JP2004242068A - 画像処理方法、画像処理装置及び画像処理プログラム - Google Patents
画像処理方法、画像処理装置及び画像処理プログラム Download PDFInfo
- Publication number
- JP2004242068A JP2004242068A JP2003029471A JP2003029471A JP2004242068A JP 2004242068 A JP2004242068 A JP 2004242068A JP 2003029471 A JP2003029471 A JP 2003029471A JP 2003029471 A JP2003029471 A JP 2003029471A JP 2004242068 A JP2004242068 A JP 2004242068A
- Authority
- JP
- Japan
- Prior art keywords
- image
- correction
- processing
- information
- color
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Processing Of Color Television Signals (AREA)
- Editing Of Facsimile Originals (AREA)
- Facsimile Image Signal Circuits (AREA)
- Color Image Communication Systems (AREA)
- Color, Gradation (AREA)
- Image Processing (AREA)
- Picture Signal Circuits (AREA)
Abstract
【課題】従来から画像を複数の領域に分割し、各領域毎に画像特性値の補正を施すことが行われているが、高い技術と経験を必要とし、手間のかかるものであった。このような問題を解決し、自動又は半自動で適正な補正を行うことを可能にする画像処理技術を提供する。
【解決手段】分割された領域間の境界の性質を評価し、境界の性質に応じて境界近傍の領域に対する補正量を定める。
【選択図】 図19
【解決手段】分割された領域間の境界の性質を評価し、境界の性質に応じて境界近傍の領域に対する補正量を定める。
【選択図】 図19
Description
【0001】
【発明の属する技術分野】
本発明は、画像入力手段から得られた入力画像情報に基づいて画像処理を行い、出力画像情報を得る画像処理方法、装置及びその作動制御を行う画像処理プログラムに関する。
【0002】
【従来の技術】
銀塩フィルムを用いた旧来のカメラや近年普及してきたデジタルスチルカメラなどを用いて写真撮影を行い、得られた画像をハードコピー、またはCRT等の表示装置に表示して画像再現するシステムが従来から用いられている。
【0003】
これら画像再現システムに於いては、写されている画像を好ましく再現する為、明るさ、コントラスト等、元画像に手を加えて調整し、鑑賞画像として再現するのが一般的である。
【0004】
たとえば旧来の銀塩ネガポジシステムであれば、フィルムから印画紙に焼き付け露光する際に、露光時間や焼付け光源の光量を変化させる手法が古くから用いられている。
【0005】
以上述べたような各種調整を行う場合、撮影された画像に合わせて好ましい調整をすることが必須となる。この調整を人手で行うのは高い技術、経験が必要であったり、工数がかかりすぎたりと困難な場合が多く、自動、あるいは半自動でこれら作業を行う画像処理方法が公開されている。一例として特許文献1では、画像情報から顔情報を抽出し、これを好ましい階調に仕上げることで好ましい写真が得られるとしている。
【0006】
しかしながら、1枚の写真画像にはさまざまな輝度の被写体が写っており、目で見た感じのコントラストを写真プリント内で得ようとすると、明部、暗部の階調がつぶれた写真になりやすかった。
【0007】
また、特許文献2は、元画像から得られたヒストグラムを用いて画像を輝度レベルで分割、マスク作成し、覆い焼き処理を行う手法が説明されている。
【0008】
本方式によれば、明部、暗部の階調を維持したまま、必要なコントラストも確保した画像再現が可能であるとしている。
【0009】
しかしながら、上記のような部分的な階調補正を非常に大きくかけた場合に、マスクの境界付近に存在する画像エッジ近傍に不自然な輪郭が発生してしまう場合があり、十分な補正結果が得られるとは限らなかった。
【0010】
【特許文献1】
特開2001−84274号公報
【0011】
【特許文献2】特許文献
特開平11−284860号公報
【0012】
【発明が解決しようとする課題】
本発明はこのような従来技術に鑑みてなされたものであり、主要被写体を適正な画像特性で再現するとともに、被写体と被写体間の境界において生じやすい不自然さを抑制し、バランスのとれた画像を形成することが出来る画像処理技術を提供することを目的とする。
【0013】
【課題を達成するための手段】
本発明の目的は下記の発明により達成される。
【0014】
1.画像を複数の領域に分割して領域ごとに画像特性値の補正量を定め、画像補正処理を行う画像処理方法において、
前記複数の領域間の境界の性質を評価し、評価された前記境界の性質に応じて、前記境界近傍の領域に対する補正量を定めることを特徴とする画像処理方法。
【0015】
2.前記画像補正処理は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、鮮鋭性補正、粒状性補正、の内の少なくとも1つの補正を含む事を特徴とする前記1に記載の画像処理方法。
【0016】
3.前記境界の性質の評価を、入力画像情報を多重解像度変換処理した結果に基づいて行うことを特徴とする前記1又は前記2に記載の画像処理方法。
【0017】
4.前記画像補正処理は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、の内、少なくとも1つの補正を含む処理であり、かつ、入力画像情報に多重解像度変換処理を施し、これを逆変換する各レベルに於いて生成される低周波画像に対して施されることを特徴とする前記1〜3のいずれか1項に記載の画像処理方法。
【0018】
5.前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする前記3又は前記4に記載の画像処理方法。
【0019】
6.入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、前記色空間上の少なくとも1つの次元の画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記性質評価に関しては、輝度、彩度、または色相に関する情報であることを特徴とする前記1〜5のいずれか1項に記載の画像処理方法。
【0020】
7.前記画像補正処理は、画像信号値の鮮鋭性補正、粒状性補正の内の少なくとも1つの補正を含む処理であり、且つ、前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする前記3または前記4に記載の画像処理方法。
【0021】
8.入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、色空間上の少なくとも1つの次元の前記入力画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記、特性評価に関しては、輝度に関する情報であることを特徴とする前記7に記載の画像処理方法。
【0022】
9.画像を複数の領域に分割して領域ごとに画像特性値の補正量を定め、画像補正処理を行う画像処理手段を有する画像処理装置において、
前記画像処理手段は、前記複数の領域間の境界の性質を評価し、評価された前記境界の性質に応じて、前記境界近傍の領域に対する補正量を定めることを特徴とする画像処理装置。
【0023】
10.前記画像処理手段は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、鮮鋭性補正、粒状性補正、の内の少なくとも1つの補正を含む前記画像補正処理を行う事を特徴とする前記9に記載の画像処理装置。
【0024】
11.前記画像処理手段は、前記境界の性質の評価を、入力画像情報を多重解像度変換処理した結果に基づいて行うことを特徴とする前記9又は前記10に記載の画像処理装置。
【0025】
12.前記画像処理手段は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、の内、少なくとも1つの補正を含む前記画像補正処理を行い、かつ、入力画像情報に多重解像度変換処理を施し、これを逆変換する各レベルに於いて生成される、低周波画像に対して前記画像補正処理を行う事を特徴とする前記9〜11のいずれか1項に記載の画像処理装置。
【0026】
13.前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする前記11又は前記12に記載の画像処理装置。
【0027】
14.入力画像情報は3次元の色空間からなるカラー画像であり、前記画像処理手段は、前記領域境界の性質評価、及び、または、前記画像補正処理を、前記画像補正処理の内容に対応して定められる、前記色空間上の少なくとも1つの次元の画像情報に基づいて行い、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記性質評価に関しては、輝度、彩度、または色相に関する情報であることを特徴とする前記9〜13のいずれか1項に記載の画像処理装置。
【0028】
15.前記画像補正処理は、画像信号値の鮮鋭性補正、粒状性補正の内の少なくとも1つの補正を含む処理であり、且つ、前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする前記10又は前記11に記載の画像処理装置。
【0029】
16.入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、色空間上の少なくとも1つの次元の前記入力画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記、特性評価に関しては、輝度に関する情報であることを特徴とする前記15に記載の画像処理装置。
【0030】
17.画像を複数の領域に分割して領域ごとに画像特性値の補正量を定め、画像補正処理を行う画像処理手段を、
前記複数の領域間の境界の性質を評価し、評価された前記境界の性質に応じて、前記境界近傍の領域に対する補正量を定めるように機能させることを特徴とする画像処理プログラム。
【0031】
18.前記画像補正処理は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、鮮鋭性補正、粒状性補正、の内の少なくとも1つの補正を含む事を特徴とする前記17に記載の画像処理プログラム。
【0032】
19.前記境界の性質の評価を、入力画像情報を多重解像度変換処理した結果に基づいて行うことを特徴とする前記17又は前記18に記載の画像処理プログラム。
【0033】
20.前記画像補正処理は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、の内、少なくとも1つの補正を含む処理であり、かつ、入力画像情報を多重解像度変換処理し、これを逆変換する各レベルに於いて生成される、低周波画像に対して施されることを特徴とする前記17〜19のいずれか1項に記載の画像処理プログラム。
【0034】
21.前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする前記19又は前記20に記載の画像処理プログラム。
【0035】
22.入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、前記色空間上の少なくとも1つの次元の画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記性質評価に関しては、輝度、彩度、または色相に関する情報であることを特徴とする前記17〜21のいずれか1項に記載の画像処理プログラム。
【0036】
23.前記画像補正処理は、画像信号値の鮮鋭性補正、粒状性補正の内の少なくとも1つの補正を含む処理であり、且つ、前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする前記19または前記20に記載の画像処理プログラム。
【0037】
24.入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、色空間上の少なくとも1つの次元の前記入力画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記、特性評価に関しては、輝度に関する情報であることを特徴とする前記23に記載の画像処理プログラム。
【0038】
【発明の実施の形態】
本発明の実施の形態について、写真店において、近年普及してきた顧客からの注文に応じて、プリントやCDR等、記録メディアへの画像書き込みサービスを行う、デジタルミニラボを例に説明する。
【0039】
図1は、本発明の実施の形態に係る画像処理装置を備えたデジタルミニラボの基本的な構成をブロック図として表したものである。
【0040】
デジタルカメラ1(以下、DSCと言う)で撮影された画像は、スマートメディア、コンパクトフラッシュ(R)等、各種の画像記録メディア2に収められ、店頭に持ち込まれる。
【0041】
また、旧来のカメラ3で撮影された画像は、現像処理を施され、ネガ画像もしくはポジ画像としてフィルム4に記録される。
【0042】
DSC1からの画像は、画像入力部7にある、対応したメディアドライバ5で画像信号として読み取られ、フィルム4の画像は、フィルムスキャナ6で画像信号に変換される。
【0043】
その他、反射原稿の場合は、フラットベッドスキャナ等の反射スキャナ(図示せず)で画像入力される、あるいは、LAN、インターネット回線を通じて画像情報が入力されるなど、画像入力部7から入力される画像種は、DSC1からのものとは限らないが、ここでは図示しない。もちろんこれら画像に後述の画像処理を施すことが可能である。
【0044】
画像入力部7で取得した入力画像情報は画像処理部8に送られ、ここで、本発明の画像処理を含む各種の処理加工がなされる。
【0045】
各種の処理加工がなされた出力画像情報は、各種出力装置に出力される。画像出力装置としては、銀塩露光プリンタ9、インクジェットプリンタ10等がある。また、画像出力情報は、各種の画像記録メディア11に記録される場合もある。
【0046】
画像処理部8にはシーン属性を入力、登録処理する機能が接続されている。即ちたとえば、キーボード13、マウス14、さらに、画像表示部16に表示された画像を見ながら、直接画面に触れて位置情報の指示が出来る接触センサー15を備えた指示入力部12と、これらの指示、入力、登録情報を保存する情報記憶部17と、画像処理部8に接続され、情報記憶部17に記憶されている情報が画像処理部8に取り込まれるとともに、画像処理部8で処理された画像情報の画像が画像表示部16に表示されモニタされる。
【0047】
指示入力部12においては、シーン属性を入力、あるいは選択指示することが出来る。ここでシーン属性とは、写真の種類、撮影の動機、撮影場所等、写真に記録されている被写体を特徴付けるキーワードであり、たとえば:旅行写真、アウトドア、イベント写真、ネイチャーフォト、ポートレート等がある。
【0048】
また、フィルムスキャナ6、メディアドライバ5は、シーン属性やこれに類する情報を記憶する機能を有するカメラで撮影されたフィルムやメディアから前記情報を読み取る機能を有する事が好ましい。これにより、確実にシーン属性情報を取得できる。
【0049】
フィルムスキャナ6及びメディアドライバ5が読み取る情報としては、たとえば、銀塩カメラのAPS(アドバンスドフォトシステム)において、フィルムに塗布された磁気層に記録された各種の情報がある。一例としては、プリント品質向上のために設定されているPQI情報、撮影時に設定され、プリントに表示されるメッセージ情報、その他がある。メディアドライバ5が読み取る情報としては、例えば、Exifなど画像記録フォーマットの種類によって、定義される各種情報、前述の銀塩フィルムの例に記載の情報や、さらに、多様な情報が記録されている場合があり、これらを読みとり有効に利用しうる。
【0050】
これらメディアから得られる情報がある場合は、これらからシーン属性を得る、あるいは類推すると、いちいち受付注文時にシーン属性を確認する手間が省けてよい。
【0051】
さらには、たとえば写真店などで顧客情報を管理し、顧客ごとに、シーン属性を別途設定しておく、あるいはシーン属性そのものとして、顧客情報を用いることもできる。これにより、後述の優先順位設定時に、いったん設定された顧客の好みを簡単に引き出せるようになり、作業効率化と顧客満足度向上の点で好ましい。
【0052】
これらの情報及びさらには後述の各種情報は、情報記憶部17に蓄積され、適宣利用される。
【0053】
画像処理装置の主要部をなす画像処理手段としての画像処理部8は、演算処理を行うCPU8a、後述する各種処理のプログラムを格納するメモリ8b、ワークメモリとしてのメモリ8c及び画像処理演算を行う画像処理回路8dを有する。
【0054】
以下、主として画像処理部8が行う処理内容について説明する。
前述した各種の方法でシーン属性が定まったら、これに対応して、抽出すべき被写体パターンが定まる。
【0055】
ここでいう被写体パターンとは、以下に示すような、画像内に存在する、認識可能な別個、特定の被写体の事であり、被写体パターンに関する情報には、後述する、被写体パターンの優先順位情報(順位付け、または重み付け係数で表される値などで表記)が含まれ、さらに、当該被写体の好ましい階調、色調再現に関する情報、また、被写体パターンの位置や大きさ、平均の階調、階調レンジ、色調などの情報が挙げられる
被写体パターンの例としては、人物、特定衣類(制服、スポーツのユニフォーム等)を着た人物、建物(和、洋、近代、歴史、宗教建築等)等があり、また、さらには、雲、青空、海のようなものがある。
【0056】
顧客の注文状況によっては、被写体パターンの分類状況は異なってくる場合がある。たとえば人物を例にとると、単に「人物」であれば、人数にかかわり無く一つのパターンに関する情報として扱うことが出来るが、「学生」、「一般人」(あるいは「男性」「女性」)の区分が注文主にとって意味あるものであれば、人物は2種類の被写体パターンとなる。
【0057】
また、顧客本人とそれ以外、結婚披露宴の「新婦」「新郎」「他の出席者」あるいは、仮に「Aさん」と「Bさん」という場合も、注文主として識別可能な個体であり、別の被写体パターンとなり得る。
【0058】
さて、被写体パターンを抽出する手法は一般に知られており、各種のパターン抽出法を用いても良いが、新たに抽出法を設定しても良い。
【0059】
好ましい一例として、われわれが新たに見出した、二項ウェーブレット(Dyadic Wavelet)による多重解像度変換処理を利用して、高い確度でパターン抽出できる手法を説明する。
【0060】
多重解像度変換は、画像情報から異なる解像度レベルで切り分けられた複数の分解像を得る処理であり、好ましくは二項ウェーブレット(Diadic Wavelet)変換を用いて行われるが、このほかの変換処理を用いることも可能であり、例えば、直交ウェーブレット変換、双直交ウェーブレット変換を用いることができる。
【0061】
次に、ウェーブレット(Wavelet)変換について、簡単に説明する。
画像の局所部位毎に周波数帯域の分割を行い、周波数帯域別に抑制・強調を行なう効率的な方法として、ウェーブレット変換を応用する技術が知られている。
【0062】
ウェーブレット変換の詳細については、例えば“Wavelet and Filter Banks”by G.Strang & T.Nguyen,Wellesley−Cambridge Press(邦訳「ウェーブレット解析とフィルタバンク」,G.ストラング・T.グエン共著,培風館)や、“A wavelet tour of signal processing 2ed.”by S.Mallat,Academic Pressに記載されているが、ここでは概要を説明する。
【0063】
ウェーブレット変換とは図2に例示されるような有限範囲で振動するウェーブレット関数
【0064】
【数1】
【0065】
を用いて、入力信号f(x)に対するウェーブレット変換係数〈f,ψa,b〉を
【0066】
【数2】
【0067】
で求める事により、入力信号を下記のようなウェーブレット関数の総和に分解する変換である。
【0068】
【数3】
【0069】
上式で、aはウェーブレット関数のスケールを表し、bはウェーブレット関数の位置を示す。図2に例示するように、スケールaの値が大きいほどウェーブレット関数ψa,b(x)の周波数は小さくなり、また位置bの値に従ってウェーブレット関数ψa,b(x)が振動する位置が移動する。従って式(3)は、入力信号f(x)を種々のスケールと位置を持つウェーブレット関数ψa,b(x)の総和に分解する事を意味している。
【0070】
上記のような変換を可能にするウェーブレット関数は多くのものが知られているが、画像処理分野では計算が高速な直交ウェーブレット(orthogonal wavelet)・双直交ウェーブレット(biorthogonal wavelet)が広く用いられている。以下、直交ウェーブレット・双直交ウェーブレットの変換計算の概要を説明する。
【0071】
直交ウェーブレット・双直交ウェーブレットのウェーブレット関数は下記のように定義される。
【0072】
【数4】
【0073】
式(4)と式(1)を比べると、直交ウェーブレット・双直交ウェーブレットではスケールaの値が2のi乗で離散的に定義され、また位置bの最小移動単位が2iで離散的に定義されている事が判る。このiの値はレベルと呼ばれる。また実用的にはレベルiを有限な上限Nまでに制限して、入力信号を下記のように変換することが行われる。
【0074】
【数5】
【0075】
式(5)の第2項は、レベル1のウェーブレット関数ψ1,j(x)の総和で表せない残差の低周波数帯域成分を、レベル1のスケーリング関数φ1,j(x)の総和で表したものである。スケーリング関数はウェーブレット関数に対応して適切なものが用いられる(前記文献を参照)。式(5)に示す1レベルのウェーブレット変換により入力信号f(x)≡S0は、レベル1の高周波数帯域成分W1と低周波数帯域成分S1に信号分解された事になる。ウェーブレット関数ψi,j(x)の最小移動単位は2iなので、入力信号S0の信号量に対して高周波数帯域成分W1と低周波数帯域成分S1の信号量は各々1/2となり、W1とS1の信号量の総和は、入力信号S0の信号量と等しくなる。レベル1の低周波数帯域成分S1は式(6)でレベル2の高周波数帯域成分W2と低周波数帯域成分S2に分解され、以下同様にレベルN迄の変換を繰り返すことで、入力信号S0は、式(7)に示すようにレベル1〜Nの高周波数帯域成分の総和とレベルNの低周波数帯域成分の和に分解される。
【0076】
ここで、式(6)で示す1レベルのウェーブレット変換は、図3に示すようなフィルタ処理で計算できる事が知られている(前記文献を参照)。図3においてLPFはローパスフィルタ、HPFはハイパスフィルタを示している。フィルタ係数はウェーブレット関数に応じて適切に定められる(前記文献及び表1を参照)。
【0077】
【表1】
【0078】
また2↓は、信号を1つおきに間引くダウンサンプリングを示す。画像信号のような2次元信号における1レベルのウェーブレット変換は、図4に示すようなフィルタ処理で計算される。図4においてLPFx,HPFx,2↓xはx方向の処理を示し、LPFy,HPFy,2↓yはy方向の処理を示す。この1レベルのウェーブレット変換により、低周波数帯域成分Sn−1は3つの高周波数帯域成分Wvn,Whn,Wdnと1つの低周波数帯域成分Snに分解される。分解で生成するWvn,Whn,Wdn,Snの各々の信号量は、分解前のSn−1に比べて縦横ともに1/2となるので、分解後の4成分の信号量の総和は、分解前のSn−1の信号と等しくなる。入力信号S0が3レベルのウェーブレット変換で信号分解される過程の模式図を図5に示す。
【0079】
また、分解で生成したWvn,Whn,Wdn,Snに図6で示すようなフィルタ処理で計算されるウェーブレット逆変換をほどこすことにより、分解前の信号Sn−1を完全再構成できる事が知られている。図6においてLPF’はローパスフィルタ、HPF’はハイパスフィルタを示している。このフィルタ係数は、直交ウェーブレットの場合にはウェーブレット変換に用いたのと同じ係数が使用されるが、双直交ウェーブレットの場合にはウェーブレット変換に用いたのと異なる係数が使用される。(前述の参考文献を参照)。また2↑は、信号に1つおきにゼロを挿入するアップサンプリングを示す。またLPF’x,HPF’x,2↑xはx方向の処理を示し、LPF’y,HPF’y,2↓yはy方向の処理を示す。
【0080】
本発明で利用する二項ウェーブレット(Dyadic Wavelet)変換については、“Singularity detection and processing with wavelets”by S.Mallat and W.L.Hwang,IEEE Trans.Inform.Theory38 617(1992)や“Characterization of signals from multiscale edges”by S.Mallat and S.Zhong,IEEE Trans.Pattern Anal.Machine Intel.14 710(1992)や“A wavelet tour of signal processing 2ed.”by S.Mallat,Academic Pressに詳細な説明があるが、以下に概要を説明する。
【0081】
二項ウェーブレットのウェーブレット関数は下記のように定義される。
【0082】
【数6】
【0083】
直交ウェーブレット・双直交ウェーブレットのウェーブレット関数は前述のようにレベルiにおける位置の最小移動単位が2iで離散的に定義されていたのに対し、二項ウェーブレットはレベルiにかかわらず位置の最小移動単位が一定である。この相違により、二項ウェーブレット変換には下記の特徴が生じる。
【0084】
特徴1:下記に示す1レベルの二項ウェーブレット変換で生成する、高周波数帯域成分Wiと低周波数帯域成分Siの各々の信号量は、変換前の信号Si−1と同一である。
【0085】
【数7】
【0086】
特徴2:スケーリング関数φi,j(x)とウェーブレット関数ψi,j(x)の間に下記の関係が成立する。
【0087】
【数8】
【0088】
従って二項ウェーブレット変換で生成する、高周波数帯域成分Wiは、低周波数帯域成分Siの一次微分(勾配)を表す。
【0089】
特徴3:ウェーブレット変換のレベルiに応じて定められた表2に示される係数γi(前出の二項ウェーブレットに関する参考文献参照)を高周波数帯域成分に乗じたWi・γi(以下、これを補正済高周波数帯域成分と呼ぶ)について、入力信号の信号変化の特異性(singularity)に応じて、前記変換後の補正済高周波数帯域成分Wi・γiの信号強度のレベル間の関係が一定の法則に従う。すなわち図7の1や4に示すなだらかな(微分可能な)信号変化に対応する補正済高周波数帯域成分Wi・γiはレベル数iが増大するほど信号強度が増大するのに対して、図7の2に示すステップ状の信号変化に対応する補正済高周波数帯域成分Wi・γiはレベル数iに関わらず信号強度が一定となり、図7の3に示すδ関数状の信号変化に対応する補正済高周波数帯域成分Wi・γiはレベル数iが増大するほど信号強度が減少する。
【0090】
【表2】
【0091】
特徴4:画像信号のような2次元信号における1レベルの二項ウェーブレット変換の方法は、前述の直交ウェーブレット・双直交ウェーブレットの方法と異なり、図8のように行われる。この1レベルのウェーブレット変換により、低周波数帯域成分Sn−1は2つの高周波数帯域成分Wxn,Wynと1つの低周波数帯域成分Snに分解される。2つの高周波数帯域成分は低周波数帯域成分Snの2次元における変化ベクトルVnのx成分とy成分に相当する。変化ベクトルVnの大きさMnと偏角Anは下式で与えられる。
【0092】
【数9】
【0093】
また二項ウェーブレット変換で得られた2つの高周波数帯域成分Wxn,Wynと1つの低周波数帯域成分Snに図8に示す二項ウェーブレット逆変換をほどこす事で、変換前のSn−1を再構成できる事が知られている。
【0094】
また、入力信号S0に対してNレベルの二項ウェーブレット変換を行う場合の概念を図10に示す。入力信号S0に対してNレベルの二項ウェーブレット変換を行い、得られた高周波数成分に対して、必要に応じ、操作1の作業を行った後に、Nレベルの二項ウェーブレット逆変換を行い、また、低周波成分について、前述の二項ウェーブレット逆変換の操作の各ステップにおいて、操作2の作業を行う。なお、本実施の形態の一例においては、操作1とはエッジ検出、パターン検出等の操作であり、操作2とはマスキング処理にあたる。
【0095】
図10においてLPFは変換用ローパスフィルタ、HPFは変換用ハイパスフィルタを示し、LPF’は逆変換用ローパスフィルタ、HPF’は逆変換用ハイパスフィルタを示している。これらのフィルタ係数はウェーブレット関数に応じて適切に定められる(前述の参考文献及び表3を参照)。
【0096】
【表3】
【0097】
また、LPFx,HPFx,LPF’x,HPF’x,はx方向の処理を示し、LPFy,HPFy,LPF’y,HPF’yはy方向の処理を示す。また二項ウェーブレットにおいては、レベル毎にフィルタ係数が異なり、レベルnのフィルタ係数は、レベル1のフィルタの各係数の間に2n−1−1個のゼロを挿入したものが用いられる(前述の参考文献及び表3を参照)。
【0098】
前述の二項ウェーブレット変換の特徴1で、変換後の分解画像サイズが、変換前の画像と同一である旨説明したが、このことにより、特徴3に示されるような画像構造の解析において高い位置精度をもって評価を行うことができるという副次的な特徴も得られる。
【0099】
次に、多重解像度変換の手法を用いた被写体パターンの抽出について、図11〜13の例により説明する。
【0100】
前記に説明した二項ウェーブレット変換を用いて画像を多重解像度変換し、多重解像度変換の各レベルに現れたエッジを検出、領域分割を行う。
【0101】
そして、抽出するパターンに応じて、パターン抽出に利用する解像度レベルを設定する。
【0102】
ここでいうパターン、特に被写体パターンとして一般に認知されるものは、その輪郭のみではなく、種種の固有の部分要素をもっているものがほとんどである。
【0103】
たとえば人物の頭部であれば、その輪郭そのもののほか、目(さらに瞳、虹彩、まつげ、白目の血管)、鼻、口、ほほの起伏、えくぼ、眉、などがある。
【0104】
これらの内、抽出するパターンを識別するのに有効な部分要素をその「構成要素」と位置付け、それぞれに対し、パターン抽出に利用する解像度レベルを設定する。
【0105】
たとえば、図12に示される通り、人物の頭部の輪郭そのものは低レベルの分解画像に抽出されるエッジで、はっきりと、かつ正確に認識され、その内部に存在する、顔の構成要素の緩やかなパターン、たとえば鼻筋、唇の形状、笑顔の口唇周囲に出来る線、「えくぼ」、「ほほのふくらみ」などは、より高レベル分解画像に現れる、エッジ情報を用いることで、その特徴を的確に捉えることが出来る。
【0106】
次に、被写体パターンの構成要素の決定方法、及び、各々を識別する、好適解像度レベルの決定方法について、好ましい1例を説明する。
【0107】
まず、被写体パターンの構成要素を設定する。たとえば、一般的に「人物の顔」であれば、下記記載のような、あらかじめ記憶された、各種構成要素となる。
【0108】
(「人物の顔」の場合の構成要素の1例)
a:顔の輪郭
b:瞳
c:眉
d:口
e:髪の毛
f:鼻梁
g:鼻孔
h:ほほの凸部
また、特定人物を被写体パターンとして登録したような場合は、これらに追加して新たな構成要素を設定しても良く、個人特定が好ましく実施できる。
【0109】
(「特定人物の顔」で追加される構成要素の例)
i:しみ、ほくろ
j:えくぼ
k:髭
特定人物の場合では、a〜fの構成要素について、一般的な「人物の顔」という場合とは異なる特性を設定できるし、いくつかの構成要素は「無い」という場合もある。
【0110】
目的とする被写体パターンについて各々の構成要素が設定できたら、この画像を二項ウェーブレット変換を用いて、多重解像度変換し、各々の構成要素について、多重解像度変換の各レベルの分解信号における信号強度を求め、最大となるレベルを求める。前述の最大となるレベルを好適解像度として用いればよいが、実際の画像処理結果を評価して、若干のレベル変更を行ってもかまわない。
【0111】
なお、この場合の信号とは、各々のレベルで検出されたエッジ成分を示す信号の最大値であるが、複数のレベル間で信号強度を比較する際には、信号値として、前出二項ウェーブレットで説明した補正済み高周波帯域成分を用いる事が好ましいのは言うまでも無い事である。
【0112】
ところで、二項ウェーブレット変換を利用した場合、ナイフエッジパターンのような、非常に輪郭のはっきりした構成要素の場合では、エッジの信号レベルが解像度レベルによって大きく変化しない特性があるが、このような場合は、当該構成要素の輪郭形態がはっきりと認識できるレベル、または、もともとの画像解像度が十分でない場合においては、最も低レベルの分解解像度を好適解像度レベルとする。
【0113】
前述の構成要素には、輪郭の比較的はっきりしたものと、はっきりしないものがある。
【0114】
たとえばa、f、iなどが前者にあたり、f、h、jなどが後者にあたる。前者のような構成要件の抽出、登録は、たとえばモニタに画像を表示し、当該箇所をマウス、や接触型センサなどで指定して、近傍領域を自動的あるいは、手動的に切り抜いて行うことが出来る。
【0115】
後者のような場合には、当該構成要素の存在する領域を、存在しない領域と、はっきりと区別し、切り抜くことは困難であるが、そのような場合においては、その構成要素が存在する領域を大まかに指定すればよい。
【0116】
このような構成要件に対して設定される好適解像度は、前者の輪郭のはっきりしたものよりも高レベルとなっているのが普通である。
【0117】
したがって、前述のように、大まかな領域指定を行った場合に実際に後者のような構成要素の抽出を行う際には、以下のようにして、目標とする構成要素を抽出できる。
【0118】
構成要素を抽出する候補領域に検出されたエッジをすべて抽出し、これらについて、各解像度レベルの信号強度を比較する。
【0119】
好適解像度レベルより低レベルの分解画像で信号強度が強く検出されたエッジ成分は当該構成要素には含まれないものと考えられるため、候補領域から除外する。そして、残った領域を、好適解像度レベルで検査して目的とする構成要素を抽出する。
【0120】
以上の例では、分解前の画像をモニタに表示し、構成要素の指定を行ったが、たとえば画像処理技術に関してある程度の知識を有しているものが構成要素の指定を行う場合には、実際に解像度変換を行った分解画像をモニタに表示し、好ましくは分解前の画像と対比可能な構成で表示して表示されている解像度レベルで抽出すべき構成要素を指定できるようにすると、元画像だけでは認識し得ない、新たな特徴点の発見も簡単に行うことが出来、より、被写体パターン識別精度を向上することが出来る。
【0121】
図示の例では、瞳、上瞼のエッジをA、鼻筋、口唇周囲の線をB、ほほのふくらみをCとしている。
【0122】
前述の通り、AよりB、BよりCをより高い解像度レベルの画像で検出することで、的確に顔の特徴認識が出来る。
【0123】
さらに、図示されたように、抽出すべきパターンの大きさに応じて、前記構成要素の検出に用いるレベルを設定すると、たとえば抽出すべきパターンが十分に大きな場合には、パターンを構成する要素各々の特性が良く分離され、それぞれの構成要素に適した解像度レベルが設定でき、上記エッジ情報の検出に用いるレベルを設定すると、大きなパターンでは細かな情報まで用いたパターン検出、小さなパターンでは、その大きさで得られる情報までを用いて、最大限、効果的、かつ高速な検出処理が行えるという、優れた特徴を有する。
【0124】
上記パターンの大きさは、別途、仮のパターン検出を行って、その大きさから求めてもよく、または、シーン属性(記念写真、ポートレートなど)、画像サイズ、から仮に求めても良い。
【0125】
仮のパターン抽出は、たとえば次の方法により行うことができる。
顔のパターン抽出を行うような場合は、まず肌色領域を画面内から抽出し、その領域の形状評価を行って、丸い形をしていたら「顔候補」として、抽出する手法がある。
【0126】
制服のような、特定色を持っているものの場合は、特定色領域を抽出し、領域形状の評価条件が、丸から、長方形、三角等、他の形態に変わるだけである。
【0127】
その他、画像からエッジ成分を求めて、外形パターンが似ているものをすべて抽出する方法も用いることが出来、この際のエッジ成分を求める処理は、前述多重解像度変換の、所定レベルの分解画像から求めても良いし、一般的なラプラシアンフィルタ処理で抽出しても良い。
【0128】
ここで、パターンの大きさとは、たとえばパターンのサイズを画素数で表す事が出来るが、図示の例では、顔の大きさ「中」のサイズがあれば、A、B、Cそれぞれに好ましい特徴抽出レベルが定められる。
【0129】
もともとの画像サイズ(つまりパターンのサイズ、画像解像度)が非常に大きい場合、前述の「中」の大きさに相当する画像サイズまで解像度変換を行い、パターン抽出処理を行うことで、必要な計算処理量を大きく減らすことが出来、好都合である。
【0130】
前処理として行う解像度変換は、たとえば周知の技術である、最近傍法、線形補間法等の手法で簡単に行うことが出来る。
【0131】
特開2000−188689号や、特開2002−262094号には、拡大、縮小の手法について詳細な記載があるので、これらに記載の手法を用いるのも良い。
【0132】
さらに、フィルムスキャナやフラットベッドスキャナのように、あらかじめプレスキャンを行い、画像スキャン領域、あるいは本スキャン駒を確定するような処理シーケンスを有する画像処理装置の場合、前述の仮のパターン抽出とパターンの大きさ評価をプレスキャンの段階で行い、本スキャンの読み取り解像度を、パターン抽出に適した画像解像度で読み取るようにしても良い。
【0133】
このようにすることで、抽出するパターンが小さい場合にも十分な解像度が確保できるし、大きい場合には本スキャンの解像度を必要十分な値に設定することで、スキャンに要する時間を軽減することが出来る。
【0134】
次に、画像内から抽出できる被写体パターンをすべて探す方法を例を挙げて説明する。前述のように、抽出すべき被写体パターンは決定されたシーン属性に応じて切り替える。以下にいくつかの例を示す
(例)シーン属性 → 抽出する被写体パターン(左のほうが、優先順位が高い)
修学旅行・京都 → 顔/制服を着た人物/歴史建築(和建築)
結婚披露宴 → 新婦/新郎/顔/ドレス/スポットライト
上記例の、新婦、新郎と顔、スポットライトとドレスのように、重なり合って存在するパターン要件もある
ここで、上記被写体パターンは、あらかじめ定められているものでも良いが、たとえば図14、15で示されるような、以下の手法で新たに設定することも出来る。
【0135】
画像をモニタに表示し、主要画像部分を指示する。そして、指示部分を含む輪郭領域を自動抽出し、得られたパターンを、仮に単位パターンと称する事にする。
【0136】
必要とするパターン全体が含まれていない場合は、上記操作を繰り返し、微小輪郭を結合していき、全体の輪郭抽出が終了したところで、登録指示を行う(登録キーを押す)。
【0137】
登録情報は、選択された領域に関する情報(いくつの、どんな単位パターンが、どのように連結している集合か、や、領域全体に関する各種特性値)、領域の名称(制服を着た学生、等)、優先順位情報などからなる。
【0138】
さらに前記単位パターンとして、「顔」や「制服」等、前出の被写体パターンに相当するやや複雑な構成のものを指定してもよく、これらの結合で、「学生」等の、より高度な被写体パターンの登録が簡単に出来る。
【0139】
このようにして登録された被写体パターンの一例について、図14、15を用いて説明する。図14に示されるように、「学生」というカテゴリには、(a)男子学生(b)女子学生の二つのカテゴリがあり、それぞれ、▲1▼、▲2▼及び▲3▼と、▲1▼、▲4▼及び▲5▼という固有の要素を持っており、これらを単位パターンとした結合状態で、「学生」が定義される。
【0140】
これを論理式を用いて表すと、
「学生」=(▲1▼and▲2▼and▲3▼)or(▲1▼and▲4▼and▲5▼)となる。
【0141】
以上の▲1▼〜▲5▼の構成要素それぞれは、各々が個別の単位パターンが結合した状態で定義されるが、その一例として、女子学生の上衣について、図15に示すが、図示のとおり、図15(a)中の構成要素は、さらに単位パターンa〜fの各要素から構成されており、その結合状態を表した図15(b)で定義される。
【0142】
なお、写真店における写真プリントの一般的な状況として、ロールフィルムからの同時プリント、デジタルカメラで撮影時に利用した画像記憶メディア等、関連した複数の駒について、一括してプリント注文する場合が多い(以下、一連の注文と表記)。
【0143】
一連の注文内に複数の画像がある場合には、その中の代表的な1枚の画像で、上記抽出、登録作業を行い、この情報を元に一連の画像群内、全画像のパターン抽出作業を行うことが出来、パターン登録作業の回数を減らし、効率的な作業が出来る。
【0144】
また、前記登録パターンが、ある個別顧客固有のものであった場合には、パターン登録したパターンを顧客情報といっしょに保存しておき、次回のプリント注文時に顧客情報から、必要な登録パターンを呼び出すようにしておくと、より手間が省け、高度なサービスが実現できる。
【0145】
さらに前記のような、一連の注文処理を行うような場合、全画面から、色々な想定され得る被写体パターンを抽出し、その出現頻度や、画面内における存在位置の統計結果から、シーン属性や優先順位を類推することも出来る。
【0146】
このようにすれば、注文主からシーン属性に関する情報が得られない場合でも、顧客のもっとも大事にしたい被写体が推測できる為、より高い確率で、顧客にとって好ましいプリントが簡単に得られる。
【0147】
次に、前記の処理により抽出した被写体に優先順位をつける。シーン属性に対応して定められている優先順位情報を元につけるが、さらに、被写体パターンの大きさ(大きいものを重視、など)、位置(中央部にあるものをより重視、など)により、優先順位情報に重み付けしても良く、これにより、被写体パターンの重要さに関し、さらに好ましい情報が得られる。以下、このようにして得られた優先度に関する情報を「重要度」とする。
【0148】
抽出すべき被写体パターンと、それら被写体パターンの優先順位情報の決定法として、さらに、GPS信号と、時刻、地図、地勢情報や、インターネット等の自動検索エンジンを用いた検索情報、当該自治体、観光協会、商工会等の情報、など、やこれらをリンクした情報を用い、画像撮影地点において一般的に重要な被写体パターン、ランドマーク等を、優先順位の高い情報と位置付けることも出来る。
【0149】
重要度の高い被写体パターンをより重視した画像処理を行う。
一例として、重要度の高い被写体パターンが、より好ましい階調に仕上がるように階調変換条件を定める画像処理を説明する。
【0150】
この例は、明るさについての階調補正の例である。図16に示す、前記修学旅行・京都の例では、
「修学旅行・京都」の例
▲1▼制服を着た人物 :優先順位1、重み付け係数5
▲2▼歴史建築(和建築) :優先順位2、重み付け係数2
▲3▼顔 :優先順位3、重み付け係数1
と、優先順位情報が設定されていたとする。
【0151】
実画像から、全要素が見つかったが、▲3▼は▲1▼の中に包含されていて(抽出要素としては▲1▼となる)、どちらもやや小さく、▲2▼が中央部に大きく存在していたとする。副優先順位情報として大きさに対応する重み付けを以下のとおりとすると、
a:被写体「大」 重み付け係数 1.0
b:被写体「中」 重み付け係数 0.8
c:被写体「やや小」 重み付け係数 0.3
d:被写体「小」 重み付け係数 0.1
▲1▼と▲2▼の重み付けは、
▲1▼: 5×0.3 = 1.5
▲2▼: 2×1.0 = 2.0
となる、この画像は、歴史的建造物の前で撮影した記念写真と考えられるが、以上の処理により、人物写真であるが、建造物(旅行の目的物)に重点の置かれた写真が得られることになる。
【0152】
図16の画像に対する前記の重み付けに従った階調補正について図17、18により説明する。
【0153】
上記の例に於いて、▲1▼をもっとも好ましく仕上げる階調補正量がα、▲2▼をもっとも好ましく仕上げる階調補正量がβとすると重みを考慮した階調補正量γは、たとえば下記の式で求められる
γ= (1.5×α+2.0×β)/(1.5+2.0)
なお、上記計算式(後述の計算式でも同様)の1.5、2.0の値は、前述▲1▼と▲2▼の重み付け計算で一例として求めた重み付けの値であり、一般的な画像処理では変数として扱うものである。
【0154】
もう一つの例としては、重要度の高い被写体パターンが、もっとも好ましい階調に仕上がるよう全体の階調変換を行い、その他の被写体パターンについてはその領域のみの階調を選択的に変える覆い焼き的な手法を用い例がある。
【0155】
覆い焼き的な処理を加えることで、各被写体要素、▲1▼〜▲3▼の明るさをそれぞれ適当な状態に補正することが可能である。
【0156】
前記の数式例で説明すれば、全体の階調補正量を▲2▼をもっとも好ましく処理するβとし、▲1▼については、その領域のみ、(α−β)に相当する階調処理を行えばよい。
【0157】
一方で、1枚の画像中に複数の被写体が存在している場合、ばらばらに補正することは画像の自然さを損なうこととなる。すなわち、前記の数式例で(α−β)の階調補正量が、大きすぎる場合、1枚の写真としてのバランスを欠く結果となる懸念がある。
【0158】
自然な階調補正が出来る補正量の上限がδ(かつ、δ<(α−β)、δ>0)であったとすると、たとえば以下のように階調補正すれば全体に自然な補正結果が得られる。
【0159】
ε =(α−β)−δ
▲2▼の階調補正量はβ+ε×1.5/(1.5+2.0)
▲1▼の階調補正量はε×1.5/(1.5+2.0)+δ(覆い焼き的処理分)
以上説明したように、優先順位(重み付け情報)を決め、重みの大きい物を適切な明るさに、他の構成要素を、自然な明るさバランスに揃える手法を用いることが出来る。
【0160】
ところで、覆い焼き的処理が自然に行える限界δについては、覆い焼き的処理の行い方、特に、パターン境界近傍領域で、どのような処理を行うかによってその値が変わってくる。以下、本処理を好ましく行う手法について、一例を説明する。
【0161】
図19は、実施の形態の概要を表すブロック図である。原画像は、釣鐘型の窓があいた室内の物体を撮影した状態を表している。室内の被写体は単純化のため、星型としている。
【0162】
室外、斜め右方向から日光が差し込んでいる状態で、星型の被写体を含む窓枠内の画像は、右側にかげりがあり写真として見苦しい状態である。このかげりのある部分を領域A、他の、窓枠内の部分を領域Bとする。このAの影の部分を覆い焼き処理によって明るく再現するのが本実施例の目的である。
【0163】
まず、画像を多重解像度変換する。変換手法は一般的に知られている手法でかまわないが、ここでは好ましい例として、前述のウェーブレット変換、特に、二項ウェーブレット変換を用いる。
【0164】
該変換により、順次、低レベルから高レベルまでの分解画像が出来、残渣の低周波画像▲1▼が出来上がる。ここで、領域Aの部分に注目すると、領域右側(窓枠エッジ部)は低レベルの分解画像からはっきり認識できるが、領域左側(窓枠エッジが、室内に射影された影の輪郭)は低レベルの分解画像からは認識されず、高レベルの分解画像ではっきりと認識される。これは、窓枠エッジと比較し、影の輪郭がはっきりとしたものではなく、あいまいなぼんやりしたものと評価できることを意味している。
【0165】
次に、領域Aに対しマスキング処理を行う。これは、分解画像を逆変換によって、もとの画像にもどす過程で行われる。まず低周波画像▲1▼にマスク画像▲1▼を加算(便宜上、加算と表記したが、黒を0、白を正の大きな値と定義すれば、この図では減算。以下、同じ)し、これと、高レベル分解画像とを合成する逆変換処理を行い、より低レベル方向の、低周波画像▲2▼を得る。次に、これにマスク画像▲2▼を加算し、前述と同様の処理によって、変換済み画像を得る。
【0166】
ところで前述のマスク画像▲1▼は、領域Aの左半分、マスク画像▲2▼は、領域Aの右半分を覆うマスクとなっている。図9及び図10で示された通り逆変換の過程で、加算されたマスク画像はローパスフィルタを通過する為にぼやけるが、マスク画像▲1▼の方が、多回数、かつ、強いローパスフィルタ処理が施される為、AとB領域境界近傍のマスキング処理量がより緩やかに変化するマスキング処理として作用する。したがって、なだらかな変化を示す、影の輪郭に良好に対応した覆い焼き処理を行うことが出来る。同様な理由で、マスク画像▲2▼は小さなボケ量のマスクとして作用するので窓枠エッジに適合した覆い焼き処理を行うことが出来る。
【0167】
マスキング処理をどのレベルの逆変換にかけるかは、当該の領域境界の特性がもっとも強く出た解像度レベルの逆変換時にかければ良いが、画像の特性や、実際の試行結果から、前記、当該の領域境界の特性がもっとも強く出た解像度レベルから所定量移動したレベルにマスキング処理を施してもよく、これによって主観的に好ましい画像処理チューニングが可能になる。
【0168】
マスクは次のようにして用意される。
階調、色調、彩度補正に関するマスクについては、あらかじめ領域が分割され、たとえば図20のとおりに作成し利用される。領域分割については大きく分けて以下の2方式が挙げられるが、これに限定されない。
【0169】
(1)被写体パターン抽出した結果に基づいて、たとえば図17(a)の例でいえば、被写体パターン▲1▼(人物)と被写体パターン▲2▼(寺社)を切り抜き、マスクとする。それぞれのマスクにおける画像代表(多くは平均)値を求め、それぞれの被写体に好ましい階調再現からの隔たりが階調補正量となるが、この階調補正量が、(本例のように)人物と寺社とで大きく異なっている場合に、領域ごとの補正が必要になる。このケースでは、「人物」「寺社」「その他」という3領域について、各々補正量α、β、γが計算出来、画面全体を何らかの補正量ωとすると、それぞれのマスク補正量は、
「人物」 α−ω
「寺社」 β−ω
「その他」 γ−ω となり、これらの値を当該領域に配置し、その他の領域を補正量0としたものが各々のマスクとなる。たとえばすべてのマスクを同一のレベルで作用させることになれば、3つのマスクを合成し、所定のレベルで低周波画像に加算する。
【0170】
(2)たとえば、同一の被写体パターンでも影が強く、うまく階調再現できない場合があり、この場合は、たとえば画面全体から画像信号値のヒストグラムを作成し、たとえば2階調化の手法などを用いて、被写体の明るさをいくつかのブロックに分解し、それぞれに所属する画素について、1と同様に補正値を与え、マスクを作成する。このマスクは画像信号によってはきれいな領域分割とはならず、ノイズによる微小領域が多数出来たりするが、これはノイズフィルタ(単純な平滑化フィルタでも可)を用いて単純化することができる。ヒストグラムを分割し、異なった補正量を与える手法については、特開平11−284860号に詳しく記載されている。そして、この計算結果から領域境界を定め、その境界の特性を、多重解像度変換の手法を用いて評価し、マスクを作用させるレベルを決定する。(1)との違いは、パターンの区切りとは別に領域を切り分けるということで、実際の覆い焼きでは、一つの被写体が光と影で分断されているような場合が良くあり、そのような条件では、(2)が有効である。
【0171】
鮮鋭性、粒状性については、マスクに記載される補正値が、エッジ強調フィルタや、ノイズフィルタの強度パラメータとなる。また、このマスクを施す段階が階調、色調、彩度補正とは異なり、多重解像度変換されていない画像、または、特定解像度レベルの、分解画像となる。また、マスクの作り方そのものは階調、色調、彩度補正のケースと同一であるが、そのマスクを作用させる前に、マスクそのものに、ぼかしフィルタを作用させる必要がある。これは、階調、色調、彩度補正のケースでは、低周波画像にマスクをかけていたため、マスクの輪郭がはっきりしていても、その後の逆変換過程で、適切なローパスフィルタを通過するから、輪郭が自然にボケる為で、鮮鋭性、粒状性の処理シーケンスではこの効果が得られない為である。どの程度のぼかしフィルタをかけるかについては、前述(2)と同じ方法でエッジを評価し、実際には、前述(2)のマスク画像が受けるであろうぼかし量を与えるフィルタが妥当なところとなる。
【0172】
図20〜図22は、前述のような手法で用いることの出来るマスク形態の他の例を表したものである。
【0173】
図20は、図19のマスク部分の例で、前述のとおりかげの領域を2つの小領域、▲1▼と▲2▼に分けている。ここで丸付き数字の大きいほうが、よりはっきりしたエッジに対応するマスクである。小領域▲1▼と▲2▼の間にも、点線で図示される領域境界が存在する。ここで、領域を挟む、数字の小さい側のマスクは、この領域境界ではっきり切れていてもかまわないが、大きい側のマスクは、この領域境界で緩やかにマスキング処理量が変化する、好ましくは、境界を接する相手側のマスクが、当該マスクと合成されるまで、逆変換過程で施されるローパスフィルタの特性に適合した変化特性をもっていると、領域境界間のつながり感向上に好ましい効果を与える。
【0174】
図21はそれぞれ別個の被写体パターン▲1▼「雲」、▲2▼「樹木の葉、梢の部分」、▲3▼「人物、樹木の幹の部分」に、別解像レベルのマスク処理を施す例である。
【0175】
図22は、模式的に、上辺のエッジが丸められた円柱に、水平に近い、斜め上、右方から光が差し込んだ状態の図である。
【0176】
以上、全体の補正レベルを決定する手法、部分的なマスク(覆い焼き的)手法を説明したが、さらに上記2例を併用、あるいはシーンに応じて切り替えて使用してもかまわない。
【0177】
また、以上の説明では階調、明るさの例を示したが、色再現、彩度再現等の各種条件設定に応用しても良い。たとえば図16に示される▲1▼と▲2▼、それぞれについて、以下のような望ましい処理状態の差が考えられ、これらについて、前記のような平均的な処理や、領域を分けた個別処理、これらの併用処理を行うことが出来る。
【0178】
さらに、シャープネス、粒状性等の処理条件設定についても、複数の被写体パターンの、優先順位情報に応じた、重み付け平均を元に画面全体に対し画像処理を行って顧客の希望に添った画像処理結果を得ることが出来、さらに後述の手法を用いれば、領域を分けた個別処理、これらの併用処理を行うことが出来る。
【0179】
シャープネス、粒状性についても、図16に示される▲1▼と▲2▼、それぞれについて、以下のような望ましい処理状態の差が考えられる。
【0180】
図23は、鮮鋭性(ここでは強調処理)、粒状性(ここでは粒状除去処理)に関し、領域分割の例を示したものである。
【0181】
例として、領域を「C:雲」、「B:青空」、「A:山、木々」3つに分けることが出来たとする。図示のように、A、B、Cそれぞれ、好ましいとされる、鮮鋭性と粒状性の組み合わせは異なっている。またそれぞれの境界領域の関係は、AとBの間ははっきりとした輪郭であり、BとCはぼんやりとした輪郭となっている。この領域境界の特徴は、前述、図19で述べた多重解像度変換処理で生成される、各解像度レベルの画像を評価することによって、容易に判断できることは明らかである。
【0182】
その上で、たとえば鮮鋭性処理の例では、鮮鋭性強調係数を画面位置に対応して並べたマスクを作成し(図19の例におけるマスクと同様のものである)、領域A〜C、それぞれに適合する解像度レベルを、前述図19で説明した手法などにより求め、それぞれのマスクを当該の適合解像度レベルに対応したぼかし量でぼかした、修正マスクを取得し、領域A〜Cの合計3枚の修正マスクを合成する。
【0183】
合成されたマスクに記載された補正量情報に応じて、マスクと対応した位置にある画素の補正量を決めれば、A〜C各領域の特性に応じた鮮鋭性強調が施され、さらに、AとBの領域境界では、鮮鋭性強調の補正量がはっきり変化し、BとCの領域境界では、鮮鋭性強調の補正量が緩やかに変化する、最も好ましい状態を得ることが出来る。
【0184】
また、たとえばカラー画像のように、複数の色次元を持っている画像情報の場合は、必要に応じて色座標変換を行い、必要な座標軸についてのみ、ここまで説明してきたような処理を行ってもかまわない。
【0185】
たとえば、覆い焼き的な階調補正をする上で特に重要となる明るさ補正について、RGB3色で表された画像の場合は、いったん、輝度、色差(Labなど)に変換し、輝度情報についてのみ処理を行うことで、画像処理品位の低下を抑え、画像処理量を大幅に抑えることが出来る。
【0186】
また、花、海、空など、領域で区分すべき領域、被写体が、固有の色調をもっている場合に、領域境界を定める処理、領域境界の特性を評価する処理のいずれか1方、または両方を、固有色調をもっとも抽出しやすい色座標で行い、実際の領域ごとの画像処理は、これとは別の色座標、たとえば、輝度や彩度座標に対し、行うことも出来、「ある種(たとえば真っ赤なバラ)の花」など、特定、特殊な画像に対して特化した性能チューニングも行うことが可能である。
【0187】
次に、本発明に係る画像処理方法を実行し、また、本発明に係る画像処理装置の画像処理手段を機能させるプログラムを実行する工程を図24〜27のフローチャートで説明する。
【0188】
図24は基本的な工程を示す。
まず、画像情報を取得して(ステップ1)、シーン属性情報を取得する(ステップ2)。
【0189】
次いで、取得されたシーン属性情報から抽出すべき被写体パターンを定め(ステップ3)、各々の被写体パターンを特徴付ける構成要素を定める(ステップ4)。
【0190】
さらに、構成要素各々について、構成要素の抽出に好ましい好適解像度レベルを設定し(ステップ5)、画像情報を多重解像度変換する(ステップ6)。
【0191】
各々の構成要素を、各々の好適解像度レベルで抽出し(ステップ7)、抽出された構成要素に基づいて被写体パターンの抽出を行う(ステップ8)。
【0192】
最後に、抽出された被写体パターンと、被写体パターン境界領域の特性を評価した評価結果に応じて、階調や鮮鋭性について、画像全体、あるいは領域ごとに異なる補正を行う覆い焼き的な処理を施し、その他、画像切り出し等の各種画像処理を行い(ステップ9)、処理を終了する。
【0193】
図25は、被写体パターンの大きさ情報に応じて、被写体パターンを特徴付ける構成要素を抽出する好適解像度レベルを設定する好ましい一例である。
【0194】
被写体パターンを特徴付ける構成要素を定めるステップ4までは、図24の例と同様である。その後、被写体パターンの大きさ情報を取得し(ステップ201)、構成要素各々について、被写体パターンの大きさ情報に基づいて設定された構成要素の抽出に好ましい好適解像度レベルを設定する(ステップ6)。以降の処理は図24の場合と同様である。
【0195】
図26は、階調補正の一部を覆い焼き処理によって実現する、別の一例である。
【0196】
まず入力画像情報を取得し(ステップ1)、フィルムやメディアにシーン属性に類する情報があるかどうかチェックして(ステップ302)、ある場合は(ステップ302のYes)取得情報を情報記録部に格納する(ステップ303)。一方、画像表示部に画像を表示して顧客からもシーン属性の情報を取得し情報記録部に格納する(ステック304)。
【0197】
これらを元にシーン属性を決定し(ステップ305)、抽出する被写体パターンを定める(ステップ306)。
【0198】
次に、定められた被写体パターンを、たとえば多重解像度変換処理を用いた手法で抽出し(ステップ307)、優先順位情報を重み付け係数を用いるなどして付与し(ステップ308)、さらに、抽出された被写体パターンの存在位置、大きさに応じて優先順位を修正する(ステップ309)。
【0199】
さらに、抽出された各被写体パターンに対応する階調補正量を、情報記憶部に記憶されている各種情報、たとえば、好ましい階調、色調再現、に関する情報を元に決定する(ステップ310)。
【0200】
次に、各被写体パターンの階調補正量を、覆い焼き処理成分と残りの成分に分離し(ステップ311)、多重解像度変換処理を応用した、本願記載の覆い焼き手法を用いてマスキング処理を行い(ステップ312)、ステップ309で求めた各被写体パターンの重み付け係数を用いて、ステップ311で求めた各被写体パターンの階調補正量の、残り成分の重み付け平均値を算出し(ステップ313)、重み付け平均値に対応する分量の階調補正を画像に施して(ステップ314)、処理を終了する。
【0201】
図27は、覆い焼き的処理の鮮鋭性の補正、ここでは強調処理に関し適用した本発明のさらに別の一例である。
【0202】
入力画像情報を取得し、シーン属性お決定し、抽出する被写体パターンを定め、定められた被写体パターンを抽出するまでの処理(ステップ1〜ステップ307)は、前例と同一である。
【0203】
次に、抽出された各被写体パターンに応じて、好ましい鮮鋭性強調係数を設定する(ステップ408)。
【0204】
さらに、設定された鮮鋭性強調係数を、被写体パターン各々の存在する領域に2次元配列的に並べたマスクを作成し(ステップ409)、被写体パターン各々の境界領域の特性を、二項ウェーブレットの分解画像に現れる信号強度を比較する事で評価する(ステップ410)。
【0205】
ステップ409で作成したマスクを、ステップ410の評価結果に基づいてぼかし処理し(ステップ411)、作成された被写体パターンごとのマスクを合成する(ステップ412)。
【0206】
合成されたマスクに作成された、各画素位置に対応した鮮鋭性補正量を、対応する各画素に適用して画像処理を行い(ステップ413)、処理を終了する。
【0207】
【発明の効果】
請求項1〜24のいずれかの発明により、画像の領域ごとに異なる画像補正量を適用した場合に、領域境界に発生する補正結果の不自然さを軽減でき、主要被写体を適正な画像特性で再現出来るとともに、全体としてバランスのとれた画像特性の画像を得ることが出来る。
【0208】
請求項3、11または19の発明により、領域境界の特性を確実に判断できるので、境界の性質に対応した確度の高い領域分割を行う事が出来る。
【0209】
請求項4、12または20の発明により、マスキング処理を行うレベルを切り替えることで、簡単にマスクのボケ量を切り替えることが出来るので、領域境界の評価結果に応じた処理が簡単に実現できる。
【0210】
請求項5、7、13、15、21または23の発明により、境界領域の位置を確実、かつ正確に特定でき、高精度な画像処理結果が得られる。さらに、二項ウェーブレット変換の各ステップに於いて、鮮鋭性補正、粒状性補正を好ましく実施することが可能となる。
【0211】
請求項8、14、16、22または24の発明により、特性評価、画像補正処理を、それぞれに適した色座標で実施できる為、高確度、かつ、高速度の画像処理が実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る画像処理装置を備えたデジタルミニラボの基本的な構成を示すブロック図である。
【図2】ウェーブレット関数の示す図である。
【図3】ウェーブレット変換の概念図である。
【図4】ウェーブレット変換の概念図である。
【図5】ウェーブレット変換で信号分解する過程の概念図である。
【図6】ウェーブレット変換の概念図である。
【図7】画像信号の例を示す図である。
【図8】逆ウェーブレット変換の概念図である。
【図9】ウェーブレット変換の概念図である。
【図10】ウェーブレット変換の概念図である。
【図11】被写体パターン及び構成要素の例を示す図である。
【図12】解像度れべると検出される構成要素の関係を示す図である。
【図13】パターンの大きさと検出される構成要素との関係を示す図である。
【図14】被写体パターン及び構成要素の例を示す図である。
【図15】複数の構成要素を結合する論理を説明する図である。
【図16】被写体パターンの抽出を説明する図である。
【図17】複数の被写体パターンに対する階調補正を説明する図である。
【図18】複数の被写体パターンに対する階調補正を説明する図である。
【図19】覆い焼き的な処理を示すブロック図である。
【図20】覆い焼き的な処理において用いられるマスクの例を示す図である。
【図21】覆い焼き的な処理の例を示す図である。
【図22】覆い焼き的な処理の例を示す図である。
【図23】鮮鋭性や粒状性に関連した領域分割による処理の例を示す図である。
【図24】本発明の実施の形態に係る画像処理方法を実行し、また、本発明の実施の形態に係る画像処理装置の画像処理手段を機能させるプログラムのフローチャートの例である。
【図25】本発明の実施の形態に係る画像処理方法を実行し、また、本発明の実施の形態に係る画像処理装置の画像処理手段を機能させるプログラムのフローチャートの例である。
【図26】本発明の実施の形態に係る画像処理方法を実行し、また、本発明の実施の形態に係る画像処理装置の画像処理手段を機能させるプログラムのフローチャートの例である。
【図27】本発明の実施の形態に係る画像処理方法を実行し、また、本発明の実施の形態に係る画像処理装置の画像処理手段を機能させるプログラムのフローチャートの例である。
【符号の説明】
1 デジタルカメラ
2 画像記録メディア
3 カメラ
4 フィルム
5 メディアドライバ
6 フィルムスキャナ
7 画像入力部
8 画像処理部
9 銀塩露光プリンタ
10 インクジェットプリンタ
11 画像記録メディア
12 指示入力部
13 キーボード
14 マウス
15 接触センサ
16 画像表示部
17 情報記憶部
【発明の属する技術分野】
本発明は、画像入力手段から得られた入力画像情報に基づいて画像処理を行い、出力画像情報を得る画像処理方法、装置及びその作動制御を行う画像処理プログラムに関する。
【0002】
【従来の技術】
銀塩フィルムを用いた旧来のカメラや近年普及してきたデジタルスチルカメラなどを用いて写真撮影を行い、得られた画像をハードコピー、またはCRT等の表示装置に表示して画像再現するシステムが従来から用いられている。
【0003】
これら画像再現システムに於いては、写されている画像を好ましく再現する為、明るさ、コントラスト等、元画像に手を加えて調整し、鑑賞画像として再現するのが一般的である。
【0004】
たとえば旧来の銀塩ネガポジシステムであれば、フィルムから印画紙に焼き付け露光する際に、露光時間や焼付け光源の光量を変化させる手法が古くから用いられている。
【0005】
以上述べたような各種調整を行う場合、撮影された画像に合わせて好ましい調整をすることが必須となる。この調整を人手で行うのは高い技術、経験が必要であったり、工数がかかりすぎたりと困難な場合が多く、自動、あるいは半自動でこれら作業を行う画像処理方法が公開されている。一例として特許文献1では、画像情報から顔情報を抽出し、これを好ましい階調に仕上げることで好ましい写真が得られるとしている。
【0006】
しかしながら、1枚の写真画像にはさまざまな輝度の被写体が写っており、目で見た感じのコントラストを写真プリント内で得ようとすると、明部、暗部の階調がつぶれた写真になりやすかった。
【0007】
また、特許文献2は、元画像から得られたヒストグラムを用いて画像を輝度レベルで分割、マスク作成し、覆い焼き処理を行う手法が説明されている。
【0008】
本方式によれば、明部、暗部の階調を維持したまま、必要なコントラストも確保した画像再現が可能であるとしている。
【0009】
しかしながら、上記のような部分的な階調補正を非常に大きくかけた場合に、マスクの境界付近に存在する画像エッジ近傍に不自然な輪郭が発生してしまう場合があり、十分な補正結果が得られるとは限らなかった。
【0010】
【特許文献1】
特開2001−84274号公報
【0011】
【特許文献2】特許文献
特開平11−284860号公報
【0012】
【発明が解決しようとする課題】
本発明はこのような従来技術に鑑みてなされたものであり、主要被写体を適正な画像特性で再現するとともに、被写体と被写体間の境界において生じやすい不自然さを抑制し、バランスのとれた画像を形成することが出来る画像処理技術を提供することを目的とする。
【0013】
【課題を達成するための手段】
本発明の目的は下記の発明により達成される。
【0014】
1.画像を複数の領域に分割して領域ごとに画像特性値の補正量を定め、画像補正処理を行う画像処理方法において、
前記複数の領域間の境界の性質を評価し、評価された前記境界の性質に応じて、前記境界近傍の領域に対する補正量を定めることを特徴とする画像処理方法。
【0015】
2.前記画像補正処理は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、鮮鋭性補正、粒状性補正、の内の少なくとも1つの補正を含む事を特徴とする前記1に記載の画像処理方法。
【0016】
3.前記境界の性質の評価を、入力画像情報を多重解像度変換処理した結果に基づいて行うことを特徴とする前記1又は前記2に記載の画像処理方法。
【0017】
4.前記画像補正処理は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、の内、少なくとも1つの補正を含む処理であり、かつ、入力画像情報に多重解像度変換処理を施し、これを逆変換する各レベルに於いて生成される低周波画像に対して施されることを特徴とする前記1〜3のいずれか1項に記載の画像処理方法。
【0018】
5.前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする前記3又は前記4に記載の画像処理方法。
【0019】
6.入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、前記色空間上の少なくとも1つの次元の画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記性質評価に関しては、輝度、彩度、または色相に関する情報であることを特徴とする前記1〜5のいずれか1項に記載の画像処理方法。
【0020】
7.前記画像補正処理は、画像信号値の鮮鋭性補正、粒状性補正の内の少なくとも1つの補正を含む処理であり、且つ、前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする前記3または前記4に記載の画像処理方法。
【0021】
8.入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、色空間上の少なくとも1つの次元の前記入力画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記、特性評価に関しては、輝度に関する情報であることを特徴とする前記7に記載の画像処理方法。
【0022】
9.画像を複数の領域に分割して領域ごとに画像特性値の補正量を定め、画像補正処理を行う画像処理手段を有する画像処理装置において、
前記画像処理手段は、前記複数の領域間の境界の性質を評価し、評価された前記境界の性質に応じて、前記境界近傍の領域に対する補正量を定めることを特徴とする画像処理装置。
【0023】
10.前記画像処理手段は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、鮮鋭性補正、粒状性補正、の内の少なくとも1つの補正を含む前記画像補正処理を行う事を特徴とする前記9に記載の画像処理装置。
【0024】
11.前記画像処理手段は、前記境界の性質の評価を、入力画像情報を多重解像度変換処理した結果に基づいて行うことを特徴とする前記9又は前記10に記載の画像処理装置。
【0025】
12.前記画像処理手段は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、の内、少なくとも1つの補正を含む前記画像補正処理を行い、かつ、入力画像情報に多重解像度変換処理を施し、これを逆変換する各レベルに於いて生成される、低周波画像に対して前記画像補正処理を行う事を特徴とする前記9〜11のいずれか1項に記載の画像処理装置。
【0026】
13.前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする前記11又は前記12に記載の画像処理装置。
【0027】
14.入力画像情報は3次元の色空間からなるカラー画像であり、前記画像処理手段は、前記領域境界の性質評価、及び、または、前記画像補正処理を、前記画像補正処理の内容に対応して定められる、前記色空間上の少なくとも1つの次元の画像情報に基づいて行い、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記性質評価に関しては、輝度、彩度、または色相に関する情報であることを特徴とする前記9〜13のいずれか1項に記載の画像処理装置。
【0028】
15.前記画像補正処理は、画像信号値の鮮鋭性補正、粒状性補正の内の少なくとも1つの補正を含む処理であり、且つ、前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする前記10又は前記11に記載の画像処理装置。
【0029】
16.入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、色空間上の少なくとも1つの次元の前記入力画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記、特性評価に関しては、輝度に関する情報であることを特徴とする前記15に記載の画像処理装置。
【0030】
17.画像を複数の領域に分割して領域ごとに画像特性値の補正量を定め、画像補正処理を行う画像処理手段を、
前記複数の領域間の境界の性質を評価し、評価された前記境界の性質に応じて、前記境界近傍の領域に対する補正量を定めるように機能させることを特徴とする画像処理プログラム。
【0031】
18.前記画像補正処理は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、鮮鋭性補正、粒状性補正、の内の少なくとも1つの補正を含む事を特徴とする前記17に記載の画像処理プログラム。
【0032】
19.前記境界の性質の評価を、入力画像情報を多重解像度変換処理した結果に基づいて行うことを特徴とする前記17又は前記18に記載の画像処理プログラム。
【0033】
20.前記画像補正処理は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、の内、少なくとも1つの補正を含む処理であり、かつ、入力画像情報を多重解像度変換処理し、これを逆変換する各レベルに於いて生成される、低周波画像に対して施されることを特徴とする前記17〜19のいずれか1項に記載の画像処理プログラム。
【0034】
21.前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする前記19又は前記20に記載の画像処理プログラム。
【0035】
22.入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、前記色空間上の少なくとも1つの次元の画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記性質評価に関しては、輝度、彩度、または色相に関する情報であることを特徴とする前記17〜21のいずれか1項に記載の画像処理プログラム。
【0036】
23.前記画像補正処理は、画像信号値の鮮鋭性補正、粒状性補正の内の少なくとも1つの補正を含む処理であり、且つ、前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする前記19または前記20に記載の画像処理プログラム。
【0037】
24.入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、色空間上の少なくとも1つの次元の前記入力画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記、特性評価に関しては、輝度に関する情報であることを特徴とする前記23に記載の画像処理プログラム。
【0038】
【発明の実施の形態】
本発明の実施の形態について、写真店において、近年普及してきた顧客からの注文に応じて、プリントやCDR等、記録メディアへの画像書き込みサービスを行う、デジタルミニラボを例に説明する。
【0039】
図1は、本発明の実施の形態に係る画像処理装置を備えたデジタルミニラボの基本的な構成をブロック図として表したものである。
【0040】
デジタルカメラ1(以下、DSCと言う)で撮影された画像は、スマートメディア、コンパクトフラッシュ(R)等、各種の画像記録メディア2に収められ、店頭に持ち込まれる。
【0041】
また、旧来のカメラ3で撮影された画像は、現像処理を施され、ネガ画像もしくはポジ画像としてフィルム4に記録される。
【0042】
DSC1からの画像は、画像入力部7にある、対応したメディアドライバ5で画像信号として読み取られ、フィルム4の画像は、フィルムスキャナ6で画像信号に変換される。
【0043】
その他、反射原稿の場合は、フラットベッドスキャナ等の反射スキャナ(図示せず)で画像入力される、あるいは、LAN、インターネット回線を通じて画像情報が入力されるなど、画像入力部7から入力される画像種は、DSC1からのものとは限らないが、ここでは図示しない。もちろんこれら画像に後述の画像処理を施すことが可能である。
【0044】
画像入力部7で取得した入力画像情報は画像処理部8に送られ、ここで、本発明の画像処理を含む各種の処理加工がなされる。
【0045】
各種の処理加工がなされた出力画像情報は、各種出力装置に出力される。画像出力装置としては、銀塩露光プリンタ9、インクジェットプリンタ10等がある。また、画像出力情報は、各種の画像記録メディア11に記録される場合もある。
【0046】
画像処理部8にはシーン属性を入力、登録処理する機能が接続されている。即ちたとえば、キーボード13、マウス14、さらに、画像表示部16に表示された画像を見ながら、直接画面に触れて位置情報の指示が出来る接触センサー15を備えた指示入力部12と、これらの指示、入力、登録情報を保存する情報記憶部17と、画像処理部8に接続され、情報記憶部17に記憶されている情報が画像処理部8に取り込まれるとともに、画像処理部8で処理された画像情報の画像が画像表示部16に表示されモニタされる。
【0047】
指示入力部12においては、シーン属性を入力、あるいは選択指示することが出来る。ここでシーン属性とは、写真の種類、撮影の動機、撮影場所等、写真に記録されている被写体を特徴付けるキーワードであり、たとえば:旅行写真、アウトドア、イベント写真、ネイチャーフォト、ポートレート等がある。
【0048】
また、フィルムスキャナ6、メディアドライバ5は、シーン属性やこれに類する情報を記憶する機能を有するカメラで撮影されたフィルムやメディアから前記情報を読み取る機能を有する事が好ましい。これにより、確実にシーン属性情報を取得できる。
【0049】
フィルムスキャナ6及びメディアドライバ5が読み取る情報としては、たとえば、銀塩カメラのAPS(アドバンスドフォトシステム)において、フィルムに塗布された磁気層に記録された各種の情報がある。一例としては、プリント品質向上のために設定されているPQI情報、撮影時に設定され、プリントに表示されるメッセージ情報、その他がある。メディアドライバ5が読み取る情報としては、例えば、Exifなど画像記録フォーマットの種類によって、定義される各種情報、前述の銀塩フィルムの例に記載の情報や、さらに、多様な情報が記録されている場合があり、これらを読みとり有効に利用しうる。
【0050】
これらメディアから得られる情報がある場合は、これらからシーン属性を得る、あるいは類推すると、いちいち受付注文時にシーン属性を確認する手間が省けてよい。
【0051】
さらには、たとえば写真店などで顧客情報を管理し、顧客ごとに、シーン属性を別途設定しておく、あるいはシーン属性そのものとして、顧客情報を用いることもできる。これにより、後述の優先順位設定時に、いったん設定された顧客の好みを簡単に引き出せるようになり、作業効率化と顧客満足度向上の点で好ましい。
【0052】
これらの情報及びさらには後述の各種情報は、情報記憶部17に蓄積され、適宣利用される。
【0053】
画像処理装置の主要部をなす画像処理手段としての画像処理部8は、演算処理を行うCPU8a、後述する各種処理のプログラムを格納するメモリ8b、ワークメモリとしてのメモリ8c及び画像処理演算を行う画像処理回路8dを有する。
【0054】
以下、主として画像処理部8が行う処理内容について説明する。
前述した各種の方法でシーン属性が定まったら、これに対応して、抽出すべき被写体パターンが定まる。
【0055】
ここでいう被写体パターンとは、以下に示すような、画像内に存在する、認識可能な別個、特定の被写体の事であり、被写体パターンに関する情報には、後述する、被写体パターンの優先順位情報(順位付け、または重み付け係数で表される値などで表記)が含まれ、さらに、当該被写体の好ましい階調、色調再現に関する情報、また、被写体パターンの位置や大きさ、平均の階調、階調レンジ、色調などの情報が挙げられる
被写体パターンの例としては、人物、特定衣類(制服、スポーツのユニフォーム等)を着た人物、建物(和、洋、近代、歴史、宗教建築等)等があり、また、さらには、雲、青空、海のようなものがある。
【0056】
顧客の注文状況によっては、被写体パターンの分類状況は異なってくる場合がある。たとえば人物を例にとると、単に「人物」であれば、人数にかかわり無く一つのパターンに関する情報として扱うことが出来るが、「学生」、「一般人」(あるいは「男性」「女性」)の区分が注文主にとって意味あるものであれば、人物は2種類の被写体パターンとなる。
【0057】
また、顧客本人とそれ以外、結婚披露宴の「新婦」「新郎」「他の出席者」あるいは、仮に「Aさん」と「Bさん」という場合も、注文主として識別可能な個体であり、別の被写体パターンとなり得る。
【0058】
さて、被写体パターンを抽出する手法は一般に知られており、各種のパターン抽出法を用いても良いが、新たに抽出法を設定しても良い。
【0059】
好ましい一例として、われわれが新たに見出した、二項ウェーブレット(Dyadic Wavelet)による多重解像度変換処理を利用して、高い確度でパターン抽出できる手法を説明する。
【0060】
多重解像度変換は、画像情報から異なる解像度レベルで切り分けられた複数の分解像を得る処理であり、好ましくは二項ウェーブレット(Diadic Wavelet)変換を用いて行われるが、このほかの変換処理を用いることも可能であり、例えば、直交ウェーブレット変換、双直交ウェーブレット変換を用いることができる。
【0061】
次に、ウェーブレット(Wavelet)変換について、簡単に説明する。
画像の局所部位毎に周波数帯域の分割を行い、周波数帯域別に抑制・強調を行なう効率的な方法として、ウェーブレット変換を応用する技術が知られている。
【0062】
ウェーブレット変換の詳細については、例えば“Wavelet and Filter Banks”by G.Strang & T.Nguyen,Wellesley−Cambridge Press(邦訳「ウェーブレット解析とフィルタバンク」,G.ストラング・T.グエン共著,培風館)や、“A wavelet tour of signal processing 2ed.”by S.Mallat,Academic Pressに記載されているが、ここでは概要を説明する。
【0063】
ウェーブレット変換とは図2に例示されるような有限範囲で振動するウェーブレット関数
【0064】
【数1】
【0065】
を用いて、入力信号f(x)に対するウェーブレット変換係数〈f,ψa,b〉を
【0066】
【数2】
【0067】
で求める事により、入力信号を下記のようなウェーブレット関数の総和に分解する変換である。
【0068】
【数3】
【0069】
上式で、aはウェーブレット関数のスケールを表し、bはウェーブレット関数の位置を示す。図2に例示するように、スケールaの値が大きいほどウェーブレット関数ψa,b(x)の周波数は小さくなり、また位置bの値に従ってウェーブレット関数ψa,b(x)が振動する位置が移動する。従って式(3)は、入力信号f(x)を種々のスケールと位置を持つウェーブレット関数ψa,b(x)の総和に分解する事を意味している。
【0070】
上記のような変換を可能にするウェーブレット関数は多くのものが知られているが、画像処理分野では計算が高速な直交ウェーブレット(orthogonal wavelet)・双直交ウェーブレット(biorthogonal wavelet)が広く用いられている。以下、直交ウェーブレット・双直交ウェーブレットの変換計算の概要を説明する。
【0071】
直交ウェーブレット・双直交ウェーブレットのウェーブレット関数は下記のように定義される。
【0072】
【数4】
【0073】
式(4)と式(1)を比べると、直交ウェーブレット・双直交ウェーブレットではスケールaの値が2のi乗で離散的に定義され、また位置bの最小移動単位が2iで離散的に定義されている事が判る。このiの値はレベルと呼ばれる。また実用的にはレベルiを有限な上限Nまでに制限して、入力信号を下記のように変換することが行われる。
【0074】
【数5】
【0075】
式(5)の第2項は、レベル1のウェーブレット関数ψ1,j(x)の総和で表せない残差の低周波数帯域成分を、レベル1のスケーリング関数φ1,j(x)の総和で表したものである。スケーリング関数はウェーブレット関数に対応して適切なものが用いられる(前記文献を参照)。式(5)に示す1レベルのウェーブレット変換により入力信号f(x)≡S0は、レベル1の高周波数帯域成分W1と低周波数帯域成分S1に信号分解された事になる。ウェーブレット関数ψi,j(x)の最小移動単位は2iなので、入力信号S0の信号量に対して高周波数帯域成分W1と低周波数帯域成分S1の信号量は各々1/2となり、W1とS1の信号量の総和は、入力信号S0の信号量と等しくなる。レベル1の低周波数帯域成分S1は式(6)でレベル2の高周波数帯域成分W2と低周波数帯域成分S2に分解され、以下同様にレベルN迄の変換を繰り返すことで、入力信号S0は、式(7)に示すようにレベル1〜Nの高周波数帯域成分の総和とレベルNの低周波数帯域成分の和に分解される。
【0076】
ここで、式(6)で示す1レベルのウェーブレット変換は、図3に示すようなフィルタ処理で計算できる事が知られている(前記文献を参照)。図3においてLPFはローパスフィルタ、HPFはハイパスフィルタを示している。フィルタ係数はウェーブレット関数に応じて適切に定められる(前記文献及び表1を参照)。
【0077】
【表1】
【0078】
また2↓は、信号を1つおきに間引くダウンサンプリングを示す。画像信号のような2次元信号における1レベルのウェーブレット変換は、図4に示すようなフィルタ処理で計算される。図4においてLPFx,HPFx,2↓xはx方向の処理を示し、LPFy,HPFy,2↓yはy方向の処理を示す。この1レベルのウェーブレット変換により、低周波数帯域成分Sn−1は3つの高周波数帯域成分Wvn,Whn,Wdnと1つの低周波数帯域成分Snに分解される。分解で生成するWvn,Whn,Wdn,Snの各々の信号量は、分解前のSn−1に比べて縦横ともに1/2となるので、分解後の4成分の信号量の総和は、分解前のSn−1の信号と等しくなる。入力信号S0が3レベルのウェーブレット変換で信号分解される過程の模式図を図5に示す。
【0079】
また、分解で生成したWvn,Whn,Wdn,Snに図6で示すようなフィルタ処理で計算されるウェーブレット逆変換をほどこすことにより、分解前の信号Sn−1を完全再構成できる事が知られている。図6においてLPF’はローパスフィルタ、HPF’はハイパスフィルタを示している。このフィルタ係数は、直交ウェーブレットの場合にはウェーブレット変換に用いたのと同じ係数が使用されるが、双直交ウェーブレットの場合にはウェーブレット変換に用いたのと異なる係数が使用される。(前述の参考文献を参照)。また2↑は、信号に1つおきにゼロを挿入するアップサンプリングを示す。またLPF’x,HPF’x,2↑xはx方向の処理を示し、LPF’y,HPF’y,2↓yはy方向の処理を示す。
【0080】
本発明で利用する二項ウェーブレット(Dyadic Wavelet)変換については、“Singularity detection and processing with wavelets”by S.Mallat and W.L.Hwang,IEEE Trans.Inform.Theory38 617(1992)や“Characterization of signals from multiscale edges”by S.Mallat and S.Zhong,IEEE Trans.Pattern Anal.Machine Intel.14 710(1992)や“A wavelet tour of signal processing 2ed.”by S.Mallat,Academic Pressに詳細な説明があるが、以下に概要を説明する。
【0081】
二項ウェーブレットのウェーブレット関数は下記のように定義される。
【0082】
【数6】
【0083】
直交ウェーブレット・双直交ウェーブレットのウェーブレット関数は前述のようにレベルiにおける位置の最小移動単位が2iで離散的に定義されていたのに対し、二項ウェーブレットはレベルiにかかわらず位置の最小移動単位が一定である。この相違により、二項ウェーブレット変換には下記の特徴が生じる。
【0084】
特徴1:下記に示す1レベルの二項ウェーブレット変換で生成する、高周波数帯域成分Wiと低周波数帯域成分Siの各々の信号量は、変換前の信号Si−1と同一である。
【0085】
【数7】
【0086】
特徴2:スケーリング関数φi,j(x)とウェーブレット関数ψi,j(x)の間に下記の関係が成立する。
【0087】
【数8】
【0088】
従って二項ウェーブレット変換で生成する、高周波数帯域成分Wiは、低周波数帯域成分Siの一次微分(勾配)を表す。
【0089】
特徴3:ウェーブレット変換のレベルiに応じて定められた表2に示される係数γi(前出の二項ウェーブレットに関する参考文献参照)を高周波数帯域成分に乗じたWi・γi(以下、これを補正済高周波数帯域成分と呼ぶ)について、入力信号の信号変化の特異性(singularity)に応じて、前記変換後の補正済高周波数帯域成分Wi・γiの信号強度のレベル間の関係が一定の法則に従う。すなわち図7の1や4に示すなだらかな(微分可能な)信号変化に対応する補正済高周波数帯域成分Wi・γiはレベル数iが増大するほど信号強度が増大するのに対して、図7の2に示すステップ状の信号変化に対応する補正済高周波数帯域成分Wi・γiはレベル数iに関わらず信号強度が一定となり、図7の3に示すδ関数状の信号変化に対応する補正済高周波数帯域成分Wi・γiはレベル数iが増大するほど信号強度が減少する。
【0090】
【表2】
【0091】
特徴4:画像信号のような2次元信号における1レベルの二項ウェーブレット変換の方法は、前述の直交ウェーブレット・双直交ウェーブレットの方法と異なり、図8のように行われる。この1レベルのウェーブレット変換により、低周波数帯域成分Sn−1は2つの高周波数帯域成分Wxn,Wynと1つの低周波数帯域成分Snに分解される。2つの高周波数帯域成分は低周波数帯域成分Snの2次元における変化ベクトルVnのx成分とy成分に相当する。変化ベクトルVnの大きさMnと偏角Anは下式で与えられる。
【0092】
【数9】
【0093】
また二項ウェーブレット変換で得られた2つの高周波数帯域成分Wxn,Wynと1つの低周波数帯域成分Snに図8に示す二項ウェーブレット逆変換をほどこす事で、変換前のSn−1を再構成できる事が知られている。
【0094】
また、入力信号S0に対してNレベルの二項ウェーブレット変換を行う場合の概念を図10に示す。入力信号S0に対してNレベルの二項ウェーブレット変換を行い、得られた高周波数成分に対して、必要に応じ、操作1の作業を行った後に、Nレベルの二項ウェーブレット逆変換を行い、また、低周波成分について、前述の二項ウェーブレット逆変換の操作の各ステップにおいて、操作2の作業を行う。なお、本実施の形態の一例においては、操作1とはエッジ検出、パターン検出等の操作であり、操作2とはマスキング処理にあたる。
【0095】
図10においてLPFは変換用ローパスフィルタ、HPFは変換用ハイパスフィルタを示し、LPF’は逆変換用ローパスフィルタ、HPF’は逆変換用ハイパスフィルタを示している。これらのフィルタ係数はウェーブレット関数に応じて適切に定められる(前述の参考文献及び表3を参照)。
【0096】
【表3】
【0097】
また、LPFx,HPFx,LPF’x,HPF’x,はx方向の処理を示し、LPFy,HPFy,LPF’y,HPF’yはy方向の処理を示す。また二項ウェーブレットにおいては、レベル毎にフィルタ係数が異なり、レベルnのフィルタ係数は、レベル1のフィルタの各係数の間に2n−1−1個のゼロを挿入したものが用いられる(前述の参考文献及び表3を参照)。
【0098】
前述の二項ウェーブレット変換の特徴1で、変換後の分解画像サイズが、変換前の画像と同一である旨説明したが、このことにより、特徴3に示されるような画像構造の解析において高い位置精度をもって評価を行うことができるという副次的な特徴も得られる。
【0099】
次に、多重解像度変換の手法を用いた被写体パターンの抽出について、図11〜13の例により説明する。
【0100】
前記に説明した二項ウェーブレット変換を用いて画像を多重解像度変換し、多重解像度変換の各レベルに現れたエッジを検出、領域分割を行う。
【0101】
そして、抽出するパターンに応じて、パターン抽出に利用する解像度レベルを設定する。
【0102】
ここでいうパターン、特に被写体パターンとして一般に認知されるものは、その輪郭のみではなく、種種の固有の部分要素をもっているものがほとんどである。
【0103】
たとえば人物の頭部であれば、その輪郭そのもののほか、目(さらに瞳、虹彩、まつげ、白目の血管)、鼻、口、ほほの起伏、えくぼ、眉、などがある。
【0104】
これらの内、抽出するパターンを識別するのに有効な部分要素をその「構成要素」と位置付け、それぞれに対し、パターン抽出に利用する解像度レベルを設定する。
【0105】
たとえば、図12に示される通り、人物の頭部の輪郭そのものは低レベルの分解画像に抽出されるエッジで、はっきりと、かつ正確に認識され、その内部に存在する、顔の構成要素の緩やかなパターン、たとえば鼻筋、唇の形状、笑顔の口唇周囲に出来る線、「えくぼ」、「ほほのふくらみ」などは、より高レベル分解画像に現れる、エッジ情報を用いることで、その特徴を的確に捉えることが出来る。
【0106】
次に、被写体パターンの構成要素の決定方法、及び、各々を識別する、好適解像度レベルの決定方法について、好ましい1例を説明する。
【0107】
まず、被写体パターンの構成要素を設定する。たとえば、一般的に「人物の顔」であれば、下記記載のような、あらかじめ記憶された、各種構成要素となる。
【0108】
(「人物の顔」の場合の構成要素の1例)
a:顔の輪郭
b:瞳
c:眉
d:口
e:髪の毛
f:鼻梁
g:鼻孔
h:ほほの凸部
また、特定人物を被写体パターンとして登録したような場合は、これらに追加して新たな構成要素を設定しても良く、個人特定が好ましく実施できる。
【0109】
(「特定人物の顔」で追加される構成要素の例)
i:しみ、ほくろ
j:えくぼ
k:髭
特定人物の場合では、a〜fの構成要素について、一般的な「人物の顔」という場合とは異なる特性を設定できるし、いくつかの構成要素は「無い」という場合もある。
【0110】
目的とする被写体パターンについて各々の構成要素が設定できたら、この画像を二項ウェーブレット変換を用いて、多重解像度変換し、各々の構成要素について、多重解像度変換の各レベルの分解信号における信号強度を求め、最大となるレベルを求める。前述の最大となるレベルを好適解像度として用いればよいが、実際の画像処理結果を評価して、若干のレベル変更を行ってもかまわない。
【0111】
なお、この場合の信号とは、各々のレベルで検出されたエッジ成分を示す信号の最大値であるが、複数のレベル間で信号強度を比較する際には、信号値として、前出二項ウェーブレットで説明した補正済み高周波帯域成分を用いる事が好ましいのは言うまでも無い事である。
【0112】
ところで、二項ウェーブレット変換を利用した場合、ナイフエッジパターンのような、非常に輪郭のはっきりした構成要素の場合では、エッジの信号レベルが解像度レベルによって大きく変化しない特性があるが、このような場合は、当該構成要素の輪郭形態がはっきりと認識できるレベル、または、もともとの画像解像度が十分でない場合においては、最も低レベルの分解解像度を好適解像度レベルとする。
【0113】
前述の構成要素には、輪郭の比較的はっきりしたものと、はっきりしないものがある。
【0114】
たとえばa、f、iなどが前者にあたり、f、h、jなどが後者にあたる。前者のような構成要件の抽出、登録は、たとえばモニタに画像を表示し、当該箇所をマウス、や接触型センサなどで指定して、近傍領域を自動的あるいは、手動的に切り抜いて行うことが出来る。
【0115】
後者のような場合には、当該構成要素の存在する領域を、存在しない領域と、はっきりと区別し、切り抜くことは困難であるが、そのような場合においては、その構成要素が存在する領域を大まかに指定すればよい。
【0116】
このような構成要件に対して設定される好適解像度は、前者の輪郭のはっきりしたものよりも高レベルとなっているのが普通である。
【0117】
したがって、前述のように、大まかな領域指定を行った場合に実際に後者のような構成要素の抽出を行う際には、以下のようにして、目標とする構成要素を抽出できる。
【0118】
構成要素を抽出する候補領域に検出されたエッジをすべて抽出し、これらについて、各解像度レベルの信号強度を比較する。
【0119】
好適解像度レベルより低レベルの分解画像で信号強度が強く検出されたエッジ成分は当該構成要素には含まれないものと考えられるため、候補領域から除外する。そして、残った領域を、好適解像度レベルで検査して目的とする構成要素を抽出する。
【0120】
以上の例では、分解前の画像をモニタに表示し、構成要素の指定を行ったが、たとえば画像処理技術に関してある程度の知識を有しているものが構成要素の指定を行う場合には、実際に解像度変換を行った分解画像をモニタに表示し、好ましくは分解前の画像と対比可能な構成で表示して表示されている解像度レベルで抽出すべき構成要素を指定できるようにすると、元画像だけでは認識し得ない、新たな特徴点の発見も簡単に行うことが出来、より、被写体パターン識別精度を向上することが出来る。
【0121】
図示の例では、瞳、上瞼のエッジをA、鼻筋、口唇周囲の線をB、ほほのふくらみをCとしている。
【0122】
前述の通り、AよりB、BよりCをより高い解像度レベルの画像で検出することで、的確に顔の特徴認識が出来る。
【0123】
さらに、図示されたように、抽出すべきパターンの大きさに応じて、前記構成要素の検出に用いるレベルを設定すると、たとえば抽出すべきパターンが十分に大きな場合には、パターンを構成する要素各々の特性が良く分離され、それぞれの構成要素に適した解像度レベルが設定でき、上記エッジ情報の検出に用いるレベルを設定すると、大きなパターンでは細かな情報まで用いたパターン検出、小さなパターンでは、その大きさで得られる情報までを用いて、最大限、効果的、かつ高速な検出処理が行えるという、優れた特徴を有する。
【0124】
上記パターンの大きさは、別途、仮のパターン検出を行って、その大きさから求めてもよく、または、シーン属性(記念写真、ポートレートなど)、画像サイズ、から仮に求めても良い。
【0125】
仮のパターン抽出は、たとえば次の方法により行うことができる。
顔のパターン抽出を行うような場合は、まず肌色領域を画面内から抽出し、その領域の形状評価を行って、丸い形をしていたら「顔候補」として、抽出する手法がある。
【0126】
制服のような、特定色を持っているものの場合は、特定色領域を抽出し、領域形状の評価条件が、丸から、長方形、三角等、他の形態に変わるだけである。
【0127】
その他、画像からエッジ成分を求めて、外形パターンが似ているものをすべて抽出する方法も用いることが出来、この際のエッジ成分を求める処理は、前述多重解像度変換の、所定レベルの分解画像から求めても良いし、一般的なラプラシアンフィルタ処理で抽出しても良い。
【0128】
ここで、パターンの大きさとは、たとえばパターンのサイズを画素数で表す事が出来るが、図示の例では、顔の大きさ「中」のサイズがあれば、A、B、Cそれぞれに好ましい特徴抽出レベルが定められる。
【0129】
もともとの画像サイズ(つまりパターンのサイズ、画像解像度)が非常に大きい場合、前述の「中」の大きさに相当する画像サイズまで解像度変換を行い、パターン抽出処理を行うことで、必要な計算処理量を大きく減らすことが出来、好都合である。
【0130】
前処理として行う解像度変換は、たとえば周知の技術である、最近傍法、線形補間法等の手法で簡単に行うことが出来る。
【0131】
特開2000−188689号や、特開2002−262094号には、拡大、縮小の手法について詳細な記載があるので、これらに記載の手法を用いるのも良い。
【0132】
さらに、フィルムスキャナやフラットベッドスキャナのように、あらかじめプレスキャンを行い、画像スキャン領域、あるいは本スキャン駒を確定するような処理シーケンスを有する画像処理装置の場合、前述の仮のパターン抽出とパターンの大きさ評価をプレスキャンの段階で行い、本スキャンの読み取り解像度を、パターン抽出に適した画像解像度で読み取るようにしても良い。
【0133】
このようにすることで、抽出するパターンが小さい場合にも十分な解像度が確保できるし、大きい場合には本スキャンの解像度を必要十分な値に設定することで、スキャンに要する時間を軽減することが出来る。
【0134】
次に、画像内から抽出できる被写体パターンをすべて探す方法を例を挙げて説明する。前述のように、抽出すべき被写体パターンは決定されたシーン属性に応じて切り替える。以下にいくつかの例を示す
(例)シーン属性 → 抽出する被写体パターン(左のほうが、優先順位が高い)
修学旅行・京都 → 顔/制服を着た人物/歴史建築(和建築)
結婚披露宴 → 新婦/新郎/顔/ドレス/スポットライト
上記例の、新婦、新郎と顔、スポットライトとドレスのように、重なり合って存在するパターン要件もある
ここで、上記被写体パターンは、あらかじめ定められているものでも良いが、たとえば図14、15で示されるような、以下の手法で新たに設定することも出来る。
【0135】
画像をモニタに表示し、主要画像部分を指示する。そして、指示部分を含む輪郭領域を自動抽出し、得られたパターンを、仮に単位パターンと称する事にする。
【0136】
必要とするパターン全体が含まれていない場合は、上記操作を繰り返し、微小輪郭を結合していき、全体の輪郭抽出が終了したところで、登録指示を行う(登録キーを押す)。
【0137】
登録情報は、選択された領域に関する情報(いくつの、どんな単位パターンが、どのように連結している集合か、や、領域全体に関する各種特性値)、領域の名称(制服を着た学生、等)、優先順位情報などからなる。
【0138】
さらに前記単位パターンとして、「顔」や「制服」等、前出の被写体パターンに相当するやや複雑な構成のものを指定してもよく、これらの結合で、「学生」等の、より高度な被写体パターンの登録が簡単に出来る。
【0139】
このようにして登録された被写体パターンの一例について、図14、15を用いて説明する。図14に示されるように、「学生」というカテゴリには、(a)男子学生(b)女子学生の二つのカテゴリがあり、それぞれ、▲1▼、▲2▼及び▲3▼と、▲1▼、▲4▼及び▲5▼という固有の要素を持っており、これらを単位パターンとした結合状態で、「学生」が定義される。
【0140】
これを論理式を用いて表すと、
「学生」=(▲1▼and▲2▼and▲3▼)or(▲1▼and▲4▼and▲5▼)となる。
【0141】
以上の▲1▼〜▲5▼の構成要素それぞれは、各々が個別の単位パターンが結合した状態で定義されるが、その一例として、女子学生の上衣について、図15に示すが、図示のとおり、図15(a)中の構成要素は、さらに単位パターンa〜fの各要素から構成されており、その結合状態を表した図15(b)で定義される。
【0142】
なお、写真店における写真プリントの一般的な状況として、ロールフィルムからの同時プリント、デジタルカメラで撮影時に利用した画像記憶メディア等、関連した複数の駒について、一括してプリント注文する場合が多い(以下、一連の注文と表記)。
【0143】
一連の注文内に複数の画像がある場合には、その中の代表的な1枚の画像で、上記抽出、登録作業を行い、この情報を元に一連の画像群内、全画像のパターン抽出作業を行うことが出来、パターン登録作業の回数を減らし、効率的な作業が出来る。
【0144】
また、前記登録パターンが、ある個別顧客固有のものであった場合には、パターン登録したパターンを顧客情報といっしょに保存しておき、次回のプリント注文時に顧客情報から、必要な登録パターンを呼び出すようにしておくと、より手間が省け、高度なサービスが実現できる。
【0145】
さらに前記のような、一連の注文処理を行うような場合、全画面から、色々な想定され得る被写体パターンを抽出し、その出現頻度や、画面内における存在位置の統計結果から、シーン属性や優先順位を類推することも出来る。
【0146】
このようにすれば、注文主からシーン属性に関する情報が得られない場合でも、顧客のもっとも大事にしたい被写体が推測できる為、より高い確率で、顧客にとって好ましいプリントが簡単に得られる。
【0147】
次に、前記の処理により抽出した被写体に優先順位をつける。シーン属性に対応して定められている優先順位情報を元につけるが、さらに、被写体パターンの大きさ(大きいものを重視、など)、位置(中央部にあるものをより重視、など)により、優先順位情報に重み付けしても良く、これにより、被写体パターンの重要さに関し、さらに好ましい情報が得られる。以下、このようにして得られた優先度に関する情報を「重要度」とする。
【0148】
抽出すべき被写体パターンと、それら被写体パターンの優先順位情報の決定法として、さらに、GPS信号と、時刻、地図、地勢情報や、インターネット等の自動検索エンジンを用いた検索情報、当該自治体、観光協会、商工会等の情報、など、やこれらをリンクした情報を用い、画像撮影地点において一般的に重要な被写体パターン、ランドマーク等を、優先順位の高い情報と位置付けることも出来る。
【0149】
重要度の高い被写体パターンをより重視した画像処理を行う。
一例として、重要度の高い被写体パターンが、より好ましい階調に仕上がるように階調変換条件を定める画像処理を説明する。
【0150】
この例は、明るさについての階調補正の例である。図16に示す、前記修学旅行・京都の例では、
「修学旅行・京都」の例
▲1▼制服を着た人物 :優先順位1、重み付け係数5
▲2▼歴史建築(和建築) :優先順位2、重み付け係数2
▲3▼顔 :優先順位3、重み付け係数1
と、優先順位情報が設定されていたとする。
【0151】
実画像から、全要素が見つかったが、▲3▼は▲1▼の中に包含されていて(抽出要素としては▲1▼となる)、どちらもやや小さく、▲2▼が中央部に大きく存在していたとする。副優先順位情報として大きさに対応する重み付けを以下のとおりとすると、
a:被写体「大」 重み付け係数 1.0
b:被写体「中」 重み付け係数 0.8
c:被写体「やや小」 重み付け係数 0.3
d:被写体「小」 重み付け係数 0.1
▲1▼と▲2▼の重み付けは、
▲1▼: 5×0.3 = 1.5
▲2▼: 2×1.0 = 2.0
となる、この画像は、歴史的建造物の前で撮影した記念写真と考えられるが、以上の処理により、人物写真であるが、建造物(旅行の目的物)に重点の置かれた写真が得られることになる。
【0152】
図16の画像に対する前記の重み付けに従った階調補正について図17、18により説明する。
【0153】
上記の例に於いて、▲1▼をもっとも好ましく仕上げる階調補正量がα、▲2▼をもっとも好ましく仕上げる階調補正量がβとすると重みを考慮した階調補正量γは、たとえば下記の式で求められる
γ= (1.5×α+2.0×β)/(1.5+2.0)
なお、上記計算式(後述の計算式でも同様)の1.5、2.0の値は、前述▲1▼と▲2▼の重み付け計算で一例として求めた重み付けの値であり、一般的な画像処理では変数として扱うものである。
【0154】
もう一つの例としては、重要度の高い被写体パターンが、もっとも好ましい階調に仕上がるよう全体の階調変換を行い、その他の被写体パターンについてはその領域のみの階調を選択的に変える覆い焼き的な手法を用い例がある。
【0155】
覆い焼き的な処理を加えることで、各被写体要素、▲1▼〜▲3▼の明るさをそれぞれ適当な状態に補正することが可能である。
【0156】
前記の数式例で説明すれば、全体の階調補正量を▲2▼をもっとも好ましく処理するβとし、▲1▼については、その領域のみ、(α−β)に相当する階調処理を行えばよい。
【0157】
一方で、1枚の画像中に複数の被写体が存在している場合、ばらばらに補正することは画像の自然さを損なうこととなる。すなわち、前記の数式例で(α−β)の階調補正量が、大きすぎる場合、1枚の写真としてのバランスを欠く結果となる懸念がある。
【0158】
自然な階調補正が出来る補正量の上限がδ(かつ、δ<(α−β)、δ>0)であったとすると、たとえば以下のように階調補正すれば全体に自然な補正結果が得られる。
【0159】
ε =(α−β)−δ
▲2▼の階調補正量はβ+ε×1.5/(1.5+2.0)
▲1▼の階調補正量はε×1.5/(1.5+2.0)+δ(覆い焼き的処理分)
以上説明したように、優先順位(重み付け情報)を決め、重みの大きい物を適切な明るさに、他の構成要素を、自然な明るさバランスに揃える手法を用いることが出来る。
【0160】
ところで、覆い焼き的処理が自然に行える限界δについては、覆い焼き的処理の行い方、特に、パターン境界近傍領域で、どのような処理を行うかによってその値が変わってくる。以下、本処理を好ましく行う手法について、一例を説明する。
【0161】
図19は、実施の形態の概要を表すブロック図である。原画像は、釣鐘型の窓があいた室内の物体を撮影した状態を表している。室内の被写体は単純化のため、星型としている。
【0162】
室外、斜め右方向から日光が差し込んでいる状態で、星型の被写体を含む窓枠内の画像は、右側にかげりがあり写真として見苦しい状態である。このかげりのある部分を領域A、他の、窓枠内の部分を領域Bとする。このAの影の部分を覆い焼き処理によって明るく再現するのが本実施例の目的である。
【0163】
まず、画像を多重解像度変換する。変換手法は一般的に知られている手法でかまわないが、ここでは好ましい例として、前述のウェーブレット変換、特に、二項ウェーブレット変換を用いる。
【0164】
該変換により、順次、低レベルから高レベルまでの分解画像が出来、残渣の低周波画像▲1▼が出来上がる。ここで、領域Aの部分に注目すると、領域右側(窓枠エッジ部)は低レベルの分解画像からはっきり認識できるが、領域左側(窓枠エッジが、室内に射影された影の輪郭)は低レベルの分解画像からは認識されず、高レベルの分解画像ではっきりと認識される。これは、窓枠エッジと比較し、影の輪郭がはっきりとしたものではなく、あいまいなぼんやりしたものと評価できることを意味している。
【0165】
次に、領域Aに対しマスキング処理を行う。これは、分解画像を逆変換によって、もとの画像にもどす過程で行われる。まず低周波画像▲1▼にマスク画像▲1▼を加算(便宜上、加算と表記したが、黒を0、白を正の大きな値と定義すれば、この図では減算。以下、同じ)し、これと、高レベル分解画像とを合成する逆変換処理を行い、より低レベル方向の、低周波画像▲2▼を得る。次に、これにマスク画像▲2▼を加算し、前述と同様の処理によって、変換済み画像を得る。
【0166】
ところで前述のマスク画像▲1▼は、領域Aの左半分、マスク画像▲2▼は、領域Aの右半分を覆うマスクとなっている。図9及び図10で示された通り逆変換の過程で、加算されたマスク画像はローパスフィルタを通過する為にぼやけるが、マスク画像▲1▼の方が、多回数、かつ、強いローパスフィルタ処理が施される為、AとB領域境界近傍のマスキング処理量がより緩やかに変化するマスキング処理として作用する。したがって、なだらかな変化を示す、影の輪郭に良好に対応した覆い焼き処理を行うことが出来る。同様な理由で、マスク画像▲2▼は小さなボケ量のマスクとして作用するので窓枠エッジに適合した覆い焼き処理を行うことが出来る。
【0167】
マスキング処理をどのレベルの逆変換にかけるかは、当該の領域境界の特性がもっとも強く出た解像度レベルの逆変換時にかければ良いが、画像の特性や、実際の試行結果から、前記、当該の領域境界の特性がもっとも強く出た解像度レベルから所定量移動したレベルにマスキング処理を施してもよく、これによって主観的に好ましい画像処理チューニングが可能になる。
【0168】
マスクは次のようにして用意される。
階調、色調、彩度補正に関するマスクについては、あらかじめ領域が分割され、たとえば図20のとおりに作成し利用される。領域分割については大きく分けて以下の2方式が挙げられるが、これに限定されない。
【0169】
(1)被写体パターン抽出した結果に基づいて、たとえば図17(a)の例でいえば、被写体パターン▲1▼(人物)と被写体パターン▲2▼(寺社)を切り抜き、マスクとする。それぞれのマスクにおける画像代表(多くは平均)値を求め、それぞれの被写体に好ましい階調再現からの隔たりが階調補正量となるが、この階調補正量が、(本例のように)人物と寺社とで大きく異なっている場合に、領域ごとの補正が必要になる。このケースでは、「人物」「寺社」「その他」という3領域について、各々補正量α、β、γが計算出来、画面全体を何らかの補正量ωとすると、それぞれのマスク補正量は、
「人物」 α−ω
「寺社」 β−ω
「その他」 γ−ω となり、これらの値を当該領域に配置し、その他の領域を補正量0としたものが各々のマスクとなる。たとえばすべてのマスクを同一のレベルで作用させることになれば、3つのマスクを合成し、所定のレベルで低周波画像に加算する。
【0170】
(2)たとえば、同一の被写体パターンでも影が強く、うまく階調再現できない場合があり、この場合は、たとえば画面全体から画像信号値のヒストグラムを作成し、たとえば2階調化の手法などを用いて、被写体の明るさをいくつかのブロックに分解し、それぞれに所属する画素について、1と同様に補正値を与え、マスクを作成する。このマスクは画像信号によってはきれいな領域分割とはならず、ノイズによる微小領域が多数出来たりするが、これはノイズフィルタ(単純な平滑化フィルタでも可)を用いて単純化することができる。ヒストグラムを分割し、異なった補正量を与える手法については、特開平11−284860号に詳しく記載されている。そして、この計算結果から領域境界を定め、その境界の特性を、多重解像度変換の手法を用いて評価し、マスクを作用させるレベルを決定する。(1)との違いは、パターンの区切りとは別に領域を切り分けるということで、実際の覆い焼きでは、一つの被写体が光と影で分断されているような場合が良くあり、そのような条件では、(2)が有効である。
【0171】
鮮鋭性、粒状性については、マスクに記載される補正値が、エッジ強調フィルタや、ノイズフィルタの強度パラメータとなる。また、このマスクを施す段階が階調、色調、彩度補正とは異なり、多重解像度変換されていない画像、または、特定解像度レベルの、分解画像となる。また、マスクの作り方そのものは階調、色調、彩度補正のケースと同一であるが、そのマスクを作用させる前に、マスクそのものに、ぼかしフィルタを作用させる必要がある。これは、階調、色調、彩度補正のケースでは、低周波画像にマスクをかけていたため、マスクの輪郭がはっきりしていても、その後の逆変換過程で、適切なローパスフィルタを通過するから、輪郭が自然にボケる為で、鮮鋭性、粒状性の処理シーケンスではこの効果が得られない為である。どの程度のぼかしフィルタをかけるかについては、前述(2)と同じ方法でエッジを評価し、実際には、前述(2)のマスク画像が受けるであろうぼかし量を与えるフィルタが妥当なところとなる。
【0172】
図20〜図22は、前述のような手法で用いることの出来るマスク形態の他の例を表したものである。
【0173】
図20は、図19のマスク部分の例で、前述のとおりかげの領域を2つの小領域、▲1▼と▲2▼に分けている。ここで丸付き数字の大きいほうが、よりはっきりしたエッジに対応するマスクである。小領域▲1▼と▲2▼の間にも、点線で図示される領域境界が存在する。ここで、領域を挟む、数字の小さい側のマスクは、この領域境界ではっきり切れていてもかまわないが、大きい側のマスクは、この領域境界で緩やかにマスキング処理量が変化する、好ましくは、境界を接する相手側のマスクが、当該マスクと合成されるまで、逆変換過程で施されるローパスフィルタの特性に適合した変化特性をもっていると、領域境界間のつながり感向上に好ましい効果を与える。
【0174】
図21はそれぞれ別個の被写体パターン▲1▼「雲」、▲2▼「樹木の葉、梢の部分」、▲3▼「人物、樹木の幹の部分」に、別解像レベルのマスク処理を施す例である。
【0175】
図22は、模式的に、上辺のエッジが丸められた円柱に、水平に近い、斜め上、右方から光が差し込んだ状態の図である。
【0176】
以上、全体の補正レベルを決定する手法、部分的なマスク(覆い焼き的)手法を説明したが、さらに上記2例を併用、あるいはシーンに応じて切り替えて使用してもかまわない。
【0177】
また、以上の説明では階調、明るさの例を示したが、色再現、彩度再現等の各種条件設定に応用しても良い。たとえば図16に示される▲1▼と▲2▼、それぞれについて、以下のような望ましい処理状態の差が考えられ、これらについて、前記のような平均的な処理や、領域を分けた個別処理、これらの併用処理を行うことが出来る。
【0178】
さらに、シャープネス、粒状性等の処理条件設定についても、複数の被写体パターンの、優先順位情報に応じた、重み付け平均を元に画面全体に対し画像処理を行って顧客の希望に添った画像処理結果を得ることが出来、さらに後述の手法を用いれば、領域を分けた個別処理、これらの併用処理を行うことが出来る。
【0179】
シャープネス、粒状性についても、図16に示される▲1▼と▲2▼、それぞれについて、以下のような望ましい処理状態の差が考えられる。
【0180】
図23は、鮮鋭性(ここでは強調処理)、粒状性(ここでは粒状除去処理)に関し、領域分割の例を示したものである。
【0181】
例として、領域を「C:雲」、「B:青空」、「A:山、木々」3つに分けることが出来たとする。図示のように、A、B、Cそれぞれ、好ましいとされる、鮮鋭性と粒状性の組み合わせは異なっている。またそれぞれの境界領域の関係は、AとBの間ははっきりとした輪郭であり、BとCはぼんやりとした輪郭となっている。この領域境界の特徴は、前述、図19で述べた多重解像度変換処理で生成される、各解像度レベルの画像を評価することによって、容易に判断できることは明らかである。
【0182】
その上で、たとえば鮮鋭性処理の例では、鮮鋭性強調係数を画面位置に対応して並べたマスクを作成し(図19の例におけるマスクと同様のものである)、領域A〜C、それぞれに適合する解像度レベルを、前述図19で説明した手法などにより求め、それぞれのマスクを当該の適合解像度レベルに対応したぼかし量でぼかした、修正マスクを取得し、領域A〜Cの合計3枚の修正マスクを合成する。
【0183】
合成されたマスクに記載された補正量情報に応じて、マスクと対応した位置にある画素の補正量を決めれば、A〜C各領域の特性に応じた鮮鋭性強調が施され、さらに、AとBの領域境界では、鮮鋭性強調の補正量がはっきり変化し、BとCの領域境界では、鮮鋭性強調の補正量が緩やかに変化する、最も好ましい状態を得ることが出来る。
【0184】
また、たとえばカラー画像のように、複数の色次元を持っている画像情報の場合は、必要に応じて色座標変換を行い、必要な座標軸についてのみ、ここまで説明してきたような処理を行ってもかまわない。
【0185】
たとえば、覆い焼き的な階調補正をする上で特に重要となる明るさ補正について、RGB3色で表された画像の場合は、いったん、輝度、色差(Labなど)に変換し、輝度情報についてのみ処理を行うことで、画像処理品位の低下を抑え、画像処理量を大幅に抑えることが出来る。
【0186】
また、花、海、空など、領域で区分すべき領域、被写体が、固有の色調をもっている場合に、領域境界を定める処理、領域境界の特性を評価する処理のいずれか1方、または両方を、固有色調をもっとも抽出しやすい色座標で行い、実際の領域ごとの画像処理は、これとは別の色座標、たとえば、輝度や彩度座標に対し、行うことも出来、「ある種(たとえば真っ赤なバラ)の花」など、特定、特殊な画像に対して特化した性能チューニングも行うことが可能である。
【0187】
次に、本発明に係る画像処理方法を実行し、また、本発明に係る画像処理装置の画像処理手段を機能させるプログラムを実行する工程を図24〜27のフローチャートで説明する。
【0188】
図24は基本的な工程を示す。
まず、画像情報を取得して(ステップ1)、シーン属性情報を取得する(ステップ2)。
【0189】
次いで、取得されたシーン属性情報から抽出すべき被写体パターンを定め(ステップ3)、各々の被写体パターンを特徴付ける構成要素を定める(ステップ4)。
【0190】
さらに、構成要素各々について、構成要素の抽出に好ましい好適解像度レベルを設定し(ステップ5)、画像情報を多重解像度変換する(ステップ6)。
【0191】
各々の構成要素を、各々の好適解像度レベルで抽出し(ステップ7)、抽出された構成要素に基づいて被写体パターンの抽出を行う(ステップ8)。
【0192】
最後に、抽出された被写体パターンと、被写体パターン境界領域の特性を評価した評価結果に応じて、階調や鮮鋭性について、画像全体、あるいは領域ごとに異なる補正を行う覆い焼き的な処理を施し、その他、画像切り出し等の各種画像処理を行い(ステップ9)、処理を終了する。
【0193】
図25は、被写体パターンの大きさ情報に応じて、被写体パターンを特徴付ける構成要素を抽出する好適解像度レベルを設定する好ましい一例である。
【0194】
被写体パターンを特徴付ける構成要素を定めるステップ4までは、図24の例と同様である。その後、被写体パターンの大きさ情報を取得し(ステップ201)、構成要素各々について、被写体パターンの大きさ情報に基づいて設定された構成要素の抽出に好ましい好適解像度レベルを設定する(ステップ6)。以降の処理は図24の場合と同様である。
【0195】
図26は、階調補正の一部を覆い焼き処理によって実現する、別の一例である。
【0196】
まず入力画像情報を取得し(ステップ1)、フィルムやメディアにシーン属性に類する情報があるかどうかチェックして(ステップ302)、ある場合は(ステップ302のYes)取得情報を情報記録部に格納する(ステップ303)。一方、画像表示部に画像を表示して顧客からもシーン属性の情報を取得し情報記録部に格納する(ステック304)。
【0197】
これらを元にシーン属性を決定し(ステップ305)、抽出する被写体パターンを定める(ステップ306)。
【0198】
次に、定められた被写体パターンを、たとえば多重解像度変換処理を用いた手法で抽出し(ステップ307)、優先順位情報を重み付け係数を用いるなどして付与し(ステップ308)、さらに、抽出された被写体パターンの存在位置、大きさに応じて優先順位を修正する(ステップ309)。
【0199】
さらに、抽出された各被写体パターンに対応する階調補正量を、情報記憶部に記憶されている各種情報、たとえば、好ましい階調、色調再現、に関する情報を元に決定する(ステップ310)。
【0200】
次に、各被写体パターンの階調補正量を、覆い焼き処理成分と残りの成分に分離し(ステップ311)、多重解像度変換処理を応用した、本願記載の覆い焼き手法を用いてマスキング処理を行い(ステップ312)、ステップ309で求めた各被写体パターンの重み付け係数を用いて、ステップ311で求めた各被写体パターンの階調補正量の、残り成分の重み付け平均値を算出し(ステップ313)、重み付け平均値に対応する分量の階調補正を画像に施して(ステップ314)、処理を終了する。
【0201】
図27は、覆い焼き的処理の鮮鋭性の補正、ここでは強調処理に関し適用した本発明のさらに別の一例である。
【0202】
入力画像情報を取得し、シーン属性お決定し、抽出する被写体パターンを定め、定められた被写体パターンを抽出するまでの処理(ステップ1〜ステップ307)は、前例と同一である。
【0203】
次に、抽出された各被写体パターンに応じて、好ましい鮮鋭性強調係数を設定する(ステップ408)。
【0204】
さらに、設定された鮮鋭性強調係数を、被写体パターン各々の存在する領域に2次元配列的に並べたマスクを作成し(ステップ409)、被写体パターン各々の境界領域の特性を、二項ウェーブレットの分解画像に現れる信号強度を比較する事で評価する(ステップ410)。
【0205】
ステップ409で作成したマスクを、ステップ410の評価結果に基づいてぼかし処理し(ステップ411)、作成された被写体パターンごとのマスクを合成する(ステップ412)。
【0206】
合成されたマスクに作成された、各画素位置に対応した鮮鋭性補正量を、対応する各画素に適用して画像処理を行い(ステップ413)、処理を終了する。
【0207】
【発明の効果】
請求項1〜24のいずれかの発明により、画像の領域ごとに異なる画像補正量を適用した場合に、領域境界に発生する補正結果の不自然さを軽減でき、主要被写体を適正な画像特性で再現出来るとともに、全体としてバランスのとれた画像特性の画像を得ることが出来る。
【0208】
請求項3、11または19の発明により、領域境界の特性を確実に判断できるので、境界の性質に対応した確度の高い領域分割を行う事が出来る。
【0209】
請求項4、12または20の発明により、マスキング処理を行うレベルを切り替えることで、簡単にマスクのボケ量を切り替えることが出来るので、領域境界の評価結果に応じた処理が簡単に実現できる。
【0210】
請求項5、7、13、15、21または23の発明により、境界領域の位置を確実、かつ正確に特定でき、高精度な画像処理結果が得られる。さらに、二項ウェーブレット変換の各ステップに於いて、鮮鋭性補正、粒状性補正を好ましく実施することが可能となる。
【0211】
請求項8、14、16、22または24の発明により、特性評価、画像補正処理を、それぞれに適した色座標で実施できる為、高確度、かつ、高速度の画像処理が実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る画像処理装置を備えたデジタルミニラボの基本的な構成を示すブロック図である。
【図2】ウェーブレット関数の示す図である。
【図3】ウェーブレット変換の概念図である。
【図4】ウェーブレット変換の概念図である。
【図5】ウェーブレット変換で信号分解する過程の概念図である。
【図6】ウェーブレット変換の概念図である。
【図7】画像信号の例を示す図である。
【図8】逆ウェーブレット変換の概念図である。
【図9】ウェーブレット変換の概念図である。
【図10】ウェーブレット変換の概念図である。
【図11】被写体パターン及び構成要素の例を示す図である。
【図12】解像度れべると検出される構成要素の関係を示す図である。
【図13】パターンの大きさと検出される構成要素との関係を示す図である。
【図14】被写体パターン及び構成要素の例を示す図である。
【図15】複数の構成要素を結合する論理を説明する図である。
【図16】被写体パターンの抽出を説明する図である。
【図17】複数の被写体パターンに対する階調補正を説明する図である。
【図18】複数の被写体パターンに対する階調補正を説明する図である。
【図19】覆い焼き的な処理を示すブロック図である。
【図20】覆い焼き的な処理において用いられるマスクの例を示す図である。
【図21】覆い焼き的な処理の例を示す図である。
【図22】覆い焼き的な処理の例を示す図である。
【図23】鮮鋭性や粒状性に関連した領域分割による処理の例を示す図である。
【図24】本発明の実施の形態に係る画像処理方法を実行し、また、本発明の実施の形態に係る画像処理装置の画像処理手段を機能させるプログラムのフローチャートの例である。
【図25】本発明の実施の形態に係る画像処理方法を実行し、また、本発明の実施の形態に係る画像処理装置の画像処理手段を機能させるプログラムのフローチャートの例である。
【図26】本発明の実施の形態に係る画像処理方法を実行し、また、本発明の実施の形態に係る画像処理装置の画像処理手段を機能させるプログラムのフローチャートの例である。
【図27】本発明の実施の形態に係る画像処理方法を実行し、また、本発明の実施の形態に係る画像処理装置の画像処理手段を機能させるプログラムのフローチャートの例である。
【符号の説明】
1 デジタルカメラ
2 画像記録メディア
3 カメラ
4 フィルム
5 メディアドライバ
6 フィルムスキャナ
7 画像入力部
8 画像処理部
9 銀塩露光プリンタ
10 インクジェットプリンタ
11 画像記録メディア
12 指示入力部
13 キーボード
14 マウス
15 接触センサ
16 画像表示部
17 情報記憶部
Claims (24)
- 画像を複数の領域に分割して領域ごとに画像特性値の補正量を定め、画像補正処理を行う画像処理方法において、
前記複数の領域間の境界の性質を評価し、評価された前記境界の性質に応じて、前記境界近傍の領域に対する補正量を定めることを特徴とする画像処理方法。 - 前記画像補正処理は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、鮮鋭性補正、粒状性補正、の内の少なくとも1つの補正を含む事を特徴とする請求項1に記載の画像処理方法。
- 前記境界の性質の評価を、入力画像情報を多重解像度変換処理した結果に基づいて行うことを特徴とする請求項1又は請求項2に記載の画像処理方法。
- 前記画像補正処理は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、の内、少なくとも1つの補正を含む処理であり、かつ、入力画像情報に多重解像度変換処理を施し、これを逆変換する各レベルに於いて生成される低周波画像に対して施されることを特徴とする請求項1〜3のいずれか1項に記載の画像処理方法。
- 前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする請求項3又は請求項4に記載の画像処理方法。
- 入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、前記色空間上の少なくとも1つの次元の画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記性質評価に関しては、輝度、彩度、または色相に関する情報であることを特徴とする請求項1〜5のいずれか1項に記載の画像処理方法。
- 前記画像補正処理は、画像信号値の鮮鋭性補正、粒状性補正の内の少なくとも1つの補正を含む処理であり、且つ、前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする請求項3または請求項4に記載の画像処理方法。
- 入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、色空間上の少なくとも1つの次元の前記入力画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記、特性評価に関しては、輝度に関する情報であることを特徴とする請求項7に記載の画像処理方法。
- 画像を複数の領域に分割して領域ごとに画像特性値の補正量を定め、画像補正処理を行う画像処理手段を有する画像処理装置において、
前記画像処理手段は、前記複数の領域間の境界の性質を評価し、評価された前記境界の性質に応じて、前記境界近傍の領域に対する補正量を定めることを特徴とする画像処理装置。 - 前記画像処理手段は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、鮮鋭性補正、粒状性補正、の内の少なくとも1つの補正を含む前記画像補正処理を行う事を特徴とする請求項9に記載の画像処理装置。
- 前記画像処理手段は、前記境界の性質の評価を、入力画像情報を多重解像度変換処理した結果に基づいて行うことを特徴とする請求項9又は請求項10に記載の画像処理装置。
- 前記画像処理手段は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、の内、少なくとも1つの補正を含む前記画像補正処理を行い、かつ、入力画像情報に多重解像度変換処理を施し、これを逆変換する各レベルに於いて生成される、低周波画像に対して前記画像補正処理を行う事を特徴とする請求項9〜11のいずれか1項に記載の画像処理装置。
- 前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする請求項11又は請求項12に記載の画像処理装置。
- 入力画像情報は3次元の色空間からなるカラー画像であり、前記画像処理手段は、前記領域境界の性質評価、及び、または、前記画像補正処理を、前記画像補正処理の内容に対応して定められる、前記色空間上の少なくとも1つの次元の画像情報に基づいて行い、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記性質評価に関しては、輝度、彩度、または色相に関する情報であることを特徴とする請求項9〜13のいずれか1項に記載の画像処理装置。
- 前記画像補正処理は、画像信号値の鮮鋭性補正、粒状性補正の内の少なくとも1つの補正を含む処理であり、且つ、前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする請求項10又は請求項11に記載の画像処理装置。
- 入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、色空間上の少なくとも1つの次元の前記入力画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記、特性評価に関しては、輝度に関する情報であることを特徴とする請求項15に記載の画像処理装置。
- 画像を複数の領域に分割して領域ごとに画像特性値の補正量を定め、画像補正処理を行う画像処理手段を、
前記複数の領域間の境界の性質を評価し、評価された前記境界の性質に応じて、前記境界近傍の領域に対する補正量を定めるように機能させることを特徴とする画像処理プログラム。 - 前記画像補正処理は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、鮮鋭性補正、粒状性補正、の内の少なくとも1つの補正を含む事を特徴とする請求項17に記載の画像処理プログラム。
- 前記境界の性質の評価を、入力画像情報を多重解像度変換処理した結果に基づいて行うことを特徴とする請求項17又は請求項18に記載の画像処理プログラム。
- 前記画像補正処理は、画像信号値の階調補正、カラー画像の色調補正、彩度補正、の内、少なくとも1つの補正を含む処理であり、かつ、入力画像情報を多重解像度変換処理し、これを逆変換する各レベルに於いて生成される、低周波画像に対して施されることを特徴とする請求項17〜19のいずれか1項に記載の画像処理プログラム。
- 前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする請求項19又は請求項20に記載の画像処理プログラム。
- 入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、前記色空間上の少なくとも1つの次元の画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記性質評価に関しては、輝度、彩度、または色相に関する情報であることを特徴とする請求項17〜21のいずれか1項に記載の画像処理プログラム。
- 前記画像補正処理は、画像信号値の鮮鋭性補正、粒状性補正の内の少なくとも1つの補正を含む処理であり、且つ、前記多重解像度変換処理は、二項ウェーブレット(Dyadic Wavelet)変換処理によるものであることを特徴とする請求項19または請求項20に記載の画像処理プログラム。
- 入力画像情報は3次元の色空間からなるカラー画像であり、前記領域境界の性質評価、及び、または、前記画像補正処理は、前記画像補正処理の内容に対応して定められる、色空間上の少なくとも1つの次元の前記入力画像情報に基づいて行われ、さらに、前記色空間上の少なくとも1つの次元は、前記画像補正処理に関してはカラー画像の輝度、または、彩度に関する情報であり、前記、特性評価に関しては、輝度に関する情報であることを特徴とする請求項23に記載の画像処理プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003029471A JP2004242068A (ja) | 2003-02-06 | 2003-02-06 | 画像処理方法、画像処理装置及び画像処理プログラム |
US10/764,414 US20040151376A1 (en) | 2003-02-05 | 2004-01-23 | Image processing method, image processing apparatus and image processing program |
EP04001910A EP1445731A3 (en) | 2003-02-05 | 2004-01-29 | Image processing method, image processing apparatus and image processing program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003029471A JP2004242068A (ja) | 2003-02-06 | 2003-02-06 | 画像処理方法、画像処理装置及び画像処理プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004242068A true JP2004242068A (ja) | 2004-08-26 |
Family
ID=32956637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003029471A Pending JP2004242068A (ja) | 2003-02-05 | 2003-02-06 | 画像処理方法、画像処理装置及び画像処理プログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004242068A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006211247A (ja) * | 2005-01-27 | 2006-08-10 | Canon Inc | 画像処理装置およびその方法 |
WO2006109703A1 (ja) * | 2005-04-12 | 2006-10-19 | Olympus Corporation | 撮影システム、および映像信号処理プログラム |
WO2006109702A1 (ja) * | 2005-04-12 | 2006-10-19 | Olympus Corporation | 画像処理装置と撮像装置、および画像処理プログラム |
US7853078B2 (en) | 2006-05-10 | 2010-12-14 | Sony Corporation | Setup-screen display controlling apparatus, server apparatus, image processing system, printing apparatus, image pickup apparatus, display apparatus, setup-screen display controlling method, program, and data structure |
CN109643440A (zh) * | 2016-08-26 | 2019-04-16 | 日本电气株式会社 | 图像处理设备、图像处理方法和计算机可读记录介质 |
US10592729B2 (en) | 2016-01-21 | 2020-03-17 | Samsung Electronics Co., Ltd. | Face detection method and apparatus |
CN111754490A (zh) * | 2020-06-28 | 2020-10-09 | 湖南红太阳光电科技有限公司 | 一种基于视觉的石墨舟倒片检测方法、装置及系统 |
-
2003
- 2003-02-06 JP JP2003029471A patent/JP2004242068A/ja active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006211247A (ja) * | 2005-01-27 | 2006-08-10 | Canon Inc | 画像処理装置およびその方法 |
JP4612845B2 (ja) * | 2005-01-27 | 2011-01-12 | キヤノン株式会社 | 画像処理装置およびその方法 |
WO2006109703A1 (ja) * | 2005-04-12 | 2006-10-19 | Olympus Corporation | 撮影システム、および映像信号処理プログラム |
WO2006109702A1 (ja) * | 2005-04-12 | 2006-10-19 | Olympus Corporation | 画像処理装置と撮像装置、および画像処理プログラム |
JP2006295582A (ja) * | 2005-04-12 | 2006-10-26 | Olympus Corp | 画像処理装置と撮像装置、および画像処理プログラム |
US7853078B2 (en) | 2006-05-10 | 2010-12-14 | Sony Corporation | Setup-screen display controlling apparatus, server apparatus, image processing system, printing apparatus, image pickup apparatus, display apparatus, setup-screen display controlling method, program, and data structure |
US10592729B2 (en) | 2016-01-21 | 2020-03-17 | Samsung Electronics Co., Ltd. | Face detection method and apparatus |
CN109643440A (zh) * | 2016-08-26 | 2019-04-16 | 日本电气株式会社 | 图像处理设备、图像处理方法和计算机可读记录介质 |
CN109643440B (zh) * | 2016-08-26 | 2024-03-22 | 日本电气株式会社 | 图像处理设备、图像处理方法和计算机可读记录介质 |
CN111754490A (zh) * | 2020-06-28 | 2020-10-09 | 湖南红太阳光电科技有限公司 | 一种基于视觉的石墨舟倒片检测方法、装置及系统 |
CN111754490B (zh) * | 2020-06-28 | 2023-08-08 | 湖南红太阳光电科技有限公司 | 一种基于视觉的石墨舟倒片检测方法、装置及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10304166B2 (en) | Eye beautification under inaccurate localization | |
US7187788B2 (en) | Method and system for enhancing portrait images that are processed in a batch mode | |
US8520089B2 (en) | Eye beautification | |
EP1445731A2 (en) | Image processing method, image processing apparatus and image processing program | |
US8902326B2 (en) | Automatic face and skin beautification using face detection | |
US7082211B2 (en) | Method and system for enhancing portrait images | |
JP2002245471A (ja) | 被写体内容に基づく修正を有する第2プリントを伴うダブルプリントの写真仕上げサービス | |
JP2004240622A (ja) | 画像処理方法、画像処理装置及び画像処理プログラム | |
JP2004234069A (ja) | 画像処理方法、画像処理装置、及びプログラム | |
JP2001209802A (ja) | 顔抽出方法および装置並びに記録媒体 | |
JP2004242068A (ja) | 画像処理方法、画像処理装置及び画像処理プログラム | |
JP3473832B2 (ja) | ディジタル画像の自動補正方法及びそのシステム | |
Safonov et al. | Changing the Aspect Ratio for Borderless Printing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070731 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071127 |