the present invention has a BET specific surface area of 40 m 2 / G or more, more preferably 60 m 2 / G or more, more preferably 80 m 2 / G or more. Especially 40m 2 / G or more, a sufficient catalytic activity can be secured.
[0033]
Although the method for producing the inorganic material of the present invention is not limited, an organic thickener or starch is dispersed in an aqueous solution containing a water-soluble cerium compound or a sol thereof and a water-soluble niobium compound or a sol thereof, and then evaporated. It can be manufactured by baking after drying. As the water-soluble cerium compound or water-soluble niobium compound, a water-soluble compound can be selected from the above-mentioned cerium compounds and niobium compounds and used. When a water-soluble compound is used in this manner, it can be prepared without using an organic solvent, handling can be facilitated, and problems such as waste liquid treatment can be avoided. Further, by adding an organic thickener, separation of Ce and Nb during drying can be suppressed, and a more stable composite oxide having fine pores can be obtained. Examples of the organic thickener that can be used include methyl cellulose ether, methyl cellulose, hydroxyethyl cellulose, and carboxymethyl cellulose. Starch includes corn starch and the like.
[0034]
In order to produce the inorganic material of the present invention, cerium and niobium raw materials optionally dispersed in water are sufficiently stirred, and an organic thickener is added to the raw material until stirring becomes difficult due to the viscosity of the thickener. Mix. As the drying method, for example, natural drying, evaporation to dryness, a rotary evaporator, a spray drier, a drum drier, or a side-by-side drier can be used. The drying time may be appropriately selected depending on the method used. In some cases, drying may be performed in the firing step without performing the drying step. The firing of the composite at a temperature of 200 to 1000 ° C. for 30 to 480 minutes is sufficient.
[0035]
When the inorganic material of the present invention is used, a shift catalyst used for a shift reaction represented by the following formula (1) is provided.
[0036]
Embedded image
[0037]
A carbon monoxide shift catalyst characterized by using the above-mentioned inorganic material as a carrier can be obtained. Since the inorganic material has excellent heat resistance, it is possible to prevent a decrease in catalytic activity.
[0038]
In the present invention, the inorganic material is used as a carrier, and the catalyst contains at least one noble metal element selected from the group consisting of platinum, rhodium, palladium, ruthenium, iridium, and osmium as a catalyst component. Is preferred. The source of these elements is not particularly limited, and compounds containing these elements can be widely used. Examples of such compounds include nitrates, sulfates, ammonium salts, amines, carbonates, bicarbonates, halides, nitrites, inorganic salts such as oxalic acid, carboxylate salts and hydroxides such as formate, Examples thereof include alkoxides and oxides, which can be appropriately selected depending on the type and pH of the solvent in which these are dissolved. Among these, nitrates, carbonates, oxides, hydroxides and the like are preferable for industrial use.
[0039]
It is not clear why the shift catalyst using the above inorganic material is excellent, but in addition to using the inorganic material having excellent heat resistance as a carrier, the oxygen carrying ability of cerium contained in the inorganic material is involved. it is conceivable that. First, the shift reaction represented by the above formula (1) can be understood by decomposing into the following formula.
[0040]
Embedded image
[0041]
If the active oxygen (O) based on (i) exists at the oxidation active site of the CO oxidation catalyst, the above formula (ii) proceeds efficiently. When a cerium element excellent in the ability to transport active oxygen (O) is used, the circulation between (i) and (ii) rotates smoothly, and the hydrogen generation reaction proceeds efficiently. That is, H 2 O to H 2 Niobium is used as the active species (A) capable of extracting CO, and the oxygen-carrying ability of platinum, rhodium, palladium, ruthenium, iridium and / or osmium, and cerium as the active species (B) having the ability to oxidize CO The presence of the active species (C) which is excellent in the catalyst in the catalyst makes the catalyst excellent in the shift reactivity even at a low temperature. The active species (A), (B) and (C) are present in the gaseous state if they are present in the catalyst. 2 O to H 2 And the dispersibility of these components in the catalyst is not limited. This is because even when the active species (A) and (B) are not adjacent to each other, active oxygen (O) is transported via the cerium element, and a smooth progress of the reaction can be ensured. Further, cerium oxide and cerium-zirconium composite are metals having a redox ability to transfer oxygen atoms in the crystal. 2 Can be suppressed. That is, by the above equation (1) 2 With H 2 Is generated, but since the reforming reaction gas is at a high temperature, the reverse shift reaction (CO 2 + H 2 → CO + H 2 O) and methanation reaction (CO + 3H) 2 → CH 4 + H 2 O) may occur and hydrogen fuel may be consumed. Since the methanation reaction is independent of the shift reaction, the final contribution to the hydrogen production rate cannot be known simply by evaluating the CO conversion of the shift catalyst.
[0042]
In the present invention, in addition to the above elements, a noble metal element selected from platinum, rhodium, palladium, ruthenium, iridium and osmium is contained. Among the raw material compounds used, dinitrodiamine platinum, platinum chloride and the like can be used as the platinum raw material, and dinitrodiamine platinum is particularly preferred. It is because of excellent dispersibility. In addition, when using a chloride, when producing a catalyst on a large scale industrial scale, it is necessary to consider air pollution and the like due to the calcined exhaust gas, and chlorine corrosion of an exhaust pipe has a great adverse effect. Similarly, for rhodium, palladium, ruthenium, iridium, osmium and the like, it is preferable to use nitrates and ammonium salts. The compounding amount of these elements is preferably 0.01 to 20.0% by mass, more preferably 1.0 to 20.0% by mass, and particularly preferably 10.0% by mass in the shift catalyst. 1515.0% by mass. If it is less than 0.01% by mass, the CO conversion may not be sufficient. These elements are considered as active components of the catalyst, and it is preferable to distribute these so-called noble metal elements on the catalyst surface in order to improve the CO conversion. This is because the contact ratio with CO is improved even at a low temperature, and the CO conversion is improved. In the present invention, it is particularly preferable to include a platinum element in terms of excellent CO conversion. However, a large supported amount may be disadvantageous in terms of economy. In the present invention, it is particularly preferable to include a platinum element in terms of excellent CO conversion.
[0043]
In addition to the above, a clay mineral, an organic binder, and the like may be added. Examples of the organic binder include methyl cellulose ether, methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and corn starch. In addition to the organic binder, a substance that disappears upon firing, such as one in which walnut particles, peach seed particles and the like are made uniform, or polymer particles having a uniform particle diameter may be used as the pore-forming agent.
[0044]
The method for preparing the catalyst of the present invention is not particularly limited, and it can be produced by a general catalyst preparation method. For example, a method in which a complex containing a compound other than a noble metal element in the above-mentioned inorganic material is formed in advance, dried and fired, and then the fired product is loaded with the noble metal element can be adopted.
[0045]
This method is economically advantageous in that the precious metal element is more present on the outer surface of the catalyst and the CO conversion can be improved with a small amount. The inorganic material is used in advance as a carrier, and a noble metal element is supported on the carrier.A method of preparing such a solution is to prepare a solution in which the noble metal is dissolved or dispersed, impregnate the inorganic material with these elements, and then add the solution. Is dried to support these elements, which are dried and calcined to obtain a target catalyst.
[0046]
In this method, as a drying method, for example, natural drying, evaporation to dryness, rotary evaporator, spray dryer, drying with a drum dryer, and the like can be used. The drying time may be appropriately selected depending on the method used. In some cases, drying may be performed in the firing step without performing the drying step. In addition, firing is sufficiently performed at a temperature of 200 to 1000 ° C. for 30 to 480 minutes. In addition, in order to support the above-mentioned noble metal element, if necessary, reduced pressure, heating, spraying, etc. may be performed. In addition, the heat treatment after loading of the noble metal element is performed by selecting the temperature and time necessary for the noble metal element to precipitate on the catalyst, but under such conditions that the noble metal element exists as uniformly as possible and in fine particles. It is most preferred to choose. In general, high-temperature or long-time heat treatment is not preferable because it promotes aggregation of the precipitated platinum group particles. Therefore, it is a preferable method to perform the treatment in a short time of 10 to 240 minutes using air (or an inert gas such as nitrogen) heated to 300 to 600 ° C. or superheated steam. The short-time heat treatment is preferable from the viewpoint of shortening the time of the catalyst preparation step.
