[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004136305A - Method and equipment of friction stir welding - Google Patents

Method and equipment of friction stir welding Download PDF

Info

Publication number
JP2004136305A
JP2004136305A JP2002301639A JP2002301639A JP2004136305A JP 2004136305 A JP2004136305 A JP 2004136305A JP 2002301639 A JP2002301639 A JP 2002301639A JP 2002301639 A JP2002301639 A JP 2002301639A JP 2004136305 A JP2004136305 A JP 2004136305A
Authority
JP
Japan
Prior art keywords
joining
friction stir
stir welding
tool
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002301639A
Other languages
Japanese (ja)
Other versions
JP4288055B2 (en
Inventor
Yoshikuni Kato
加藤 慶訓
Katsu Kodama
児玉 克
Yasuyuki Fujitani
藤谷 泰之
Yukio Doge
道下 幸雄
Nobumi Hiromoto
広本 悦己
Yujiro Watabe
渡部 裕二郎
Hiroaki Sato
佐藤 広明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002301639A priority Critical patent/JP4288055B2/en
Publication of JP2004136305A publication Critical patent/JP2004136305A/en
Application granted granted Critical
Publication of JP4288055B2 publication Critical patent/JP4288055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of friction stir welding and equipment of the friction stir welding in which a rotating tool detects the center line and the width of a gap in line, and further easily detects a weld defect. <P>SOLUTION: The method of friction stir welding by which a joining is executed with friction heat input to the zone to be joined of works while the shoulder face of the rotating tool, which is pressed against and made contact to at least either the front or the rear of the joined face of the works, is slid and rotated on the zone to be joined of the works, is characterized in that at least one of the surface defect, the inner defect of the works, the position of a front part to be joined and a joint gap is detected on the basis of the rotational angular position and the detection signal of a sensor while rotating the detection sensor of the joined state of the works by following the rotational force of the rotating tool, and preferably the the detection sensor is rotating at a rotating speed lower than that of the rotating tool. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、摩擦攪拌接合方法とその接合装置に係り、特に車両、航空機、船舶、建物等の構造体を製造する際のシングルスキンやダブルスキンパネル(二面中空パネル)の接合に用いる摩擦攪拌接合方法とその接合装置に関する。
【0002】
【従来の技術】
例えば特表平7−505090号公報(特許文献1)には、摩擦攪拌による固相接合方法として長尺材同士の新規な接合方法が開示されており、かかる接合方法は、加工物より実質的に硬い材質からなる回転工具を加工物の接合部に挿入し、該回転工具を回転させながら移動することにより、回転工具と加工物との間に生じる摩擦熱による塑性流動によって加工物を接合する接合方法で、接合部材を固相状態で、回転工具を回転させながら移動させつつ軟化させた固相部分を一体化しながら接合できるために、熱歪みがなく接合方向に対して実質的に無限に長い長尺材でもその長手方向に連続的に固相接合できる利点がある。さらに、回転ツ−ルと接合部材との摩擦熱による金属の塑性流動を利用した固相接合のため、接合部を溶融させることなく接合できる。また、加熱温度が低いため、接合後の変形が少ない。さらには、接合部は溶融されないため、欠陥が少ないなどの多くの利点がある。
【0003】
次に摩擦撹拌接合に使用される回転工具について説明する。摩擦撹拌接合に使用される回転工具は、前記特許文献1や特開2000−33484(特許文献2)に開示されているように、ブローブ型とボビンツール型の回転工具が存在し、プローブ型工具20は図7(A)に示すように、ショルダ部21とこのショルダ部21に備えられたピン軸22とを備えており、このショルダ部21は円形ショルダ面を有している。そして、複数の型材を突き合わせ、若しくは嵌合された状態の接合線表面より、前記回転工具20を回転させて、ピン軸22を被加工物の接合線に設けた不図示の孔に侵入させるとともに、複数の型材の接合線上で摺接回転する円形ショルダ面によって被加工物に摩擦熱が付与されるとともに、プローブ22周囲が塑性流動化し、この状態で回転工具20を接合線に沿って移動させることにより、接合線周囲が塑性流動化しつつ接合線に沿って2つの素材が圧力を受けながら撹拌混練され、プローブの後方側に移行する。この結果塑性流動した素材は後方側で摩擦熱を失って急速に冷却固化するので両パネル板は素材同士が混じり合って完全に一体化した状態で接合される。
【0004】
かかる回転工具20は前記ピン軸22が前進方向の強い抵抗を受けながら高速で回転するが、アルミ板、ダブルスキン型材などは型成形されるために、長尺のものほどその直線性が低下し、これを突き合わせたときギャップができてしまう。
このため、前記ワークの支持板上で突き合されたワーク同士を押し付けてギャップを可及的に小さくしておいて摩擦撹拌接合が行われる。
また、回転工具20が前記ギャップの中心を追跡するように回転工具20の位置が制御されるが、回転工具20のピン軸22のギャップ中心からのずれも避けられず、このずれの大きさも継ぎ手不良の大きな要因の一つであり、また、この回転工具の中心の上記ずれがギャップの許容限界とも関連することになる。
他方、摩擦撹拌接合による接合ワークについては、接合不良部があると、この部分がウィークポイントになり、ここから亀裂が入り、この亀裂が成長してワークの継ぎ手破損に至る可能性がある。このためワークの接合部全長について超音波探傷、目視検査などの検査を行って接合不良部を特定しこれを補修するという補修作業が行われる。
【0005】
そしてこのような接合不良は、前記ギャップが許容値を越えることことにより、回転工具のピン軸による撹拌作用で空気が巻き込まれるなどに起因して、その部分は内部欠陥、表面欠陥となりやすい。
【0006】
従って前記摩擦攪拌接合は、接合部全長を検査して不良部分を特定し、この不良部分を補修するのであるが、その特定に手間がかかるのみならず、かかる補修作業はワークが長尺化するほど煩雑で、結果的に繰り返し接合不良部を特定しこれを補修するという複数回の摩擦攪拌接合を行わなければならないという結果に陥る。
かかる課題を解決するために、特許第3274453号(特許文献3)において摩擦撹拌接合装置の接合工具よりも進行方向前方に設けたCCDカメラで、接合される隙間を常時撮影し、摩擦撹拌接合開始点からの前進距離を常時計測し、上記CCDカメラで撮影した隙間映像を画像処理し、該画像中の隙間の幅を演算し、この演算値を基準値と比較して、その結果を上記前進距離とともにメモリに記録する、摩擦撹拌接合における継ぎ手不良検知方法を提案している。
【0007】
【特許文献1】特表平7−505090号
【特許文献2】特開2000−33484
【特許文献3】特許第3274453号
【0008】
【発明が解決しようとする課題】
しかしながらかかる従来技術においては、CCDカメラが接合工具の進行方向前方位置に固定されているために、ギャップ(隙間映像)のみしか採取できず、該隙間映像よりギャップは測定できるが、接合直後の接合不良部を特定することは出来ない。
即ち、前記従来技術においては、画像中の隙間幅の演算値を基準値と比較して、その結果を上記前進距離とともにメモリに記録することにより、継ぎ手全長について、隙間異常及びその位置を把握して、その後の補修作業の接合不良の特定を容易にするものである。
従ってかかる技術においては、隙間異常から接合不良を予測するものであり、現実に接合不良があったかどうかを把握するものではなく、更に、全長にわたって接合した後でなければ、その結果が分からず、積極的に継ぎ手不良をインラインで把握するものではない。
本発明は、かかる従来技術の課題に鑑み、回転工具がインラインで前記ギャップの中心線、ギャップ幅を検出できるのみならず、接合不良もインラインで容易に検出できる摩擦攪拌接合方法とその装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明はかかる課題を解決するために、ワーク接合面の少なくとも表裏いずれかの一面に対して押圧、接触される回転工具のショルダ面をワーク接合部に摺動回転させながらワーク接合部への摩擦入熱により接合を行う摩擦攪拌接合方法において、
前記回転工具の回転力に追従させてワーク接合状態検出センサを工具周囲に回転させながら、該センサの回転角度位置と検出信号に基づいてワークの表面欠陥、内部欠陥、前方接合予定線位置及び接合ギャップの少なくとも1を検出する事を特徴とする。
尚、前記ワーク接合状態検出センサは後記実施例に示す渦電流センサでもよい。
【0010】
かかる発明によれば、ワーク接合状態検出センサを工具周囲に回転させながら、該センサの回転角度位置と検出信号に基づいてワークの表面欠陥、内部欠陥、前方接合予定線位置(開先位置)及び接合ギャップ(開先隙間)をインラインで検出出来るために、回転工具が前記ギャップの中心を追跡するように回転工具の位置制御も容易であり、このギャップ幅がギャップ許容限界異常の場合に、ギャップを狭める等の工夫も加えて設定できる。
たとえば本接合前に、前記回転工具の回転力に追従させてワーク接合状態検出センサを工具周囲に回転させながら、該センサの回転角度位置と検出信号に基づいてワーク前方接合予定線位置(開先位置)及び接合ギャップ(開先幅)を検出して、記憶装置に記憶させた後、その記憶結果に基づいて前記回転工具が前記ギャップの中心を追跡するように回転工具を制御装置でテイーチングさせて、更にこのギャップ幅がギャップ許容限界異常の場合に、万力等でこのギャップを狭めた後、本接合を行うこともできる。
【0011】
更に本接合時にワーク接合状態検出センサを工具周囲に回転させながら、該センサの回転角度位置と検出信号に基づいてワーク前方接合予定線位置(開先位置)及び接合ギャップ(開先幅)を検出回路で検出しながらテイーチングさせた送り方向と送り速度に基づいて本接合を行うとともに、
この際、接合直後のワークの表面欠陥、内部欠陥の少なくとも1の欠陥を検出する事により接合不良がインラインで把握でき、接合不良時における種々の要因をその場で把握でき、回転数や工具の押圧力の調整等がインラインで出来る。
【0012】
又回転工具は400rpm以上で回転するが、センサの検出サイクルはそれほど必要なく、且つセンサにノイズが発生しやすい。そこで前記検出センサが回転工具の回転速度に対し、減速させて回転スキャニングするのがよい。
【0013】
又ワーク接合部を挟んでその表面側と裏面側より夫々押圧ショルダを介して押圧力を加えてその接合部への摩擦入熱により接合を行う、いわゆるボビンツールにおける摩擦攪拌接合方法の場合は、前記表面側ショルダと裏面ショルダの夫々の回転力を受ける一対のワーク接合状態検出センサをワークを介して対面させて同期回転させてワークの表面欠陥、内部欠陥、開先位置及び開先ギャップの少なくとも1を検出するのがよい。
【0014】
かかる発明によればワークを挟んで送信センサと受信センサを対面配置できるために、たとえば前記の構成を採用する場合に、センサに渦電流センサを用いた場合に、送信センサ側に電流を流すと、母材(ワーク)側に、二次誘導起電力が作用し、これが更に受信センサの誘導起電力を発生させる。従って母材表面や内部に欠陥があると、誘導起電力が乱されるために、この不安定な信号に基づいて母材の表面及び内部欠陥を精度よく検出出来る。
【0015】
請求項5以降の発明は、前記発明を効果的に実施する装置に関する発明で、前記回転工具の回転力を受けて工具と同心状に回転するワーク接合状態検出センサと、該センサの回転角度位置と検出信号を受けてワークの表面欠陥、内部欠陥、前方接合予定線位置及び接合ギャップの少なくとも1を検出する検出回路を設けた事を特徴とする。この場合に前記表面状態検出センサと回転工具間が、減速機構を介して連結されているのがよい。
【0016】
更にボビンツールを用いた装置においては、前記表面側ショルダと裏面ショルダの夫々の回転力を受ける一対のワーク接合状態検出センサをワークを介して対面させて配設し、該一対のセンサを同期回転させる連結機構を夫々のショルダ外周側に設けて構成するのがよい。
【0017】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
図1は本発明の第1実施例に係る摩擦攪拌接合装置概略構成を示し、インプロセスで、接合欠陥を検出し、更に進行方向に位置する開先位置及びギャップ幅を検出できるようにしたものである。
本実施例は、ショルダ部21及びピン軸22を有するプルーブ型の回転工具20の外周面に固設させた連結具34を介して表面状態検出センサ30が回転工具20軸線と平行に、垂直軸線方向に向けて取り付けられている。
かかる表面状態検出センサ30は回転工具20の回転と同期させて一体的に協同回転するために、回転工具20周辺の母材1接合部表面状態をスキャニング出来る。
この際、表面状態検出センサ30の信号を取り込む検出回路40では回転工具20を駆動させるモータを含む駆動機構41より工具の回転角センサ42の信号も取り込み、回転工具20の接合進行方向(開先位置K)の周辺をスキャンする際に前記回転角センサ42の信号とあわせて開先位置KとギャップGを検出できる。
【0018】
即ち表面状態検出センサ30が開先位置Kを通過する際には母材1表面が不連続となるために、図5(A)の出力の検出信号が得られる。
検出した信号と回転角センサ42よりの工具回転角及び工具送り速度検出信号より開先位置Kを知ることが出来る。
又図5(A)に示す検出信号の幅gは、図1(B)に示す開先のギヤップ幅Gと相関性があるために、信号の幅gの大きさから開先ギャップの幅Gを推定できる。
又表面状態検出センサ30が回転工具20進行方向の後ろ側のワーク1接合直後の接合部P表面上をスキャニングする際には接合部Pの継ぎ手表面に欠陥Sがあれば図5(B)のように検出信号が得られ、欠陥Sの発生を検出できる。
【0019】
図2は図1の実施例の変型例で回転工具20と同心状に回転減速機構25を工具20外周に取り付け、工具の回転力を大幅に減速して、表面状態検出センサ30に周回力を加えるもので、図3は図2の斜視図である。
回転工具20は400rpm以上で回転するが、表面状態検出センサ30の検出サイクルはそれほど必要なく、且つ表面状態検出センサ30にノイズが発生しやすい。そこで回転減速機構25を直接回転工具20に取り付けて前記表面状態検出センサ30を減速させて回転スキャニングする。
そして前記減速機構25は回転工具20の胴部途中を2つに分割してその中心軸線に軸歯車26を取り付け、該軸歯車26に複数の減速歯車27を噛み合わせ、表面状態検出センサ30が外周に取り付けられているリング状連結枠28の内周歯のサンギア28aに歯合させる。
そして前記リング状連結枠28は、固定カバー29の平面円板部29a外周に周回自在に係合させており、更に固定カバー29の平面円板部29a内周端には固定カバー29の筒部29bが上方に垂設されて回転工具20に固設されている。
【0020】
かかる実施例によれば前記表面状態検出センサ30と回転工具20間が、減速機構25を介して連結されているために、前記表面状態検出センサ30が回転工具20の回転速度に対し、減速された状態で回転させることが出来る。この結果回転工具20は400rpm以上で回転するが、表面状態検出センサ30の検出サイクルにあわせて減速させることにより、前記表面状態検出センサ30にノイズが発生することなく、最適なサイクルで回転スキャニングさせることができる。
【0021】
図6はかかる検知機構を組み込んだ本発明の制御システムを示す全体概要ブロック図である。
たとえば本実施例の制御方法は、本接合前に、前記回転工具20の回転力に追従させてワーク接合の表面状態検出センサ30を工具周囲に回転させながら、該表面状態検出センサ30の回転角度位置と検出信号に基づいてワーク前方接合予定線位置(開先位置K)及び接合ギャップ(開先幅G)を検出回路40で検出しながら前もって定めた送り方向に基づいて予備走行させて、記憶装置44に記憶させた後、その記憶装置44よりの記憶結果に基づいて前記回転工具20が前記ギャップ幅Gの中心を追跡するように回転工具20の送り速度と送り方向を制御装置43で修正且つテイーチングさせて、更にこのギャップ幅Gがギャップ許容限界異常の場合に、万力等でこのギャップ幅Gを狭める。
【0022】
本接合時には、ワーク接合の表面状態検出センサ30を工具20周囲に回転させながら、2つのセンサ30、42の回転角度位置と検出信号に基づいてワーク前方接合予定線位置(開先位置K)及び接合ギャップ(開先幅G)を検出回路40で検出しながら制御装置43よりのテイーチングされた送り方向と送り速度に基づいて本接合を行う。
更に本接合時は該2つのセンサ30、42の回転角度位置と検出信号により表面状態検出センサ30が接合直後のワークの接合部位を通過した毎に、表面欠陥Sや内部欠陥Sの欠陥を検出する事により接合不良がインラインで把握でき、接合不良時における種々の要因を制御装置43で解析しながら、送り方向や送り速度更には回転速度、更には工具の押圧力の調整等をフィードバック制御しながら本接合運転が出来る。
【0023】
図4はボビンツールにおいて、母材の表面及び内部欠陥と開先位置及び開先ギャップを検出する他の実施例である。
ボビンツールの場合は、図7(B)に符合10にて示すように、接合するワークの表裏両面を挟持するように間隔を設けた一対のショルダ10A、10Bが設けられているとともに、該上下一対のショルダ10A、10B間にピン軸11が設けられている。
そしてかかるボビンツール10には、11により上下一対のショルダ10A、10B間隔が固定されているもの(前記特許文献1)のほかに、下側ショルダのピン軸11が上側ショルダ内を貫通して該ショルダ間の押圧距離が可変のボビンツールを用いた摩擦攪拌接合装置(前記特許文献3)も提案されている。
【0024】
かかる工具は下側ショルダ10Bと上側ショルダ10Aが同期して回転するものが多く、このため、両ショルダ10A、10B間のワークを介して対面する位置に夫々連結部材を介して一対の渦電流センサ31(受信側)、32(送信側)を取り付けることにより、渦電流センサ31、32が対面して同期回転する。
【0025】
渦電流センサ31、32の原理を図4(C)に基づいて説明するに、送信側センサ31側に電流を流すと、母材(ワーク)側に、二次誘導起電力が作用し、これが更に受信側センサ32の誘導起電力を発生させる。従って母材(ワーク)1の接合部位表面や内部に欠陥があると、誘導起電力が乱されるために、この不安定な信号に基づいて母材1の表面及び内部欠陥を検出出来る。
この場合、送信側センサ31と受信側センサ32は、下側と上側のショルダ10A、10Bのいずれの側に設けてもよいが、ワーク1の表面側を倣い機能とし、前記表面側(上側)ショルダ10Aの押圧力を前記裏面(下側)ショルダ10Bの押圧力より小にして裏面ショルダ10Bは入熱、表面ショルダ10Aは倣いの役割を持たせている場合は、ワーク1表面側の接合面は平坦であるために、その平坦面側を受信側にするとノイズ発生が低減される。
勿論本実施例も接合するワークの表裏両面を挟持するように間隔を設けた一対のショルダ10A、10B夫々に回転減速機構を取り付け、工具の回転力を大幅に減速して、夫々のセンサに周回力を加えるように構成するのがよい。
【0026】
【発明の効果】
以上記載のごとく本発明によれば、ワーク接合状態検出センサを工具周囲に回転させながら、該センサの回転角度位置と検出信号に基づいてワークの表面欠陥、内部欠陥、前方接合予定線位置(開先位置)及び接合ギャップ(開先隙間)をインラインで検出出来るために、回転工具が前記ギャップの中心を追跡するように回転工具の位置制御も容易であり、このギャップ幅がギャップ許容限界異常の場合に、ギャップを狭める等の工夫も加えて設定できる。
この際、接合直後のワークの表面欠陥、内部欠陥の少なくとも1の欠陥を検出する事により接合不良がインラインで把握でき、接合不良時における種々の要因をその場で把握でき、回転数や工具の押圧力の調整等がインラインで出来る。
【0027】
又前記検出センサが回転工具の回転速度に対し、減速させて回転スキャニングすることにより、回転工具の回転力と無関係にセンサの検出サイクル合わせたスキャニングが可能となる。
【0028】
又いわゆるボビンツールにおける摩擦攪拌接合方法の場合は、前記表面側ショルダと裏面ショルダの夫々の回転力を受ける一対のワーク接合状態検出センサをワークを介して対面させて同期回転させてワークの表面欠陥、内部欠陥、開先位置及び開先ギャップの少なくとも1を検出するのが好ましい。
【0029】
かかる発明によればワークを挟んで送信センサと受信センサを対面配置できるために、たとえば前記の構成を採用する場合に、センサに渦電流センサを用いた場合に、送信センサ側に電流を流すと、母材(ワーク)側に、二次誘導起電力が作用し、これが更に受信センサの誘導起電力を発生させる。従って母材表面や内部に欠陥があると、誘導起電力が乱されるために、この不安定な信号に基づいて母材の表面及び内部欠陥を精度よく検出出来る。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る摩擦攪拌接合装置概略構成を示し、インプロセスで、接合欠陥を検出し、更に進行方向に位置する開先位置及びギャップ幅を検出できるようにしたものである。図中(A)は正面図、(B)は斜視図である。
【図2】図1の実施例の変型例を示す正面概要図で、回転工具と同心状に回転減速機構を工具外周に取り付け、工具の回転力を大幅に減速して、表面状態検出センサに周回力を加えるものである。
【図3】図2の斜視図である。
【図4】ボビンツールにおいて、母材の表面及び内部欠陥と開先位置及び開先ギャップを検出する他の実施例に係る摩擦攪拌接合装置概略構成を示し、(A)は正面図、(B)は斜視図、(C)は測定原理を示す概要図である。
【図5】センサの検出信号を示すグラフ図で、(A)は開先位置とギャップを検出するもの、(B)は表面欠陥を検出するものである。
【図6】前記各実施例の検知機構を組み込んだ本発明の制御システムの全体概要ブロック図である。
【図7】従来技術に係る摩擦撹拌接合のプローブツールとボビンツールの基本構成図である。
【符号の説明】
1  母材
10A、10B ボビンツール
20 回転工具
25 回転減速機構
30 表面状態検出センサ
34 連結具
40 検出回路
43 制御装置
44 記憶装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a friction stir welding method and a welding apparatus therefor, and more particularly to friction stir welding used for joining a single-skin or double-skin panel (double-sided hollow panel) when manufacturing a structure such as a vehicle, an aircraft, a ship, or a building. The present invention relates to a joining method and a joining device.
[0002]
[Prior art]
For example, Japanese Patent Application Publication No. 7-505090 (Patent Document 1) discloses a novel joining method of long materials as a solid-state joining method by friction stirring, and such a joining method is substantially more effective than a workpiece. By inserting a rotating tool made of a hard material into the joint of the workpiece and moving the rotating tool while rotating, the workpiece is joined by plastic flow due to frictional heat generated between the rotating tool and the workpiece. In the joining method, the joining member can be joined in the solid state while rotating and rotating the rotary tool while joining the softened solid part, so there is no thermal distortion and virtually infinite in the joining direction There is an advantage that solid phase bonding can be performed continuously in the longitudinal direction even for a long material. Furthermore, since solid-state welding is performed using plastic flow of metal due to frictional heat between the rotary tool and the joining member, joining can be performed without melting the joining portion. Further, since the heating temperature is low, deformation after bonding is small. Furthermore, since the joint is not melted, there are many advantages such as fewer defects.
[0003]
Next, a rotary tool used for friction stir welding will be described. As disclosed in Patent Document 1 and JP-A-2000-33484 (Patent Document 2), rotary tools used for friction stir welding include a probe type rotary tool and a bobbin tool type rotary tool, and a probe type tool. As shown in FIG. 7A, 20 has a shoulder portion 21 and a pin shaft 22 provided on the shoulder portion 21. The shoulder portion 21 has a circular shoulder surface. Then, the rotating tool 20 is rotated from the surface of the joint line in a state where a plurality of mold members are abutted or fitted, and the pin shaft 22 is caused to enter a hole (not shown) provided in the joint line of the workpiece. The frictional heat is imparted to the workpiece by the circular shoulder surface which rotates and slides on the joining line of the plurality of mold members, and the area around the probe 22 plastically fluidizes, and in this state, the rotary tool 20 is moved along the joining line. As a result, the two materials are stirred and kneaded while receiving pressure along the joining line while being plastically fluidized around the joining line, and moved to the rear side of the probe. As a result, the plastically flowed material loses frictional heat on the rear side and rapidly cools and solidifies, so that both panel plates are joined together in a state where the materials are mixed together and are completely integrated.
[0004]
The rotating tool 20 rotates at a high speed while the pin shaft 22 receives strong resistance in the forward direction. However, since the aluminum plate, the double skin type material and the like are formed by molding, the longer the tool, the lower its linearity. When this is matched, a gap is created.
For this reason, the friction stir welding is performed with the gaps made as small as possible by pressing the butted workpieces on the support plate of the workpieces.
Further, the position of the rotary tool 20 is controlled so that the rotary tool 20 tracks the center of the gap. However, a deviation of the pin shaft 22 of the rotary tool 20 from the center of the gap is inevitable. This is one of the major causes of the failure, and the above-mentioned deviation of the center of the rotary tool is also related to the allowable limit of the gap.
On the other hand, in the case of a welded workpiece by friction stir welding, if there is a defective welding portion, this portion becomes a weak point, a crack is formed from this portion, and this crack may grow and lead to a joint failure of the workpiece. For this reason, a repair operation is performed in which an inspection such as an ultrasonic flaw detection and a visual inspection is performed on the entire joint portion of the work to identify a defective joint portion and repair the defective joint portion.
[0005]
Such poor bonding is likely to cause internal defects and surface defects, for example, when the gap exceeds the allowable value and air is entrained by the stirring action of the rotating tool pin shaft.
[0006]
Therefore, in the friction stir welding, a defective portion is specified by inspecting the entire length of the welded portion and the defective portion is repaired. However, not only is it troublesome to specify the defective portion, but also such a repair work requires a long work. As a result, friction stir welding must be performed a plurality of times to repeatedly identify defective portions and repair them.
In order to solve this problem, in Japanese Patent No. 3274453 (Patent Document 3), a gap to be welded is constantly photographed by a CCD camera provided in front of a welding tool of a friction stir welding apparatus in a traveling direction, and friction stir welding is started. The forward distance from the point is constantly measured, the gap image captured by the CCD camera is image-processed, the width of the gap in the image is calculated, the calculated value is compared with a reference value, and the result is compared with the forward distance. We propose a joint failure detection method in friction stir welding, which is recorded in the memory together with the distance.
[0007]
[Patent Document 1] Japanese Patent Application Laid-Open No. Hei 7-505090 [Patent Document 2] JP-A-2000-33484
[Patent Document 3] Japanese Patent No. 3274453
[Problems to be solved by the invention]
However, in the prior art, since the CCD camera is fixed at a position in front of the joining tool in the traveling direction, only the gap (gap image) can be collected, and the gap can be measured from the gap image. The defective part cannot be specified.
That is, in the prior art, the calculated value of the gap width in the image is compared with a reference value, and the result is recorded in a memory together with the advance distance, so that the gap abnormality and the position of the entire joint can be grasped. Thus, it is possible to easily identify a joint failure in the subsequent repair work.
Therefore, in such a technique, the joining failure is predicted from the gap abnormality, and it is not intended to grasp whether or not the joining failure has actually occurred. It is not to grasp the joint failure inline.
The present invention has been made in view of the problems of the related art, and provides a friction stir welding method and a rotating stir welding method in which a rotary tool can not only detect a center line and a gap width of the gap in-line, but also easily detect a joining failure in-line. Is to do.
[0009]
[Means for Solving the Problems]
In order to solve this problem, the present invention presses against at least one of the front and back surfaces of the work joining surface, and slides and rotates the shoulder surface of the rotating tool to be brought into contact with the work joining portion while friction is applied to the work joining portion. In the friction stir welding method of joining by heat input,
While rotating the workpiece joining state detection sensor around the tool by following the rotational force of the rotating tool, the surface defect, internal defect, forward joining scheduled line position and joining of the workpiece based on the rotation angle position and the detection signal of the sensor. It is characterized in that at least one of the gaps is detected.
Incidentally, the workpiece bonding state detection sensor may be an eddy current sensor described in the embodiment described later.
[0010]
According to this invention, while rotating the work joining state detection sensor around the tool, based on the rotation angle position of the sensor and the detection signal, the surface defect of the work, the internal defect, the position of the expected joining line (groove position) and Since the joining gap (groove gap) can be detected in-line, it is easy to control the position of the rotating tool so that the rotating tool tracks the center of the gap. It can also be set by adding measures such as narrowing.
For example, before the main joining, the workpiece joining state detection sensor is rotated around the tool while following the rotational force of the rotary tool, and based on the rotation angle position and the detection signal of the sensor, the workpiece front joining scheduled line position (groove) Position) and the joining gap (groove width) are detected and stored in the storage device. Based on the storage results, the rotating tool is taught by the control device so that the rotating tool tracks the center of the gap. In addition, when the gap width is the gap allowable limit abnormality, the main joining can be performed after the gap is narrowed by a vice or the like.
[0011]
Further, while rotating the workpiece joining state detection sensor around the tool at the time of the final joining, the position of the scheduled joining line in front of the workpiece (groove position) and the joining gap (groove width) are detected based on the rotation angle position of the sensor and the detection signal. While performing the main joining based on the feed direction and feed speed that were taught while detecting with the circuit,
At this time, by detecting at least one of the surface defect and the internal defect of the work immediately after the joining, the joining failure can be grasped in-line, and various factors at the time of the joining failure can be grasped on the spot, and the rotational speed and the tool Adjustment of pressing force etc. can be done in-line.
[0012]
Although the rotating tool rotates at 400 rpm or more, the detection cycle of the sensor is not so necessary, and noise is easily generated in the sensor. Therefore, it is preferable that the detection sensor performs the rotational scanning while reducing the rotational speed of the rotary tool.
[0013]
In addition, in the case of a friction stir welding method in a so-called bobbin tool, a welding is performed by applying a pressing force via a pressing shoulder from the front side and the back side of the work joining section, respectively, and applying frictional heat to the joining section. At least one of a surface defect, an internal defect, a groove position, and a groove gap of the work by rotating a pair of work bonding state detection sensors that receive respective rotational forces of the front side shoulder and the back side shoulder via the work and face each other. 1 should be detected.
[0014]
According to this invention, since the transmission sensor and the reception sensor can be arranged face-to-face with the work interposed therebetween, for example, when the above-described configuration is employed, when an eddy current sensor is used as the sensor, when a current flows to the transmission sensor side Then, a secondary induced electromotive force acts on the base material (work) side, which further generates an induced electromotive force of the receiving sensor. Therefore, if there is a defect on the surface or inside of the base material, the induced electromotive force is disturbed, so that the surface and internal defects of the base material can be accurately detected based on the unstable signal.
[0015]
The invention according to claim 5 and subsequent claims is an invention relating to an apparatus for effectively carrying out the invention, wherein a workpiece joining state detection sensor which rotates concentrically with a tool by receiving a rotation force of the rotary tool, and a rotational angle position of the sensor And a detection circuit for detecting at least one of a surface defect, an internal defect, a scheduled forward joining line position and a joining gap of the work in response to the detection signal. In this case, the surface state detection sensor and the rotary tool are preferably connected via a speed reduction mechanism.
[0016]
Further, in an apparatus using a bobbin tool, a pair of work joining state detection sensors which receive respective rotational forces of the front side shoulder and the back side shoulder are arranged to face each other via a work, and the pair of sensors are synchronously rotated. It is preferable that a connecting mechanism to be provided is provided on the outer peripheral side of each shoulder.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail using embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples.
FIG. 1 shows a schematic configuration of a friction stir welding apparatus according to a first embodiment of the present invention, in which a welding defect can be detected in an in-process, and a groove position and a gap width located in a traveling direction can be detected. It is.
In the present embodiment, the surface state detection sensor 30 is connected to a vertical axis along the axis of the rotary tool 20 via a connecting member 34 fixed to the outer peripheral surface of the probe type rotary tool 20 having the shoulder portion 21 and the pin shaft 22. Installed facing.
Since the surface state detecting sensor 30 integrally and cooperatively rotates in synchronization with the rotation of the rotary tool 20, the surface state of the base material 1 joint around the rotary tool 20 can be scanned.
At this time, the detection circuit 40 which takes in the signal of the surface state detection sensor 30 also takes in the signal of the tool rotation angle sensor 42 from the drive mechanism 41 including the motor for driving the rotary tool 20 and joins the rotating tool 20 in the joining direction (groove). When scanning the periphery of the position K), the groove position K and the gap G can be detected together with the signal of the rotation angle sensor 42.
[0018]
That is, when the surface state detection sensor 30 passes through the groove position K, the surface of the base material 1 becomes discontinuous, so that the detection signal of the output of FIG.
The groove position K can be known from the detected signal, the tool rotation angle from the rotation angle sensor 42, and the tool feed speed detection signal.
Since the width g of the detection signal shown in FIG. 5A is correlated with the gap width G of the groove shown in FIG. 1B, the width g of the groove gap is calculated based on the signal width g. Can be estimated.
When the surface condition detection sensor 30 scans the surface of the joint P immediately after the joining of the workpiece 1 on the rear side in the traveling direction of the rotary tool 20, if there is a defect S on the joint surface of the joint P in FIG. Thus, the detection signal is obtained, and the occurrence of the defect S can be detected.
[0019]
FIG. 2 shows a modified example of the embodiment of FIG. 1, in which a rotation reduction mechanism 25 is attached to the outer periphery of the tool 20 concentrically with the rotation tool 20, and the rotation force of the tool is greatly reduced. In addition, FIG. 3 is a perspective view of FIG.
Although the rotary tool 20 rotates at 400 rpm or more, the detection cycle of the surface state detection sensor 30 is not so necessary, and noise is easily generated in the surface state detection sensor 30. Therefore, the rotation speed reduction mechanism 25 is directly attached to the rotary tool 20, and the surface state detection sensor 30 is decelerated to perform rotation scanning.
The reduction mechanism 25 divides the middle of the body of the rotary tool 20 into two parts, attaches a shaft gear 26 to the center axis thereof, engages the plurality of reduction gears 27 with the shaft gear 26, and the surface state detection sensor 30 The ring-shaped connection frame 28 attached to the outer periphery is meshed with the sun gear 28a of the inner peripheral teeth.
The ring-shaped connecting frame 28 is rotatably engaged with the outer periphery of the flat disk portion 29a of the fixed cover 29, and further, the inner peripheral end of the flat disk portion 29a of the fixed cover 29 has a cylindrical portion of the fixed cover 29. 29b is suspended upward and fixed to the rotary tool 20.
[0020]
According to this embodiment, since the surface state detection sensor 30 and the rotary tool 20 are connected via the speed reduction mechanism 25, the surface state detection sensor 30 is decelerated with respect to the rotation speed of the rotary tool 20. It can be rotated in a state where As a result, the rotary tool 20 rotates at 400 rpm or more. However, the rotating tool 20 is decelerated in accordance with the detection cycle of the surface state detection sensor 30, so that the surface state detection sensor 30 is rotated and scanned in an optimal cycle without generating noise. be able to.
[0021]
FIG. 6 is an overall schematic block diagram showing a control system of the present invention incorporating such a detection mechanism.
For example, the control method according to the present embodiment is configured such that the rotation angle of the surface state detection sensor 30 is adjusted while rotating the surface state detection sensor 30 of the workpiece connection around the tool by following the rotational force of the rotary tool 20 before the main bonding. Based on the position and the detection signal, the workpiece pre-joining line position (groove position K) and the joining gap (groove width G) are detected by the detection circuit 40 and preliminarily traveled based on a predetermined feeding direction and stored. After storing in the device 44, the control device 43 corrects the feed speed and the feed direction of the rotary tool 20 based on the storage result from the storage device 44 so that the rotary tool 20 tracks the center of the gap width G. In addition, the teaching is performed, and when the gap width G is in the gap allowable limit abnormality, the gap width G is reduced by a vice or the like.
[0022]
At the time of the main joining, the workpiece front joining scheduled line position (groove position K) and the workpiece front joining position are determined based on the rotation angle positions and the detection signals of the two sensors 30 and 42 while rotating the workpiece state surface detection sensor 30 around the tool 20. While the joining circuit (groove width G) is detected by the detection circuit 40, the main joining is performed based on the feed direction and the feed speed taught by the control device 43.
The present joint at the time of each of the surface state detecting sensor 30 by the rotational angular position and the detected signal of the two sensors 30, 42 has passed the junction of the right after joining workpieces, surface defects defect S 1 and internal defects S 2 Is detected in-line, and various factors at the time of the joint failure are analyzed by the control device 43, and the feed direction, the feed speed, the rotational speed, and the adjustment of the pressing force of the tool are fed back. Main joining operation can be performed while controlling.
[0023]
FIG. 4 shows another embodiment of the bobbin tool for detecting the surface and internal defects of the base material, the groove position and the groove gap.
In the case of the bobbin tool, as shown by reference numeral 10 in FIG. 7B, a pair of shoulders 10A and 10B spaced from each other so as to sandwich the front and back surfaces of the workpiece to be joined are provided, and A pin shaft 11 is provided between the pair of shoulders 10A and 10B.
In addition to the bobbin tool 10, a pair of upper and lower shoulders 10A and 10B are fixed by 11 (Patent Document 1), and a pin shaft 11 of a lower shoulder penetrates through the upper shoulder. A friction stir welding apparatus using a bobbin tool with a variable pressing distance between shoulders (Patent Document 3) has also been proposed.
[0024]
In many of such tools, the lower shoulder 10B and the upper shoulder 10A rotate in synchronization with each other. For this reason, a pair of eddy current sensors are provided via connecting members at positions facing each other via the work between the shoulders 10A and 10B. By attaching 31 (reception side) and 32 (transmission side), the eddy current sensors 31 and 32 rotate synchronously facing each other.
[0025]
The principle of the eddy current sensors 31 and 32 will be described with reference to FIG. 4C. When an electric current is supplied to the transmitting sensor 31, the secondary induced electromotive force acts on the base material (work) side. Further, an induced electromotive force of the receiving sensor 32 is generated. Therefore, if there is a defect on the surface or inside of the joining portion of the base material (work) 1, the induced electromotive force is disturbed, and the surface and internal defects of the base material 1 can be detected based on this unstable signal.
In this case, the transmission-side sensor 31 and the reception-side sensor 32 may be provided on any of the lower and upper shoulders 10A and 10B. When the pressing force of the shoulder 10A is smaller than the pressing force of the back (lower) shoulder 10B, the back shoulder 10B has a function of inputting heat and the front shoulder 10A has a function of copying, and the joining surface on the front surface side of the work 1 is used. Is flat, the noise generation is reduced by setting the flat surface side to the receiving side.
Of course, also in this embodiment, a rotation reduction mechanism is attached to each of the pair of shoulders 10A and 10B spaced apart so as to sandwich both the front and back surfaces of the workpiece to be joined, and the rotation force of the tool is greatly reduced, and the rotation of each sensor is performed. It is good to be configured to apply force.
[0026]
【The invention's effect】
As described above, according to the present invention, while rotating the work joining state detection sensor around the tool, based on the rotation angle position of the sensor and the detection signal, the surface defect of the work, the internal defect, and the position of the scheduled forward joining line (opening position). Position) and the joint gap (groove gap) can be detected in-line, so that the position of the rotating tool can be easily controlled so that the rotating tool tracks the center of the gap. In such a case, it can be set by adding a device such as narrowing the gap.
At this time, by detecting at least one of the surface defect and the internal defect of the work immediately after the joining, the joining failure can be grasped in-line, and various factors at the time of the joining failure can be grasped on the spot, and the rotational speed and the tool Adjustment of pressing force etc. can be done in-line.
[0027]
In addition, since the detection sensor performs the rotational scanning while decelerating the rotational speed of the rotary tool, it is possible to perform scanning in accordance with the detection cycle of the sensor regardless of the rotational force of the rotary tool.
[0028]
In the case of a friction stir welding method using a so-called bobbin tool, a pair of work joining state detection sensors receiving respective rotational forces of the front side shoulder and the back side shoulder face each other via the work and are rotated synchronously to perform surface defect of the work. Preferably, at least one of an internal defect, a groove position and a groove gap is detected.
[0029]
According to this invention, since the transmission sensor and the reception sensor can be arranged face-to-face with the work interposed therebetween, for example, when the above-described configuration is employed, when an eddy current sensor is used as the sensor, when a current flows to the transmission sensor side Then, a secondary induced electromotive force acts on the base material (work) side, which further generates an induced electromotive force of the receiving sensor. Therefore, if there is a defect on the surface or inside of the base material, the induced electromotive force is disturbed, so that the surface and internal defects of the base material can be accurately detected based on the unstable signal.
[Brief description of the drawings]
FIG. 1 shows a schematic configuration of a friction stir welding apparatus according to a first embodiment of the present invention. In the in-process, a welding defect can be detected, and a groove position and a gap width located in a traveling direction can be detected. Things. In the figure, (A) is a front view and (B) is a perspective view.
FIG. 2 is a schematic front view showing a modified example of the embodiment of FIG. 1, in which a rotation reduction mechanism is attached to the outer periphery of the tool concentrically with the rotary tool, and the rotational force of the tool is greatly reduced; It applies a circling force.
FIG. 3 is a perspective view of FIG. 2;
FIG. 4 shows a schematic configuration of a friction stir welding apparatus according to another embodiment for detecting the surface and internal defects of a base material, a groove position and a groove gap in a bobbin tool, wherein (A) is a front view, and (B) is a front view; () Is a perspective view, and (C) is a schematic diagram showing a measurement principle.
5A and 5B are graphs showing detection signals of a sensor, wherein FIG. 5A is for detecting a groove position and a gap, and FIG. 5B is for detecting a surface defect.
FIG. 6 is an overall schematic block diagram of a control system of the present invention incorporating the detection mechanism of each embodiment.
FIG. 7 is a basic configuration diagram of a probe tool and a bobbin tool of friction stir welding according to the related art.
[Explanation of symbols]
1 Base Material 10A, 10B Bobbin Tool 20 Rotary Tool 25 Rotation Reduction Mechanism 30 Surface Condition Detection Sensor 34 Connector 40 Detection Circuit 43 Control Device 44 Storage Device

Claims (10)

ワーク接合面の少なくとも表裏いずれかの一面に対して押圧、接触される回転工具のショルダ面をワーク接合部に摺動回転させながらワーク接合部への摩擦入熱により接合を行う摩擦攪拌接合方法において、
前記回転工具の回転力に追従させてワーク接合状態検出センサを工具周囲に回転させながら、該センサの回転角度位置と検出信号に基づいてワークの表面欠陥、内部欠陥、前方接合予定線位置及び接合ギャップの少なくとも1を検出する事を特徴とする摩擦攪拌接合方法。
A friction stir welding method in which welding is performed by frictional heat input to the work joint while the shoulder surface of the rotating tool that is pressed against at least one of the front and back surfaces of the work joint is slid and rotated on the work joint. ,
While rotating the workpiece joining state detection sensor around the tool by following the rotational force of the rotating tool, the surface defect, internal defect, forward joining scheduled line position and joining of the workpiece based on the rotation angle position and the detection signal of the sensor. A friction stir welding method comprising detecting at least one of the gaps.
前記検出センサが回転工具の回転速度に対し、減速されて回転していることを特徴とする請求項1記載の摩擦攪拌接合方法。2. The friction stir welding method according to claim 1, wherein the detection sensor rotates at a reduced speed with respect to a rotation speed of the rotary tool. ワーク接合部を挟んでその表面側と裏面側より夫々押圧ショルダを介して押圧力を加えてその接合部への摩擦入熱により接合を行う請求項1若しくは2記載の摩擦攪拌接合方法において、前記表面側ショルダと裏面ショルダの夫々の回転力を受ける一対のワーク接合状態検出センサをワークを介して対面させて同期回転させてワークの表面欠陥、内部欠陥、前方接合予定線位置及び接合ギャップの少なくとも1を検出する事を特徴とする摩擦攪拌接合方法。The friction stir welding method according to claim 1 or 2, wherein welding is performed by applying a pressing force from a front side and a back side of the work bonding part via a pressing shoulder, respectively, and performing frictional heat input to the bonding part. A pair of work joining state detection sensors receiving respective rotational forces of the front side shoulder and the back side shoulder face each other via the work and are rotated synchronously so that at least the surface defect of the work, the internal defect, the planned front joining line position and the joining gap. 1. A friction stir welding method, wherein 前記ワークが導電材である場合において、前記検出センサが渦電流センサである事を特徴とする請求項1、2若しくは3記載の摩擦攪拌接合方法。4. The friction stir welding method according to claim 1, wherein the detection sensor is an eddy current sensor when the workpiece is a conductive material. ワーク接合面の少なくとも表裏いずれかの一面に対して押圧、接触される回転工具を備えた摩擦攪拌接合装置において、
前記回転工具の回転力を受けて工具と同心状に回転するワーク接合状態検出センサと、該センサの回転角度位置と検出信号を受けてワークの表面欠陥、内部欠陥、前方接合予定線位置及び接合ギャップの少なくとも1を検出する検出回路を設けた事を特徴とする摩擦攪拌接合装置。
At least one of the front and back surfaces of the work joining surface is pressed against, in a friction stir welding device having a rotating tool to be contacted,
A workpiece joining state detection sensor that rotates concentrically with the tool by receiving the rotational force of the rotary tool, and receives a rotational angle position and a detection signal of the sensor to detect a surface defect, an internal defect, a forward joining scheduled line position, and a workpiece of the workpiece. A friction stir welding apparatus comprising a detection circuit for detecting at least one of the gaps.
前記表面状態検出センサと回転工具間が、減速機構を介して連結されていることを特徴とする請求項5記載の摩擦攪拌接合装置。The friction stir welding apparatus according to claim 5, wherein the surface state detection sensor and the rotary tool are connected via a speed reduction mechanism. ワーク接合部を挟んでその表面側と裏面側より夫々押圧ショルダを配した請求項5若しくは6記載の摩擦攪拌接合装置において、
前記表面側ショルダと裏面ショルダの夫々の回転力を受ける一対のワーク接合状態検出センサをワークを介して対面させて配設し、該一対のセンサを同期回転させる連結機構を夫々のショルダ外周側に設けた事を特徴とする摩擦攪拌接合装置。
7. The friction stir welding apparatus according to claim 5, wherein pressing shoulders are respectively arranged from a front surface side and a back surface side of the work joining portion.
A pair of work joining state detection sensors that receive the respective rotational forces of the front side shoulder and the back side shoulder are disposed facing each other via a work, and a coupling mechanism that synchronously rotates the pair of sensors is provided on each shoulder outer peripheral side. A friction stir welding apparatus characterized by being provided.
前記ワークが導電材である場合において、前記検出センサが渦電流センサである事を特徴とする請求項5、6若しくは7記載の摩擦攪拌接合装置。8. The friction stir welding apparatus according to claim 5, wherein the detection sensor is an eddy current sensor when the work is a conductive material. 請求項1若しくは2記載の摩擦攪拌接合方法において、
本接合前に、前記回転工具の回転力に追従させてワーク接合状態検出センサを工具周囲に回転させながら、該センサの回転角度位置と検出信号に基づいてワーク前方接合予定線位置及び接合ギャップの少なくとも1を検出した後に、本接合を行う事を特徴とする摩擦攪拌接合方法。
The friction stir welding method according to claim 1 or 2,
Before the main joining, the workpiece joining state detection sensor is rotated around the tool by following the rotational force of the rotary tool, and based on the rotation angle position and the detection signal of the sensor, the workpiece front joining scheduled line position and the joining gap are determined. A friction stir welding method, wherein the main welding is performed after detecting at least one.
本接合時にワーク接合状態検出センサを工具周囲に回転させながら、該センサの回転角度位置と検出信号に基づいて接合直後のワークの表面欠陥、内部欠陥の少なくとも1の欠陥を検出する事を特徴とする請求項9記載の摩擦攪拌接合方法。At the time of the main joining, the workpiece joining state detection sensor is rotated around the tool, and at least one of a surface defect and an internal defect of the workpiece immediately after joining is detected based on a rotation angle position of the sensor and a detection signal. The friction stir welding method according to claim 9, wherein
JP2002301639A 2002-10-16 2002-10-16 Friction stir welding method and apparatus Expired - Fee Related JP4288055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301639A JP4288055B2 (en) 2002-10-16 2002-10-16 Friction stir welding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301639A JP4288055B2 (en) 2002-10-16 2002-10-16 Friction stir welding method and apparatus

Publications (2)

Publication Number Publication Date
JP2004136305A true JP2004136305A (en) 2004-05-13
JP4288055B2 JP4288055B2 (en) 2009-07-01

Family

ID=32449931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301639A Expired - Fee Related JP4288055B2 (en) 2002-10-16 2002-10-16 Friction stir welding method and apparatus

Country Status (1)

Country Link
JP (1) JP4288055B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054352A (en) * 2008-08-28 2010-03-11 Hitachi Ltd Eddy current flaw detection method, eddy current flaw detection probe, and eddy current flaw detection device
US8544714B1 (en) 2012-11-15 2013-10-01 Fluor Technologies Corporation Certification of a weld produced by friction stir welding
US20160318120A1 (en) * 2013-12-27 2016-11-03 Kawasaki Jukogyo Kabushiki Kaisha Friction stir spot welding apparatus, friction stir spot welding method, and perpendicular-to-plane detection device for use in friction stir spot welding
KR102033692B1 (en) * 2018-07-04 2019-10-18 한국생산기술연구원 Friction stir welding equipment of container-type that is easy to be transported
CN111843173A (en) * 2020-07-09 2020-10-30 中车青岛四方机车车辆股份有限公司 Composite welding method and device for friction stir welding
WO2021025155A1 (en) * 2019-08-08 2021-02-11 日本軽金属株式会社 Automatic joining system
JP2021023991A (en) * 2019-08-08 2021-02-22 日本軽金属株式会社 Automatic joint system
JP2021023990A (en) * 2019-08-08 2021-02-22 日本軽金属株式会社 Automatic joint system
JP2021023989A (en) * 2019-08-08 2021-02-22 日本軽金属株式会社 Automatic joint system
CN113953661A (en) * 2021-09-18 2022-01-21 四川国芯通智能科技有限公司 Laser repair welding machine and repair welding method thereof
JP2022030706A (en) * 2020-08-07 2022-02-18 日本軽金属株式会社 Automatic joining system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054352A (en) * 2008-08-28 2010-03-11 Hitachi Ltd Eddy current flaw detection method, eddy current flaw detection probe, and eddy current flaw detection device
US8544714B1 (en) 2012-11-15 2013-10-01 Fluor Technologies Corporation Certification of a weld produced by friction stir welding
US20160318120A1 (en) * 2013-12-27 2016-11-03 Kawasaki Jukogyo Kabushiki Kaisha Friction stir spot welding apparatus, friction stir spot welding method, and perpendicular-to-plane detection device for use in friction stir spot welding
US9839973B2 (en) * 2013-12-27 2017-12-12 Kawasaki Jukogyo Kabushiki Kaisha Friction stir spot welding apparatus, friction stir spot welding method, and perpendicular-to-plane detection device for use in friction stir spot welding
KR102033692B1 (en) * 2018-07-04 2019-10-18 한국생산기술연구원 Friction stir welding equipment of container-type that is easy to be transported
JP2021023990A (en) * 2019-08-08 2021-02-22 日本軽金属株式会社 Automatic joint system
WO2021025155A1 (en) * 2019-08-08 2021-02-11 日本軽金属株式会社 Automatic joining system
JP2021023991A (en) * 2019-08-08 2021-02-22 日本軽金属株式会社 Automatic joint system
JP2021023989A (en) * 2019-08-08 2021-02-22 日本軽金属株式会社 Automatic joint system
US11794272B2 (en) 2019-08-08 2023-10-24 Nippon Light Metal Company, Ltd. Automatic joining system
JP7415843B2 (en) 2019-08-08 2024-01-17 日本軽金属株式会社 Automatic joining system
JP7415844B2 (en) 2019-08-08 2024-01-17 日本軽金属株式会社 Automatic joining system
JP7415842B2 (en) 2019-08-08 2024-01-17 日本軽金属株式会社 Automatic joining system
CN111843173A (en) * 2020-07-09 2020-10-30 中车青岛四方机车车辆股份有限公司 Composite welding method and device for friction stir welding
JP2022030706A (en) * 2020-08-07 2022-02-18 日本軽金属株式会社 Automatic joining system
JP7415841B2 (en) 2020-08-07 2024-01-17 日本軽金属株式会社 Automatic joining system
CN113953661A (en) * 2021-09-18 2022-01-21 四川国芯通智能科技有限公司 Laser repair welding machine and repair welding method thereof
CN113953661B (en) * 2021-09-18 2022-03-15 四川国芯通智能科技有限公司 Laser repair welding machine and repair welding method thereof

Also Published As

Publication number Publication date
JP4288055B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP2004136305A (en) Method and equipment of friction stir welding
JP2007203326A (en) Friction stir welding equipment
JP2007237187A (en) Method and apparatus for temporary soldering of friction stir welding
JP4313714B2 (en) Friction stir welding apparatus and friction stir welding method
JP4956029B2 (en) Friction stir welding apparatus and friction stir welding method
JP2003181654A (en) Friction stir welding device
JP4630172B2 (en) Friction stir welding apparatus and control method thereof
RU2690897C1 (en) Robotic complex for repairing defects of longitudinal seams of pipes made using laser welding technology
KR20190006261A (en) Friction welding machine head and shaft of York
JP2004042115A (en) Double skin panel and friction stir welding method for the double skin panel
JP3463671B2 (en) Joining method and apparatus using friction stirring
CN114425698B (en) Butt welding device for steel strip production
JP3735298B2 (en) Friction stir welding apparatus and friction stir welding method
Fleming et al. Automatic seam-tracking of friction stir welded T-joints
JP2001105159A (en) Ultrasonic welder
JP2019051556A (en) Dual cam servo weld splicer
JP2002239754A (en) Friction stirring joining method and its apparatus
JP4240935B2 (en) Control method and control device for rotary tool for friction stir welding
JP4671523B2 (en) Process management method and process management apparatus using friction stirring
JP3735342B2 (en) Equipment for manufacturing bonded structures by friction stir
Ponte et al. Low-cost transformation of a conventional milling machine into a simple fsw work station
CN207057919U (en) A kind of automatic welding device
JP2007237245A (en) Friction stir welding equipment and method
JP4056311B2 (en) Friction stir welding equipment using bobbin tool and its joining method
JP2001129674A (en) Friction welding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees