【0001】
【発明の属する技術分野】
本発明は、例えば医療用酸素濃縮器などに使用される電磁弁に電力を供給する電磁弁用電源装置に関するものである。
【0002】
【従来の技術】
従来、医療用酸素濃縮器には、酸素凝縮室に導入される空気の供給路や酸素濃縮後の生成酸素を吐出する供給路等に、流量調節のための電磁弁が複数配設されている。従来、これら電磁弁の電力供給装置は、次のように構成されていた。すなわち、各電磁弁への電流供給量を制御する制御信号を出力する制御回路と、電磁弁に電力を供給する電磁弁用電源とが共に制御基盤に配設されていた。そして、この制御基盤と各電磁弁とが、各電磁弁毎に個別のケーブルによって接続されていた。このような構成により、制御基盤の電磁弁用電源から各ケーブルを通じて各電磁弁へと電流が供給されていた。
【0003】これら電磁弁への電力供給電源としてスイッチング電源や電源トランスを用いた整流型電源が使用されていた。
【0004】
【発明が解決する課題】
しかしながら、従来技術では以下に示すような問題があった。
(イ)電源トランスを用いた整流型電源は電源トランスが大きな容積を占めることから、この電源を使用した場合、電子機器の小型化が困難である。
(ロ)スイッチング電源は回路が複雑なため高価であり、また高周波発振回路を有し、且つインダクタンスを持つコイル部品を使用しているので有害な電磁波ノイズを発生する。
【0005】本発明は上記の問題を解決し、小型軽量で、有害な電磁波ノイズを発生しない安価な電磁弁用電源装置を提供する事を目的とする。
【0006】
【課題を解決する為の手段】
上記課題を解決する手段として、本発明における請求項1は交流電源(1)の一端に電源スイッチ(2)の一端を接続し、前記電源スイッチ(2)の他方の一端に突入電流防止抵抗(3)の一端を接続し、前記突入電流防止抵抗(3)の他方の一端に無極性コンデンサー(4)の一端を接続し、前記無極性コンデンサー(4)の他方の一端に整流素子(5)の交流入力の一端を接続し、前記整流素子(5)の交流入力の他方の一端に前記交流電源(1)の他方の一端を接続し、前記整流素子(5)の正出力端子に電流制限抵抗(8)の一端および平滑用コンデンサー(6)の正端子および直流電磁弁(7)の正端子を接続し、前記整流素子(5)の負出力端子に定電圧ダイオード(9)のアノードおよび前記平滑用コンデンサー(6)の負端子および前記直流電磁弁(7)の負端子を接続し、前記電流制限抵抗(8)の他の一端を前記定電圧ダイオード(9)のカソードに接続してなることを特徴とする電磁弁用電源装置を提供する。
【0007】また請求項2は前記整突入電流防止抵抗(3)をパワーサーミスタとしたことを特徴とする請求項1記載の電磁弁用電源装置を提供する。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
図1に本発明による電磁弁用電源装置の第1の例を示す回路図、図2に本発明による電磁弁用電源装置の第2の例を示す回路図、図3に本発明による電磁弁用電源装置の第3の例を示す回路図、図4に本発明による電磁弁用電源装置の第4の例を示す回路図を示す。なお、これら図1および図2および図3および図4は、本発明の説明に必要な主要部品のみを回路記号で示し、電気配線基板、支持部材、配線材、収納筐体などの付帯構造は省略してある。
【0009】図1において、交流電源(1)は例えばAC100V商用電源などが使用され、本発明による電磁弁用電源装置の電力供給源となる。前記交流電源(1)の一端にメカニカルリレーやフォトリレーなどで構成された電源スイッチ(2)が接続されている。電源スイッチ(2)は制御回路(12)からの制御信号により適宜に開閉される。
【0010】前記電源スイッチ(2)の他方の一端には抵抗またはパワーサーミスタで構成された突入電流防止抵抗(3)が接続されており、電源投入時に流れる突入電流によって整流素子(5)が破壊されることを防止する働きをする。前記突入電流防止抵抗(3)の他方の一端には例えばメタライズドフィルムなどを電極材料とした無極性コンデンサー(4)が接続されており、交流電圧を降下させる働きをする。
【0011】前記無極性コンデンサー(4)の他方の一端には整流素子(5)の交流入力の一端が接続されており、前記整流素子(5)の交流入力の他方の一端が前記交流電源(1)の他方の一端に接続されている。
【0012】ここで整流素子(5)は交流を直流に変換する働きをしており、図1に示すように4本の整流ダイオード(10)で構成されたダイオードブリッジを用いてもよく、また図2に示すように1本の整流ダイオード(10)で構成されていても本発明の目的を達成することができる。
【0013】図1において、前記整流素子(5)の正出力端子には電流制限抵抗(8)の一端および平滑用コンデンサー(6)の正端子および直流電磁弁(7)の正端子が接続されており、前記整流素子(5)の負出力端子には定電圧ダイオード(9)のアノードおよび前記平滑用コンデンサー(6)の負端子および前記直流電磁弁(7)の負端子が接続されている。さらに前記電流制限抵抗(8)の他の一端が前記定電圧ダイオード(9)のカソードに接続されている。
【0014】ここで平滑コンデンサー(6)は整流素子(5)によって整流された直流電流に残存する脈流成分を低減する働きを持ち、例えばアルミ電解コンデンサーなどを使用すればよく、その容量値は大きいほどよいが、実用的には数百μFから数千μFの間に選ぶとよい。図1の実施例では、部品数を少なくするために平滑コンデンサー(6)を1個使用しているが、好ましくは、図3に示すように平滑コンデンサー(6)と平滑抵抗(13)を1個ずつ追加し、いわゆるπ型フィルターを付加すれば、前記脈流成分を低減する効果をさらに高めることができる。さらに好ましくは、図4に示すように従来技術によるシリーズレギュレーターなどの、いわゆる定電圧回路(14)を付加することにより、前記脈流成分を低減する効果を一層高めることができる。
【0015】また図1において、直流電磁弁(6)はその正端子と負端子の間に所定の直流電圧を印加すると内部のソレノイドバルブが駆動し、その結果、直流電磁弁(6)に接続されている流路の内部を流れる気体や液体などの流量を制御するものである。
【0016】また図1において、電流制限抵抗(8)と定電圧ダイオード(9)が設けられている理由は、交流電源(1)には例えばAC100V商用電源などが使用されるが、その電圧値は必ずしも一定ではなくプラスマイナス10%程度の変動誤差を有しており、例えばプラス10%の最大電圧が交流電源(1)として印加された場合には直流電磁弁(6)に加わる直流電圧も通常よりも高くなり、場合によっては直流電磁弁(6)の最大許容印加電圧を超え、直流電磁弁(6)が焼損する危険が生ずるが、前記の如く電流制限抵抗(8)と定電圧ダイオード(9)を併設することによりこれを防止することができる。
【0017】即ち、定電圧ダイオード(9)のツェナー電圧値を直流電磁弁(6)の最大許容印加電圧値よりも小さい適切な値に設定しておくことにより、直流電磁弁(6)に加わる直流電圧値が前記ツェナー電圧値を超えた場合に電流制限抵抗(8)の両端に電圧差が生じ、その結果、電流制限抵抗(8)と定電圧ダイオードに電流が流れ、直流電磁弁(6)に流れる電流の増加を防止することができる。
【0018】本発明は、以上の構成によりなる電磁弁用電源装置であり、次にその動作原理について説明する。
【0019】まず、図1において制御回路(12)からの制御信号により電源スイッチ(2)が閉じられると交流電源(1)が印加され、交流電源(1)を起点として突入電流防止抵抗(3)、無極性コンデンサー(4)、整流素子(5)の交流入力端子、前記整流素子(5)の正出力端子、平滑コンデンサー(6)、整流素子(3)の負出力端子、整流素子(5)の他方の交流入力端子、交流電源(1)に渡る閉回路(11)が形成される。
【0020】電源スイッチ(2)を入れた瞬間は平滑コンデンサー(6)の内部に蓄積された電荷量はほぼ0であり電気的に短絡とみなされるので、もし突入電流防止抵抗(3)を設置しない場合には前記閉回路(11)に大きな突入電流が流れ、整流素子(5)が破壊されることがあるが、突入電流防止抵抗(3)を設置することによりこれを未然に防ぐことができる。
【0021】ここで、突入電流防止抵抗(3)として通常は単なる抵抗を用いるとよい。この抵抗の電気抵抗値を適切に選ぶと、電源スイッチ(2)を入れた瞬間はその電気抵抗により、前記閉回路(11)に流れる突入電流値を整流素子(5)が破壊される限界電流値以下に制限することができる。ただし、前記抵抗は前記閉回路(11)を流れる電流が定常値に達した後も電力の損失と発熱を伴うので、電力の損失と発熱があまり大きくならないよう考慮してその電気抵抗値の上限を決定するとよい。
【0022】好ましくは、突入電流防止抵抗(3)として例えばパワーサーミスタを用いるとよい。パワーサーミスタは常温時の電気抵抗値が数百Ωから数十Ω程度と大きく、電流が流れ内部発熱するに従って電気抵抗値が数十Ωから数Ω程度に小さくなる性質を持つ。従って電源スイッチ(2)を入れた瞬間は突入電流防止抵抗(3)であるパワーサーミスタは電気抵抗値が大いので前記閉回路(11)に流れる突入電流値を整流素子(5)が破壊される限界電流値以下に制限することができ、電流が流れ、時間がたつにつれパワーサーミスタの電気抵抗値が小さくなるので電力の損失と発熱を少なくすることができる。
【0023】なお、前記突入電流防止抵抗(3)の設置位置は上記実施例に示された設置位置に限らず、前記閉回路(11)のどの位置に設置されても同様の効果を有する。
【0024】電源スイッチ(2)を入れた後、時間が経つにつれ平滑コンデンサー(6)に電荷が蓄えられ、その両端電圧は定常電圧Vに達する。定常電圧Vは直流電磁弁(6)の定格駆動電圧値とほぼ同じに設定される。定常電圧Vは無極性コンデンサー(4)の静電容量値を適切に選択することにより、自由に選択することができる。
【0025】平滑コンデンサー(6)の両端電圧が定常電圧Vに達すると直流電磁弁(6)の両端電圧も同様に定常電圧Vに達するので、直流電磁弁(6)の内部のソレノイドバルブが駆動し、その結果、直流電磁弁(6)に接続されている流路の内部を流れる気体や液体などの流量を制御することができる。
なお、直流電磁弁(6)に使用される製品によっては定格駆動電圧値に達する前にソレノイドバルブが駆動するものもあるので、これを予め考慮して定常電圧Vを設定するとよい。
【0026】以上の説明から明らかなように、本発明による電磁弁用電源装置は、大きな容積を占める電源トランスを使用せず、また部品数も少ないので小型で軽量な電磁弁用電源装置を安価に提供することができる。
【0027】さらに本発明による電磁弁用電源装置は、高周波発振回路を持たず、またインダクタンスを持つコイル部品を使用していないので有害な電磁波ノイズを発生することがなく、安全な電磁弁用電源装置を提供することができる。
【00028】
【発明の効果】
本発明によれば、
(イ)大きな容積を占める電源トランスを使用せず、また部品数も少ないので小型で軽量な電磁弁用電源装置を安価に提供することができる。
(ロ)高周波発振回路を持たず、またインダクタンスを持つコイル部品を使用していないので有害な電磁波ノイズを発生することがなく、安全な電磁弁用電源装置を提供することができる。
などの効果を有する電磁弁用電源装置を提供する事ができる。
【図面の簡単な説明】
【図1】本発明による電磁弁用電源装置の第1の例を示す回路図である。
【図2】本発明による電磁弁用電源装置の第2の例を示す回路図である。
【図3】本発明による電磁弁用電源装置の第3の例を示す回路図である。
【図4】本発明による電磁弁用電源装置の第4の例を示す回路図である。
【符号の説明】
1 交流電源
2 電源スイッチ
3 突入電流防止抵抗
4 無極性コンデンサー
5 整流素子
6 平滑用コンデンサー
7 直流電磁弁
8 電流制限抵抗
9 定電圧ダイオード
10 整流ダイオード
11 閉回路
12 制御回路
13 平滑抵抗
14 定電圧回路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power supply device for an electromagnetic valve that supplies electric power to an electromagnetic valve used in, for example, a medical oxygen concentrator.
[0002]
[Prior art]
Conventionally, a medical oxygen concentrator is provided with a plurality of solenoid valves for adjusting a flow rate in a supply path for air introduced into an oxygen condensing chamber, a supply path for discharging generated oxygen after oxygen concentration, and the like. . Conventionally, power supply devices for these solenoid valves have been configured as follows. That is, a control circuit that outputs a control signal for controlling the amount of current supplied to each solenoid valve and a power supply for the solenoid valve that supplies power to the solenoid valve are both provided on the control board. And this control board and each solenoid valve were connected by an individual cable for every solenoid valve. With such a configuration, current is supplied from the power supply for the solenoid valve of the control board to each solenoid valve through each cable.
A rectifying power supply using a switching power supply or a power supply transformer has been used as a power supply power supply for these solenoid valves.
[0004]
[Problems to be solved by the invention]
However, the prior art has the following problems.
(A) Since a power transformer occupies a large volume in a rectified power supply using a power transformer, it is difficult to reduce the size of an electronic device when this power supply is used.
(B) The switching power supply is expensive due to its complicated circuit, and generates harmful electromagnetic wave noise because it has a high-frequency oscillation circuit and uses coil components having inductance.
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide an inexpensive power supply for a solenoid valve which is small and lightweight and does not generate harmful electromagnetic noise.
[0006]
[Means for solving the problem]
As a means for solving the above-mentioned problem, a first aspect of the present invention is to connect one end of a power switch (2) to one end of an AC power supply (1) and connect the other end of the power switch (2) to a rush current prevention resistor ( 3), one end of a non-polar capacitor (4) is connected to the other end of the inrush current prevention resistor (3), and a rectifying element (5) is connected to the other end of the non-polar capacitor (4). And one end of the AC power supply (1) is connected to the other end of the AC input of the rectifier (5), and a current limiter is connected to the positive output terminal of the rectifier (5). One end of the resistor (8), the positive terminal of the smoothing capacitor (6) and the positive terminal of the DC solenoid valve (7) are connected, and the anode of the constant voltage diode (9) is connected to the negative output terminal of the rectifier (5). Negative end of the smoothing capacitor (6) And a negative terminal of the DC solenoid valve (7) and another end of the current limiting resistor (8) connected to a cathode of the constant voltage diode (9). Provide equipment.
According to a second aspect of the present invention, there is provided the power supply device for an electromagnetic valve according to the first aspect, wherein the rush current preventing resistor is a power thermistor.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a circuit diagram showing a first example of a power supply device for an electromagnetic valve according to the present invention, FIG. 2 is a circuit diagram showing a second example of a power supply device for an electromagnetic valve according to the present invention, and FIG. FIG. 4 is a circuit diagram showing a third example of the power supply device for the solenoid valve, and FIG. 4 is a circuit diagram showing a fourth example of the power supply device for the solenoid valve according to the present invention. FIGS. 1, 2, 3 and 4 show only the main parts necessary for the description of the present invention by circuit symbols, and the accompanying structures such as the electric wiring board, the support member, the wiring material, and the housing are not shown. Omitted.
In FIG. 1, as an AC power supply (1), for example, an AC 100 V commercial power supply or the like is used. A power switch (2) including a mechanical relay, a photorelay, and the like is connected to one end of the AC power supply (1). The power switch (2) is appropriately opened and closed by a control signal from the control circuit (12).
An inrush current prevention resistor (3) composed of a resistor or a power thermistor is connected to the other end of the power switch (2), and the rectifier (5) is destroyed by the inrush current flowing when the power is turned on. It works to prevent you from being done. The other end of the inrush current prevention resistor (3) is connected to a non-polar capacitor (4) using, for example, a metallized film as an electrode material, and functions to lower an AC voltage.
One end of an AC input of a rectifier (5) is connected to the other end of the nonpolar capacitor (4), and the other end of the AC input of the rectifier (5) is connected to the AC power supply ( 1) is connected to the other end.
Here, the rectifying element (5) has a function of converting an alternating current into a direct current, and may use a diode bridge composed of four rectifying diodes (10) as shown in FIG. The object of the present invention can be achieved even with a single rectifier diode (10) as shown in FIG.
In FIG. 1, one end of a current limiting resistor (8), the positive terminal of a smoothing capacitor (6), and the positive terminal of a DC solenoid valve (7) are connected to the positive output terminal of the rectifying element (5). The negative output terminal of the rectifier (5) is connected to the anode of a constant voltage diode (9), the negative terminal of the smoothing capacitor (6), and the negative terminal of the DC solenoid valve (7). . Further, the other end of the current limiting resistor (8) is connected to the cathode of the constant voltage diode (9).
The smoothing capacitor (6) has a function of reducing a pulsating component remaining in the DC current rectified by the rectifying element (5). For example, an aluminum electrolytic capacitor or the like may be used. The larger the better, the better, but in practice it is better to choose between a few hundred μF and a few thousand μF. In the embodiment of FIG. 1, one smoothing capacitor (6) is used in order to reduce the number of components, but preferably, as shown in FIG. 3, one smoothing capacitor (6) and one smoothing resistor (13) are used. The effect of reducing the pulsating flow component can be further enhanced by adding the individual components and adding a so-called π-type filter. More preferably, as shown in FIG. 4, by adding a so-called constant voltage circuit (14) such as a series regulator according to the prior art, the effect of reducing the pulsating flow component can be further enhanced.
In FIG. 1, when a predetermined DC voltage is applied between the positive terminal and the negative terminal of the DC solenoid valve (6), the internal solenoid valve is driven. As a result, the DC solenoid valve (6) is connected to the DC solenoid valve (6). It controls the flow rate of gas, liquid, and the like flowing inside the flow path.
In FIG. 1, the reason why the current limiting resistor (8) and the constant voltage diode (9) are provided is that, for example, a 100 V AC commercial power supply is used for the AC power supply (1). Is not always constant and has a fluctuation error of about ± 10%. For example, when a maximum voltage of ± 10% is applied as the AC power supply (1), the DC voltage applied to the DC solenoid valve (6) also increases. Although it may be higher than usual and may exceed the maximum allowable applied voltage of the DC solenoid valve (6), there is a danger of the DC solenoid valve (6) being burned out. However, as described above, the current limiting resistor (8) and the constant voltage diode This can be prevented by adding (9).
That is, by setting the zener voltage value of the constant voltage diode (9) to an appropriate value smaller than the maximum allowable applied voltage value of the DC solenoid valve (6), it is applied to the DC solenoid valve (6). When the DC voltage value exceeds the Zener voltage value, a voltage difference occurs between both ends of the current limiting resistor (8). As a result, current flows through the current limiting resistor (8) and the constant voltage diode, and the DC solenoid valve (6) ) Can be prevented from increasing.
The present invention is a power supply device for an electromagnetic valve having the above-described configuration, and the operation principle thereof will be described below.
First, in FIG. 1, when a power switch (2) is closed by a control signal from a control circuit (12), an AC power supply (1) is applied, and the rush current prevention resistor (3) starts from the AC power supply (1). ), Non-polar capacitor (4), AC input terminal of rectifier (5), positive output terminal of rectifier (5), smoothing capacitor (6), negative output terminal of rectifier (3), rectifier (5) ), A closed circuit (11) extending to the other AC input terminal and the AC power supply (1) is formed.
At the moment when the power switch (2) is turned on, the amount of electric charge stored inside the smoothing capacitor (6) is almost 0, and it is considered that it is electrically short-circuited. If not, a large rush current flows in the closed circuit (11), and the rectifier (5) may be destroyed. However, by installing the rush current prevention resistor (3), it is possible to prevent this. it can.
Here, as the inrush current prevention resistor (3), a simple resistor may be usually used. If the electric resistance of this resistor is properly selected, the inrush current flowing through the closed circuit (11) is reduced by the electric resistance at the moment when the power switch (2) is turned on, and the rectifying element (5) is destroyed by the electric resistance. It can be restricted below the value. However, since the resistance is accompanied by power loss and heat generation even after the current flowing through the closed circuit (11) reaches a steady value, the upper limit of the electric resistance value is taken into consideration so that the power loss and heat generation are not so large. Should be determined.
Preferably, for example, a power thermistor is used as the inrush current prevention resistor (3). The power thermistor has a property that the electric resistance at room temperature is as large as several hundred Ω to several tens Ω, and the electric resistance decreases from several tens Ω to several Ω as a current flows and generates heat internally. Therefore, at the moment when the power switch (2) is turned on, the power thermistor, which is the inrush current prevention resistor (3), has a large electric resistance, so that the inrush current flowing through the closed circuit (11) is destroyed by the rectifying element (5). The current can be limited to a value less than or equal to the limit current value, and the electric resistance value of the power thermistor decreases over time, so that power loss and heat generation can be reduced.
The installation position of the inrush current prevention resistor (3) is not limited to the installation position shown in the above embodiment, and the same effect can be obtained regardless of the installation position of the closed circuit (11).
After the power switch (2) is turned on, electric charges are stored in the smoothing capacitor (6) over time, and the voltage across the smoothing capacitor (6) reaches the steady voltage V. The steady voltage V is set substantially equal to the rated drive voltage value of the DC solenoid valve (6). The steady voltage V can be freely selected by appropriately selecting the capacitance value of the non-polar capacitor (4).
When the voltage across the smoothing capacitor (6) reaches the steady voltage V, the voltage across the DC solenoid valve (6) also reaches the steady voltage V, so that the solenoid valve inside the DC solenoid valve (6) is driven. As a result, it is possible to control the flow rate of gas, liquid, or the like flowing inside the flow path connected to the DC solenoid valve (6).
It should be noted that, depending on the product used for the DC solenoid valve (6), the solenoid valve is driven before reaching the rated drive voltage value. Therefore, the steady voltage V may be set in consideration of this.
As is apparent from the above description, the power supply device for an electromagnetic valve according to the present invention does not use a power transformer occupying a large volume and has a small number of parts, so that a small and lightweight power supply device for an electromagnetic valve can be manufactured at a low cost. Can be provided.
Further, the solenoid valve power supply device according to the present invention does not have a high-frequency oscillation circuit and does not use a coil component having an inductance, so that harmful electromagnetic wave noise is not generated and a safe power supply for the solenoid valve is provided. An apparatus can be provided.
[00028]
【The invention's effect】
According to the present invention,
(A) Since a power transformer occupying a large volume is not used and the number of components is small, a compact and lightweight power supply device for a solenoid valve can be provided at low cost.
(B) Since there is no high-frequency oscillation circuit and no coil component having inductance is used, no harmful electromagnetic wave noise is generated, and a safe power supply device for an electromagnetic valve can be provided.
It is possible to provide a power supply device for a solenoid valve having the effects described above.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first example of a power supply device for an electromagnetic valve according to the present invention.
FIG. 2 is a circuit diagram showing a second example of the power supply device for an electromagnetic valve according to the present invention.
FIG. 3 is a circuit diagram showing a third example of the power supply device for an electromagnetic valve according to the present invention.
FIG. 4 is a circuit diagram showing a fourth example of the power supply device for the solenoid valve according to the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 AC power supply 2 Power switch 3 Inrush current prevention resistor 4 Nonpolar capacitor 5 Rectifier element 6 Smoothing capacitor 7 DC solenoid valve 8 Current limiting resistor 9 Constant voltage diode 10 Rectifier diode 11 Closed circuit 12 Control circuit 13 Smoothing resistor 14 Constant voltage circuit