[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004243078A - Rotary type concentration irradiation apparatus of medical radiation attached with x-ray transverse tomographic image device for positioning and movable bed for moving target region to rotation center - Google Patents

Rotary type concentration irradiation apparatus of medical radiation attached with x-ray transverse tomographic image device for positioning and movable bed for moving target region to rotation center Download PDF

Info

Publication number
JP2004243078A
JP2004243078A JP2003079055A JP2003079055A JP2004243078A JP 2004243078 A JP2004243078 A JP 2004243078A JP 2003079055 A JP2003079055 A JP 2003079055A JP 2003079055 A JP2003079055 A JP 2003079055A JP 2004243078 A JP2004243078 A JP 2004243078A
Authority
JP
Japan
Prior art keywords
radiation
irradiation
target region
rotation center
normal tissues
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003079055A
Other languages
Japanese (ja)
Inventor
Naotoshi Maeda
尚利 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003079055A priority Critical patent/JP2004243078A/en
Publication of JP2004243078A publication Critical patent/JP2004243078A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce exposure by continuously irradiate a large amount of radiation in a cancer tissue and intermittently irradiating pulsed radiation to normal tissues, to efficiently perform radiotherapy by recovering the normal tissues from radiation damage in irradiation intermittent periods between respective pulses, and to solve problems in radiotherapy wherein ideally radiation is irradiated on the cancer tissue alone, however, inevitably the radiation is applied to the normal tissues surrounding the circumference of the cancer tissue to cause radiation exposure and radiation damage of the normal tissues, and, for preventing it, an irradiation target region is required to be positioned in the rotation center. <P>SOLUTION: Radiation emission devices 1 and 2 continuously rotates about the irradiation target region so as to continuously apply the radiation to the rotation center region and intermittently apply the pulsed radiation outside the region. While the target region is monitored by X-ray transverse tomographic image devices 3 and 4, a bed is moved 6 and 9 so that the target region precisely comes to the rotation center. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
医療用放射線治療に関する。
【0002】
【従来の技術】
正常組織の放射線被曝をできるだけ少なくする目的で、患者の周囲から癌組織に向かって放射線をあてる方法(原体照射、conformal radiotherapy、例えばYin,F.F.et.al.,A techniqueof intensity−modulated radiosurgery(IMRS)forspinal tumors,Medical Physics29,2815−22,2002)があるが、これは最大10方向からであり、放射線の通過した正常組織の放射線の被曝量は高々10分の1になるにすぎず、一度に大量の放射線を照射した場合は、放射線が通過した正常組織の放射線障害を避けることは必ずしも容易ではない。
【0003】
工業用ロボットアームの先端に放射線発生装置を取り付け、患者の周囲から癌組織に向けて放射線照射を行う方法(Cyber Knife、Murphy,例えばM.J.The accuracy of dose localization for an image−guided frameless radiosurgerysystem,Medical Physics,23,2043−9,1996)においては、癌組織の4π方向から放射線を照射することが可能であるが、その分割方向はたかだか100方向であり、あらゆる角度から連続的に、大量の放射線照射をすることは、ロボットアームの構造上困難である。
【0004】
分割照射法においては、通常6から8時間毎に一日2から3回、週5日、3から6週間にわたって照射を行う方法を用いるが、一般に正常組織の方が、癌組織よりも放射線に対する感受性が高く、また放射線障害からの回復の速度も癌組織の方が速いので、正常組織の放射線障害を、照射の目的である癌組織より軽くすることは困難である。
【0005】
腫瘍周囲の正常組織にできうる限り放射線があたらないように、照射の目的部位に正確に放射線ビームが照射されていることをチェックする必要がある。そのために、生体の内外にマーカーを埋め込んでおいたり、または固定器具で体を固定する方法が採られているものの、照射装置とマーカーの位置関係から照射中にチェックすることが出来なかったり、また固定具に固定するのに時間がかかるなど、必ずしも使い勝手はよくない。
【0006】
【発明が解決しようとする課題】
放射線療法の施行において、癌組織に対しては、大量の放射線を照射し、それを取り囲む周囲の正常組織に対しては、できうる限り照射線量を少なくする。
【0007】
癌組織には連続的に放射線を照射し、癌組織を取り囲む周囲の正常組織に対してはパルス状に放射線を照射することによって、各パルス照射の合間に正常細胞の放射線障害からの回復を行わせる。
【0008】
標的の癌組織(7)が請求項1の放射線治療装置から常に正確に照射されるためには、正確に標的領域と照射領域との位置関係を知る必要がある。
【0009】
体動や呼吸によって標的の位置が移動した場合、標的の領域が常に照射装置の回転中心に来るように、患者の位置を移動する。
【0010】
【課題を解決するための手段】
図1の概念図に示すように、回転体(1)に固定された放射線発生装置(2)を回転体(1)とともに回転させながら放射線照射を行うことにより、その回転中心にある癌組織(7)には、放射線発生装置(2)から連続的に放射線が照射されるが、中心領域から離れた点では間歇的なパルス状の放射線照射となる。
【0011】
図2に示されるような腫瘤(7)が、体表面から深い位置にあり、請求項1の放射線発生装置(1)から照射される放射線の強度分布が、回転の接線方向の距離ρと入射角Φ(t)の関数として、f(Φ、ρ)で与えられるとき、回転の中心から極座標P(r、θ)で与えられる点における1周期Tの間に受ける照射線量D(T)は次式で与えられる。
【0012】
【数1】