[0047]
In addition, the shift catalyst of the present invention can be a granular material when the inorganic material is a granular material, and can adopt various external shapes, such as a pellet, a ring, a horseshoe, and a ribbon. It may be molded into an arbitrary shape such as a shape. Furthermore, a shift catalyst is formed by previously forming a honeycomb monolith from the inorganic material of the first invention, and supporting at least one noble metal element selected from platinum, rhodium, palladium, ruthenium, iridium and osmium on the honeycomb monolith. May be manufactured. The catalyst of the present invention is granular, pellet-shaped, ring-shaped, horseshoe-shaped, and in the case of an irregular shape such as a ribbon, the shift catalyst is stored in a reaction vessel, and the reformed gas flows into the vessel. Efficiently converts CO contained in the reformed gas into CO 2 Can be converted to Further, when such a noble metal element is coated on the honeycomb monolith as described above without using such a reaction vessel, a reactor-type shift catalyst can be used as it is.
[0048]
The shift catalyst of the present invention has a space velocity of 50,000 hr. -1 Since it can be used as described above and has excellent CO conversion, the shift catalyst reactor can be downsized, which is particularly advantageous. The coating of the noble metal element on the honeycomb monolith is performed, for example, by supporting at least one element selected from platinum, rhodium, palladium, ruthenium, iridium and osmium on a honeycomb monolith made of the above inorganic material, Can be produced by drying and firing. Further, a honeycomb monolith made of the above inorganic material may be coated with a precious metal element prepared in advance by blending a binder.
[0049]
The shift catalyst of the present invention has a BET specific surface area of 40 m 2 / G or more, more preferably 60 m 2 / G or more, more preferably 80 m 2 / G or more. Especially 40m 2 / G or more, a sufficient catalytic activity can be secured. In terms of the life of the catalyst, it is important to support a sufficient content of the white metal element and a fine white metal element on the calcined product. 2 A carrier having a low specific surface area of less than 1 g / g is difficult to satisfy both factors. Further, by having such a BET specific surface area, the shift catalyst of the present invention has a space velocity of 50,000 hr. -1 Above, more preferably 100,000 hr -1 The above can be used. The shift catalyst of the present invention preferably has an average particle size of 1.0 to 50 μm when analyzed by a laser diffraction method. This is because in this range, the CO conversion is excellent.
[0050]
A fuel reforming hydrogen generation system, a fuel cell system, or a fuel reforming fuel cell vehicle can be provided with the shift catalyst or shift catalyst reactor of the present invention. FIG. 1 shows a system flow diagram of the fuel reforming hydrogen generation system. Referring to the drawings, first, a fuel such as methanol, gasoline, or hydrocarbon is supplied to a fuel tank. This fuel is vaporized by a vaporizer, and sulfur contained in the desulfurizer is removed. In the reforming section, the fuel is reformed into a hydrogen-rich reformed gas, usually by steam reforming using steam. Also, a hydrogen-rich reformed gas can be obtained by simultaneously supplying a gas containing oxygen in addition to water vapor and performing autothermal reforming in which a partial oxidation reaction is caused. Next, the reformed gas is sent to the shift reactor, and CO contained in the reformed gas is 2 To reduce the CO concentration to about 1% by volume. The reformed gas whose CO concentration has been reduced to about 1% by volume is subsequently transferred to a CO remover to reduce the CO concentration to the order of ppm. The reformed gas and the oxidant (usually air) whose CO concentration has been reduced to the order of ppm are supplied to the fuel cell generator, and the power generation reaction proceeds. The fuel cell generator discharges spent fuel and oxidizer.
[0051]
As described above, the shift catalyst according to the present invention can exhibit excellent CO conversion even at a low temperature. By using the shift catalyst having such characteristics for the conversion of CO in the fuel reformed gas, the CO concentration in the fuel gas supplied to the fuel cell can be efficiently reduced. In particular, since the CO concentration can be reduced to an extremely low concentration even when the space velocity is high, the CO concentration can be effectively used even in an automobile having a limited mounting range.
[0052]
【Example】
Hereinafter, the present invention will be described using examples.
[0053]
Example 1 (Ce 80 Nb 20 )
To 26.1 g of cerium carbonate, 18.0 g of a 10% by mass niobium oxide sol and 30 ml of concentrated nitric acid were added and sufficiently stirred. 0.5 g of methylcellulose ether (trade name "Hi-Metroze", manufactured by Shin-Etsu Chemical Co., Ltd.) was added thereto, and the mixture was stirred and mixed until the stirrer did not rotate due to the viscosity of methylcellulose ether. This was dried and crushed at 150 ° C. overnight. After that, it is fired at 500 ° C. for 1 hour, and has a BET specific surface area of about 100 m. 2 / G of
[0054]
X-ray diffraction results of the obtained inorganic material are shown in FIGS.
[0055]
In addition, TG-DTA analysis was performed on the inorganic material. First, the temperature was raised from room temperature to 150 ° C., held for 30 minutes, and then raised to 600 ° C. at a rate of 10 ° C./min. As for the weight loss rate, the amount of weight loss from when the temperature reached 200 ° C. to when the temperature reached 600 ° C. was observed. The mass loss was 0.7% by mass. The results are also shown in FIG.
[0056]
Example 2 (Ce 80 Nb 20 )
To 26.1 g of cerium carbonate, 18.0 g of a 10% by mass niobium oxide sol and 30 ml of concentrated nitric acid were added and sufficiently stirred. To this was added an equal amount of urea, the temperature was raised to 98 ° C. in 3 hours with stirring, and the temperature was maintained for 2 hours. After cooling to room temperature, it was filtered, dried and crushed at 150 ° C. all day and night. After that, it is fired at 500 ° C. for 1 hour, and has a BET specific surface area of about 100 m. 2 / G of
[0057]
X-ray diffraction results of the obtained inorganic material are shown in FIGS.
[0058]
Example 3 (Ce 50 Nb 50 )
[0059]
X-ray diffraction results of the obtained inorganic material are shown in FIGS.
[0060]
Example 4 (Ce 20 Nb 80 )
An
[0061]
X-ray diffraction results of the obtained inorganic material are shown in FIGS.
[0062]
Example 5 (Ce 50 Nb 50 )
Using 26.1 g of cerium carbonate, 30 ml of concentrated nitric acid, 10 mass%, and 80 g of niobium oxide sol, 10 g of urea was added, and the temperature was raised to 100 ° C. while refluxing to obtain a precipitate. It was dried to obtain an
[0063]
X-ray diffraction results of the obtained inorganic material are shown in FIGS.
[0064]
Example 6
Using the inorganic materials obtained in Examples 1 to 5, they were catalyzed by the following method. 13.15 g of a dinitrodiamine platinum complex salt having a Pt metal content of 8.451% by mass and 10 g of the inorganic material were added and sufficiently stirred. This was dried at 150 ° C. for 24 hours and then pulverized, and calcined at 400 ° C. for 1 hour to obtain Examples 1 to 5 of Working Catalysts. The composition of the catalyst was 10% by mass of platinum in terms of element.
[0065]
Comparative Example 1
Cerium oxide (BET specific surface area: about 130 m 2 / G) are shown in FIGS.
[0066]
Further, Comparative Catalyst Example 1 was obtained in the same manner as in Example 6, except that the above cerium oxide was used instead of the inorganic material.
[0067]
TG-DTA analysis was performed on the compound in the same manner as in Example 1. The weight loss was 2.4. FIG. 6 shows the results.
[0068]
Comparative Example 2
Cerium-zirconium composite oxide powder of Ce / Zr = 68/32 (molar ratio) (BET specific surface area 70 m 2 / G) was prepared.
[0069]
TG-DTA analysis was performed on the compound in the same manner as in Example 1. The weight loss was 4.1. FIG. 6 shows the results.
[0070]
The catalysts prepared in Working Catalyst Examples 1 to 4 and Comparative Catalyst Example 1 were compressed on a disk and then crushed, and sized to a particle size of 70 to 36 μm. After mixing the catalyst (0.1 g) and silica sand (0.13 g), the mixture was filled in a glass tube, and the space velocity was 60,000 hr. -1 An activation treatment was performed at 400 ° C. for 30 minutes by flowing a 2% hydrogen-containing nitrogen atmosphere at a flow rate of. Next, the catalyst was cooled to 150 ° C. under a nitrogen atmosphere, and the outlet gas was analyzed by gas chromatography while the temperature was raised from 200 ° C. The composition of the input gas was CO / CO 2 / H 2 / H 2 O / N 2 Was set to 10 / 13.3 / 40 / 16.8 / 19.9% by volume. The outlet CO concentration was measured, and the CO conversion was determined based on the following equation.
[0071]
[Equation 3]
[0072]
Also, CH 4 Generation rate is specified CH 4 Calculated based on the calibration curve calibrated from the cylinder. Table 1 shows the compositions of the catalysts prepared in Examples and Comparative Examples, and the CO conversion of the catalysts at a temperature of 300 ° C. The results are also shown in FIG.
[0073]
[Table 1]
[Brief description of the drawings]
FIG. 1 is a system flow diagram of a fuel reforming hydrogen generation system using a shift catalyst of the present invention.
FIG. 2 shows data after smoothing and normalizing X-ray diffraction data of the inorganic materials prepared in Comparative Example 1 and Examples 1 to 5.
FIG. 3 is a view showing a 27-30 ° differential diffraction pattern of the inorganic materials prepared in Comparative Example 1 and Examples 1 to 5.
FIG. 4 is a diagram showing a 55-58 ° differential diffraction pattern of the inorganic materials prepared in Comparative Example 1 and Examples 1 to 5.
FIG. 5 is a view showing a 46-49 ° differential diffraction pattern of the inorganic materials prepared in Comparative Example 1 and Examples 1 to 5.
FIG. 6 is a graph showing the results of TG-DTA analysis of the inorganic material of Example 1 and
FIG. 7 is a diagram showing the CO conversion of the catalysts prepared in Example 6 and Comparative Example 1.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003034117A JP4250971B2 (en) | 2003-02-12 | 2003-02-12 | Inorganic material and shift catalyst using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003034117A JP4250971B2 (en) | 2003-02-12 | 2003-02-12 | Inorganic material and shift catalyst using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004244246A true JP2004244246A (en) | 2004-09-02 |
JP4250971B2 JP4250971B2 (en) | 2009-04-08 |
Family
ID=33019894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003034117A Expired - Fee Related JP4250971B2 (en) | 2003-02-12 | 2003-02-12 | Inorganic material and shift catalyst using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4250971B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008529791A (en) * | 2005-02-16 | 2008-08-07 | ビーエーエスエフ、カタリスツ、エルエルシー | Water-gas shift noble metal catalyst having oxide support modified with rare earth elements |
JP2016034885A (en) * | 2014-08-04 | 2016-03-17 | 株式会社豊田中央研究所 | Composite metal oxide and production method of the same, nitrogen oxide decomposition catalyst using the composite metal oxide, and decomposition method of nitrogen oxide using the nitrogen oxide decomposition catalyst |
US9802872B2 (en) | 2013-03-28 | 2017-10-31 | Agency For Science, Technology And Research | Methanation catalyst |
US9908104B2 (en) | 2013-06-28 | 2018-03-06 | Agency For Science, Technology And Research | Methanation catalyst |
JP2020035720A (en) * | 2018-08-31 | 2020-03-05 | 国立大学法人群馬大学 | Oxidation catalyst for fuel cell, manufacturing method thereof, and fuel cell |
-
2003
- 2003-02-12 JP JP2003034117A patent/JP4250971B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008529791A (en) * | 2005-02-16 | 2008-08-07 | ビーエーエスエフ、カタリスツ、エルエルシー | Water-gas shift noble metal catalyst having oxide support modified with rare earth elements |
US9802872B2 (en) | 2013-03-28 | 2017-10-31 | Agency For Science, Technology And Research | Methanation catalyst |
US9908104B2 (en) | 2013-06-28 | 2018-03-06 | Agency For Science, Technology And Research | Methanation catalyst |
JP2016034885A (en) * | 2014-08-04 | 2016-03-17 | 株式会社豊田中央研究所 | Composite metal oxide and production method of the same, nitrogen oxide decomposition catalyst using the composite metal oxide, and decomposition method of nitrogen oxide using the nitrogen oxide decomposition catalyst |
JP2020035720A (en) * | 2018-08-31 | 2020-03-05 | 国立大学法人群馬大学 | Oxidation catalyst for fuel cell, manufacturing method thereof, and fuel cell |
JP7139567B2 (en) | 2018-08-31 | 2022-09-21 | 国立研究開発法人量子科学技術研究開発機構 | Oxidation catalyst for fuel cell, method for producing the same, and fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP4250971B2 (en) | 2009-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2409761B1 (en) | Use of a catalyst for production of hydrogen | |
JP5691098B2 (en) | Selective methanation catalyst for carbon monoxide, process for producing the same, and apparatus using the same | |
KR101319137B1 (en) | A Catalyst for Decomposing Hydrocarbons, a Method for Decomposing Hydrocarbons using the Same and a Method for Preparing Hydrogen, and an Electric Generating System | |
JP5483705B2 (en) | Hydrogen production catalyst and hydrogen production method using the same | |
JP5778309B2 (en) | Hydrogen production catalyst and hydrogen production method using the same | |
JP5624343B2 (en) | Hydrogen production method | |
JP4250971B2 (en) | Inorganic material and shift catalyst using the same | |
JP6081445B2 (en) | HYDROGEN GENERATION CATALYST, HYDROGEN GENERATION CATALYST MANUFACTURING METHOD, AND HYDROGEN-CONTAINING GAS MANUFACTURING METHOD, HYDROGEN GENERATOR, FUEL CELL SYSTEM, AND SILICON-SUPPORTED CEZR BASED OXIDE | |
US20180345255A1 (en) | Steam reforming catalyst for hydrocarbons | |
JP3796745B2 (en) | CO selective oxidation catalyst in hydrogen gas, method for producing the same, and method for removing CO in hydrogen gas | |
JP5494910B2 (en) | Hydrogen production catalyst and production method thereof | |
US8785061B2 (en) | CO conversion catalyst for use in fuel cell in DSS operation, method for producing the same, and fuel cell system | |
JP4670603B2 (en) | Catalyst particles and method for producing the same | |
JP4120862B2 (en) | Catalyst for CO shift reaction | |
JP2006341206A (en) | Carbon monoxide selective oxidation catalyst and its manufacturing method | |
JP2004141801A (en) | Inorganic material and shift catalyst using this | |
JP2004121960A (en) | Shift catalyst | |
JP2007160254A (en) | Catalyst for selectively oxidizing carbon monoxide and its manufacturing method | |
JP2011194397A (en) | Combustion catalyst of hydrocarbon and carbon, and method for producing the combustion catalyst | |
JP2001232198A (en) | Catalyst and manufacturing method of catalyst | |
JP2007160255A (en) | Catalyst for selectively oxidizing carbon monoxide and its manufacturing method | |
JP2006181482A (en) | Carbon monoxide selective oxidation catalyst and its manufacturing method | |
JP2005342689A (en) | Carbon monoxide selective oxidation catalyst and its production method | |
JP2006043608A (en) | Shift catalyst and method for producing it | |
JP2006181480A (en) | Carbon monoxide selective oxidation catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080328 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090106 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |