[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004139235A - Method for stable operation at the start of fluid process - Google Patents

Method for stable operation at the start of fluid process Download PDF

Info

Publication number
JP2004139235A
JP2004139235A JP2002301691A JP2002301691A JP2004139235A JP 2004139235 A JP2004139235 A JP 2004139235A JP 2002301691 A JP2002301691 A JP 2002301691A JP 2002301691 A JP2002301691 A JP 2002301691A JP 2004139235 A JP2004139235 A JP 2004139235A
Authority
JP
Japan
Prior art keywords
pid
control
filtration
output value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002301691A
Other languages
Japanese (ja)
Other versions
JP4020747B2 (en
Inventor
Tatsuo Mongaki
捫垣 龍男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002301691A priority Critical patent/JP4020747B2/en
Publication of JP2004139235A publication Critical patent/JP2004139235A/en
Application granted granted Critical
Publication of JP4020747B2 publication Critical patent/JP4020747B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stable operation at the start of a fluid process which can stabilize the start-up control of the fluid process at its operation start. <P>SOLUTION: The method for stable operation is constituted such that the computation output value of a PID computation part 18 during the last stable operation before the operation start of a filtration process is stored in a PID computation output value storage part 22 at any time, the latest computation output value is fixed and applied for a predetermined time as a computation output value at the operation start of an upcoming filtration process, and then, the operation is switched to a PID automatic control operation. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液体や気体等の流体プロセスの運転を開始する際の安定運転方法に係り、特に制御干渉系からなる濾過装置の濾過プロセスの運転を開始する際に好適な安定運転方法に関するものである。
【0002】
【従来の技術】
従来、液体や気体等の流体プロセスの自動制御において、測定値を目標値に一致させるためにオン/オフ動作、比例動作(Proportional;以下、単に「P動作」という)、積分動作(Integral;以下、単に「I動作」という)、微分動作(Derivative;以下、単に「D動作」という)が適宜採用されており、更には比例動作・積分動作を同時に働かせるPI動作、或いは、比例動作・積分動作・微分動作を全部同時に働かせるPID動作等を利用して短時間で且つ安定して測定値を目標値に一致させると共に外乱によって発生した偏差を出来るだけ早くなくす制御が行われる。
【0003】
また、測定値または目標設定値に応じて複数のPID定数(比例帯PB、積分時間T、微分時間T)を切り換えるマルチPID動作が提案されており、複数の目標値とPID定数の組み合わせを調節計内部に記憶させ、必要により呼び出して使用することが出来るものもある(例えば、非特許文献1参照。)。
【0004】
また、原液を循環しながら濾過を行うクロスフロー型の精密濾過または限外濾過処理方法において、逆洗やエアバブリングや停止状態からの濾過処理開始への切り換え時に濾過膜への原液の入力圧力を所定時間低圧運転して濾過膜を保護すると共に安定運転するものも提案されている(例えば、特許文献1参照。)。
【0005】
【非特許文献1】
財団法人 省エネルギーセンター出版部 出版、1992年2月5日発行、松山 裕 著「だれでもわかる自動制御」、p.85
【特許文献1】
特開平10−33957号公報
【0006】
【発明が解決しようとする課題】
しかしながら、前述の従来例では、流体プロセスで制御対象の制御点が複数存在して互いに干渉し合う場合、各単独のPID制御を立ち上げると不安定な制御になり、例えば、濾過装置等では高圧異常が発生して運転不能となるという問題があった。
【0007】
本発明は前記課題を解決するものであり、その目的とするところは、流体プロセスの運転開始時における立ち上り制御を安定化させることが出来る流体プロセス開始時の安定運転方法を提供せんとするものである。
【0008】
【課題を解決するための手段】
前記目的を達成するための本発明に係る流体プロセス開始時の安定運転方法は、流体プロセスの運転を開始する際の安定運転方法であって、流体プロセスの運転開始の前回に安定運転した際の制御対象の演算出力値を随時記憶し、その最新の演算出力値を次回の流体プロセスの運転開始時の演算出力値として所定の時間だけ固定化し、その後、所定の自動制御運転に切り換えることを特徴とする。
【0009】
本発明は、上述の如く構成したので、前回の安定運転時の演算出力値を随時記憶して、その最新の演算出力値を次回の流体プロセスの運転開始時の演算出力値として所定の時間だけ固定化することで流体プロセスの運転開始時における立ち上り制御を安定化させることが出来、安定化した段階でPID制御等の所定の自動制御運転に切り換えることで、安定運転時に近い固定状態からPID制御等の所定の自動制御運転に切り換える時の偏差が小さい状態で安定的に切り換わり、安定運転を継続することが出来る。
【0010】
また、前記流体プロセス開始時の安定運転方法を、流体プロセスが、制御対象の制御点が複数存在して互いに干渉し合う制御干渉系からなる濾過装置の濾過プロセスに対して効果的に適用出来る。
【0011】
【発明の実施の形態】
図により本発明に係る流体プロセス開始時の安定運転方法の一例として流体プロセスが、制御対象の制御点が複数存在して互いに干渉し合う制御干渉系からなる濾過装置の濾過プロセスに対して適用した場合の一実施形態を具体的に説明する。
【0012】
図1は本発明に係る流体プロセス開始時の安定運転方法が適用される濾過装置の構成の一例を示す図、図2は本発明に係る流体プロセス開始時の安定運転方法を実施するための制御系のブロック図である。
【0013】
また、図3は本発明に係る流体プロセス開始時の安定運転方法が適用される濾過装置において制御干渉系である原液、濾過液、戻り原液の各制御特性を示す図、図4は図1に示す濾過装置における濾過プロセスの一例を説明する図である。
【0014】
図1に示す濾過装置は、例えば、河川水、湖沼水、地下水或いは海水等の原液を循環しながら濾過を行うクロスフロー型の精密或いは限外濾過装置として構成されており、複数の制御対象となる循環系の原液、濾過液、戻り原液が夫々のPID制御により自動制御されることで制御干渉系を構成するものである。
【0015】
図1において、1は原液タンクであり、2は原液タンク1に収容された原液1aを原液配管3を介して濾過膜モジュール4に送り出す原液供給ポンプである。
【0016】
原液供給ポンプ2から濾過膜モジュール4に至る原液配管3には流路の開口面積を連続的に変化させて制御することが出来る原液供給電動弁5が設けられており、該原液供給電動弁5の流路下流側には検出部となる圧力センサ6が配置されている。
【0017】
7は圧力センサ6が検知した原液配管3を流通する原液1aの圧力信号に基づいて操作信号を演算し、原液供給電動弁5を制御する演算制御部である。
【0018】
4は濾過膜モジュールであり、中空糸状の濾過膜がケース内に収納され、実際には複数の濾過膜モジュール4が並列に接続されて濾過膜ユニットを構成している。
【0019】
原液配管3から濾過膜モジュール4に原液1aが供給されると、該濾過膜モジュール4内に設けられた中空糸状膜の外側から内側に透過するか、若しくは内側から外側に透過して濾過された濾過液9aが濾過液配管8に導かれて濾過液タンク9に貯蔵される。
【0020】
濾過膜モジュール4から濾過液タンク9に至る濾過液配管8には流路の開口面積を連続的に変化させて制御することが出来る濾過電動弁10が設けられており、該濾過電動弁10の流路上流側には検出部となる電磁流量計11が配置されている。
【0021】
12は電磁流量計11が検知した濾過液配管8を流通する濾過液9aの流量信号に基づいて操作信号を演算し、濾過電動弁10を制御する演算制御部である。
【0022】
一方、原液配管3から濾過膜モジュール4に供給された原液1aの一部は循環戻り原液として濾過膜モジュール4の中空糸状膜の外側或いは内側を流通して原液戻り配管13に導かれ、原液タンク1に戻るようになっている。
【0023】
濾過膜モジュール4から原液タンク1に至る原液戻り配管13には流路の開口面積を連続的に変化させて制御することが出来る原液戻り電動弁14が設けられており、該原液戻り電動弁14の流路上流側には検出部となる電磁流量計15が配置されている。
【0024】
16は電磁流量計15が検知した原液戻り配管13を流通する循環戻り原液の流量信号に基づいて操作信号を演算し、原液戻り電動弁14を制御する演算制御部である。
【0025】
次に図2を用いて、本発明に係る流体プロセスの一例として濾過プロセス開始時の安定運転方法を実施するための制御系の構成について説明する。図2において、各演算制御部7,12,16には、タッチパネル等からなる入力手段を構成する目標値設定部17が設けられており、該目標値設定部17において、例えば、「0〜4000」、「0〜8000」、「0〜12000」の範囲の所定のデジタル値が設定される。
【0026】
18はPID演算部であり、目標設定値に応じてPID定数(比例帯PB、積分時間T、微分時間T)が予め設定されている。PID定数の一例としては、P=0.2、I=0.1、D=0.05等に設定される。
【0027】
尚、これ等のPID定数についても流体プロセスの運転開始の前回に安定運転した際のPID定数を記憶しておき、そのPID定数を次回の流体プロセスの運転開始時のPID定数として採用することも出来る。
【0028】
PID演算部18において、目標値設定部17で入力されたデジタル値を比例動作・積分動作・微分動作に応じて演算して、例えば、「0〜4000」、「0〜8000」、「0〜12000」の範囲の所定のデジタル値が出力される。
【0029】
そして、PID演算部18から出力されたデジタル値は、D/A(デジタル/アナログ)変換部19でアナログ値に変換される。
【0030】
例えば、アナログ値として電流値で「4mA〜20mA」の範囲で制御する場合には、各「0〜4000」、「0〜8000」、「0〜12000」の範囲のデジタル値を均等割して電流値とデジタル値とを関連付け、アナログ値として電圧値で「1V〜5V」の範囲で制御する場合には、各「0〜4000」、「0〜8000」、「0〜12000」の範囲のデジタル値を均等割して電圧値とデジタル値とを関連付けることが出来る。
【0031】
そして、D/A変換部19から出力された電流値や電圧値等のアナログ値からなる操作信号を、図1に示す原液供給電動弁5、濾過電動弁10、原液戻り電動弁14や原液供給ポンプ2を制御するインバータの周波数調整器等の制御部に伝達して原液1a、濾過液9a及び戻り原液の流れを夫々制御する。
【0032】
一方、各原液配管3、濾過液配管8及び原液戻り配管13に設けられた圧力センサ6、電磁流量計11,15からなる検出部において原液配管3を流通する原液1aの圧力、濾過液配管8及び原液戻り配管13を流通する濾過液9a及び戻り原液の流量が電流値や電圧値等のアナログ値からなる測定値として検出される。
【0033】
測定されたアナログ値は、例えば、電流値で「4mA〜20mA」の範囲、或いは、電圧値で「1V〜5V」の範囲で検出され、A/D(アナログ/デジタル)変換部20でデジタル値に変換される。
【0034】
例えば、アナログ値として電流値で「4mA〜20mA」の範囲で検出される場合には、各「0〜4000」、「0〜8000」、「0〜12000」の範囲のデジタル値を均等割して電流値とデジタル値とを関連付け、アナログ値として電圧値で「1V〜5V」の範囲で検出される場合には、各「0〜4000」、「0〜8000」、「0〜12000」の範囲のデジタル値を均等割して電圧値とデジタル値とを関連付けることが出来る。
【0035】
A/D変換部20から出力されたデジタル値は、比較器21において、目標値設定部17から出力されたデジタル値と比較され、その偏差が「0」になるようにPID演算部18に入力されるデジタル値が適宜修正される。以上がPID自動制御される場合のルーチンである。
【0036】
22はPID演算部18から出力された演算出力値となるデジタル値を随時記憶するPID演算出力値記憶部であり、その随時記憶したPID演算出力値をD/A変換部19に入力することが出来るように構成されている。
【0037】
即ち、流体プロセスの一例として、図1に示す濾過装置の濾過プロセスの運転を開始する際に、その濾過プロセスの運転開始の前回に安定運転した際の制御対象となる原液配管3を流通する原液1a、濾過液配管8を流通する濾過液9a及び原液戻り配管13を流通する戻り原液の流れを制御するPID演算部18の演算出力値を随時記憶したPID演算出力値記憶部22の最新の演算出力値を次回の濾過プロセスの運転開始時の演算出力値として所定の時間Tだけ固定化し、その後、所定の自動制御運転となるPID自動制御運転に切り換えるように構成されている。
【0038】
そして、図1に示す濾過装置の濾過プロセスの運転を開始する際に、PID演算出力値記憶部22に記憶された、その濾過プロセスの運転開始の前回に安定運転した際の最新の演算出力値となるデジタル値をD/A変換部19に入力し、所定の時間Tだけそのデジタル値に固定する。
【0039】
この間はPID演算部18から出力されるデジタル値はPID演算出力値記憶部22には随時記憶されるが、D/A変換部19には入力されず、該D/A変換部19にはPID演算出力値記憶部22から前回に安定運転した際の最新の演算出力値となる固定したデジタル値が入力される。
【0040】
そして、予め設定された所定の時間Tが経過した後は、PID演算出力値記憶部22から出力される前回に安定運転した際の最新の演算出力値となる固定したデジタル値が遮断され、PID演算部18から出力されるデジタル値がD/A変換部19に入力されてPID自動制御運転に切り換わるように構成されている。
【0041】
図3において、(a)は濾過液9aの制御特性を示す図であり、(b)は戻り原液の制御特性を示す図であり、(c)は原液1aの制御特性を示す図である。先ず、予め設定された濾過液排出目標値S、原液戻り目標値S原液供給目標値Sに応じて、D/A変換部19にはPID演算出力値記憶部22から前回に安定運転した際の最新の演算出力値となる固定したデジタル値が入力され、濾過液9a、戻り原液及び原液1aがPID手動制御される。
【0042】
本実施形態では、濾過液9aのPID手動制御は、図3(a)に示すように、T時間だけD/A変換部19にPID演算出力値記憶部22から前回に安定運転した際の最新の演算出力値となる固定したデジタル値が入力され、戻り原液のPID手動制御は、図3(b)に示すように、T時間(T>T)だけD/A変換部19にPID演算出力値記憶部22から前回に安定運転した際の最新の演算出力値となる固定したデジタル値が入力され、原液1aのPID手動制御は、図3(c)に示すように、T時間(T>T)だけD/A変換部19にPID演算出力値記憶部22から前回に安定運転した際の最新の演算出力値となる固定したデジタル値が入力される。
【0043】
その間、PID演算部18から出力された演算出力値となるデジタル値は適宜修正されており、このデジタル値に基づいてPID自動制御したと想定した場合の濾過液9a、戻り原液及び原液1aの制御特性は図3(a)〜(c)の二点鎖線で示すように比較的緩慢に変移する。
【0044】
そして、運転開始からT後に濾過液9aをPID手動制御からPID自動制御に切り換え、更にT後に戻り原液をPID手動制御からPID自動制御に切り換え、更にT後に原液1aをPID手動制御からPID自動制御に切り換える。
【0045】
これにより、干渉制御系からなる濾過装置の濾過プロセスであっても短時間で安定した運転開始が出来る。
【0046】
図4は図1に示す濾過装置における具体的な濾過プロセスの一例を説明する図であり、図4において、エア抜き工程からエア抜き循環工程に至る過程では、濾過電動弁10を初期開度で1分間、原液戻り電動弁14を初期開度で1分30秒間、原液供給電動弁5を初期開度で2分間固定する。
【0047】
その後、濾過工程において、濾過電動弁10をD/A変換部19にPID演算出力値記憶部22から前回に安定運転した際の最新の演算出力値となる固定したデジタル値を入力するPID手動制御で1分間、原液戻り電動弁14を同じくPID手動制御で1分30秒間、原液供給電動弁5を同じくPID手動制御で2分間固定する。
【0048】
そして、濾過工程開始から1分後に濾過液9aをPID手動制御からPID自動制御に切り換え、更に濾過工程開始から1分30秒後に戻り原液をPID手動制御からPID自動制御に切り換え、更に濾過工程開始から2分後に原液1aをPID手動制御からPID自動制御に切り換える。
【0049】
濾過工程を20分間実施した後、濾過運転を停止させ、濾過膜モジュール4を洗浄する逆洗工程を20秒間実施する。
【0050】
そして、逆洗運転を停止した後、PID演算出力値記憶部22に随時記憶した前回の濾過工程において安定運転した際のPID演算部18から出力される最新の演算出力値となるデジタル値を固定としてD/A変換部19に入力し、前記濾過工程に遷移する。
【0051】
尚、流体プロセスの制御対象を圧力、流量、温度、蒸気、湿度、濃度等に適用することが出来、圧力や流量が制御対象であれば制御部として電磁弁、電動弁、エアー弁、コントロールバルブ、或いはポンプや該ポンプを駆動制御するインバータの周波数調整器等を制御部として採用出来、温度が制御対象であればヒータ等が制御部として採用出来る。また、検出部としては圧力センサ、流量センサ、温度センサ、濃度センサ、湿度センサ等が採用出来る。
【0052】
また、本実施形態では、制御干渉系となる原液供給電動弁5、濾過電動弁10及び原液戻り電動弁14の3つを制御する場合の一例について説明したが、原液供給電動弁5、濾過電動弁10及び原液戻り電動弁14のうちの何れか1つを単独で制御する場合や、何れか2つを制御する場合にも適用可能であり、3つ以上の制御においても適用可能である。
【0053】
また、自動制御運転の一例として、比例動作・積分動作・微分動作を全部同時に働かせるPID制御を適用した場合について説明したが、液体や気体等の流体プロセスの自動制御において、測定値を目標値に一致させるために適用可能なオン/オフ動作制御、比例動作(P動作)制御、積分動作(I動作)制御、微分動作(D動作)制御等を適宜使用しても良いし、更には比例動作・積分動作を同時に働かせるPI制御等を使用しても良い。
【0054】
また、ギャップ付PID動作、ゲインスケジューリング制御、マルチPID動作、2自由度PID動作、サンプルPID動作等の自動制御運転に適用することでも良い。
【0055】
【発明の効果】
本発明は、上述の如き構成と作用とを有するので、前回の安定運転時の演算出力値を随時記憶して、その最新の演算出力値を次回の流体プロセスの運転開始時の演算出力値として所定の時間だけ固定化することで流体プロセスの運転開始時における立ち上り制御を安定化させることが出来、安定化した段階でPID制御等の所定の自動制御運転に切り換えることで、安定運転時に近い固定状態からPID制御等の所定の自動制御運転に切り換える時の偏差が小さい状態で安定的に切り換わり、安定運転を継続することが出来る。
【0056】
また、流体プロセス開始時の安定運転方法を、流体プロセスが、制御対象の制御点が複数存在して互いに干渉し合う制御干渉系からなる濾過装置の濾過プロセスに対して効果的に適用出来る。