Figure 2004243078
【0013】
回転型の照射装置においては、放射線の強度や強度分布ばかりでなく、回転のスピード(入射角Φ)も時間の関数として変化させることが可能である。
【0014】
一般に、照射装置からのビームの強度分布は複雑であり、照射線量はビームの広がり、照射陰影、吸収、散乱による影響を考慮しないといけないものの、最も簡単な一定の角度で回転する幅がdで固定された矩形型の分布をもつビーム(図2)を考えると、f(Φ、ρ)は次式で与えられる。
【0015】
【数2】
Figure 2004243078
【0016】
数2の条件の下で、数1の積分は次式で与えられる。
【0017】
【数3】
Figure 2004243078
【0018】
数3の式で与えられる値をグラフに描いたものが図3である。照射の回転中心から、ビームの幅d離れたところで、照射線量は3分の1に、2d離れたところで、6分の1に、3d離れたところでは10分の1に、それぞれ減少することが解る。
【0019】
ビームの照射方向Φ(t)によって、放射線ビームの強度、幅、直角方向の長さなどを変化させて、腫瘤に照射される線量を最適化することが出来るが、これはビームの形状や強度を、数1の式のf(Φ、ρ)に代入し積分を行うことによって、線量の数値評価を行うことが可能である。
【0020】
請求項1の周期的に回転する放射線照射装置(2)を用いることにより、患者の周囲から回転しながら放射線を連続照射するので、癌周囲の正常組織に対しては間歇的なパルス照射となる。周囲の正常組織にはパルス状の放射線が照射されることになるので、各パルスとパルスの間の間歇期に正常細胞の放射線障害からの回復が起こる。
【0021】
r<d/2の領域では、連続的に放射線が照射されるが、r>d/2の点では、照射を受ける時間と、ビームがそれる時間は半周期T/2の間では、それぞれ以下の2つの式で与えられる。
【0022】
【数4】
Figure 2004243078
【0023】
図4は回転中心よりr>d/2離れた点におけるパルス状に照射される部位での放射線強度の時間的変化を示す模式図であるが、照射を受ける時間(パルス幅)と距離の関係は図3と同様なグラフになり、回転中心からの距離が大きくなるほど、放射線による被曝量が減少すると同時に、各パルス照射の間の時間が長くなり、放射線障害からの回復が起きやすくなる(図4、点線)。
【0024】
標的領域を含む複数の断層像を得ることが可能なCT装置(3、4)により、放射線が標的に正確に照射されていることを、連続的にモニターする。
【0025】
請求項1の放射線照射装置(2)による回転照射の中心を、CT装置(3、4)の断層像でモニターし、患者が横たわっているベッド(6)を上下、左右、頭尾方向に、遠隔操作により、手動または自動で移動させ、照射部位を確認しながら照射を行う。
【0026】
【発明の実施の形態】
発明の実施の形態を図面を参照して説明する。
図5は,最も簡単な装置の例である。回転リング(1)は下の図(図5b)にある固定リング(8)または固定器具に支えられ、ボールベアリングなどの滑車装置により回転する。
【0027】
回転リング(1)上に固定された、放射線発生装置(2)はリングの回転とともに、患者の周囲を連続的に回転し、リング(1)の回転中心にある、ベッド(6)に横たわった患者の腫瘍に対し放射線が連続回転照射される。
【0028】
回転リング(1)に取り付けられたCT装置(3、4)は、患者の周囲を回転リング(1)とともに回転することによって、回転中心に位置する照射領域のX線横断断層画像(CT画像)を得ることができ、照射領域をモニターすることが可能である。
【0029】
患者の照射目標領域(腫瘍組織)をリング(1)の回転中心に持ってくるために、駆動装置(9)によって、ベッド(6)を上下、左右、頭尾方向に移動する。
【0030】
図5においては、リングの回転面はベッド(6)に垂直な面であり、このベッドに垂直な面が必ずしも最適な放射線の入射角とは限らない。図6は、リング(1)を傾け、入射方向を斜めにする装置の模式図である。傾斜軸を2方向にとることにより、任意の入射角を選ぶことができ、標的領域外の正常組織の放射線被曝を軽減することが可能となる。
【0031】
図7は、図5と図6に示された回転リング(1)の代わりに回転する内筒(10)とそれを支える外筒(11)を用いた装置である。照射目標をモニターするCT装置(3、4)は内筒(10)の壁に固定されており、放射線発生装置(2)は、その放射線の照射角度をCT装置(3、4)の断層面の中心に向かうように保ちながら、内筒(10)の内壁に取り付けられたレールの上をZ方向(頭尾方向)に移動しながら放射線の連続回転照射を行う。
【0032】
回転リング(1)の代わりに回転する円筒(10)を用いることにより、構造的に簡単で機械的に安定するばかりでなく、治療放射線の入射角度を頭尾方向に振ることにより、放射線被曝を避けることが望ましい正常組織の放射線障害を軽減することが可能となる。
【0033】
図7の円筒を用いる代わりに、2個の回転リング(1)の間を固定した金属のパイプ(12)、または棒で繋ぎ、そのパイプ上に放射線発生装置(2)を図6と同じようにZ方向に移動させて、患者の腫瘍組織に連続的に放射線照射を行う。この装置は、構造が簡単で、保守点検は簡素化が可能になるものの、機械的強度に問題が発生するおそれがある。
【0034】
【発明の効果】
本発明は,以上に説明したような原理で構成されており,以下に記載されるような効果を奏する。
【0035】
本発明においては,回転照射の中心よりr<d/2の距離(dはビームの幅を表す)、すなわちビーム幅の半分以内の距離では連続的に放射線照射を受ける。
【0036】
数3より、r>d/2離れた点においては、図3で示されるように、照射の中心部より低い線量で照射され、また数4で与えられた放射線ビームのパルスが外れる時間帯に、放射線障害からの回復が起こるので、標的領域外の正常組織には重篤な放射線障害を与えることなく、ビーム幅の半分以内の距離にある照射領域に連続的に大量の放射線を照射することが可能である。
【0037】
CT装置(3、4)を用いて標的領域をモニターし、ベッド(6)を移動する装置(9)を使って、標的領域を照射の中心に移動することにより、マーカーや固定器具を使用することなく、短時間にかつ非侵襲的に、放射線照射の位置合わせを行うことができる。
【0038】
放射線の照射中にもCT装置(3、4)を用いてモニターすることにより、患者の体の移動や呼吸性の移動による照射部位のずれを補正することが出来る。
【0039】
本発明により、患者は少数回の分割照射で、周囲の正常組織に重篤な放射線障害を与えることなく、短期間で悪性腫瘍の治療量に十分な大量の放射線を腫瘍組織に対して照射することが可能となる。
【図面の簡単な説明】
【図1】患者の癌組織(7)を中心として、放射線発生装置(2)が点線で示される回転体(1)とともに回転し、その回転の中心領域に集中的に放射線照射を行う。回転体(1)に固定されたCT装置(3、4)もまた患者の周囲を回転することによってCT画像データーの収集が行われる。CT画像により照射の標的領域の位置をチェックし、患者のベッド(6)を(x,y,z)方向に移動し、連続的に位置の修正を行うことにより、標的領域に大量の放射線を連続的に照射することができる。標的領域周囲の正常組織にあたる放射線は間歇的なパルス状の放射線照射となるので、被曝線量が軽減されると同時に、各放射線パルスの間の照射のとぎれる時間帯に放射線障害からの回復が起こり、正常組織の障害が軽減される。
【図2】腫瘍組織(7)を中心に、放射線がその周囲からf(Φ,ρ)の強度分布を持ったビームで照射されると、点P(r、θ)における照射線量は数1で与えられ、照射線量と距離の関係は、近似的に図3で表される。照射の時間的な変化も、数4と図4で示されるようなパルス状の照射となる。
【図3】放射線ビームが理想的な矩形型分布を持つとの仮定の下で、回転の中心領域(r<d/2)の線量を1としたとき、中心からの距離(横軸、単位はビームの幅d)における線量を表したグラフである。
【図4】パルス状の放射線照射。縦軸は放射線強度を、横軸は時間を表す。パルスとパルスの間隔はリングの回転の半周期(T/2)で、パルスの幅とそれぞれのパルスの間の時間間隔は数4で与えられる。点線で示された曲線は、正常細胞の障害と、障害からの回復による正常細胞数の変化を示す模式図である。
【図5】簡単なリング型の回転照射。回転リング(1)は下図(b)のような外部に固定されたリング(8)に支えられて内側を回転しながら、放射線を放射線発生装置(2)からリングの回転中心に向かって放射線を照射する。モニターするために設けられたCT装置(3、4)もリング(1)に固定され、照射部位のCT像を得る。患者が横たわっているベッド(6)はベッドの移動装置(9)により、上下、左右、頭尾方向に移動し、常に照射の標的部位が常にリング(1)の回転中心に来るようにする。
【図6】図5に示した装置では常に照射は患者の体軸に直角方向になってしまうので、リングを傾けることによって、重要臓器の被曝を避けることができるようにする。
【図7】円筒状の回転装置では、内筒(10)は外筒(11)により支えられ、ボールベアリングなどの滑車装置により回転する。放射線発生装置(2)は内筒(10)の内壁に設けられたレールの上を頭尾方向に移動することによって、任意の入射角度を選ぶことができ、重要臓器の被曝を避けることができる。
【図8】図7の円筒の代わりに、2つの回転リング(1)の間をパイプ(12)または棒で固定し、その上に放射線発生装置(2)およびCT装置(3、4)を取り付け、放射線治療を行うとともにCT像によって照射部位の位置を連続的にモニターする。
【符号の説明】
1 回転リング
2 放射線発生装置
3 X線横断断層像(CT画像)を得るためのX線発生装置
4 CT画像用のX線検出器
5 振動を避けるための放射線発生装置のカウンターバランス
6 ベッド
7 患者の体内にある腫瘍(標的領域)
8 回転リングを支えるための外枠
9 ベッドを上下、左右、頭尾方向へ移動するため駆動装置
10 内筒
11 内筒を支えるための外筒
12 2つの回転リングを固定し、放射線発生装置と横断断層撮影装置を取り付けるためのパイプまたは金属棒[0001]
TECHNICAL FIELD OF THE INVENTION
Related to medical radiation therapy.
[0002]
[Prior art]
In order to minimize the radiation exposure of normal tissues, a method of directing radiation from around the patient toward cancer tissues (conformal radiotherapy, for example, Yin, FF et. Al., A technology of intensity-modulated). radiosurgery (IMRS) for spinal tumors, Medical Physics 29, 2815-22, 2002), but from up to ten directions, and the radiation exposure of normal tissue that has passed radiation is at most one tenth. However, when a large amount of radiation is applied at once, it is not always easy to avoid radiation damage to normal tissues through which the radiation has passed.
[0003]
A method of attaching a radiation generating device to the tip of an industrial robot arm and irradiating a cancer tissue from around a patient (Cyber Knife, Murphy, for example, MJ The Accuracy of Dose Localization for an image-guided radiation imagery radiation imagery) , Medical Physics, 23, 2043-9, 1996), it is possible to irradiate radiation from the 4π direction of cancer tissue, but the dividing direction is at most 100 directions, It is difficult to irradiate the radiation due to the structure of the robot arm.
[0004]
In the fractionated irradiation method, a method is used in which irradiation is performed 2 to 3 times a day, usually every 6 to 8 hours, 5 days a week, for 3 to 6 weeks. In general, normal tissues are more susceptible to radiation than cancer tissues. Because of the high sensitivity and the speed of recovery from radiation damage in cancer tissues, it is difficult to make the radiation damage in normal tissues lighter than the cancer tissues to be irradiated.
[0005]
It is necessary to check that the target area of the irradiation is correctly irradiated with the radiation beam so that the normal tissue around the tumor is not irradiated as much as possible. For this purpose, markers are embedded inside and outside the living body, or a method of fixing the body with a fixing device is adopted, but it is not possible to check during irradiation from the positional relationship between the irradiation device and the marker, or It is not always convenient because it takes time to fix it to the fixture.
[0006]
[Problems to be solved by the invention]
In radiation therapy, cancer tissue is irradiated with a large amount of radiation, and the surrounding normal tissue is irradiated with as little radiation as possible.
[0007]
The cancer tissue is continuously irradiated with radiation, and the surrounding normal tissue surrounding the cancer tissue is irradiated with pulsed radiation, thereby recovering normal cells from radiation damage between each pulse irradiation. Let
[0008]
In order to always accurately irradiate the target cancer tissue (7) from the radiotherapy apparatus of claim 1, it is necessary to know the positional relationship between the target region and the irradiation region accurately.
[0009]
When the target moves due to body motion or breathing, the position of the patient is moved so that the target area is always at the center of rotation of the irradiation device.
[0010]
[Means for Solving the Problems]
As shown in the conceptual diagram of FIG. 1, by irradiating radiation while rotating the radiation generator (2) fixed to the rotating body (1) together with the rotating body (1), the cancer tissue ( In 7), radiation is continuously irradiated from the radiation generator (2), but at points away from the central region, intermittent pulsed radiation is applied.
[0011]
The tumor (7) as shown in FIG. 2 is located at a position deep from the body surface, and the intensity distribution of the radiation emitted from the radiation generator (1) according to claim 1 is such that the tangential distance ρ in the tangential direction of rotation is incident. As a function of the angle Φ (t), when given by f (Φ, ρ), the irradiation dose D (T) received during one cycle T at a point given by the polar coordinates P (r, θ) from the center of rotation is It is given by the following equation.
[0012]
(Equation 1)
Figure 2004243078
[0013]
In a rotary irradiation device, not only the intensity and distribution of radiation but also the speed of rotation (incident angle Φ) can be changed as a function of time.
[0014]
In general, the intensity distribution of the beam from the irradiation device is complicated, and the irradiation dose must take into account the effects of beam spread, irradiation shadow, absorption, and scattering. Considering a beam with a fixed rectangular distribution (FIG. 2), f (Φ, ρ) is given by:
[0015]
(Equation 2)
Figure 2004243078
[0016]
Under the condition of Equation 2, the integral of Equation 1 is given by the following equation.
[0017]
[Equation 3]
Figure 2004243078
[0018]
FIG. 3 is a graph illustrating the values given by the equation (3). At a distance d away from the center of rotation of the beam, the irradiation dose can decrease to 1/3, 2d, 1/6, and 3d, 1/10 at a distance 3d. I understand.
[0019]
Depending on the irradiation direction Φ (t) of the beam, the intensity, width, length in the perpendicular direction, etc. of the radiation beam can be changed to optimize the dose applied to the tumor, but this is due to the shape and intensity of the beam. Is substituted for f (Φ, ρ) in the equation (1), and the integration is performed, whereby the numerical evaluation of the dose can be performed.
[0020]
By using the radiation irradiation device (2) that rotates periodically according to claim 1, since the radiation is continuously irradiated while rotating from around the patient, intermittent pulse irradiation is performed on normal tissues around the cancer. . Since the surrounding normal tissue is irradiated with pulsed radiation, normal cells recover from radiation damage in intermittent periods between pulses.
[0021]
In the region of r <d / 2, radiation is continuously irradiated. However, at the point of r> d / 2, the irradiation time and the beam divergence time during the half cycle T / 2 are each different. It is given by the following two equations.
[0022]
(Equation 4)
Figure 2004243078
[0023]
FIG. 4 is a schematic diagram showing a temporal change in radiation intensity at a portion irradiated in a pulse shape at a point r> d / 2 away from the rotation center. The relationship between the irradiation time (pulse width) and the distance Is a graph similar to that of FIG. 3. As the distance from the rotation center increases, the amount of radiation exposure decreases, and at the same time, the time between each pulse irradiation increases, and recovery from radiation damage occurs more easily. 4, dotted line).
[0024]
The CT apparatus (3, 4) capable of obtaining a plurality of tomographic images including the target area continuously monitors that the target is accurately irradiated with radiation.
[0025]
The center of rotation irradiation by the radiation irradiation device (2) according to claim 1 is monitored by a tomographic image of a CT device (3, 4), and a bed (6) on which a patient is lying is moved up and down, left and right, and head and tail direction. It is moved manually or automatically by remote control, and irradiation is performed while confirming the irradiation site.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 5 is an example of the simplest device. The rotating ring (1) is supported by a fixing ring (8) or fixing device shown in the figure below (FIG. 5b), and is rotated by a pulley device such as a ball bearing.
[0027]
The radiation generator (2), which is fixed on the rotating ring (1), rotates continuously around the patient with the rotation of the ring, lying on the bed (6) at the center of rotation of the ring (1). The patient's tumor is irradiated continuously with radiation.
[0028]
The CT apparatus (3, 4) attached to the rotating ring (1) rotates around the patient together with the rotating ring (1), so that an X-ray cross-sectional tomographic image (CT image) of an irradiation area located at the center of rotation is obtained. And it is possible to monitor the irradiated area.
[0029]
In order to bring the irradiation target area (tumor tissue) of the patient to the center of rotation of the ring (1), the bed (6) is moved up and down, left and right, and cranio-caudally by the driving device (9).
[0030]
In FIG. 5, the plane of rotation of the ring is perpendicular to the bed (6), and the plane perpendicular to the bed is not always the optimum angle of incidence of the radiation. FIG. 6 is a schematic view of a device for tilting the ring (1) to tilt the incident direction. By taking the tilt axis in two directions, an arbitrary angle of incidence can be selected, and it becomes possible to reduce the radiation exposure of normal tissue outside the target area.
[0031]
FIG. 7 shows an apparatus using a rotating inner cylinder (10) and an outer cylinder (11) supporting the same instead of the rotating ring (1) shown in FIGS. A CT device (3, 4) for monitoring an irradiation target is fixed to a wall of the inner cylinder (10), and a radiation generator (2) adjusts an irradiation angle of the radiation to a tomographic plane of the CT device (3, 4). The radiation is continuously rotated while moving in the Z direction (head-to-tail direction) on a rail attached to the inner wall of the inner cylinder (10) while maintaining the center of the radiation.
[0032]
By using a rotating cylinder (10) instead of the rotating ring (1), not only is it structurally simple and mechanically stable, but it also reduces radiation exposure by shaking the incident angle of therapeutic radiation in the craniocaudal direction. It is possible to reduce radiation damage to normal tissues that should be avoided.
[0033]
Instead of using the cylinder of FIG. 7, two rotating rings (1) are connected by a fixed metal pipe (12) or rod, and a radiation generator (2) is mounted on the pipe in the same manner as in FIG. The patient is moved in the Z direction to continuously irradiate the tumor tissue of the patient. Although this device has a simple structure and enables simple maintenance and inspection, there is a possibility that a problem occurs in mechanical strength.
[0034]
【The invention's effect】
The present invention is configured on the principle as described above, and has the following effects.
[0035]
In the present invention, radiation is continuously irradiated at a distance of r <d / 2 (d represents a beam width) from the center of the rotation irradiation, that is, at a distance within half of the beam width.
[0036]
According to Equation 3, at a point r> d / 2 away, as shown in FIG. 3, the irradiation is performed at a lower dose than the center of the irradiation, and the radiation beam pulse given by Equation 4 is out of the pulse period. Irradiate a large amount of radiation continuously to an irradiation area within half the beam width without causing serious radiation damage to normal tissues outside the target area, as recovery from radiation damage occurs Is possible.
[0037]
Monitor the target area using CT devices (3, 4) and use markers and fixtures by moving the target area to the center of irradiation using the device (9) moving the bed (6) Without irradiation, the positioning of the radiation irradiation can be performed in a short time and non-invasively.
[0038]
By monitoring using the CT apparatus (3, 4) even during irradiation of radiation, it is possible to correct the displacement of the irradiation site due to the movement of the patient's body or the movement of respiration.
[0039]
According to the present invention, a patient can deliver a large amount of radiation to a tumor tissue in a short period of time sufficient for a therapeutic amount of a malignant tumor without causing severe radiation damage to surrounding normal tissues in a small number of fractionated irradiations. It becomes possible.
[Brief description of the drawings]
FIG. 1 shows a radiation generator (2) that rotates around a cancerous tissue (7) of a patient together with a rotating body (1) indicated by a dotted line, and irradiates radiation in a central region of the rotation. The CT apparatus (3, 4) fixed to the rotating body (1) also acquires CT image data by rotating around the patient. By checking the position of the target area for irradiation by the CT image, moving the patient's bed (6) in the (x, y, z) direction and continuously correcting the position, a large amount of radiation can be applied to the target area. Irradiation can be continuous. Radiation hitting the normal tissue around the target area is intermittently pulsed, so the radiation dose is reduced, and at the same time, recovery from radiation damage occurs during the time when irradiation is interrupted during each radiation pulse, Disorders of normal tissues are reduced.
FIG. 2 shows that when radiation is irradiated from the periphery of the tumor tissue (7) with a beam having an intensity distribution of f (Φ, ρ), the irradiation dose at a point P (r, θ) becomes The relationship between the irradiation dose and the distance is approximately represented in FIG. The temporal change of the irradiation is also pulsed irradiation as shown in Equation 4 and FIG.
FIG. 3 shows the distance from the center (horizontal axis, unit) when the dose in the central region of rotation (r <d / 2) is set to 1 under the assumption that the radiation beam has an ideal rectangular distribution. Is a graph showing the dose at the beam width d).
FIG. 4. Irradiation in pulse form. The vertical axis represents radiation intensity, and the horizontal axis represents time. The pulse-to-pulse interval is the half cycle of the rotation of the ring (T / 2), and the pulse width and the time interval between each pulse is given by Equation 4. The curve shown by the dotted line is a schematic diagram showing the damage of normal cells and the change in the number of normal cells due to recovery from the damage.
FIG. 5 shows a simple ring-shaped rotary irradiation. The rotating ring (1) receives radiation from the radiation generator (2) toward the rotation center of the ring while rotating inside while being supported by a ring (8) fixed to the outside as shown in FIG. Irradiate. The CT devices (3, 4) provided for monitoring are also fixed to the ring (1) to obtain a CT image of the irradiation site. The bed (6) on which the patient is lying is moved up and down, left and right, and cranio-caudally by the bed moving device (9) so that the irradiation target site is always at the center of rotation of the ring (1).
FIG. 6: In the device shown in FIG. 5, the irradiation is always in a direction perpendicular to the body axis of the patient, so that tilting the ring makes it possible to avoid exposure of important organs.
FIG. 7 In a cylindrical rotating device, an inner cylinder (10) is supported by an outer cylinder (11) and is rotated by a pulley device such as a ball bearing. The radiation generating device (2) can select an arbitrary incident angle by moving on a rail provided on the inner wall of the inner cylinder (10) in a cranial-caudal direction, thereby avoiding exposure of important organs. .
FIG. 8 shows a pipe (12) or a rod fixed between two rotating rings (1) instead of the cylinder of FIG. 7, on which a radiation generator (2) and a CT apparatus (3, 4) are mounted. Attach, perform radiotherapy, and continuously monitor the position of the irradiation site by CT images.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating ring 2 Radiation generator 3 X-ray generator 4 for obtaining a cross-sectional X-ray tomogram (CT image) 4 X-ray detector 5 for CT image 5 Counterbalance of radiation generator to avoid vibration 6 Bed 7 Patient Tumors in the body (target area)
8 Outer frame for supporting rotating ring 9 Driving device 10 for moving bed up and down, left and right, head and tail direction 10 Inner cylinder 11 Outer cylinder 12 for supporting inner cylinder Pipes or metal rods for mounting transverse tomography equipment

Claims (3)

放射線治療において、患部の周囲の360度方向、または頭尾方向から連続的に回転照射を行う(図1)ことを目的に、リング型(図5)、または円筒型(図7)、または半球型の回転装置、または2個の回転リングの間に複数の支柱棒(12)を橋渡しした回転装置(図8)に、粒子線発生装置、ガンマ線発生装置、あるいはX線発生装置(2)を備え付け、回転中心の領域に放射線の連続照射を行う回転型放射線治療装置。In radiotherapy, a ring type (FIG. 5), a cylindrical type (FIG. 7), or a hemisphere for the purpose of continuously performing rotational irradiation from a 360-degree direction or a craniocaudal direction around an affected part (FIG. 1). A rotating device of the type, or a rotating device (FIG. 8) in which a plurality of support rods (12) are bridged between two rotating rings, a particle beam generator, a gamma ray generator, or an X-ray generator (2). A rotating radiotherapy device that is installed and continuously irradiates radiation to the region of the center of rotation. 回転照射の中心が照射目標領域を含むことをモニターするために、請求項1の回転型放射線治療装置の回転体上に取り付けられた単数または複数個のX線横断断層撮影(CT)装置(3、4)。A single or plural X-ray tomography (CT) apparatus (3) mounted on a rotating body of the rotary radiation therapy apparatus according to claim 1, for monitoring that a center of the rotation irradiation includes an irradiation target area. 4). 回転照射の標的が、請求項1の放射線治療装置の回転照射の中心にくるように、請求項2のCT装置(3、4)を用いてモニターしながら、患者を載せたベッド(6)を3次元的に移動させる装置。The bed (6) on which the patient is placed is monitored while monitoring using the CT apparatus (3, 4) of claim 2 so that the target of rotation irradiation is at the center of the rotation irradiation of the radiotherapy apparatus of claim 1. A device that moves three-dimensionally.
JP2003079055A 2003-02-14 2003-02-14 Rotary type concentration irradiation apparatus of medical radiation attached with x-ray transverse tomographic image device for positioning and movable bed for moving target region to rotation center Pending JP2004243078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079055A JP2004243078A (en) 2003-02-14 2003-02-14 Rotary type concentration irradiation apparatus of medical radiation attached with x-ray transverse tomographic image device for positioning and movable bed for moving target region to rotation center

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079055A JP2004243078A (en) 2003-02-14 2003-02-14 Rotary type concentration irradiation apparatus of medical radiation attached with x-ray transverse tomographic image device for positioning and movable bed for moving target region to rotation center

Publications (1)

Publication Number Publication Date
JP2004243078A true JP2004243078A (en) 2004-09-02

Family

ID=33028023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079055A Pending JP2004243078A (en) 2003-02-14 2003-02-14 Rotary type concentration irradiation apparatus of medical radiation attached with x-ray transverse tomographic image device for positioning and movable bed for moving target region to rotation center

Country Status (1)

Country Link
JP (1) JP2004243078A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046983A1 (en) * 2008-10-23 2010-04-29 株式会社島津製作所 Particle beam treatment apparatus
JP2012143275A (en) * 2011-01-07 2012-08-02 Hitachi Medical Corp Examination planning support device
JP2013009819A (en) * 2011-06-29 2013-01-17 Toshiba Corp X-ray ct device
JP5187401B2 (en) * 2008-12-16 2013-04-24 株式会社島津製作所 Particle beam therapy system
JP2013138801A (en) * 2012-01-06 2013-07-18 Toshiba Corp Medical image display apparatus
JP2016147116A (en) * 2011-01-20 2016-08-18 アキュレイ インコーポレイテッド Radiation treatment delivery system involving ring gantry
CN109922863A (en) * 2016-11-15 2019-06-21 西安大医集团有限公司 A kind of generation method and radiotherapy treatment planning system of radiotherapy treatment planning
CN110691551A (en) * 2018-05-02 2020-01-14 上海联影医疗科技有限公司 Radiation system for radiation therapy and imaging
JP2022505600A (en) * 2018-10-23 2022-01-14 フィジック インストゥルメント(ピーアイ)ゲーエムベーハー アンド ツェーオー.カーゲー Positioning devices, optical processors with positioning devices, and methods for laser eye surgery using optical processors.

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120459B2 (en) * 2008-10-23 2013-01-16 株式会社島津製作所 Particle beam therapy system
WO2010046983A1 (en) * 2008-10-23 2010-04-29 株式会社島津製作所 Particle beam treatment apparatus
JP5187401B2 (en) * 2008-12-16 2013-04-24 株式会社島津製作所 Particle beam therapy system
JP2012143275A (en) * 2011-01-07 2012-08-02 Hitachi Medical Corp Examination planning support device
JP2016152951A (en) * 2011-01-20 2016-08-25 アキュレイ インコーポレイテッド Radiation treatment delivery system with ring gantry
US10610175B2 (en) 2011-01-20 2020-04-07 Accuray Incorporated Radiation treatment delivery system with translatable ring gantry
JP2016147116A (en) * 2011-01-20 2016-08-18 アキュレイ インコーポレイテッド Radiation treatment delivery system involving ring gantry
JP2013009819A (en) * 2011-06-29 2013-01-17 Toshiba Corp X-ray ct device
JP2013138801A (en) * 2012-01-06 2013-07-18 Toshiba Corp Medical image display apparatus
CN109922863A (en) * 2016-11-15 2019-06-21 西安大医集团有限公司 A kind of generation method and radiotherapy treatment planning system of radiotherapy treatment planning
CN110691551A (en) * 2018-05-02 2020-01-14 上海联影医疗科技有限公司 Radiation system for radiation therapy and imaging
US11612767B2 (en) 2018-05-02 2023-03-28 Shanghai United Imaging Healthcare Co., Ltd. Radiation systems for radiation treatment and imaging
JP2022505600A (en) * 2018-10-23 2022-01-14 フィジック インストゥルメント(ピーアイ)ゲーエムベーハー アンド ツェーオー.カーゲー Positioning devices, optical processors with positioning devices, and methods for laser eye surgery using optical processors.
JP7190565B2 (en) 2018-10-23 2022-12-15 フィジック インストゥルメント(ピーアイ)ゲーエムベーハー アンド ツェーオー.カーゲー Positioning device, optical processor with positioning device, and method for laser eye surgery using the optical processor
US11951041B2 (en) 2018-10-23 2024-04-09 Physik Instrumente (Pi) Gmbh & Co. Kg Positioning device, light processor having such a positioning device, and method for laser eye surgery using such a light processor

Similar Documents

Publication Publication Date Title
JP6853214B2 (en) Radiation-induced radiotherapy methods and equipment
US7940891B2 (en) Methods and systems for treating breast cancer using external beam radiation
CN105916555B (en) Spherical rotary radiotherapy system based on spherical rack design
US10499861B2 (en) Self-shielded, integrated-control radiosurgery system
US7817774B2 (en) System and method for imaging and treatment of tumorous tissue in breasts using computed tomography and radiotherapy
CN106714905B (en) Radiotherapy equipment and beam imaging method
JP4948415B2 (en) Medical radiotherapy equipment
JP4607119B2 (en) Equipment for treatment with ionizing radiation
JP4444338B2 (en) Radiotherapy apparatus control apparatus and radiation irradiation method
CN110234275A (en) For emitting the system of guiding high-energy photon transmission
EP3034003B1 (en) Method and imaging system for determining a reference radiograph for a later use in radiation therapy
JPH02289271A (en) Irradiation apparatus for therapy of selected area using radiation energy beam and method therefor
US11446520B2 (en) Radiation therapy apparatus configured to track a tracking object moving in an irradiation object
CN109758682B (en) In-situ CT device in radiotherapy
TW201927367A (en) Neutron capture therapy system, patient table for neutron capture therapy, patient posture confirmation system, and patient posture confirming method
JP2004243078A (en) Rotary type concentration irradiation apparatus of medical radiation attached with x-ray transverse tomographic image device for positioning and movable bed for moving target region to rotation center
KR20140063192A (en) Combined type apparatus for medical radiation diagnosis and theraphy
EP2415500B1 (en) Radiation therapy using predictive target tracking and control points
CN213696951U (en) Radioactive medical equipment
US9271684B2 (en) CT imaging apparatus and methods
KR20140063193A (en) Apparatus for medical radiation diagnosis and theraphy
CN210057184U (en) In-situ CT device integrated into fixed particle beam radiotherapy room
US20120213332A1 (en) Radiation therapy system with a telescopic arm
JP4326567B2 (en) Radiotherapy apparatus control apparatus and radiation irradiation method
Kruse Proton image guidance