[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004244243A - Optical device molding machine - Google Patents

Optical device molding machine Download PDF

Info

Publication number
JP2004244243A
JP2004244243A JP2003033494A JP2003033494A JP2004244243A JP 2004244243 A JP2004244243 A JP 2004244243A JP 2003033494 A JP2003033494 A JP 2003033494A JP 2003033494 A JP2003033494 A JP 2003033494A JP 2004244243 A JP2004244243 A JP 2004244243A
Authority
JP
Japan
Prior art keywords
molding
chamber
optical element
molding machine
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003033494A
Other languages
Japanese (ja)
Other versions
JP2004244243A5 (en
Inventor
Shigeyoshi Shibazaki
成良 柴崎
Tadashi Horikawa
正 堀川
Satoshi Kurihara
聡 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003033494A priority Critical patent/JP2004244243A/en
Publication of JP2004244243A publication Critical patent/JP2004244243A/en
Publication of JP2004244243A5 publication Critical patent/JP2004244243A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical device molding machine in which the use quantity of an inert gas is reduced, the oxidation phenomenon of a molding die is remarkably decreased and as a result, a high quality optical device is produced. <P>SOLUTION: In the optical device molding machine provided at least with a molding section provided at least with an inert gas supply means for supplying an inert gas hardly causing at least chemical reaction with the molding die or a glass material at a high temperature and a molding means for applying pressure to the glass material through the molding die while heating the molding die and the glass material and a supply section for supplying the molding die and the glass material to the molding machine, the supply section and the molding section are set so that the pressure of the molding section is relatively made larger. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス母材を加熱、成形することにより光学機器等に使用される光学素子を製造する光学素子成形機に関する。
【0002】
【従来の技術】
レンズ等の光学素子を研磨加工等をして製造する代りに、光学素子成形機で加熱、軟化させたガラス母材を成形型でガラス成形することにより製造する技術が実用化されている。
【0003】
従来の光学素子成形機では光学素子の成形を以下のような工程で行なっている。▲1▼先ず光学素子成形機に成形型とガラス母材とをセットする。▲2▼成形型とガラス母材とを加熱し、ガラス母材が軟化したら、ガラス母材を成形型に加圧して成形型の型面の形状をガラス母材に転写する。▲3▼成形後に成形型とガラス母材とを冷却し、成形された光学素子を成形型から取り外し、光学素子成形機から取り出して成形工程が終了する。
【0004】
ガラス成形に於いては、成形型の材料として一般に金属を使用しているので、雰囲気の空気中の酸素ガスが高温の成形型に触れると、成形型の表面および、スリーブの内壁面が酸化する。以下、成形型とスリーブ等を含めた一式を成形型部材と呼ぶ。この酸化を防ぐ為に、従来の光学素子成形機では、ガラス成形を密閉容器中で行なうようにされていて、上記▲1▼で該密閉容器中に成形型部材とガラス母材をセットし、密閉容器中を空気から不活性ガスに置換し、雰囲気ガス中に酸素ガスが含まれないようにしてから上記▲2▼の工程に移るようにしている。
【0005】
【発明が解決しようとする課題】
しかし、従来の光学素子成形機は、上記▲3▼で光学素子成形機の密閉容器を一旦大気に直接開放してからでないと、該密閉容器から成形型と光学素子とを取り出すことができない。大気に開放すると、密閉容器の中に入っていた不活性ガスは散逸して失われる。次のガラス母材と成形型部材とを再び密閉容器にセットした後に、再度不活性ガスを供給して密閉容器内を空気から不活性ガスに置換しなければならない。即ち新しいガラス母材の成形の度毎に高価な不活性ガスが大量に消費され、これは成形コストを高くしていた。この不活性ガスへの置換が不充分で、成形型部材の内部や細部の酸素と不活性ガスとの置換が完全に行われないと、成形型内部に残留した酸素が成形型部材を酸化させてしまうことがあった。成形型部材が酸化すると、成形された光学素子にくもり等が生じ、光学素子の品質が低下していた。
【0006】
そこで、上記酸素が密閉容器中で成形型部材の内部や細部を含めて充分に不活性ガスに置換されたかどうかの程度、即ち置換品質を上げることが課題の一つとなっていた。
【0007】
本発明は以上の問題を解決し、成形型部材の酸化現象が極めて少なく、その結果、高品質の光学素子を生産することを可能とする光学素子成形装置を提供することを課題とする。
【0008】
【課題を解決する為の手段】
以上の課題を解決する為に、本発明の第一の態様の光学素子成形機は、高温下で成形型や硝材と化学反応を少なくとも起こしにくい不活性ガスを供給する不活性ガス供給手段と、前記成形型及び硝材を加熱しつつ前記成形型を介して前記硝材に加圧力を供給する成形手段とを具えた成形室と、前記成形型及び硝材を成形機に供給する供給室とを少なくとも具え、前記供給室と前記成形室は、相対的に前記成形室の圧力が大きくなるように設定されていることを特徴とする光学素子成形機である。
【0009】
本発明の第二の態様の光学素子成形機は、第一の態様における光学素子成形機であって、前記供給室と前記成形室との間には、少なくとも前記成形型又は前記硝材の前記供給室から前記成形室への移送時以外には隔離可能な隔離手段を有する光学素子成形機である。
【0010】
本発明の第三の態様の光学素子成形機は、第一の態様における光学素子成形機であって、更に、前記成形室で成形された硝材及び前記成形型を光学素子成形機から取り出す取出室を前記供給室とは別に具え、前記取出室は、前記成形室より低い圧力に設定されていることを特徴とする光学素子成形機である。
【0011】
本発明の第四の態様の光学素子成形機は、第三の態様における光学素子成形機であって、前記成形室と前記取出室の間には、少なくとも前記成形型又は硝材の移送時以外には前記成形室と前記取出室の間を隔離可能とする隔離手段を具えることを特徴とする光学素子成形機である。
【0012】
本発明の第五の態様の光学素子成形機は、第一の態様における光学素子成形機であって、前記成形室と前記取出室の間には、少なくとも前記成形室から移送された前記成形型及び前記硝材を冷却する冷却手段を有したことを特徴とする光学素子成形機である。
【0013】
本発明の第六の態様の光学素子成形機は、第一の態様における光学素子成形機であって、前記供給室と前記成形室との間に前記成形型又は硝材を搬送する搬送手段が設置された搬送室を設けたことを特徴とする光学素子成形機である。
【0014】
本発明の第七の態様の光学素子成形機は、第六の態様における光学素子成形機であって、前記搬送室は、前記成形室と前記成形室で成形された硝材及び前記成形型を光学素子成形機から取り出す取出室との間にも位置しており、前記搬送室内に前記成形型及び前記硝材を冷却する冷却手段が設けられていることを特徴とする光学素子成形機である。
【0015】
本発明の第八の態様の光学素子成形機は、第一の態様における光学素子成形機であって、前記供給室は、更に前記成形型又は硝材が導入された後に、減圧可能な減圧手段を設けたことを特徴とする光学素子成形機である。
【0016】
本発明の第九の態様の光学素子成形機は、第三の態様における光学素子成形機であって、前記取出室は、前記成形室から供給される不活性ガスを排気する排気手段を具えることを特徴とする光学素子成形機である。
【0017】
【発明の実施の形態】
[第一実施形態]
図1は本実施形態の光学素子成形機であり、その内部断面図を示す。又、図2は搬送機構8を示す平面図を、図3は成形型集合体23を、図4は加熱機構を示す。図1、図2、図3、図4を参照して本発明の実施の形態の光学素子成形機を説明する。
【0018】
図1にて、本発明の実施の形態の光学素子成形機は、供給室1と中間室2と成形室3と取出室4と搬送機構5、7、8と成形兼搬送機構6とを具える。尚、I、II、III、IV、V、V’、VIは成形型集合体23の位置を示す。
【0019】
本実施形態の光学素子成形機の供給室1はIの位置とロータリポンプ等の真空ポンプ9と不活性ガス導入部10と圧力計19と仕切りバルブ47と成形型集合体23を外部からセットする為の前扉(不図示)とを具える。Iの位置は成形型集合体23を外部からセットする位置である。開閉軸53の回りに弁体を反時計回りに回転させて、仕切りバルブ47を閉め、成形型集合体23をIの位置にセットし、前扉を閉め、供給室1を密閉した状態で真空ポンプ9を働かせると、供給室1内を真空雰囲気にすることができる。又、供給室1が真空に到達したら排気を止め、不活性ガスをガス導入部10から導入させれば、供給室1の内部を不活性ガス雰囲気にし、酸素を成形型集合体23から排除することができる。その供給室1内の不活性ガスの圧力を圧力計19で測定することができるので、不活性ガス導入部10の調節をすることにより供給室1内を所望の圧力の不活性ガス雰囲気に調節することができる。又、供給室1内の雰囲気は前扉を開けることで大気雰囲気に置換されてしまうが、供給室1の容積は成形機全体から見れば小さいので、不活性ガスの消費量を減らすことができる。又、成形型集合体23をIの位置からIIの位置へ搬送する為に搬送軸38を上昇させる時には開閉軸53の回りに弁体を時計回りに回転させて、仕切りバルブ47を開ける。
【0020】
本実施形態の光学素子成形機の中間室2は、IIの位置と、IIIの位置と、V’の位置と、Vの位置と、冷却機構17、18と、不活性ガス導入部11と、不活性ガス排出部15と、中間室2内の圧力を測定するための圧力計20と、を具える。
【0021】
IIの位置は、搬送軸38の上昇によって供給室1のIの位置から搬送された成形型集合体23を搬送機構8が受取る位置である。IIIの位置は搬送機構8が搬送した成形型集合体23を成形兼搬送機構6に受け渡す位置である。V’の位置は成形済みの成形型集合体23を冷却する位置である。Vの位置は、冷却が終了して、搬送機構8が搬送した成形型集合体23を搬送機構7に受け渡す位置である。
【0022】
中間室2の圧力は圧力計20で圧力を測定しながら、不活性ガス導入部11からのガス導入量と不活性ガス排出部15からのガス排出量とを調整することにより所望の圧力に調節することができる。冷却機構17、18は、水冷された金属ブロックから構成され、搬送機構8が成形型集合体23を冷却機構17に載置し、その後、冷却機構17を矢印57で示すように上昇させ、冷却機構17、18を成形型集合体23の上面と下面に押し当て、熱伝導による冷却を行なう。
【0023】
本実施形態の光学素子成形機の成形室3はIVの位置と不活性ガス導入部12と軸シール16とガス流路50と圧力計21と加熱ヒータ24と熱電対25とを具える。IVの位置は成形型集合体23の不活性ガス置換と加熱と成形をする為の位置である。圧力計21で圧力を測定しながら不活性ガス導入部12を調整することにより成形室3の不活性ガスを所望の圧力に調節することができる。ガス流路50は成形室3と中間室2とを連通するように軸シール16の回りに開けられた複数の小さな孔であり、成形室3の圧力が過大にならないように、又中間室2と適度な圧力差を保つことができるようなコンダクタンスを持つように孔の数と大きさを決めている。加熱ヒータ24は、加熱成形位置IVにある成形型集合体23を熱電対25で温度を測定しながら加熱し、ガラス母材を成形に適した粘度にする。
【0024】
本実施形態の光学素子成形機の取出室4はVIの位置と不活性ガス導入部13と不活性ガス排出部14と圧力計22と仕切りバルブ48と成形型集合体23を光学素子成形機の外へ取り出す為の前扉(不図示)を具える。VIの位置は搬送軸40の下降によって中間室2から搬送された成形型集合体23を外部への取り出しの為に保持する位置である。取出室4では、開閉軸54の回りに弁体を時計回りに回転させて、仕切りバルブ48を閉め、前扉を閉めた状態で圧力計22で圧力を測定しながら不活性ガス導入部13と不活性ガス排出部14に接続された排気ポンプを調整することにより取出室4の内部を所望の圧力の不活性ガス雰囲気にすることができる。また、不活性ガス排出部14に接続された排気ポンプを制御することで、不活性ガス導入部12から導入された不活性ガスが、取出室4に向かって流れが常に生ずるようになる。このようにすることにより、取出室4が大気中に開放されたとしても、酸素が成形室3に到着しにくくなっている。なお、取出室4の容積は不活性ガスの消費量を減らす為に出来るだけ小さくされることが好ましい。又、搬送軸40を下降させて成形型集合体23をVの位置からVIの位置へ下降させるときには、開閉軸54の回りに弁体を反時計回りに回転させて、仕切りバルブ48を開けるように構成されている。
【0025】
次に、成形型集合体23は図3に示されるように構成されている。以下成形型集合体23を図3を参照して説明する。成形型集合体23は上成形型26と下成形型27とスリーブ28とガラス母材29と搬送台30とを具える。下成形型27とガラス母材29と上成形型26とはこの順番でスリーブ28に嵌めこまれ、これらがスリーブ28の内壁に沿って上下に動けるように嵌合されている。スリーブ28と上成形型26とガラス母材29と下成形型27とは搬送台30に載置され、搬送台30の側面には搬送用の窪み31が設けられている。この搬送用の窪み31は中間室2で搬送機構8が成形型集合体23を搬送するために用いられる。又、上成形型26には熱電対25挿入孔32が開けられており、そこに熱電対25を挿入することにより上成形型26の温度を測ることができる。また、下成形型27にも上成形型26と同様な挿入孔と、搬送台30にその挿入孔と連通するような貫通孔を設けて、そこに熱電対を挿入して、下成形型27の温度を計測できるようにしても良い。
【0026】
次に、本実施形態の光学素子成形機の搬送機構5、6、7、8について説明する。
【0027】
本実施形態の光学素子成形機の搬送機構8の上面図を図2に示す。図2、図1を参照して本実施形態の光学素子成形機の搬送機構8を説明する。
【0028】
本実施形態の光学素子成形機の搬送機構8は成形型集合体23をIIの位置からIIIの位置へ、IIIの位置からV’の位置へ、V’の位置からVの位置へ搬送することができるよう構成されている。又、IIの位置ではIの位置から搬送機構5によって搬送された成形型集合体23を受取ることができるように構成されている。IIIの位置では成形兼搬送機構6へ成形型集合体23を受け渡すことができ、成形兼搬送機構6から成形済の成形型集合体23を受取ることができるように構成されている。V’の位置では冷却機構17へ成形済の成形型集合体23を受け渡すことができ、冷却機構17から冷却済の成形型集合体23を受け取ることができるように構成されている。Vの位置では搬送機構7へ成形型集合体23を受け渡すことができるように構成されている。
【0029】
本実施形態の光学素子成形機の搬送機構8は本体の主要部分が中間室2の中に設けられ、ボールネジ41とボールネジ41に螺合させた移動機構43とボールネジ41を回転させる為のモータ42とを具える。又、移動機構43はその先端部に把持部44を具え、不図示の開閉機構で把持部44を45で示す方向に開閉することができる。又、把持部44は46の矢印で示す方向に把持部44単独で移動可能な構造を有する。図2はAの方向に移動した把持位置を示す。把持部44はAの方向に移動して、成形型集合体23を把持する動作を行い、II〜Vの位置間での搬送が行なわれ、Bの方向に移動して、把持部44が退避し、移動機構43をII〜Vの位置間で干渉なく移動させることができる。
【0030】
搬送機構8が成形型集合体23を受け取る方法を以下の具体例で説明する。
【0031】
IIの位置で、搬送機構8は以下のように動作し、供給室1から搬送された成形型集合体23を受け取る。移動機構43は、把持部44を開き、B方向に後退させ退避させた状態でIIの位置まで移動する。IIの位置には搬送軸38の上昇によって、成形型集合体23が待機している。その状態で、把持部44をAの方向に前進させ把持部44を閉じて成形型集合体23の搬送用窪み31を挟むことにより成形型集合体23を把持する。その後、搬送軸38を下降させることができる。この把持の様子を図3に示す。成形型集合体23を把持した状態でモータ42を回転させて成形型集合体23を左方向へ移動させることにより搬送が行なわれる。
【0032】
搬送機構8が成形型集合体23を受け渡す方法を以下の具体例で説明する。
【0033】
IIIの位置で、搬送機構8は以下のように動作し、供給室1から搬送した成形型集合体23を受け渡す。移動機構43は、把持部44を閉じて、成形型集合体23を把持した状態でIIIの位置まで移動する。IIIの位置に於いて、搬送された成形型集合体23は、成形兼搬送機構6の頂上部49の真上に位置する。その状態で、移動機構43の把持部44を開いて成形型集合体23の把持を解除することにより成形型集合体23は頂上部49に載置される。このようにして受け渡しを終了させ、その後、移動機構43は把持部44を退避方向Bへ後退させ、次の搬送位置まで移動する。モータ42を正転させれば左方向へ、逆転させれば右方向に移動機構43を移動させることができる。
【0034】
他のVの位置、V´の位置等での成形型集合体23の受け渡しと受取りの動作方法は上に説明した方法と概略同じであるので説明を省略する。
【0035】
本実施形態の搬送機構5は、搬送軸38とガイド及びシール機構33と圧空シリンダ機構(不図示)とを具える。搬送軸38の頂上部37に成形型集合体23を載置し、開閉軸53の回りに弁体を時計回りに回転させて、仕切りバルブ47を開けた状態で、搬送軸38をガイド及びシール機構33に沿って上昇させることにより供給室1のI位置から中間室2のII位置へ成形型集合体23を搬送する。搬送を終えると、搬送軸38の頂上部37をIの位置にまで戻す。
【0036】
本実施形態の光学素子成形機の成形兼搬送機構6は、軸39とガイド機構34と圧空シリンダ機構(不図示)と軸シール35、16とを具える。
【0037】
搬送に当たっては、中間室2のIIIの位置で、搬送機構8から受け渡され、頂上部49に成形型集合体23が載置された軸39を、IIIの位置から成形室3のIVの位置までガイド機構34に沿って上昇させる。この上昇によって、熱電対25が成形型集合体23の熱電対25挿入孔32に挿入され、成形時の温度が測定可能になる。この段階では未だ上成形型26の上面は突き当て面51に突き当たっていない。この状態で成形型集合体23の不活性ガス供給と加熱とを行なう。不活性ガス供給と加熱が終了すると成形を行なう。
【0038】
成形に当たっては、搬送終了の状態から、更に搬送軸39を、上方に移動させて、上成形型26が突き当て面5に突き当てられる。更に、搬送軸39を上方に移動するように駆動力を与えることで、上成形型26と下成形型27とがガラス母材29に対して相対的に移動し、上成形型26と下成形型27とがガラス母材29に接触し密着してガラス母材29が成形される。成形を終えると、搬送軸39の頂上部49を下降させて成形型集合体23をIIIの位置にまで戻す。
【0039】
このように中間室2の上に成形室3を設け、更に成形兼搬送機構6は、中間室2と成形室3との間での成形型集合体23の搬送と、成形型集合体23の上成形型26と下成形型27の間での加圧とを同一部材で行えるようにしたので、省スペースでかつ安価な光学素子成形機を得ることが可能となった。また、成形室3では成型時に不活性ガスを導入しているが、従来成形室3だけで不活性ガスを導入しただけでは、成形室に酸素が残存していたため、成型時に成形室3に存在する各部品を酸化してしまっていたが、本光学素子成形機では供給室1を一旦真空にして酸素を極力排除しているため、成型時に発生する酸化を極力防ぐことができるようになった。
【0040】
本実施形態の光学素子成形機の搬送機構7は、搬送軸40とガイド機構36と圧空シリンダ機構(不図示)とを具える。搬送に当たっては、開閉軸54の回りに弁体を反時計回りに回転させて、仕切りバルブ48を開けた状態で、中間室2のVの位置で搬送機構8から受け渡され、頂上部52に成形型集合体23が載置された搬送軸40を、Vの位置から取出室4のVIの位置まで下降させる。取出室4の前扉を開ければ、頂上部52から成形型集合体23が取り外し可能となる。
【0041】
本実施形態の光学素子成形機では、酸素等の活性ガスを極力減らした条件で成形型集合体23の加熱、成形を行なうために、中間室2と供給室1との間、成形室3と中間室2との間、及び中間室と取出室4との間に圧力差を設けている。即ち、本実施形態の光学素子成形機では、例えば供給室1から中間室2へ成形型集合体23を搬送する時に供給室1から中間室2へ流入する酸素等の活性ガスの流入量を減らす為に、中間室2の圧力を供給室1の圧力よりも高めてある。中間室2と供給室1との圧力差は高い程、活性ガスのこの流入防止効果は高まるが、圧力差を高くし過ぎると、仕切りバルブ47を開けたときに不活性ガスが吹き出すので好ましくなく、供給室1の前扉を開けて成形型集合体23をセットするときに散逸する不活性ガスの量が増える点でも好ましくない。このことは取出室4で外部に成形型集合体23を取り出す場合についても言える。又、逆に圧力差を低くし過ぎると活性ガスの流入防止効果が低くなる。好ましい圧力差は、1hPa以上〜10hPa以下である。同様な理由で、成形室3の圧力は中間室2の圧力よりも1hPa以上〜10hPa以下だけ高くされることが好ましく、中間室2の圧力は取出室4の圧力よりも1hPa以上〜10hPa以下だけ高くされることが好ましい。
【0042】
また、中間室2と供給室1、中間室2と取出室4のあいだには、仕切りバルブ47、48を設けることで、中間室2に存在する不活性ガスを不用意に消費することを抑えている。特に供給室1は成形型集合体23から酸素を排除するため、真空引きしている。そのときに、不活性ガスの無駄な放出を抑えることができる。
【0043】
このように構成することにより、中間室2の不活性ガスの純度を供給室1や取出室4の不活性ガスの純度よりも高く、又、成形室3の不活性ガスの純度を中間室2の不活性ガスの純度よりも高くすることができる。
【0044】
尚、供給室1と取出室4は成形型集合体23のセットと取り出しのときには必ず大気圧にしなければならない。その為に、供給室1と取出室4に於ける不活性ガスの圧力はほぼ大気圧にすることが好ましい。
【0045】
本実施形態の光学素子成形機は、以上述べたような圧力調整をする為に、不活性ガス導入部10、11、12、13に圧力制御器やガス流量制御器を、又、不活性ガス排出部14、15にガス流量制御器を設けている。
【0046】
又、本実施形態の光学素子成形機で用いる不活性ガスとしては消費金額の点で高純度の窒素ガスが好ましいが、必要に応じて高純度のアルゴン、ネオン等の稀ガスを用いても良い。
【0047】
本実施形態の光学素子成形機は以下のような手順で成形を行なう。以下に図1、図2、図3、図4を用いて成形工程を説明する。
(1)先ず供給室1のIの位置に成形型部材23を手又は自動供給機でセットする。
(2)次に供給室1を真空ポンプ9で排気し、真空に到達したら、排気を止める。
(3)不活性ガス導入部10から不活性ガスを導入し、中間室2との圧力差を所定値にした状態で仕切りバルブ47を開け、搬送機構5が成形型集合体23をIの位置からIIの位置へ搬送し、IIの位置で成形型集合体23を搬送機構8に受け渡す。受け渡し終了後、搬送機構5の頂上部37を供給室まで戻し、仕切りバルブ47を閉める。
(4)搬送機構8は成形型集合体23をIIIの位置に搬送し、成形兼搬送機構6に受け渡す。
(5)成形兼搬送機構6は成形型集合体23をIIIの位置からIVの位置まで移動する。この位置で成形型集合体23の不活性ガス置換と加熱とを行い、不活性ガス置換と加熱の終了後に成形を行なう。
(6)成形を終えたら、軸39を下降させ、成形型集合体23をIVの位置からIIIの位置まで戻す。
(7)成形兼搬送機構6は成形型集合体23をIIIの位置で搬送機構8へ受け渡す。
(8)搬送機構8は成形済の成形型集合体23をIIIの位置からV´の位置へ搬送する。
(9)搬送機構8は成形型集合体23をV´の位置で冷却機構17に受け渡し、冷却機構17、18により成形型集合体23の冷却を行なう。
(10)搬送機構8は冷却済の成形型集合体23を冷却機構17から受取り、V´の位置からVの位置へ搬送する。
(11)搬送機構8はVの位置で成形型集合体23を搬送機構7に受け渡す。
(12)搬送機構7は仕切りバルブ48を開けた状態で成形型集合体23をVの位置からVIの位置へ搬送する。搬送終了後仕切りバルブ48を閉める。
(13)VIの位置で前扉を開け、成形処理を終了した成形型集合体23を外部に取り出す。
【0048】
以上説明した、▲1▼IとIIの位置での処理、▲2▼IIIとIVの位置での処理、▲3▼V´の位置での処理、▲4▼VとVIの位置での処理の4つの処理は相互に干渉しないで行うことができる。即ちこれら4つの処理は並行して行うことができるので、本実施形態の光学素子成形機は4個の成形型集合体を同時に並行処理することができる。
【0049】
従って、本実施形態の光学素子成形機は生産数が多い(スループットが高い)。
【0050】
又、本実施形態の光学素子成形機は成形室3を大気に曝すことなく、中間室2よりも高圧に、中間室2を供給室1や取出室4よりも高圧に、成形室3と外部との間で差圧が二重に取られている。更に成形型集合体をセット後に供給室1を一度真空にして、酸素等の活性ガスを脱ガスしてから不活性ガス雰囲気にしているので、成形型集合体のセットや取り出しの際にも成形室3の不活性ガス雰囲気中へ流れ込む酸素等の活性ガスの量が極めて少ないので、上成形型26、下成形型27が酸化することが殆どない。その為、本実施形態の光学素子成形機を用い、以上の工程で成形された光学素子は成形された面である光学面にくもりがない。
【0051】
又、本実施の形態の光学素子成形機は成形型集合体23を用いて成形している。成形型集合体23は、図3を見れば分かるようにスリーブ28が成形型26のガイドの役割を持っているので、上成形型26、下成形型27の傾きが少なく、従来の光学素子成形機と較べて、成形された光学素子に偏心が少ない。
【0052】
本実施形態の光学素子成形機はくもりがなく、偏心が少ない高品質の光学素子を成形することができる。
[第二実施形態]
本実施形態の光学素子成形機を図1を参照して説明する。
【0053】
本実施形態の光学素子成形機は図1に於いて、供給室1から真空ポンプ9を取り除き、不活性ガス排出部を新たに設けた構成である。他の中間室2、成形室3、取出室4、搬送機構5、搬送機構6、搬送機構7、搬送機構8の構成については第一実施形態のものと同じである。
【0054】
本実施形態の光学素子成形機では、成形工程で、第一実施形態の成形工程に於ける(2)の工程の、「次に供給室1を真空ポンプ9で排気し、真空に到達したら、排気を止める。」工程を行なわないで(3)以降の工程に進む。従って(3)の工程での供給室1の不活性ガス雰囲気中の酸素ガス等の活性ガスの量が第一実施形態に於ける程は少なくないので、中間室2を通って成形室に流れ込む酸素等の活性ガスの量は第一実施形態よりも多い。
【0055】
しかしながら、本実施形態の光学素子成形機は4個の成形型集合体を同時に並行処理することができる。従って、本実施形態の光学素子成形機は生産数が多い(スループットが高い)。
【0056】
又、本実施形態の光学素子成形機は成形室3を大気に曝すことなく、中間室2よりも高圧に、中間室2を供給室1や取出室4よりも高圧に、成形室3と外部との間で差圧が二重に取られている。二重にしている為に、成形型集合体のセットや取り出しの際にも成形室3の不活性ガスへ流れ込む酸素等の活性ガスの量が少ないので、上成形型26、下成形型27が酸化することが殆どなく、本実施形態の光学素子成形機を用い、成形された光学素子は第一実施形態のもの程ではないが、成形された面である光学面にくもりが殆どない。
[第三実施形態]
本実施形態の光学素子成形機を図1を参照して説明する。
【0057】
本実施形態の光学素子成形機は図1に於いて、供給室1から真空ポンプ9を取り除き、不活性ガス排出部を新たに取り付けた第二実施形態の構成から、更に成形室3を取り外し、中間室2のIIIの位置で成形型集合体23を成形するようにしたものである。本実施形態の光学素子成形機は供給室1と中間室2と取出室3を具える。IIIの位置で成形型集合体23の成形をする為に、中間室には成形型集合体23を加熱するための加熱ヒータや成形中の温度を測定する為の温度計を設けている。成形室3が無いので、IIIの位置とIVの位置間の搬送は不要であり、6は成形専用の成形型への加圧機構となる。
【0058】
本実施形態の光学素子成形機は4個の成形型集合体23を同時に並行処理することができる。従って、本実施形態の光学素子成形機は生産数が多い(スループットが高い)。
【0059】
又、本実施形態の光学素子成形機は中間室2(本実施形態では成形を行なう)を大気に曝すことなく、供給室1や取出室4よりも高圧にしているので、成形型集合体23のセットや取り出しの際にも中間室2の不活性ガス雰囲気中へ流れ込む酸素等の活性ガスの量が少ないので、上成形型26、下成形型27が酸化することが少なく、本実施形態の光学素子成形機を用い、成形された光学素子は第二実施形態程ではないが、成形された面である光学面にくもりが少ない。
[第四実施形態]
本実施形態の光学素子成形機を図1を参照して説明する。
【0060】
本実施形態の光学素子成形機は図1に於いて、供給室1から真空ポンプ9を取り除き、不活性ガス排出部を新たに取り付けた第二実施形態の構成から、更に成形室3と取出室4とを取り除き、供給室1と中間室2との構成としたものである。本実施形態では、成形型集合体23をIの位置にセットし、中間室2のIIの位置で不活性ガス置換と加熱と成形を行い、その後、再び供給室1のIの位置に搬送し、供給室1のIの位置から外部に取り出させれる。このような構成では搬送機構5だけで成形型集合体23を搬送することができる。従って、本実施形態の光学素子成形機は成形兼搬送機構6と搬送機構7と搬送機構8とを持たない。IIの位置で成形型集合体23の成形をする為に、IIの位置には成形型集合体23を加熱するための加熱ヒータや成形中の温度を測定する為の温度計を設けている。
【0061】
本実施形態の光学素子成形機は成形を行なう中間室2を大気に曝すことなく、成形型集合体23の供給、取り出しを行なう供給室1よりも高圧にしているので、成形型集合体23のセットや取り出しの際にも中間室2(IIの位置で成形を行なう)に流れ込む酸素等の活性ガスの量が少ないので、上成形型26、下成形型27が酸化することが殆どなく、本実施形態の光学素子成形機を用い、成形された光学素子は、成形された面である光学面に第三実施形態と同程度にくもりが少ない。
【0062】
しかしながら本実施形態の光学素子成形機は成形型集合体23を並行して処理することができないので、スループットはそれほど高くないが、従来の光学素子の成形機よりは高いスループットを有する。
【0063】
又、第一〜第四の実施形態の光学素子成形機は、上成形型26、下成形型27等の成形型が錆びにくいので、成形型の錆の除去などの為のメンテナンス時間を短縮することができる。
【0064】
【発明の効果】
本発明によれば、成形型の加熱、成形時に、成形型の回りを高純度な不活性ガス雰囲気にすることができるので、成形型の酸化が少なく、くもりが少ない高品質の光学素子を成形することができる。
【図面の簡単な説明】
【図1】本発明の第一実施形態の光学素子成形機を示す側面図である。
【図2】本発明の第一〜第三実施形態の光学素子成形機の搬送機構8を示す図である。
【図3】本発明の第一〜第四実施形態の光学素子成形機に用いる成形型集合体を示す図である。
【図4】本発明の第一〜第二実施形態の光学素子成形機の加熱ヒータ回りの図である。
【符号の説明】
1 供給室
2 中間室
3 成形室
4 取出室
5、7、8 搬送機構
6 成形兼搬送機構
9 真空ポンプ
10、11、12、13 不活性ガス導入部
14、15 不活性ガス排出部
16、35 軸シール
17、18 冷却機構
19、20、21、22 圧力計
23 成形型集合体
24 加熱ヒータ
25 熱電対
26 上成形型
27 下成形型
28 スリーブ
29 ガラス母材
30 搬送台
31 搬送用の窪み
32 熱電対25の挿入孔
33、36 ガイド及びシール機構
34 ガイド機構
37、49、52 頂上部
38、40 搬送軸
39 軸
41 ボールネジ
42 モータ
43 移動機構
44 把持部
45 把持の開閉を示す
46 把持部44の把持位置A、退避位置Bへの移動を示す
47、48 仕切りバルブ
50 ガス流路
51 付き当て面
53、54 仕切りバルブ開閉軸
55 石英管
56 耐火物
57 矢印
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical element molding machine for manufacturing an optical element used for an optical device or the like by heating and molding a glass base material.
[0002]
[Prior art]
2. Description of the Related Art Instead of manufacturing optical elements such as lenses by polishing or the like, a technique of manufacturing a glass base material heated and softened by an optical element forming machine by glass forming with a forming die has been put to practical use.
[0003]
In a conventional optical element molding machine, an optical element is molded in the following steps. (1) First, a mold and a glass base material are set in an optical element molding machine. (2) The mold and the glass preform are heated, and when the glass preform is softened, the glass preform is pressed onto the mold to transfer the shape of the mold surface of the mold to the glass preform. {Circle around (3)} After the molding, the mold and the glass base material are cooled, the molded optical element is removed from the mold, taken out of the optical element molding machine, and the molding step is completed.
[0004]
In glass molding, metal is generally used as the material of the mold, so when oxygen gas in the atmosphere touches the mold at high temperature, the surface of the mold and the inner wall surface of the sleeve are oxidized. . Hereinafter, a set including a mold, a sleeve, and the like will be referred to as a mold member. In order to prevent this oxidation, in a conventional optical element molding machine, glass molding is performed in a closed container, and a molding die member and a glass base material are set in the closed container in the above (1), The air in the sealed container is replaced with an inert gas so that the atmosphere gas does not contain oxygen gas, and then the process proceeds to the step (2).
[0005]
[Problems to be solved by the invention]
However, the conventional optical element molding machine cannot take out the mold and the optical element from the closed container unless the closed container of the optical element molding machine is once directly opened to the atmosphere in the above (3). Upon release to the atmosphere, the inert gas contained in the sealed container is dissipated and lost. After setting the next glass preform and the molding die member in the closed container again, the inert gas must be supplied again to replace the air in the closed container with the inert gas. That is, every time a new glass preform is formed, a large amount of expensive inert gas is consumed, which increases the forming cost. If the replacement with the inert gas is insufficient, and the replacement of the oxygen inside the molding member with the inert gas is not completely performed, the oxygen remaining inside the molding die oxidizes the molding member. Sometimes happened. When the mold member is oxidized, clouding or the like occurs in the molded optical element, and the quality of the optical element is deteriorated.
[0006]
Therefore, one of the problems has been to increase the degree to which the oxygen has been sufficiently replaced with the inert gas including the inside and details of the mold member in the closed container, that is, to increase the replacement quality.
[0007]
An object of the present invention is to provide an optical element molding apparatus which solves the above-mentioned problems and in which an oxidation phenomenon of a mold member is extremely small, and as a result, a high quality optical element can be produced.
[0008]
[Means for solving the problem]
In order to solve the above problems, the optical element molding machine according to the first aspect of the present invention is an inert gas supply unit that supplies an inert gas that hardly causes at least a chemical reaction with a mold and a glass material at a high temperature, A molding chamber having a molding means for supplying a pressing force to the glass material via the molding die while heating the molding die and the glass material, and a supply chamber for supplying the molding die and the glass material to a molding machine. The supply chamber and the molding chamber are set so that the pressure in the molding chamber is relatively increased.
[0009]
The optical element molding machine according to a second aspect of the present invention is the optical element molding machine according to the first aspect, wherein at least the molding die or the glass material is supplied between the supply chamber and the molding chamber. An optical element molding machine having an isolating means that can be isolated except during transfer from a chamber to the molding chamber.
[0010]
The optical element molding machine according to a third aspect of the present invention is the optical element molding machine according to the first aspect, further comprising an extraction chamber for taking out the glass material molded in the molding chamber and the molding die from the optical element molding machine. Is provided separately from the supply chamber, and the unloading chamber is set at a lower pressure than the molding chamber.
[0011]
The optical element molding machine according to a fourth aspect of the present invention is the optical element molding machine according to the third aspect, wherein at least the transfer of the molding die or the glass material is performed between the molding chamber and the unloading chamber. Is an optical element molding machine provided with an isolating means for enabling isolation between the molding chamber and the unloading chamber.
[0012]
An optical element molding machine according to a fifth aspect of the present invention is the optical element molding machine according to the first aspect, wherein the molding die transferred from at least the molding chamber is between the molding chamber and the unloading chamber. And an optical element molding machine having cooling means for cooling the glass material.
[0013]
An optical element molding machine according to a sixth aspect of the present invention is the optical element molding machine according to the first aspect, wherein a transport means for transporting the molding die or the glass material is provided between the supply chamber and the molding chamber. An optical element molding machine comprising a transfer chamber provided.
[0014]
An optical element molding machine according to a seventh aspect of the present invention is the optical element molding machine according to the sixth aspect, wherein the transfer chamber optically forms the molding chamber, the glass material molded in the molding chamber, and the molding die. An optical element molding machine, wherein the optical element molding machine is also located between an unloading chamber to be taken out of the element molding machine and a cooling means for cooling the molding die and the glass material in the transfer chamber.
[0015]
An optical element molding machine according to an eighth aspect of the present invention is the optical element molding machine according to the first aspect, wherein the supply chamber further includes a decompression means capable of decompression after the molding die or the glass material is introduced. An optical element molding machine characterized by being provided.
[0016]
The optical element molding machine according to a ninth aspect of the present invention is the optical element molding machine according to the third aspect, wherein the extraction chamber includes an exhaust unit that exhausts an inert gas supplied from the molding chamber. An optical element molding machine characterized in that:
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
[First embodiment]
FIG. 1 shows an optical element molding machine of the present embodiment, and shows an internal cross-sectional view thereof. FIG. 2 is a plan view showing the transport mechanism 8, FIG. 3 shows a mold assembly 23, and FIG. 4 shows a heating mechanism. An optical element molding machine according to an embodiment of the present invention will be described with reference to FIG. 1, FIG. 2, FIG. 3, and FIG.
[0018]
In FIG. 1, an optical element molding machine according to an embodiment of the present invention includes a supply chamber 1, an intermediate chamber 2, a molding chamber 3, an extraction chamber 4, transport mechanisms 5, 7, 8, and a molding and transport mechanism 6. I can. In addition, I, II, III, IV, V, V ′, and VI indicate the position of the mold assembly 23.
[0019]
In the supply chamber 1 of the optical element molding machine according to the present embodiment, the position I, the vacuum pump 9 such as a rotary pump, the inert gas introduction unit 10, the pressure gauge 19, the partition valve 47, and the molding assembly 23 are set from outside. And a front door (not shown). The position I is a position where the mold assembly 23 is set from the outside. The valve body is rotated counterclockwise around the opening / closing shaft 53, the partition valve 47 is closed, the mold assembly 23 is set at the position I, the front door is closed, and the supply chamber 1 is closed. By operating the pump 9, the inside of the supply chamber 1 can be brought into a vacuum atmosphere. When the supply chamber 1 reaches a vacuum, the evacuation is stopped, and an inert gas is introduced from the gas introduction unit 10 to make the inside of the supply chamber 1 an inert gas atmosphere and oxygen is eliminated from the mold assembly 23. be able to. Since the pressure of the inert gas in the supply chamber 1 can be measured by the pressure gauge 19, the inside of the supply chamber 1 is adjusted to an inert gas atmosphere of a desired pressure by adjusting the inert gas introduction unit 10. can do. Further, the atmosphere in the supply chamber 1 is replaced with the atmosphere by opening the front door, but since the volume of the supply chamber 1 is small when viewed from the whole molding machine, the consumption of the inert gas can be reduced. . When the transport shaft 38 is raised to transport the mold assembly 23 from the position I to the position II, the valve body is rotated clockwise around the opening / closing shaft 53 to open the partition valve 47.
[0020]
The intermediate chamber 2 of the optical element molding machine according to the present embodiment includes a position II, a position III, a position V ′, a position V, cooling mechanisms 17 and 18, an inert gas introduction unit 11, An inert gas discharge unit 15 and a pressure gauge 20 for measuring the pressure in the intermediate chamber 2 are provided.
[0021]
The position II is a position where the conveying mechanism 8 receives the mold assembly 23 conveyed from the position I in the supply chamber 1 by the elevation of the conveying shaft 38. The position III is a position where the mold assembly 23 transported by the transport mechanism 8 is transferred to the molding and transport mechanism 6. The position V 'is a position where the formed mold assembly 23 is cooled. The position V is a position where the cooling die is completed and the mold assembly 23 transported by the transport mechanism 8 is transferred to the transport mechanism 7.
[0022]
The pressure of the intermediate chamber 2 is adjusted to a desired pressure by adjusting the amount of gas introduced from the inert gas introduction unit 11 and the amount of gas discharged from the inert gas discharge unit 15 while measuring the pressure with the pressure gauge 20. can do. The cooling mechanisms 17 and 18 are composed of water-cooled metal blocks, and the transport mechanism 8 places the mold assembly 23 on the cooling mechanism 17, and then raises the cooling mechanism 17 as indicated by an arrow 57, and performs cooling. The mechanisms 17 and 18 are pressed against the upper and lower surfaces of the mold assembly 23 to perform cooling by heat conduction.
[0023]
The molding chamber 3 of the optical element molding machine according to the present embodiment includes the position of the IV, the inert gas introduction section 12, the shaft seal 16, the gas flow path 50, the pressure gauge 21, the heater 24, and the thermocouple 25. The position IV is a position for performing inert gas replacement, heating and molding of the mold assembly 23. By adjusting the inert gas introduction part 12 while measuring the pressure with the pressure gauge 21, the inert gas in the molding chamber 3 can be adjusted to a desired pressure. The gas flow path 50 is a plurality of small holes formed around the shaft seal 16 so as to communicate the molding chamber 3 and the intermediate chamber 2, so that the pressure in the molding chamber 3 does not become excessive, and The number and size of the holes are determined so that the conductance can maintain an appropriate pressure difference. The heater 24 heats the mold assembly 23 at the heating molding position IV while measuring the temperature with the thermocouple 25 to make the glass base material have a viscosity suitable for molding.
[0024]
The take-out chamber 4 of the optical element molding machine of the present embodiment is provided with the position VI, the inert gas introduction part 13, the inert gas discharge part 14, the pressure gauge 22, the partition valve 48, and the mold assembly 23 of the optical element molding machine. It has a front door (not shown) for taking it out. The position VI is a position where the mold assembly 23 transported from the intermediate chamber 2 by the lowering of the transport shaft 40 is held for removal to the outside. In the extraction chamber 4, the valve body is rotated clockwise around the opening / closing axis 54, the partition valve 48 is closed, and the pressure is measured by the pressure gauge 22 while the front door is closed. By adjusting the exhaust pump connected to the inert gas discharge section 14, the inside of the extraction chamber 4 can be set to an inert gas atmosphere of a desired pressure. In addition, by controlling the exhaust pump connected to the inert gas discharge unit 14, the inert gas introduced from the inert gas introduction unit 12 always flows toward the extraction chamber 4. This makes it difficult for oxygen to reach the molding chamber 3 even if the extraction chamber 4 is opened to the atmosphere. It is preferable that the volume of the extraction chamber 4 is made as small as possible to reduce the consumption of the inert gas. When the conveying shaft 40 is lowered to lower the mold assembly 23 from the position V to the position VI, the valve body is rotated counterclockwise around the opening / closing shaft 54 to open the partition valve 48. Is configured.
[0025]
Next, the mold assembly 23 is configured as shown in FIG. Hereinafter, the mold assembly 23 will be described with reference to FIG. The mold assembly 23 includes an upper mold 26, a lower mold 27, a sleeve 28, a glass preform 29, and a carrier 30. The lower mold 27, the glass preform 29, and the upper mold 26 are fitted into the sleeve 28 in this order, and are fitted so that they can move up and down along the inner wall of the sleeve 28. The sleeve 28, the upper mold 26, the glass preform 29, and the lower mold 27 are placed on a carrier 30, and a carrier recess 31 is provided on a side surface of the carrier 30. The transfer recess 31 is used by the transfer mechanism 8 to transfer the mold assembly 23 in the intermediate chamber 2. Further, a thermocouple 25 insertion hole 32 is formed in the upper mold 26, and the temperature of the upper mold 26 can be measured by inserting the thermocouple 25 therein. The lower mold 27 is also provided with an insertion hole similar to that of the upper mold 26 and a through hole communicating with the insertion hole of the carrier 30 and a thermocouple is inserted therein. May be measured.
[0026]
Next, the transport mechanisms 5, 6, 7, and 8 of the optical element molding machine of the present embodiment will be described.
[0027]
FIG. 2 shows a top view of the transport mechanism 8 of the optical element molding machine of the present embodiment. The transport mechanism 8 of the optical element molding machine according to the present embodiment will be described with reference to FIGS.
[0028]
The transport mechanism 8 of the optical element molding machine according to the present embodiment transports the mold assembly 23 from the position II to the position III, from the position III to the position V ′, and from the position V ′ to the position V. It is configured to be able to. In the position II, the mold assembly 23 conveyed by the conveyance mechanism 5 from the position I can be received. At the position III, the mold assembly 23 can be delivered to the molding and conveying mechanism 6 and the molded mold assembly 23 can be received from the molding and conveying mechanism 6. At the position V ′, the formed mold assembly 23 can be delivered to the cooling mechanism 17 and the cooled mold assembly 23 can be received from the cooling mechanism 17. At the position V, the mold assembly 23 can be delivered to the transport mechanism 7.
[0029]
The transport mechanism 8 of the optical element molding machine of the present embodiment has a main part of the main body provided in the intermediate chamber 2, a ball screw 41, a moving mechanism 43 screwed to the ball screw 41, and a motor 42 for rotating the ball screw 41. And Further, the moving mechanism 43 has a grip portion 44 at a tip end thereof, and the grip portion 44 can be opened and closed in a direction indicated by 45 by an opening / closing mechanism (not shown). The grip 44 has a structure that can be moved by the grip 44 alone in the direction indicated by the arrow 46. FIG. 2 shows the gripping position moved in the direction A. The gripper 44 moves in the direction of A, performs an operation of gripping the mold assembly 23, is conveyed between the positions II to V, moves in the direction of B, and the gripper 44 retracts. However, the moving mechanism 43 can be moved between the positions II to V without interference.
[0030]
A method in which the transport mechanism 8 receives the mold assembly 23 will be described with reference to the following specific examples.
[0031]
At the position II, the transfer mechanism 8 operates as follows, and receives the mold assembly 23 transferred from the supply chamber 1. The moving mechanism 43 opens the grip portion 44, and moves to the position II in a state where the gripping portion 44 is retracted and retracted in the direction B. The mold assembly 23 stands by at the position II as the transport shaft 38 rises. In this state, the gripper 44 is advanced in the direction of A, the gripper 44 is closed, and the conveying dent 31 of the mold assembly 23 is sandwiched to grip the mold assembly 23. Thereafter, the transport shaft 38 can be lowered. FIG. 3 shows this gripping state. The conveyance is performed by rotating the motor 42 while holding the forming die assembly 23 to move the forming die assembly 23 to the left.
[0032]
A method in which the transfer mechanism 8 transfers the mold assembly 23 will be described with reference to the following specific examples.
[0033]
At the position III, the transport mechanism 8 operates as follows, and transfers the mold assembly 23 transported from the supply chamber 1. The moving mechanism 43 closes the grip portion 44 and moves to the position III while gripping the mold assembly 23. At the position III, the conveyed mold assembly 23 is located directly above the top 49 of the forming and conveying mechanism 6. In this state, the gripping portion 44 of the moving mechanism 43 is opened to release the gripping of the molding die assembly 23, and the molding die assembly 23 is placed on the top 49. In this way, the delivery is completed, and then the moving mechanism 43 moves the gripper 44 in the retreating direction B and moves to the next transport position. When the motor 42 is rotated forward, the moving mechanism 43 can be moved leftward, and when rotated reversely, the moving mechanism 43 can be moved rightward.
[0034]
The method of delivering and receiving the mold assembly 23 at other positions V, V ', and the like is substantially the same as the above-described method, and thus the description is omitted.
[0035]
The transport mechanism 5 of the present embodiment includes a transport shaft 38, a guide and seal mechanism 33, and a compressed air cylinder mechanism (not shown). The mold assembly 23 is placed on the top 37 of the transport shaft 38, and the valve body is rotated clockwise around the open / close shaft 53, and the transport shaft 38 is guided and sealed with the partition valve 47 opened. The mold assembly 23 is transported from the position I of the supply chamber 1 to the position II of the intermediate chamber 2 by being raised along the mechanism 33. When the conveyance is completed, the top 37 of the conveyance shaft 38 is returned to the position I.
[0036]
The forming and conveying mechanism 6 of the optical element forming machine of this embodiment includes a shaft 39, a guide mechanism 34, a compressed air cylinder mechanism (not shown), and shaft seals 35 and 16.
[0037]
At the time of conveyance, the shaft 39 on which the mold assembly 23 is placed on the top 49 is transferred from the conveyance mechanism 8 at the position III of the intermediate chamber 2 to the position IV of the molding chamber 3 from the position III. It is raised along the guide mechanism 34 up to. Due to this rise, the thermocouple 25 is inserted into the thermocouple 25 insertion hole 32 of the mold assembly 23, and the temperature during molding can be measured. At this stage, the upper surface of the upper mold 26 has not yet abutted against the abutting surface 51. In this state, the supply of the inert gas and the heating of the mold assembly 23 are performed. When the supply of the inert gas and the heating are completed, the molding is performed.
[0038]
In the molding, the transport shaft 39 is further moved upward from the state where the transport is completed, and the upper molding die 26 is abutted against the abutment surface 5. Further, by applying a driving force to move the transport shaft 39 upward, the upper forming die 26 and the lower forming die 27 move relative to the glass base material 29, and the upper forming die 26 and the lower forming die The mold 27 comes into contact with and adheres to the glass base material 29 to form the glass base material 29. When the molding is completed, the top 49 of the transport shaft 39 is lowered to return the mold assembly 23 to the position III.
[0039]
As described above, the molding chamber 3 is provided on the intermediate chamber 2, and the molding and transport mechanism 6 further transports the molding die assembly 23 between the intermediate chamber 2 and the molding chamber 3, and transfers the molding die assembly 23. Since the pressing between the upper mold 26 and the lower mold 27 can be performed by the same member, a space-saving and inexpensive optical element molding machine can be obtained. In addition, in the molding chamber 3, an inert gas is introduced at the time of molding. However, if the inert gas is introduced only in the conventional molding chamber 3, oxygen remains in the molding chamber. However, in the present optical element molding machine, the supply chamber 1 is once evacuated to remove oxygen as much as possible, so that oxidation generated during molding can be prevented as much as possible. .
[0040]
The transport mechanism 7 of the optical element molding machine according to the present embodiment includes a transport shaft 40, a guide mechanism 36, and a compressed air cylinder mechanism (not shown). In the transfer, the valve body is rotated counterclockwise around the opening / closing shaft 54, and is delivered from the transfer mechanism 8 at the position V of the intermediate chamber 2 with the partition valve 48 opened, and is transferred to the top 52. The transport shaft 40 on which the mold assembly 23 is placed is lowered from the position V to the position VI of the unloading chamber 4. When the front door of the extraction chamber 4 is opened, the mold assembly 23 can be removed from the top 52.
[0041]
In the optical element molding machine of the present embodiment, in order to heat and mold the mold assembly 23 under the condition that the active gas such as oxygen is reduced as much as possible, the molding chamber 3 is located between the intermediate chamber 2 and the supply chamber 1. Pressure differences are provided between the intermediate chamber 2 and between the intermediate chamber and the discharge chamber 4. That is, in the optical element molding machine of the present embodiment, for example, when the mold assembly 23 is transported from the supply chamber 1 to the intermediate chamber 2, the amount of active gas such as oxygen flowing from the supply chamber 1 to the intermediate chamber 2 is reduced. For this reason, the pressure in the intermediate chamber 2 is higher than the pressure in the supply chamber 1. The higher the pressure difference between the intermediate chamber 2 and the supply chamber 1 is, the higher the effect of preventing the inflow of the active gas is. However, if the pressure difference is too high, the inert gas blows out when the partition valve 47 is opened, which is not preferable. Also, it is not preferable in that the amount of inert gas dissipated when the front door of the supply chamber 1 is opened to set the mold assembly 23 is increased. This also applies to the case where the mold assembly 23 is taken out to the outside in the take-out chamber 4. Conversely, if the pressure difference is too low, the effect of preventing the inflow of the active gas decreases. A preferable pressure difference is 1 hPa or more and 10 hPa or less. For the same reason, it is preferable that the pressure of the molding chamber 3 be higher than the pressure of the intermediate chamber 2 by 1 hPa to 10 hPa, and the pressure of the intermediate chamber 2 be higher than the pressure of the extraction chamber 4 by 1 hPa to 10 hPa. It is preferred that
[0042]
In addition, partition valves 47 and 48 are provided between the intermediate chamber 2 and the supply chamber 1 and between the intermediate chamber 2 and the take-out chamber 4 to prevent the inert gas existing in the intermediate chamber 2 from being carelessly consumed. ing. In particular, the supply chamber 1 is evacuated to remove oxygen from the mold assembly 23. At that time, wasteful release of the inert gas can be suppressed.
[0043]
With this configuration, the purity of the inert gas in the intermediate chamber 2 is higher than the purity of the inert gas in the supply chamber 1 and the extraction chamber 4, and the purity of the inert gas in the molding chamber 3 is adjusted to the level of the intermediate chamber 2. Can be higher than the purity of the inert gas.
[0044]
The supply chamber 1 and the unloading chamber 4 must be kept at atmospheric pressure when the mold assembly 23 is set and unloaded. For this purpose, it is preferable that the pressure of the inert gas in the supply chamber 1 and the discharge chamber 4 be approximately atmospheric pressure.
[0045]
The optical element molding machine of the present embodiment is provided with a pressure controller and a gas flow controller in the inert gas introduction units 10, 11, 12, and 13 for performing the above-described pressure adjustment. The discharge units 14 and 15 are provided with gas flow controllers.
[0046]
In addition, as the inert gas used in the optical element molding machine of the present embodiment, a high-purity nitrogen gas is preferable in terms of the consumption amount, but a high-purity argon, a rare gas such as neon may be used if necessary. .
[0047]
The optical element molding machine of the present embodiment performs molding in the following procedure. Hereinafter, the molding process will be described with reference to FIGS. 1, 2, 3, and 4.
(1) First, the mold member 23 is set at the position I in the supply chamber 1 by hand or by an automatic supply machine.
(2) Next, the supply chamber 1 is evacuated by the vacuum pump 9, and when the vacuum is reached, the evacuation is stopped.
(3) Inert gas is introduced from the inert gas introduction unit 10, the partition valve 47 is opened in a state where the pressure difference with the intermediate chamber 2 is set to a predetermined value, and the transfer mechanism 5 moves the mold assembly 23 to the position I. To the position II, and transfers the mold assembly 23 to the transfer mechanism 8 at the position II. After the transfer, the top 37 of the transport mechanism 5 is returned to the supply chamber, and the partition valve 47 is closed.
(4) The transport mechanism 8 transports the mold assembly 23 to the position III and transfers it to the molding and transport mechanism 6.
(5) The forming / transporting mechanism 6 moves the forming die assembly 23 from the position III to the position IV. At this position, inert gas replacement and heating of the mold assembly 23 are performed, and after the inert gas replacement and heating are completed, molding is performed.
(6) When the molding is completed, the shaft 39 is lowered, and the mold assembly 23 is returned from the position IV to the position III.
(7) The forming and conveying mechanism 6 transfers the forming die assembly 23 to the conveying mechanism 8 at the position III.
(8) The transport mechanism 8 transports the formed mold assembly 23 from the position III to the position V ′.
(9) The transport mechanism 8 transfers the mold assembly 23 to the cooling mechanism 17 at the position V ′, and cools the mold assembly 23 by the cooling mechanisms 17 and 18.
(10) The transport mechanism 8 receives the cooled mold assembly 23 from the cooling mechanism 17 and transports it from the position V ′ to the position V.
(11) The transport mechanism 8 transfers the mold assembly 23 to the transport mechanism 7 at the position V.
(12) The transport mechanism 7 transports the mold assembly 23 from the position V to the position VI while the partition valve 48 is open. After the transfer, the partition valve 48 is closed.
(13) The front door is opened at the position VI, and the mold assembly 23 that has completed the molding process is taken out.
[0048]
As described above, (1) processing at positions I and II, (2) processing at positions III and IV, (3) processing at position V ', (4) processing at positions V and VI Can be performed without interfering with each other. That is, since these four processes can be performed in parallel, the optical element molding machine of the present embodiment can simultaneously process four molding die assemblies in parallel.
[0049]
Therefore, the optical element molding machine of the present embodiment has a large number of productions (high throughput).
[0050]
In addition, the optical element molding machine of the present embodiment does not expose the molding chamber 3 to the atmosphere, but sets the intermediate chamber 2 to a higher pressure than the supply chamber 1 and the extraction chamber 4 without exposing the molding chamber 3 to the atmosphere. And the pressure difference is taken twice. Further, since the supply chamber 1 is once evacuated after setting the mold assembly and an inert gas atmosphere is formed after degassing the active gas such as oxygen, the molding is performed even when the mold assembly is set or taken out. Since the amount of active gas such as oxygen flowing into the inert gas atmosphere in the chamber 3 is extremely small, the upper mold 26 and the lower mold 27 hardly oxidize. Therefore, the optical element formed by the above steps using the optical element forming machine of the present embodiment does not have a cloudy optical surface which is a formed surface.
[0051]
Further, the optical element molding machine of the present embodiment is molded using the molding assembly 23. As can be seen from FIG. 3, since the sleeve 28 has a role of a guide for the molding die 26 in the molding die assembly 23, the inclination of the upper molding die 26 and the lower molding die 27 is small. The molded optical element has less eccentricity than the machine.
[0052]
The optical element molding machine of this embodiment can form a high-quality optical element with no cloudiness and little eccentricity.
[Second embodiment]
The optical element molding machine of the present embodiment will be described with reference to FIG.
[0053]
The optical element molding machine of this embodiment has a configuration in which the vacuum pump 9 is removed from the supply chamber 1 and an inert gas discharge section is newly provided in FIG. The other configurations of the intermediate chamber 2, the molding chamber 3, the unloading chamber 4, the transport mechanism 5, the transport mechanism 6, the transport mechanism 7, and the transport mechanism 8 are the same as those of the first embodiment.
[0054]
In the optical element molding machine according to the present embodiment, in the molding step, in the step (2) in the molding step according to the first embodiment, “Next, the supply chamber 1 is evacuated by the vacuum pump 9 and when the vacuum is reached, Stop exhaust. "The process proceeds to the step (3) and subsequent steps without performing the step. Accordingly, since the amount of the active gas such as oxygen gas in the inert gas atmosphere in the supply chamber 1 in the step (3) is not so small as in the first embodiment, it flows into the molding chamber through the intermediate chamber 2. The amount of the active gas such as oxygen is larger than in the first embodiment.
[0055]
However, the optical element molding machine of the present embodiment can simultaneously process four mold assemblies in parallel. Therefore, the optical element molding machine of the present embodiment has a large number of productions (high throughput).
[0056]
In addition, the optical element molding machine of the present embodiment does not expose the molding chamber 3 to the atmosphere, but sets the intermediate chamber 2 to a higher pressure than the supply chamber 1 and the extraction chamber 4 without exposing the molding chamber 3 to the atmosphere. And the pressure difference is taken twice. Due to the double structure, the amount of the active gas such as oxygen flowing into the inert gas in the molding chamber 3 is small even when the mold assembly is set or taken out. Oxidation hardly occurs, and the optical element molded by using the optical element molding machine of the present embodiment is not as large as that of the first embodiment. However, the molded optical surface has almost no cloud.
[Third embodiment]
The optical element molding machine of the present embodiment will be described with reference to FIG.
[0057]
In FIG. 1, the optical element molding machine of this embodiment removes the vacuum pump 9 from the supply chamber 1 and further removes the molding chamber 3 from the configuration of the second embodiment in which an inert gas discharge part is newly attached. The mold assembly 23 is formed at the position III in the intermediate chamber 2. The optical element molding machine of the present embodiment includes a supply chamber 1, an intermediate chamber 2, and an extraction chamber 3. In order to mold the mold assembly 23 at the position III, the intermediate chamber is provided with a heater for heating the mold assembly 23 and a thermometer for measuring the temperature during molding. Since there is no molding chamber 3, there is no need to convey between the position III and the position IV, and 6 is a pressurizing mechanism for a molding die dedicated to molding.
[0058]
The optical element molding machine of the present embodiment can simultaneously process four molding die assemblies 23 at the same time. Therefore, the optical element molding machine of the present embodiment has a large number of productions (high throughput).
[0059]
Further, in the optical element molding machine of the present embodiment, the intermediate chamber 2 (which performs molding in the present embodiment) is set at a higher pressure than the supply chamber 1 and the extraction chamber 4 without exposing to the atmosphere. During the set and take-out, since the amount of the active gas such as oxygen flowing into the inert gas atmosphere in the intermediate chamber 2 is small, the upper mold 26 and the lower mold 27 are less likely to be oxidized. Although the optical element molded using the optical element molding machine is not the same as that of the second embodiment, the optical surface which is the molded surface has less cloudiness.
[Fourth embodiment]
The optical element molding machine of the present embodiment will be described with reference to FIG.
[0060]
The optical element molding machine of this embodiment is different from the configuration of the second embodiment in which the vacuum pump 9 is removed from the supply chamber 1 and an inert gas discharge part is newly attached in FIG. 4 is removed, and the supply chamber 1 and the intermediate chamber 2 are configured. In the present embodiment, the mold assembly 23 is set at the position I, the inert gas replacement, the heating and the molding are performed at the position II in the intermediate chamber 2, and then the material is transferred again to the position I in the supply chamber 1. , From the position I of the supply chamber 1. In such a configuration, the mold assembly 23 can be transported only by the transport mechanism 5. Therefore, the optical element molding machine of the present embodiment does not have the molding and transport mechanism 6, the transport mechanism 7, and the transport mechanism 8. In order to form the mold assembly 23 at the position II, a heater for heating the mold assembly 23 and a thermometer for measuring the temperature during molding are provided at the position II.
[0061]
In the optical element molding machine of the present embodiment, since the intermediate chamber 2 for molding is not exposed to the atmosphere, but has a higher pressure than the supply chamber 1 for supplying and removing the mold assembly 23, the mold assembly 23 Since the amount of the active gas such as oxygen flowing into the intermediate chamber 2 (forming at the position of II) is small even at the time of setting and taking out, the upper molding die 26 and the lower molding die 27 hardly oxidize. The optical element molded by using the optical element molding machine of the embodiment has almost no clouding on the optical surface which is the molded surface as in the third embodiment.
[0062]
However, since the optical element molding machine of the present embodiment cannot process the mold assembly 23 in parallel, the throughput is not so high, but has a higher throughput than the conventional optical element molding machine.
[0063]
Further, in the optical element molding machines of the first to fourth embodiments, since the molding dies such as the upper molding die 26 and the lower molding die 27 are hardly rusted, the maintenance time for removing rust from the molding dies is reduced. be able to.
[0064]
【The invention's effect】
According to the present invention, a high-purity inert gas atmosphere can be formed around the mold during heating and molding of the mold, so that a high-quality optical element with less oxidation of the mold and less clouding can be formed. can do.
[Brief description of the drawings]
FIG. 1 is a side view showing an optical element molding machine according to a first embodiment of the present invention.
FIG. 2 is a view showing a transport mechanism 8 of the optical element molding machine according to the first to third embodiments of the present invention.
FIG. 3 is a view showing a mold assembly used in an optical element molding machine according to first to fourth embodiments of the present invention.
FIG. 4 is a view around a heater of the optical element molding machine according to the first and second embodiments of the present invention.
[Explanation of symbols]
1 supply room
2 Intermediate room
3 Molding room
4 extraction room
5, 7, 8 transport mechanism
6 Forming and conveying mechanism
9 vacuum pump
10, 11, 12, 13 Inert gas inlet
14, 15 Inert gas discharge section
16, 35 Shaft seal
17, 18 Cooling mechanism
19, 20, 21, 22 Pressure gauge
23 Mold assembly
24 Heater
25 thermocouple
26 Upper mold
27 Lower mold
28 sleeve
29 Glass base material
30 carriage
31 Hollow for transport
32 Insertion hole for thermocouple 25
33, 36 Guide and seal mechanism
34 Guide mechanism
37, 49, 52 Top
38, 40 transport axis
39 axes
41 Ball screw
42 motor
43 Moving mechanism
44 Grip
45 Indicates opening and closing of grip
46 Indicates movement of the gripper 44 to the gripping position A and the retreat position B
47, 48 Partition valve
50 gas flow path
51 contact surface
53, 54 Gate valve opening / closing shaft
55 quartz tube
56 refractories
57 Arrow

Claims (9)

高温下で成形型や硝材と化学反応を少なくとも起こしにくい不活性ガスを供給する不活性ガス供給手段と、前記成形型及び硝材を加熱しつつ前記成形型を介して前記硝材に加圧力を供給する成形手段とを具えた成形室と、前記成形型及び硝材を成形機に供給する供給室とを少なくとも具えた光学素子成形機において、
前記供給室と前記成形室は、相対的に前記成形室の圧力が大きくなるように設定されていることを特徴とする光学素子成形機。
An inert gas supply unit for supplying an inert gas that is unlikely to cause a chemical reaction at least with a molding die or a glass material at a high temperature; and supplying a pressing force to the glass material via the molding die while heating the molding die and the glass material. A molding chamber having molding means, and an optical element molding machine having at least a supply chamber for supplying the molding die and the glass material to the molding machine,
An optical element molding machine wherein the supply chamber and the molding chamber are set so that the pressure in the molding chamber is relatively large.
前記供給室と前記成形室との間には、少なくとも前記成形型又は前記硝材の前記供給室から前記成形室への移送時以外には隔離可能な隔離手段を具えることを特徴とする請求項1に記載の光学素子成形機。The apparatus according to claim 1, further comprising an isolating means provided between the supply chamber and the molding chamber, the isolation means being capable of isolating at least when the molding die or the glass material is not transferred from the supply chamber to the molding chamber. 2. The optical element molding machine according to 1. 更に、前記成形室で成形された硝材及び前記成形型を光学素子成形機から取り出す取出室を前記供給室とは別に具え、前記取出室は、前記成形室より低い圧力に設定されていることを特徴とする請求項1に記載の光学素子成形機。Further, an extraction chamber for taking out the glass material and the molding die molded in the molding chamber from the optical element molding machine is provided separately from the supply chamber, and the extraction chamber is set at a lower pressure than the molding chamber. The optical element molding machine according to claim 1, wherein: 前記成形室と前記取出室の間には、少なくとも前記成形型又は硝材の移送時以外には前記成形室と前記取出室の間を隔離可能とする隔離手段を具えることを特徴とする請求項3に記載の光学素子成形機。An isolator between the molding chamber and the unloading chamber is provided, which can isolate the molding chamber and the unloading chamber at least except during transfer of the molding die or the glass material. 4. The optical element molding machine according to 3. 前記成形室と前記取出室の間には、少なくとも前記成形室から移送された前記成形型及び前記硝材を冷却する冷却手段を有したことを特徴とする請求項1に記載の光学素子成形機。The optical element molding machine according to claim 1, further comprising a cooling means for cooling at least the molding die and the glass material transferred from the molding chamber, between the molding chamber and the unloading chamber. 前記供給室と前記成形室との間に前記成形型又は硝材を搬送する搬送手段が設置された搬送室を設けたことを特徴とする請求項1に記載の光学素子成形機。2. The optical element molding machine according to claim 1, wherein a transfer chamber provided with a transfer means for transferring the molding die or the glass material is provided between the supply chamber and the molding chamber. 前記搬送室は、前記成形室と前記成形室で成形された硝材及び前記成形型を光学素子成形機から取り出す取出室との間にも位置しており、前記搬送室内に前記成形型及び前記硝材を冷却する冷却手段が設けられていることを特徴とする請求項6に記載の光学素子成形機。The transfer chamber is also located between the molding chamber and a take-out chamber for taking out the molding material and the molding die from the optical element molding machine in the molding chamber, and the molding die and the glass material are provided in the conveyance chamber. 7. The optical element molding machine according to claim 6, further comprising cooling means for cooling the optical element. 前記供給室は、更に前記成形型又は硝材が導入された後に、減圧可能な減圧手段を設けたことを特徴とする請求項1に記載の光学素子成形機。The optical element molding machine according to claim 1, wherein the supply chamber further includes a decompression unit capable of reducing the pressure after the molding die or the glass material is introduced. 前記取出室は、前記成形室から供給される不活性ガスを排気する排気手段を具えることを特徴とする請求項3に記載の光学素子成形機。The optical element molding machine according to claim 3, wherein the extraction chamber includes an exhaust unit that exhausts an inert gas supplied from the molding chamber.
JP2003033494A 2003-02-12 2003-02-12 Optical device molding machine Withdrawn JP2004244243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003033494A JP2004244243A (en) 2003-02-12 2003-02-12 Optical device molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033494A JP2004244243A (en) 2003-02-12 2003-02-12 Optical device molding machine

Publications (2)

Publication Number Publication Date
JP2004244243A true JP2004244243A (en) 2004-09-02
JP2004244243A5 JP2004244243A5 (en) 2006-02-02

Family

ID=33019451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033494A Withdrawn JP2004244243A (en) 2003-02-12 2003-02-12 Optical device molding machine

Country Status (1)

Country Link
JP (1) JP2004244243A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199537A (en) * 2005-01-20 2006-08-03 Toshiba Mach Co Ltd Glass molding device
JP2007169078A (en) * 2005-12-19 2007-07-05 Toshiba Mach Co Ltd Molding apparatus
JP2007169080A (en) * 2005-12-19 2007-07-05 Toshiba Mach Co Ltd Molding apparatus
JP2007169079A (en) * 2005-12-19 2007-07-05 Toshiba Mach Co Ltd Molding apparatus
JP2015059051A (en) * 2013-09-17 2015-03-30 東芝機械株式会社 Glass molding apparatus, and glass molded product

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199537A (en) * 2005-01-20 2006-08-03 Toshiba Mach Co Ltd Glass molding device
JP2007169078A (en) * 2005-12-19 2007-07-05 Toshiba Mach Co Ltd Molding apparatus
JP2007169080A (en) * 2005-12-19 2007-07-05 Toshiba Mach Co Ltd Molding apparatus
JP2007169079A (en) * 2005-12-19 2007-07-05 Toshiba Mach Co Ltd Molding apparatus
JP4624916B2 (en) * 2005-12-19 2011-02-02 東芝機械株式会社 Molding equipment
JP4681444B2 (en) * 2005-12-19 2011-05-11 東芝機械株式会社 Molding equipment
JP4681443B2 (en) * 2005-12-19 2011-05-11 東芝機械株式会社 Molding equipment
JP2015059051A (en) * 2013-09-17 2015-03-30 東芝機械株式会社 Glass molding apparatus, and glass molded product

Similar Documents

Publication Publication Date Title
US4405435A (en) Apparatus for performing continuous treatment in vacuum
TWI522282B (en) Film forming device
JP2004244243A (en) Optical device molding machine
JPS6126528A (en) Apparatus for producing pressed lens
US20080282737A1 (en) Press-molding apparatus
JP3890167B2 (en) Glass press molding apparatus, method of operating the same, and optical lens molding method
JP5690475B2 (en) Molding apparatus and method for manufacturing molded product
WO2005000751A1 (en) Optical element forming method and device
JPH05294638A (en) Device for molding glass
JP2008069019A (en) Optical element molding apparatus
JP4288951B2 (en) Conveying apparatus, optical element manufacturing apparatus, and optical element manufacturing method
JP4681443B2 (en) Molding equipment
JP4086152B2 (en) Glass press molding apparatus and molding method
JP4044373B2 (en) Manufacturing method of glass optical element
JP4566673B2 (en) Optical element molding method and apparatus
JP2511084B2 (en) Optical element manufacturing equipment
JP2505874B2 (en) Mold cleaning method
JPH08707B2 (en) Optical element manufacturing method
JP3717793B2 (en) Glass molding product molding apparatus and molding method
JP3185159B2 (en) Glass lens molding equipment
JP2009007221A (en) Method for forming optical element
KR101632847B1 (en) Apparatus for Molding Cover Glass
JPH02255541A (en) Press forming device for optical element and optical element
JPH03223125A (en) Apparatus for forming optical element
JPH0323244A (en) Optical element and its press forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081128