【図面の簡単な説明】
【図1】本発明に係る流体プロセス開始時の安定運転方法が適用される濾過装置の構成の一例を示す図である。
【図2】本発明に係る流体プロセス開始時の安定運転方法を実施するための制御系のブロック図である。
【図3】本発明に係る流体プロセス開始時の安定運転方法が適用される濾過装置において制御干渉系である原液、濾過液、戻り原液の各制御特性を示す図である。
【図4】図1に示す濾過装置における濾過プロセスの一例を説明する図である。
【符号の説明】
1…原液タンク
1a…原液
2…原液供給ポンプ
3…原液配管
4…濾過膜モジュール
5…原液供給電動弁
6…圧力センサ
7…演算制御部
8…濾過液配管
9…濾過液タンク
9a…濾過液
10…濾過電動弁
11…電磁流量計
12…演算制御部
13…原液戻り配管
14…原液戻り電動弁
15…電磁流量計
16…演算制御部
17…目標値設定部
18…PID演算部
19…D/A変換部
20…A/D変換部
21…比較器
22…PID演算出力値記憶部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stable operation method when starting operation of a fluid process such as a liquid or a gas, and more particularly to a stable operation method suitable for starting operation of a filtration process of a filtration device including a control interference system. is there.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in automatic control of a fluid process such as liquid or gas, an on / off operation, a proportional operation (hereinafter, simply referred to as “P operation”), and an integral operation (Integral; , Simply referred to as "I operation"), a differential operation (hereinafter, simply referred to as "D operation"), and a PI operation or a proportional operation / integration operation in which a proportional operation / integral operation is simultaneously performed. A control is performed in which the measured value is made to coincide with the target value in a short time and stably using a PID operation or the like in which all the differential operations are performed at the same time, and a deviation generated by disturbance is eliminated as soon as possible.
[0003]
Also, a multi-PID operation has been proposed in which a plurality of PID constants (proportional band PB, integration time T I , differentiation time T D ) are switched according to a measured value or a target set value, and a combination of a plurality of target values and a PID constant is proposed. May be stored in the controller and recalled and used as needed (for example, see Non-Patent Document 1).
[0004]
In addition, in the cross-flow type microfiltration or ultrafiltration processing method in which the filtration is performed while circulating the undiluted solution, the input pressure of the undiluted solution to the filtration membrane is changed at the time of backwashing, air bubbling, or switching from the stopped state to the filtration processing start. There has also been proposed one that performs low-pressure operation for a predetermined time to protect the filtration membrane and perform stable operation (for example, see Patent Document 1).
[0005]
[Non-patent document 1]
Published by The Energy Conservation Center, Publishing Division, published February 5, 1992, Hiroshi Matsuyama, "Automatic control that anyone can understand", p. 85
[Patent Document 1]
JP-A-10-33957
[Problems to be solved by the invention]
However, in the above-described conventional example, when there are a plurality of control points to be controlled in the fluid process and interfere with each other, the control becomes unstable when the individual PID control is started up. There has been a problem that operation becomes impossible due to an abnormality.
[0007]
An object of the present invention is to solve the above-described problem, and an object of the present invention is to provide a stable operation method at the start of a fluid process that can stabilize start-up control at the start of operation of a fluid process. is there.
[0008]
[Means for Solving the Problems]
The stable operation method at the start of the fluid process according to the present invention for achieving the above object is a stable operation method at the start of the operation of the fluid process, and is performed when the stable operation is performed immediately before the start of the operation of the fluid process. The operation output value of the controlled object is stored as needed, the latest operation output value is fixed for a predetermined time as the operation output value at the start of the next operation of the fluid process, and then switched to a predetermined automatic control operation. And
[0009]
Since the present invention is configured as described above, the calculated output value during the previous stable operation is stored as needed, and the latest calculated output value is used as the calculated output value at the start of the next operation of the fluid process for a predetermined time. By fixing, the start-up control at the start of the operation of the fluid process can be stabilized, and by switching to a predetermined automatic control operation such as PID control at the stage of stabilization, the PID control can be performed from a fixed state close to the stable operation. , Etc., can be stably switched in a state where the deviation when switching to the predetermined automatic control operation is small, and the stable operation can be continued.
[0010]
Further, the stable operation method at the start of the fluid process can be effectively applied to a filtration process of a filtration device including a control interference system in which a plurality of control points to be controlled interfere with each other.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in the drawing, as an example of a stable operation method at the start of a fluid process according to the present invention, a fluid process is applied to a filtration process of a filtration device including a control interference system in which a plurality of control points to be controlled interfere with each other. One embodiment of the case will be specifically described.
[0012]
FIG. 1 is a diagram showing an example of the configuration of a filtration device to which a stable operation method at the start of a fluid process according to the present invention is applied, and FIG. 2 is control for implementing the stable operation method at the start of a fluid process according to the present invention. It is a block diagram of a system.
[0013]
FIG. 3 is a diagram showing control characteristics of a stock solution, a filtrate, and a stock solution that are control interference systems in a filtration device to which the stable operation method at the start of a fluid process according to the present invention is applied. FIG. It is a figure explaining an example of the filtration process in the filtration device shown.
[0014]
The filtration device shown in FIG. 1 is configured as a cross-flow type precision or ultrafiltration device that performs filtration while circulating undiluted liquid such as river water, lake water, groundwater, or seawater. A control interference system is constituted by automatically controlling the undiluted solution, the filtrate and the undiluted solution of the circulating system by the respective PID controls.
[0015]
In FIG. 1, reference numeral 1 denotes a stock solution tank, and reference numeral 2 denotes a stock solution supply pump for sending stock solution 1 a stored in the stock solution tank 1 to a filtration membrane module 4 via a stock solution pipe 3.
[0016]
An undiluted solution supply motor-operated valve 5 is provided in the undiluted solution pipe 3 from the undiluted solution supply pump 2 to the filtration membrane module 4 so that the opening area of the flow path can be continuously changed and controlled. A pressure sensor 6 serving as a detection unit is disposed downstream of the flow path.
[0017]
Reference numeral 7 denotes a calculation control unit that calculates an operation signal based on a pressure signal of the stock solution 1 a flowing through the stock solution pipe 3 detected by the pressure sensor 6 and controls the stock solution supply motor-operated valve 5.
[0018]
Reference numeral 4 denotes a filtration membrane module, in which a hollow fiber-shaped filtration membrane is accommodated in a case, and a plurality of filtration membrane modules 4 are actually connected in parallel to constitute a filtration membrane unit.
[0019]
When the undiluted solution 1a is supplied from the undiluted solution pipe 3 to the filtration membrane module 4, it is permeated from the outside to the inside of the hollow fiber membrane provided in the filtration membrane module 4 or permeated from the inside to the outside and filtered. The filtrate 9a is led to the filtrate pipe 8 and stored in the filtrate tank 9.
[0020]
In the filtrate pipe 8 from the filtration membrane module 4 to the filtrate tank 9, there is provided a filter motorized valve 10 capable of continuously changing and controlling the opening area of the flow path. An electromagnetic flowmeter 11 serving as a detection unit is disposed on the upstream side of the flow path.
[0021]
Reference numeral 12 denotes a calculation control unit that calculates an operation signal based on a flow signal of the filtrate 9 a flowing through the filtrate pipe 8 detected by the electromagnetic flow meter 11, and controls the motorized filtration valve 10.
[0022]
On the other hand, a part of the stock solution 1 a supplied from the stock solution pipe 3 to the filtration membrane module 4 flows through the outside or inside of the hollow fiber membrane of the filtration membrane module 4 as a circulating stock solution, and is led to the stock solution return pipe 13, and the stock solution tank It returns to 1.
[0023]
The undiluted liquid return valve 13 that can be controlled by continuously changing the opening area of the flow path is provided in the undiluted liquid return pipe 13 from the filtration membrane module 4 to the undiluted liquid tank 1. An electromagnetic flowmeter 15 serving as a detection unit is disposed on the upstream side of the flow path.
[0024]
Reference numeral 16 denotes a calculation control unit that calculates an operation signal based on a flow signal of the circulating return stock solution flowing through the stock solution return pipe 13 detected by the electromagnetic flow meter 15, and controls the stock solution return electric valve 14.
[0025]
Next, a configuration of a control system for implementing a stable operation method at the start of a filtration process will be described as an example of a fluid process according to the present invention with reference to FIG. In FIG. 2, each of the arithmetic control units 7, 12, and 16 is provided with a target value setting unit 17 that constitutes an input unit such as a touch panel. In the target value setting unit 17, for example, “0 to 4000” , "0-8000", and "0-12000".
[0026]
Reference numeral 18 denotes a PID calculation unit in which PID constants (proportional band PB, integration time T I , differentiation time T D ) are set in advance according to the target set value. As an example of the PID constant, P = 0.2, I = 0.1, D = 0.05 and the like are set.
[0027]
For these PID constants, the PID constant at the time of stable operation immediately before the start of the operation of the fluid process is stored, and the PID constant may be adopted as the PID constant at the start of the next operation of the fluid process. I can do it.
[0028]
The PID calculation unit 18 calculates the digital value input by the target value setting unit 17 according to the proportional operation / integral operation / differential operation, for example, “0-4000”, “0-8000”, “0” A predetermined digital value in the range of "12000" is output.
[0029]
The digital value output from the PID operation unit 18 is converted to an analog value by a D / A (digital / analog) conversion unit 19.
[0030]
For example, when controlling the current value as an analog value in the range of “4 mA to 20 mA”, digital values in the range of “0 to 4000”, “0 to 8000”, and “0 to 12000” are equally divided. When the current value and the digital value are associated with each other, and the voltage is controlled as an analog value in a range of “1 V to 5 V”, each of the ranges of “0 to 4000”, “0 to 8000”, and “0 to 12000” The digital value can be equally divided to associate the voltage value with the digital value.
[0031]
Then, an operation signal consisting of an analog value such as a current value or a voltage value output from the D / A conversion unit 19 is transmitted to the undiluted liquid supply electric valve 5, the filtration electric valve 10, the undiluted liquid return electric valve 14, the undiluted liquid supply, and the like. The flow is transmitted to a control unit such as a frequency adjuster of an inverter that controls the pump 2 to control the flows of the stock solution 1a, the filtrate 9a, and the returned stock solution, respectively.
[0032]
On the other hand, the pressure sensor 6 provided in each of the stock solution pipes 3, the filtrate solution pipe 8, and the stock solution return pipe 13, and the pressure of the stock solution 1 a flowing through the stock solution pipe 3 in the detection unit including the electromagnetic flowmeters 11 and 15, The flow rate of the filtrate 9a flowing through the undiluted liquid return pipe 13 and the undiluted liquid is detected as a measured value composed of an analog value such as a current value or a voltage value.
[0033]
The measured analog value is detected in, for example, a current value range of “4 mA to 20 mA” or a voltage value range of “1 V to 5 V”, and a digital value is detected by an A / D (analog / digital) conversion unit 20. Is converted to
[0034]
For example, when the current value is detected as an analog value in the range of “4 mA to 20 mA”, the digital value in the range of “0 to 4000”, “0 to 8000”, and “0 to 12000” is equally divided. When a current value and a digital value are associated with each other, and a voltage value is detected as an analog value in a range of “1 V to 5 V”, each of “0 to 4000”, “0 to 8000”, and “0 to 12000” The digital value of the range can be equally divided to associate the voltage value with the digital value.
[0035]
The digital value output from the A / D conversion unit 20 is compared in the comparator 21 with the digital value output from the target value setting unit 17 and input to the PID calculation unit 18 so that the deviation becomes “0”. The digital value to be input is appropriately modified. The above is the routine when the PID is automatically controlled.
[0036]
Reference numeral 22 denotes a PID calculation output value storage unit that stores a digital value serving as a calculation output value output from the PID calculation unit 18 as needed. The PID calculation output value stored as needed is input to the D / A conversion unit 19. It is configured to be able to.
[0037]
That is, as an example of the fluid process, when starting the operation of the filtration process of the filtration device shown in FIG. 1, the undiluted solution flowing through the undiluted solution pipe 3 to be controlled at the time of stable operation immediately before the start of the operation of the filtration process 1a, the latest calculation in the PID calculation output value storage unit 22 which stores the calculation output values of the PID calculation unit 18 for controlling the flow of the filtrate 9a flowing through the filtrate pipe 8 and the return stock solution flowing through the stock solution return pipe 13 as needed. The output value is fixed as a calculated output value at the start of the operation of the next filtration process for a predetermined time T, and thereafter, is switched to a PID automatic control operation which is a predetermined automatic control operation.
[0038]
Then, when the operation of the filtration process of the filtration device shown in FIG. 1 is started, the latest operation output value stored in the PID operation output value storage unit 22 when the stable operation was performed immediately before the operation of the filtration process was started. Is input to the D / A converter 19, and is fixed to the digital value for a predetermined time T.
[0039]
During this time, the digital value output from the PID operation unit 18 is stored in the PID operation output value storage unit 22 at any time, but is not input to the D / A conversion unit 19, and the D / A conversion unit 19 A fixed digital value that is the latest calculation output value when the stable operation was performed last time is input from the calculation output value storage unit 22.
[0040]
After a predetermined time T elapses, the fixed digital value output from the PID calculation output value storage unit 22, which is the latest calculation output value at the last stable operation, is cut off, and the PID The digital value output from the operation unit 18 is input to the D / A conversion unit 19, and the operation is switched to the PID automatic control operation.
[0041]
3A is a diagram showing the control characteristics of the filtrate 9a, FIG. 3B is a diagram showing the control characteristics of the undiluted solution, and FIG. 3C is a diagram showing the control characteristics of the undiluted solution 1a. First, in accordance with a preset filtrate discharge target value S 1 , a stock solution return target value S 2, and a stock solution supply target value S 3 , the D / A converter 19 stores a stable operation last time from the PID calculation output value storage unit 22. A fixed digital value, which is the latest calculation output value at the time of this, is input, and the filtrate 9a, the undiluted solution and the undiluted solution 1a are manually controlled by PID.
[0042]
In this embodiment, PID manual control of filtrate 9a, as shown in FIG. 3 (a), the time T 1 by the D / A converter 19 from the PID calculation output value storing unit 22 at the time of stable operation in the previous Recently is input the operation output value become fixed digital value, PID manual control of the return stock, as shown in FIG. 3 (b), T 2 hours (T 2> T 1) by the D / a converter 19 Is input from the PID calculation output value storage unit 22 as the latest calculation output value at the time of the last stable operation, and the PID manual control of the stock solution 1a is performed as shown in FIG. For 3 hours (T 3 > T 2 ), a fixed digital value which is the latest calculation output value at the time of the last stable operation is input from the PID calculation output value storage unit 22 to the D / A conversion unit 19.
[0043]
In the meantime, the digital value serving as the calculation output value output from the PID calculation unit 18 is appropriately corrected, and the control of the filtrate 9a, the undiluted solution and the undiluted solution 1a is assumed assuming that the PID is automatically controlled based on the digital value. The characteristics change relatively slowly as shown by the two-dot chain line in FIGS.
[0044]
Then, switching the filtrate 9a after T 1 from the start of operation from the PID manual control to PID automatic control, the further switched to the PID automatic control of the stock solution back after T 2 from the PID manual control, further PID manual control of the stock solution 1a after T 3 Switch to PID automatic control.
[0045]
Accordingly, stable operation can be started in a short time even in the filtration process of the filtration device including the interference control system.
[0046]
FIG. 4 is a view for explaining an example of a specific filtration process in the filtration device shown in FIG. 1. In FIG. 4, in the process from the air release step to the air release circulation step, the filtration motor-operated valve 10 is set at the initial opening. The undiluted liquid return electric valve 14 is fixed at the initial opening degree for 1 minute and 30 seconds, and the undiluted liquid supply electric valve 5 is fixed at the initial opening degree for 2 minutes for 1 minute.
[0047]
Thereafter, in the filtration step, PID manual control for inputting a fixed digital value which is the latest computation output value when the stable operation was performed last time from the PID computation output value storage unit 22 to the D / A conversion unit 19 of the filtration electric valve 10 in the filtration process , The stock solution return electric valve 14 is fixed by PID manual control for 1 minute and 30 seconds, and the stock solution supply electric valve 5 is also fixed by PID manual control for 2 minutes.
[0048]
One minute after the start of the filtration step, the filtrate 9a is switched from the PID manual control to the PID automatic control. Further, one minute and 30 seconds after the start of the filtration step, the filtrate is returned from the PID manual control to the PID automatic control, and the filtration step is started. After 2 minutes, the stock solution 1a is switched from PID manual control to PID automatic control.
[0049]
After performing the filtration step for 20 minutes, the filtration operation is stopped, and a backwashing step of cleaning the filtration membrane module 4 is performed for 20 seconds.
[0050]
Then, after the backwash operation is stopped, the digital value which is stored in the PID calculation output value storage unit 22 as needed and is the latest calculation output value output from the PID calculation unit 18 when the stable operation is performed in the previous filtration process is fixed. Is input to the D / A converter 19, and the process proceeds to the filtration step.
[0051]
The control target of the fluid process can be applied to pressure, flow rate, temperature, steam, humidity, concentration, and the like. If the pressure and flow rate are control targets, a solenoid valve, an electric valve, an air valve, a control valve is used as a control unit. Alternatively, a pump or a frequency adjuster of an inverter for driving and controlling the pump can be used as the control unit. If the temperature is to be controlled, a heater or the like can be used as the control unit. Further, a pressure sensor, a flow rate sensor, a temperature sensor, a concentration sensor, a humidity sensor, or the like can be used as the detection unit.
[0052]
Also, in the present embodiment, an example of controlling three of the undiluted liquid supply electric valve 5, the filtration electric valve 10, and the undiluted liquid return electric valve 14, which is a control interference system, has been described. The present invention can be applied to a case where one of the valve 10 and the undiluted liquid return electric valve 14 is controlled alone, or a case where any two of them are controlled, and is also applicable to three or more controls.
[0053]
Also, as an example of the automatic control operation, a case has been described in which PID control in which all of the proportional operation, the integral operation, and the differential operation are simultaneously performed is applied, but in the automatic control of a fluid process such as a liquid or a gas, the measured value is set to a target value. Applicable on / off operation control, proportional operation (P operation) control, integration operation (I operation) control, differential operation (D operation) control, etc., which can be used for matching, may be used as appropriate. -PI control or the like that simultaneously performs the integration operation may be used.
[0054]
Further, the present invention may be applied to automatic control operations such as a PID operation with a gap, a gain scheduling control, a multi-PID operation, a two-degree-of-freedom PID operation, and a sample PID operation.
[0055]
【The invention's effect】
Since the present invention has the above-described configuration and operation, the calculated output value during the previous stable operation is stored as needed, and the latest calculated output value is calculated as the calculated output value at the start of the next fluid process operation. The start-up control at the start of the fluid process operation can be stabilized by fixing for a predetermined time, and by switching to a predetermined automatic control operation such as PID control at the stage of stabilization, fixed operation close to stable operation The state is switched stably with a small deviation when switching from the state to a predetermined automatic control operation such as PID control, and stable operation can be continued.
[0056]
Further, the stable operation method at the start of the fluid process can be effectively applied to a filtration process of a filtration device including a control interference system in which a plurality of control points to be controlled interfere with each other.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a configuration of a filtration device to which a stable operation method at the start of a fluid process according to the present invention is applied.
FIG. 2 is a block diagram of a control system for implementing a stable operation method at the start of a fluid process according to the present invention.
FIG. 3 is a diagram showing control characteristics of a stock solution, a filtrate, and a stock solution that are control interference systems in a filtration device to which a stable operation method at the start of a fluid process according to the present invention is applied.
FIG. 4 is a diagram illustrating an example of a filtration process in the filtration device shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Undiluted solution tank 1a ... Undiluted solution 2 ... Undiluted solution supply pump 3 ... Undiluted solution piping 4 ... Filtration membrane module 5 ... Undiluted solution supply electric valve 6 ... Pressure sensor 7 ... Calculation control unit 8 ... Filtrate piping 9 ... Filtrate tank 9a ... Filtrate DESCRIPTION OF SYMBOLS 10 ... Filtration electric valve 11 ... Electromagnetic flow meter 12 ... Operation control part 13 ... Undiluted liquid return piping 14 ... Undiluted liquid return electric valve 15 ... Electromagnetic flow meter 16 ... Operation control part 17 ... Target value setting part 18 ... PID operation part 19 ... D / A converter 20 A / D converter 21 comparator 22 PID operation output value storage

Claims (2)

流体プロセスの運転を開始する際の安定運転方法であって、流体プロセスの運転開始の前回に安定運転した際の制御対象の演算出力値を随時記憶し、その最新の演算出力値を次回の流体プロセスの運転開始時の演算出力値として所定の時間だけ固定化し、その後、所定の自動制御運転に切り換えることを特徴とする流体プロセス開始時の安定運転方法。This is a stable operation method when starting the operation of the fluid process.The operation output value of the control target when the stable operation was performed immediately before the start of the operation of the fluid process is stored as needed, and the latest operation output value is stored in the next fluid operation. A stable operation method at the start of a fluid process, characterized in that the operation output value at the start of the process is fixed for a predetermined time and then switched to a predetermined automatic control operation. 前記流体プロセスは制御干渉系からなる濾過装置の濾過プロセスであることを特徴とする請求項1に記載の流体プロセス開始時の安定運転方法。The method according to claim 1, wherein the fluid process is a filtration process of a filtration device including a control interference system.
JP2002301691A 2002-10-16 2002-10-16 Stable operation method at the start of operation of the filtration device Expired - Fee Related JP4020747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301691A JP4020747B2 (en) 2002-10-16 2002-10-16 Stable operation method at the start of operation of the filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301691A JP4020747B2 (en) 2002-10-16 2002-10-16 Stable operation method at the start of operation of the filtration device

Publications (2)

Publication Number Publication Date
JP2004139235A true JP2004139235A (en) 2004-05-13
JP4020747B2 JP4020747B2 (en) 2007-12-12

Family

ID=32449976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301691A Expired - Fee Related JP4020747B2 (en) 2002-10-16 2002-10-16 Stable operation method at the start of operation of the filtration device

Country Status (1)

Country Link
JP (1) JP4020747B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100976334B1 (en) 2008-11-10 2010-08-16 엘에스산전 주식회사 PID control system and method thereof
JP2017049637A (en) * 2015-08-31 2017-03-09 シャープ株式会社 Control device
CN118521142A (en) * 2024-07-24 2024-08-20 四川省都江堰水利发展中心 Gate group flow remote regulation and control method based on fuzzy model

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100976334B1 (en) 2008-11-10 2010-08-16 엘에스산전 주식회사 PID control system and method thereof
JP2017049637A (en) * 2015-08-31 2017-03-09 シャープ株式会社 Control device
CN118521142A (en) * 2024-07-24 2024-08-20 四川省都江堰水利发展中心 Gate group flow remote regulation and control method based on fuzzy model

Also Published As

Publication number Publication date
JP4020747B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
US20070084795A1 (en) Method and system for treating wastewater
JP7536042B2 (en) Water purification device and method for controlling the water purification device
US20160102003A1 (en) Advanced control system for wastewater treatment plants with membrane bioreactors
JP2017221878A (en) Reverse osmosis membrane separation apparatus
JP2008188540A (en) Operation method of membrane filter system
JP5240322B2 (en) Water quality reforming system
JPH09299944A (en) Fresh water producing device having reverse-osmosis membrane
JP3579193B2 (en) Filtration treatment method and filtration device
JP5168923B2 (en) Operation method of membrane filtration system
JP2017221875A (en) Reverse osmosis membrane separation apparatus
JP2004139235A (en) Method for stable operation at the start of fluid process
JP2005144301A (en) Desalting apparatus and desalting method
JP3894034B2 (en) Concentration method of sludge
JPH10216486A (en) Operation controller for membrane separator
JPH08309350A (en) Water treatment method using reverse osmosis membrane
JP4293848B2 (en) Operation method of filtration device
JP6033118B2 (en) Reverse osmosis membrane device
KR101522254B1 (en) Two stage membrane filtration system having flexible recovery ratio and operation method thereof
JP3826829B2 (en) Water treatment method using membrane filtration
JPS63197596A (en) Method for controlling quality of made water of water making plant
JP3579187B2 (en) Filtration device
JP6394146B2 (en) Membrane filtration device
JP2010201335A (en) Water treatment system and water treatment method
JP2017221877A (en) Reverse osmosis membrane separation device
JP2017221876A (en) Reverse osmosis membrane separation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4020747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees