[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004136262A - House-type fermenting system for organic material - Google Patents

House-type fermenting system for organic material Download PDF

Info

Publication number
JP2004136262A
JP2004136262A JP2002340123A JP2002340123A JP2004136262A JP 2004136262 A JP2004136262 A JP 2004136262A JP 2002340123 A JP2002340123 A JP 2002340123A JP 2002340123 A JP2002340123 A JP 2002340123A JP 2004136262 A JP2004136262 A JP 2004136262A
Authority
JP
Japan
Prior art keywords
house
fermenter
fermentation
organic
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002340123A
Other languages
Japanese (ja)
Other versions
JP3706097B2 (en
Inventor
Minoru Tomita
富田 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002340123A priority Critical patent/JP3706097B2/en
Publication of JP2004136262A publication Critical patent/JP2004136262A/en
Application granted granted Critical
Publication of JP3706097B2 publication Critical patent/JP3706097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Fertilizing (AREA)
  • Fodder In General (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a house-type fermenting system for organic materials of low running and initial costs that can process a large amount of organic waste in a short time to produce a fertilizer or feed, giving a careful consideration to the environment. <P>SOLUTION: The house (fermenter) body, which is separable into an upper section and a lower section, is composed of equipment that can optionally keep the integrated fermenter either under a reduced pressure (a vacuum pump A 29, a vacuum pump B 29a, a vacuum pump C 29b) or under the atmospheric pressure (an air inlet 9, a blower 31) and equipped with heating devices (a heater 14, a heating 34), sterilizing devices (an ultraviolet radiation device 13, an ozonizer 27), a self-propelled agitator 12 and a self-propelled slurry sprayer. In addition, the fermenter is equipped with a cooling tower 33 as well as the ozonizer 27 in an attempt to discharge no waste water or wastes out of the system. The house body is constructed so that organic wastes before processing and organic materials after processing can be efficiently exchanged when the lower section thereof is moved after the house body is separated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本願発明は有機物質、特に有機廃棄物の肥料化及び飼料化を行う機能を有するシステムに関するものである。
【0002】
【従来の技術】
従来、有機廃棄物を発酵させ肥料化及び飼料化を行うためのプラント(装置)の提案は、数多くなされているが大きく分けると固形物の発酵と液体物の発酵の二つに分けることができる。
【0003】
二つの処理方法を述べる前に、有機廃棄物の現状と、特に家畜糞尿の場合はその飼育形態により排出される糞尿の状態及び量について違いがあるため、あらかじめ記述する。
【0004】
〔有機廃棄物の現状〕
まず、代表的な有機廃棄物としては家畜糞尿、食物残渣、農漁業系残渣がある。
特に家畜糞尿は深刻で、平成11年11月より「家畜糞尿の適正な管理及び適正な処理」が法政化され、それを義務付けた。しかしながらその量は莫大で、全国で毎年約1億トン有機廃棄物として排出され、その約8%程度が堆肥に加工され農地還元されているにすぎず、90%以上は野積状態で放置されるか、穴を掘って埋めるか、垂れ流し状態である。
【0005】
又、一般家庭から出される生ゴミの場合は、全国約4千万世帯で1世帯当り毎日1.5kgの生ゴミを排出すると年間2,190万トンになり、一般家庭の生ゴミは家畜糞尿排出量の1/5位発生している。
【0006】
農業系残渣物は、規格品外や豊作、輸入等による生産調整という名目で畑に放置され、悪臭公害や土壌腐敗の原因となったり、不法投棄問題を引き起している。又、農産物加工場から排出される有機廃棄物、例えば澱粉粕、大豆の絞り粕、酒類粕、選果残渣、等莫大な量が排出され、そのほとんどが有効利用されず放置又は埋立処理されている。
【0007】
漁業系残渣物は、平成13年度より海洋投棄が禁止となり、入港し水揚げされた水産物は商品にならない海藻類、貝類、ヒトデ、魚類も全て陸上で有機廃棄物として処理されており、全体の水揚げ量の30%を超える量になっている。全国で毎年約530万トンの水揚げがあるので年間約159万トン程度発生し、水産加工場から排出される約100万トンと合せるとその数は約260万トンとなる。又、それ以外にも公共施設、外食産業、市場から排出される有機廃棄物も莫大な数量になっている。
【0008】
以上の様に有機廃棄物は、家畜糞尿を筆頭に毎年増加傾向で推移しているが、その量があまりにも莫大なため処理が追いつかないのが現状であり、又その事が悪臭、土壌・水質汚染、大気汚染等の公害問題や不法投棄問題、焼却炉(ダイオキシンの問題)、埋立地建設による財政問題等、様々な諸問題を引起している。
【0009】
〔家畜飼育形態による糞尿状態の違い及び量〕
家畜の種類によって糞尿の量と状態には大きな違いがある。現在、農林省が家畜と定義している動物は6種類(乳用牛、肉用牛、豚、採卵鶏、馬、ブロイラー)で糞尿発生量は乳用牛約70%、肉用牛約20%、豚約6%、採卵鶏約2%、馬約1%、プロイラー約1%であり、今後馬の飼育が若干減り、乳用牛の飼育が微増傾向である。
【0010】
糞尿の状態は飼育形態、特に敷料の量と密接な関係があり、固形物として処理を行うか液体物として処理するかは飼育形態で決まる。豚、採卵鶏、馬、ブロイラーは地域によって多少のばらつきはあるものの糞尿発生量が少なく、敷料材が十分で飼育形態も比較的確立れていることなどから、その糞尿のほとんどは含水比が75%前後の固形物(ソリッドと呼ばれるタイプ)として取り扱うことができる。
【0011】
家畜糞尿の一番の問題は、全体の糞尿発生量の約90%を占める牛である。肉用牛はその価値が高価なことから、フリーバーンと呼ばれる飼養形態(数頭の牛を部屋ごとに分け濃厚飼料で育てる)が多く、敷料材もオガクズ等水分を吸収しやすい材料が大量に使用されていて、ほとんどんがソリッドタイプとして取り扱うことができる。
【0012】
特に問題なのは乳用牛の糞尿で、成牛1頭当り人間の大人50〜60人分で、約、糞(敷料材含む)50kg、尿が15kgの発生量があり、その数量は肉用牛と較べると3倍近くなる。又、飼育形態も牛舎につなぎ飼育するスタンチョンスタイル(搾乳牛に多い)と数頭ごとの部屋に分け飼育を行うフリーストール(乾乳牛に多い)に分けられるが、乳用牛は肉用牛と比べてその価格が低いことから、敷料材も安価な麦稈、稲稈、牧草を使用するため排出される糞尿の含水比は上がり、スタンチョンスタイルでは含水比が約87%(セミソリッドと呼ばれるタイプ)、フリーストールスタイルに至っては含水比が90%(スラリーと呼ばれるタイプ)を超え、液体物として取り扱われる。
【0013】
近年は、トータルコスト削減のために搾乳牛に対してもコストのかからないフリーストールスタイルでの飼育形態が増加している。すなわち、糞尿の状態もセミソリッドタイプ(発酵させるには固液分離が必要)からスラリータイプ(液体)に移行されてきており、増加傾向にあり、〔有機廃棄物の現状〕で述べた様に家畜糞尿の全国年間排出量は約1億トンあるので、その70%を占める乳用牛、特にスラリータイプの処理は大問題である。
【0014】
従来、有機廃棄物を発酵させる技術には先に述べた様に、大きく分けると固形物の発酵と液体物の発酵の2つがある。
【0015】
まず第1に固形有機廃棄物の発酵であるが、基本的には有機廃棄物の含水比を70%前後に調節してから、有機廃棄物の中に含まれている発酵微生物菌でそのまま発酵処理を行う。含水比調節を行う方法としては、脱水機で水分を絞り固液分離を行うか、又は副資材として他の有機物(籾殻、おが粉、米糠等)を混ぜ合せるのが一般的である。
【0016】
当然、発酵させて堆肥を作るか、家畜や魚などの飼料を作るかで混ぜ合せる副資材は変ってくる。又、含水比を70%前後に調節するのは、通常固形有機物の発酵は好気微生物による発酵を期待するためである。好気微生物による有機物の発酵(微生物が有機物を分解する活動)は、その含水比が70%以下になり空気の供給があれば活発に促進される。
【0017】
又、空気を供給するために切返し(有機物を反転させる)が必要であるが、この切返し度合いによって発酵時間が大きく変わる。毎日頻繁に切返しを行い、風通しの良い条件で水分を蒸発散させながら含水比を60%以下になる様発酵させれば、だいたい120日前後で良質の有機肥料、又は有機飼料ができあがる。又、通常切返しにおいては、数量が少ない場合はバックホー、ショベル等の重機で行い、数量が多くなると自動撹拌装置が付いたハウス型処理施設で行っている。
【0018】
第2に液体有機廃棄物の発酵であるが、その主な対象有機廃棄物は先に述べた乳用牛の飼育形態が、フリーストールスタイルによって排出されるスラリータイプの糞尿と、セミソリッドタイプの糞尿を脱水機又は自然流下し、固液分離させた尿である。
【0019】
スラリータイプの糞尿は、肥料効果が高くその成分がほとんど無機態あるいは分解されやすい有機態であることから、化学肥料と類似した肥料効果を表すが、発酵によってその成分が損なわれることはほとんどない。
【0020】
通常タンクに液状の糞尿を集め、タンク内にエアレーション(空気を送る)で曝気処理を行い、好気微生物菌による発酵を促し、悪臭を減少させ液肥として使用する。適正な保温とエアレーションを行なえば発酵期間としてはおおよそ30日位である。
【0021】
又、密閉タンクに液体有機廃棄物である糞尿を入れ、嫌気微生物による発酵を30日前後行い、発酵により発生するメタンガスを30日前後かけ取り出しエネルギーの有効利用をした後、液肥として使用する場合もある。
【0022】
【発明が解決しようとする課題】
第1の固形有機廃棄物の発酵処理による肥料化及び飼料化であるが、
▲1▼含水比調節を行うため、副資材が必要であり処理コストが嵩む問題がある。
▲2▼切返しによる自然発酵のため発酵状態が外気温度、湿度に左右され、特に外気温が下がる寒冷地においては、冬期間発酵菌が休止してしまい発酵そのものができなくなる問題がある。
【0023】
▲3▼切返しによる自然発酵のため、切返しが少なく空気の供給が十分でない場合や含水比の調節が十分でない場合(75%以上)等は、好気微生物菌による発酵ではなく、嫌気微生物菌での発酵に占有され、腐敗菌を多量に含む腐敗した肥料や飼料ができてしまう。当然のことながら肥料や飼料として使用することができず、有機廃棄物に逆戻りである。
【0024】
▲4▼
【従来の技術】で記述した様に有機廃棄物の量は莫大で、例えば北海道での酪農家戸数は約11,000戸で1戸当りの乳用牛の飼育頭数は平均的な農家で100頭前後である。即ち、1頭の乳用牛の1日当り糞尿排出量が65kgであれば100頭で6トン500kg排出され、1年間では農家1戸から2,372トン500kg排出される計算になる。莫大な量の有機廃棄物を発酵処理するのに長時間(固形で120日、液体で60日)時間をかけるため、処理する施設規模、使用面積が大々がかりになりイニシャルコストが嵩む問題がある。
【0025】
▲5▼有機廃棄物の含水比を下げるために水分を大気中に蒸発散させるため、アンモニア、メタンガス、亜酸化窒素、硫化水素等、発酵時の還元物質がガス体として揮散し、悪臭公害(主にアンモニア)や地球温暖化(主にメタンガス、亜酸化窒素)等の諸問題を引き起してしまう。
【0026】
▲6▼自然発酵のため発酵条件(発酵開始時の含水比、外気温、湿度、酸素供給量等)により、処理完了時の発酵状態(有機物構成成分、好気微生物菌、嫌気微生物菌の数量等)が一定ではなく、使用原料が同じでも均一の製品を作ることができない。
【0027】
第2の液体有機廃棄物の発酵処理による肥料化であるが、色々な問題点をはらんでいる。
▲1▼発酵により臭気を減少させることができるが、その悪臭はひどく取扱いが大変で使用後は悪臭公害となる。
【0028】
▲2▼発酵によってその成分が損なわれることはほとんどないため、肥料効果は期待できるが田畑に多くの数量を投入することができない。これは仮に液肥を作っても出口(市場)がなく、市場性がないということであり無理に田畑に投入すれば植物の生育をさまたげることとなる。
【0029】
▲3▼液状のため地下浸透及び大気中の揮散が多く、窒素分は硝酸態窒素として水質汚染をし、揮散したガス体(アンモニア、メタンガス、亜酸化窒素、硫化水素等)は大気汚染の原因となってしまう。
【0030】
▲4▼発酵時間が長く(30〜60日前後)かかると、前記で述べた様に毎日大量の糞尿が排出されるので、施設規模が大掛かりになりイニシャルコストが嵩む問題がある。特に嫌気微生物菌で発酵を行い、メタンガスを取り出しエネルギーの有効利用を行うバイオガスプラントは、イニシャルコストが高くランニングコストも嵩む問題がある。
【0031】
▲5▼▲4▼で述べたバイオガスプラントは、エネルギーの有効利用という観点からは将来的に大切なことであるが、しかしなからバイオガス発電した場合を例に取ると、現実とは汞離している。色々なメーカーがあり一概に論じることはできないが、2億円相当の設備投資をして得ることのできる電力は、一般家庭8戸〜10戸分である。逆に考えると8戸〜10戸の一般家庭で2億円もの電力を消費するにはどの位の年月がかかるか、ということであり到底商業ベースで対価効果は成立しない。又、バイオガス(メタンガス、炭素ガス)を取り出してエネルギーの有効利用後の液肥であるが、前記述と同様に市場性やコストの問題がある。以上を鑑みたとき、バイオガスプラントは将来的な研究課題として施工されるべきである。
【0032】
▲6▼液体有機廃棄物である糞尿の最大の問題点は、莫大な排出量に対して発酵させても主要成分値に変化がないことから多量に施肥することができず、悪臭がひどく流動性があるため取扱いが困難なことである。
【0033】
▲7▼前記より鑑みると、液体有機廃棄物に関する限り固形有機廃棄物における処理とは完全な違いがある。それは、減臭を行うことはできるがエネルギーの利用という以外、利用方法がないことである。一般的に「処理する」という分野には属さないということが問題点であり、現実に液体有機廃棄物であるスラリーを処理する方法はないのが現状である。
【0034】
この発明は前記課題を解消するもので、閉塞されたシステム内で一度に多くの有機物質を強制発酵させることにより多くの時間(日数)や広大な施設規模、使用面積を必要とせず、且つ外気温や湿度等の外的条件に発酵が左右されることがなく、悪臭や還元物質をほとんどシステム外部に放出しない。又、システムの発酵槽であるハウス内を減圧し、内部の沸点を下げ強制乾燥とセル現象(内部破壊)を同時に行い有機物の性状を変える物理的破壊を行うため含水比を下げるための副資材(籾殻、おが粉、米糠等)の必要がなく、且つ発行時間の短縮が行え経済的である。
【0035】
しかも本発明は有機物質、無機物質を問わず、光化学分解法により殺菌することができ、特に有機物質については好気微生物菌、嫌気微生物菌のどちらでも発酵処理を行うことができ、且つ市販されている有用な微生物菌を使用することもできる。
【0036】
又、ハウス(発酵槽)内で発生した還元物質であるガス体は熱交換器で凝縮水となるが、オゾンの酸化により化学変化を起こし無害となる。例えば、硫化水素はCO2+2H2S→CH2O+H2O+S2、メタンはCO2+CH4→2CH2O、アンモニアは2CO2+2NH4→2CH2O+2H2O+N2とそのほとんどが水と炭素化合物に分解する。
【0037】
又、凝縮水は熱交換器に使用されるための冷却循環水として再利用し、過剰になった分だけを水蒸気としてクーリングタワーより蒸発散させる。即ち、一切の排水、廃液をシステムの外部に出すことがないので、水質汚染や大気汚染を引き起すことがない。
【0038】
又、本発明は有機廃棄物の固液分離が行え、且つ固液同時、あるいは時間差で処理することができ、固形有機廃棄物は良質の肥料や飼料に発酵させ、液体有機廃棄物はそのほとんどを消滅処理し、且つ固形有機廃棄物や副資材にその肥効性を残すことができる。
【0039】
以上のごとく本発明は、大量の有機廃棄物を固体、液体問わず短時間で水質汚染、大気汚染をすることなく発酵処理をし、且つ無機物質、有機物質を問わず殺菌を行う機能を備えたシステムを提供することを目的とするものである。
【0040】
【課題を解決するための手段】
[1]前記目的を達成するために、講じた本説明の手段は次の通りである。
請求項1の発明にあたっては、ハウス型・有機物発酵処理システムの発酵槽本体であるハウスを10.ハウス上部(発酵槽),と11.ハウス下部(発酵槽),とに分離できる様に構成した。
【0041】
[2]10.ハウス上部(発酵槽),は発酵槽内部に太陽光を取り込むため、透過性の良い耐圧ガラスの二重構造となっており、耐圧ガラスと耐圧ガラスの間は10a.断熱層空間,となっている。又、10.ハウス上部(発酵槽),は支柱及び21.支圧壁,と共に基礎に連結され固定されている。
【0042】
[3]11.ハウス下部(発酵槽),は一体化された2槽で構成されており、19.ハウス下部(発酵槽)移動ローラー,により▲2▼.処理テリトリーA,〜▲6▼.処理テリトリーC,の間で移動ができる。又、▲4▼.処理テリトリーB,にて発酵を行うときは、18.ハウス下部(発酵槽)設置ジャッキ,により、10.ハウス上部(発酵槽),に密着される。又、このとき10.ハウス上部(発酵槽),と連結されている21.支圧壁,は内側の壁が可動式になっており、22.支圧壁ジャッキ,により密着する。10.ハウス上部(発酵槽),と11.ハウス下部(発酵槽),が密着する面には全て23.メジ材,が設けてあり完全に密閉された発酵槽が出来上がる。
【0043】
[4]10.ハウス上部(発酵槽),には、複数の真空ポンプ(29.真空ポンプA,29a.真空ポンプB,29b.真空ポンプC,)が24.防塵器(サイクロン),と25.熱交換器(コンデンサー),を経由し、並列に備え付けており、且つ9.空気吸入口,の弁の開閉と31.ブロワー,を連動し可動させることにより、ハウス(発酵槽)内の大気圧を任意に常圧状態と減圧状態にすることができる。又、並列に備え付けた真空ポンプは、ハウス(発酵槽)内の減圧率が設定値に到達すると1台を残して可動が停止するが、ハウス(発酵槽)内の温度が上昇すると順次可動し、一定の減圧状態を保つ様構成している。
【0044】
[5]又、10.ハウス上部(発酵槽),は13.紫外線照射装置,複数台、14.ヒーター,複数台、15.自走式オゾン噴霧装置,16.自走式スラリー散布装置,17.自走式発酵菌噴霧装置,12.自走式撹拌機,を備え付けている。
【0045】
[6]又、11.ハウス下部(発酵槽),が21.支圧壁,と接する面は20.ハウス下部(発酵槽)開閉壁,となっており、▲2▼.処理テリトリーA,か▲6▼.処理テリトリーC,に移動している場合は任意に開閉を行うことができる。又、11.ハウス下部(発酵槽),の20.ハウス下部(発酵槽)開閉壁,以外の全ての面には、34.ヒーティング,が設けてある。
【0046】
[7]請求項2の請求にあたっては、10.ハウス上部(発酵槽),両サイド最下部に梁が備えてあり、その上部にA.撹拌機走行レール,が設置されていて、上部を12.自走式撹拌機,が両方向に行き来できる様構成している。
【0047】
[8]▲4▼.処理テリトリーB,で処理された有機廃棄物は、11.ハウス下部(発酵槽),ごと▲2▼.処理テリトリーA,か▲6▼.処理テリトリーC,に19.ハウス下部(発酵槽)ローラー,により移動され、20.ハウス下部(発酵槽)開閉壁,を開いた後ショベルローダーにより搬出される。
【0048】
[9]請求項3の請求にあたっては、10.ハウス上部(発酵槽),中段の両サイドに13.紫外線照射装置,と14.ヒーター,が交互に備えつけられており、又、27b.オゾン送入ガイドレール,軌道に沿って配されている15.自走式オゾン噴霧装置,が27.オゾン発生装置,で作ったオゾンを噴霧する様構成している。
【0049】
[10]11.ハウス下部(発酵槽),には、20.ハウス下部(発酵槽)開閉壁,を除く全ての面に34.ヒーティング,が備えてあり、5.太陽電池,で作られた電気が6.蓄電池,を通して34.ヒーティング,に送られる。(このとき、直流電流を交流電流に交換しているのはインバーターである。)
【0050】
[11]請求項4の請求にあたっては、10.ハウス上部(発酵槽),は発酵槽内部に太陽光の熱を取り込むため、透過性の良い耐圧ガラスの二重構造となっており、耐圧ガラスと耐圧ガラスの間は10a.断熱層空間,となっており、この空間は30.真空ポンプD,が接続されており任意の圧力断熱層を作ることができる。
【0051】
[12]請求項5の請求にあたっては、▲1▼.搬入テリトリーA,と▲5▼.搬入テリトリーB,に2.固液分離機,を備え、このとき分離された固体有機廃棄物は▲2▼.処理テリトリーA,か▲6▼.処理テリトリーC,にショベルローダー等で搬入され、▲4▼.処理テリトリーB,で発酵処理させる。又、このとき分離された液形有機廃棄物は、2.固液分離機,の下部に備えてある2c.排水管,を通して4.液体有機物貯留タンク,に貯留される。この貯留された液体有機廃棄物は10.ハウス上部(発酵槽),に備えている、16自走式スラリー散布装置,に4a.液体有機物送入管,を通して送られ散布される。このとき、散布するタイミングは、▲4▼.処理テリトリーB,で処理されている固形有機廃棄物の含水比と大きく関わるため任意に設定できる様構成されている。
【0052】
[13]請求項6の請求にあたっては、10.ハウス上部(発酵槽),と11.ハウス下部(発酵槽),とに分離できる様構成した。10.ハウス上部(発酵槽),は支柱及び21.支圧壁,と共に基礎に連結され固定されている。11.ハウス下部(発酵槽),は一体化された2槽で構成されており、20.ハウス下部(発酵槽)開閉壁,を備えている。11.ハウス下部(発酵槽),の下部には、18.ハウス下部(発酵槽)設置ジャッキ,と19.ハウス下部(発酵槽)移動ローラー,が備えつけられていて自在に10.ハウス上部(発酵槽),が設置されていている。▲4▼.処理テリトリーB,に移動し設置ができる様構成されている。
【0053】
[14]10.ハウス上部(発酵槽),には12.自走式撹拌機,が備えてあり、10.ハウス上部(発酵槽),と11.ハウス下部(発酵槽),が一体となり、▲4▼.処理テリトリーB,で発酵処理を行っているときは撹拌姿勢となり自動撹拌を行うが、▲4▼.処理テリトリーB,での発酵処理が終わり▲2▼.処理テリトリーA,か▲6▼.処理テリトリーC,に11.ハウス下部(発酵槽),が移動を行う場合は、12a.スクープ,が跳ね上がり、11.ハウス下部(発酵槽),の移動を妨げない様構成されている。
【0054】
[15]請求項7の請求にあたっては、10.ハウス上部(発酵槽),に複数の真空ポンプ(29.真空ポンプA,29a.真空ポンプB,29b.真空ポンプC,)が24.防塵器(サイクロン),25.熱交換器(コンデンサー),を経由し、並列に備え付けられ31.ブロワー,は直接10.ハウス上部(発酵槽),に備え付けられている。複数の真空ポンプ(29.真空ポンプA,29a.真空ポンプB,29b.真空ポンプC,)により、ハウス(発酵槽)から引き出された水蒸気やガス体(還元物質)は25.熱交換器(コンデンサー),で凝縮水となり、26.凝縮水タンク,へと集められ26a.凝縮水送水管,を通して33.クーリングタワー,へと送られ余剰水分が蒸発し、残りは25.熱交換器(コンデンサー),に使う冷却循環水として使用される。
【0055】
[16]このとき、26.凝縮水タンク,には27a.オゾン送付管,を通して、27.オゾン発生装置,によって作られたオゾンが投入され脱塩基化が行われるので、冷却循環水及び33.クーリングタワー,から蒸発かる水分は無害な水(H2O)と炭素化合物(C)に変化し問題を起こさない。又、31.ブロワー,により引き出されるガス体(還元物質)や水分も、前記同様に25.熱交換器(コンデンサー),と26.凝縮水タンク,を経由してか、又は直接33.クーリングタワー,に送入するため前記と同様に問題を起こさない。
【0056】
【作用】
このように構成された本発明のハウス型・有機物発酵処理システムは、ハウス(発酵槽)内に投入された大量の有機廃棄物(固形・液体)を数時間で発酵処理や消滅処理をすることができるので、広大な場所や長時間の時間を必要としない。
【0057】
又、ハウス内(発酵槽)を減圧し沸点を下げ、強制乾燥と強制発酵を同時に行うため、少ないエネルギー量で処理物の水分を気化させ、且つ太陽エネルギーを最大限に活用するため、有機廃棄物の含水比を下げるための副資材も必要とせず、ランニングコストの軽減が計られ経済的である。又、有機物処理システム内から一切の排水、廃液を出さないため環境に優しい。
【0058】
【実施例】
以下、添付の図面を参照して本発明の好適な実施の形態について詳述する。
【0059】
このハウス型・有機物発酵処理システムは、課題を解決するための手段の項において説明したものと同様な構造となっており、更にそれらに付随する1.投入ホッパー,1a.投入コンベアー,2a.圧縮ジャッキ,2b.押出しジャッキ,3.排出ホッパー,3a.排出コンベアー,7.油圧ユニット,8.発酵微生物菌貯留タンク,8a.発酵菌送入管,24a.還元物質吸入管A,24b.還元物質吸入管B,28.送水ポンプA,32.送水ポンプB,B.温度計測器,C.湿度計測器,▲3▼.搬出テリトリーA,▲7▼.搬出テリトリーB,を図1.2に示してある。
【0060】
まず[1]▲1▼.搬入テリトリーA,か▲5▼.搬入テリトリーB,に搬入された有機廃棄物は、その必要性に応じて2.固液分離機,で分離するか直接▲2▼.処理テリトリーA,もしくは▲6▼.処理テリトリーC,に露出されている11.ハウス下部(発酵槽),へ、ショベルローダー等で搬入する。
【0061】
[2]このとき、固液分離を行う場合は有機廃棄物を1.投入ホッパー,に投入し、1a.投入コンベアー,で2.固液分離処理機,に送入する。送入された有機廃棄物は2a.圧縮ジャッキ,により押しつぶされ固液に分離される。2.固液分離機,の槽内底面は、穴の明いた目皿となっており、分離された液体は2c.配水管,を通り4.液体有機物貯留タンク,へ貯留され、固体は2b.押出しジャッキ,により3.排出ホッパー,に入れられ3a.排出コンベアー,で再び▲1▼.搬入テリトリーA,か▲5▼.搬入テリトリーB,へと戻され、11.ハウス下部(発酵槽),へ投入される。
【0062】
[3]有機廃棄物の投入が完了した11.ハウス下部(発酵槽),は20.ハウス下部(発酵槽)開閉壁,を閉じ、19.ハウス下部(発酵槽)移動ローラー,で▲4▼.処理テリトリーB,に移動を行い、18.ハウス下部(発酵槽)設置ジャッキ,と21.支圧壁,が起動され10.ハウス上部(発酵槽),と完全に密着した一体の発酵槽ができるよう構成される。
【0063】
[4]11.ハウス下部(発酵槽),は、一体化の区切られた2槽の発酵槽で構成しているため、このとき▲4▼.処理テリトリーB,に位置していた発酵槽はこれから処理する発酵槽があった処理テリトリーと反対の方向に露出される。このことにより露出された発酵槽の完了処理物は搬出され、又、有機廃棄物が投入されるというサイクルになっている。又[2]で4.液体有機物貯留タンク,へ貯留された液体有機物は4a.液体有機物送入菅,を通して、16.自走式スラリー散布装置,により発酵槽内に散布され固形有機物と一緒に発酵処理が行われる。このとき液体有機物は、体積的にはそのほとんどが消滅してしまう。
【0064】
[5]10.ハウス上部(発酵槽),と11.ハウス下部(発酵槽),が密閉され一体となったハウス型・有機物発酵処理槽であるが、上部は10.ハウス上部(発酵槽),が太陽光を取り込むため透過性の良い耐圧ガラスの二重構造となっていて、10a.断熱層空間,を設けてあり断熱と共に耐圧層おも形成している。このことにより、四季を通してかなりの温室効果を得ることができる。二重構造としているのは,断熱層を設けると共に構造物が直接大気圧を受けない様大気圧の緩和層(耐圧層)を形成することを目的としている。
【0065】
[6]又、密閉されたハウス・有機物発酵処理槽であるが、[5]で示した温室効果による加温方法以外にも14.ヒーター,と34.ヒーティング,による加温装置を備えている。
【0066】
[7]14.ヒーター,と34.ヒーティング,には5.太陽電池,で作られる電池が6.蓄電池,に貯められ、インバーターで制御され送られてくる。
【0067】
[8]こうして[1]〜[4]で記述のごとく、ハウス(発酵槽)に投入された有機廃棄物(固体、液体)は温室効果、14.ヒーター,34.ヒーティング,による加温を受けることとなる。
【0068】
[9]こうして[8]に記述のごとく、有機廃棄物(固体、液体)は加温されるが、同時に真空ポンプの働きにより減圧を受ける。
【0069】
[10][3]記述のハウス(発酵槽)内の有機廃棄物(固体、液体)は[8]記述の加温と[9]記述の減圧を同時に受け、発酵微生物菌による発酵が促進される。
【0070】
[11]このときハウス(発酵槽)内は減圧によって沸点が下がる。又、後に記述するが沸点が60度位であればハウス(発酵槽)内の熱量はそのほとんどが温室効果でまかなえ14.ヒーター,と34.ヒーティング,は補助的(冬期、夜)なものと考えられる。
【0071】
[12]10.ハウス上部(発酵槽),には24.防塵器(サイクロン),と25.熱交換器(コンデンサー),が経由して複数の真空ポンプ(29.真空ポンプA,29a.真空ポンプB,29b.真空ポンプC,)が接続されていて、ハウス型・有機物発酵処槽から水分とガス体である還元物質を25.熱交換器(コンデンサー),で凝縮水に変え、33.クーリングタワー,に送り蒸発散と熱交換に使用する冷却循環水として循環させている。
【0072】
[13]真空ポンプでハウス型・有機物発酵処理槽から、空気、水分、ガス体を吸引し減圧状態にするのは、ハウス型・有機物発酵処理槽内の沸点を下げ、槽内の蒸発散にすする熱エネルギー量を減らしつつ強制乾燥を行うと同時に有機物質にセル現象(内部破壊)を起こさせ、有機物質の性状を変えることにより発酵微生物菌が繁殖する断面を爆発的に増やすことを目的としている。当然槽内は、減圧され嫌気状態となるので発酵力の強い嫌気微生物菌はこれも爆発的に増殖される。
【0073】
[14][13]の強制乾燥、有機物質の性状変化(内部から破壊されるため、スカスカのスポンジ状になり分解しやすくなる)及び性状変化に伴う発酵微生物菌の繁殖断面の確保、嫌気状態での嫌気微生物菌の爆発的増殖、これらが互いに相乗効果となり、従来自然発酵で120日間位かかっていた有機廃棄物の発酵処理が数時間(2時間から最大5時間)で処理できる様になる。
【0074】
[15][12]において複数の真空ポンプ(29.真空ポンプA,29a.真空ポンプB,29b.真空ポンプC,)を並列に接続するのは、ハウス型・有機物発酵処理システムの槽内を一定の減圧状態に保つためである。仮に、同じ到達圧力性能を備えた真空ポンプで何もない密閉されたタンク、あるいは容器を減圧するのであれば、真空ポンプの大小により到達圧力に達するまでの時間的な差は出るものの、一度、到達圧力に達すればそれを維持することは真空ポンプの大小に関係なく同じであり、当然真空ポンプの台数など関係はない。
【0075】
[16]しかしながら、本発明は何もない密閉されたタンクではなく、[1]〜[4]に記述のごとく、有機物を発酵処理するためのシステムであるので、当然気密性を有した発酵槽内には有機物が投入されている。
【0076】
[17]発酵槽内は1台の真空ポンプで、減圧をかければすぐに設定した到達圧力に達し沸点を下げる。しかし有機物からの水分の蒸発散が始まり、発酵微生物菌の活動により発酵が促され、ガス体である還元物質が発生してくると、発酵槽内の温度は沸点を無視して上昇を始める。このとき真空ポンプの圧力計は、設定到達圧力を示している。
【0077】
[18]これは圧力計が到達圧力を示していても、発酵槽内が一定の減圧状態を保っていないことを示している。なぜならば、減圧によって発酵槽内の沸点が下がり、一定の減圧状態を保っているのであれば沸点以上の温度上昇は起きない。水を大気圧状態で、いくら熱しても100度以上の温度に上昇しないのと同じ理由である。
【0078】
[19]ではなぜ真空ポンプの圧力計が設定到達圧力を示していて、発酵槽内の沸点が下がっているにもかかわらず、発酵槽内温度が上昇するかというと、設定到達圧力を保っていないためである。
【0079】
[20]これは、真空ポンプの吸排気能力(到達圧力に達する時間)を上回る量の溶存水、溶存空気、還元物質であるガス体が、有機物から出されているためである。
【0080】
[21]真空ポンプの圧力計を信じて発酵槽内の温度上昇を見逃すか、無視すると有機廃棄物を時間をかけて乾燥することはできるが、発酵処理をすることはできない。[13]、[14]で記述の通りである。
【0081】
[22]本発明、ハウス型・有機物発酵処理システムにおいて、設定到達圧力まで減圧し、設定到達圧力の状態に保つことは生命線であり、何にもまして大切なことである。
【0082】
[23]本発明、ハウス型・有機物発酵処理システムにおいては、発酵槽内の減圧状態を一定に保つため、発酵槽内の温度管理をし、真空ポンプの可動と連動させている。つまり、減圧を開始するときは全ての真空ポンプが可動し設定した減圧状態に到達させる。しかし設定減圧状態に到達すると、29.真空ポンプA,だけが可動し設定減圧状態を保ち、29a.真空ポンプB,と29b.真空ポンプC,は停止する。このとき29a.真空ポンプB,と29b.真空ポンプC,は真空ポンプの圧力計に関係なく、発酵槽内のB.温度計測器,と連動し可動する様設定する。減圧状態により設定されているはずの発酵槽内沸点温度を超えて、温度が上昇しだすと自動的にまず29a.真空ポンプB,が可動を開始し、設定減圧状態を保つ。当然再び温度が上昇しだすと、最後の29b.真空ポンプC,の可動が開始され、設定減圧状態を保つ様に構成されている。
【0083】
[24]つまり発酵槽温度に連動し可動する真空ポンプの必要台数は、処理を行う有機廃棄物の質と量に比例しているということであり、逆に必要台数の真空ポンプを可動させれば発酵処理槽は拡大でき、有機廃棄物の処理量を増やすことができるということである。
【0084】
[25]本発明、ハウス型・有機物発酵処理システムにおいては、全て−740mmHg(絶対圧力20mmHg)到達圧力の真空ポンプで、発酵槽内圧力が−600mmHg以上になる様設定している。−600mmHgのときの沸点は約60度であるが、これは大気圧の酸素濃度の約20%位である。
【0085】
[26]発酵槽内温度が80度以上になると(約−400mmHg、絶対圧力360mmHg)[13]、[14]で記述した有機廃棄物の発酵処理はほとんど期待できない。
【0086】
[27]次に複数の真空ポンプ(29.真空ポンプA,29a.真空ポンプB,29b.真空ポンプC,)によって発酵槽から吸引された水分、空気、ガス体(還元物質)は、25.熱交換器(コンデンサー),で凝縮水に変えられ、最終的には33.クーリングタワー,に送られ処理されるが、その前に一度、26.凝縮水タンク,に集められ27.オゾン発生装置,で作られたオゾンを27a.オゾン送付管,より注入撹拌されることにより、
【従来の技術】
【0036】及び
【課題を解決するための手段】[15]で記述のごとく、問題を起こさない様構成されている。
【0087】
[28]次に[1]〜[4]で記述のハウス(発酵槽)には、12.自走式撹拌装置,が備え付けられており、処理対象である有機廃棄物を自走しながら撹拌を行っている。これは処理を早め、処理にムラが起きない様にするためである。
【0088】
[29]次に[1]〜[4]で記述のハウス(発酵槽)には、31.ブロワー,と9.空気吸入口,を備え付けている。これは[13]〜[26]で記述のごとく有機廃棄物を密閉されたハウス(発酵槽)に入れ、加温と減圧と乾燥を行い、発酵処理を行うわけであるがほとんどの場合、この状態での処理だけで発酵処理を完了することはできないためである。
【0089】
[30]上記のごとく、加温と減圧と乾燥による発酵処理を行えば[13]〜[14]に記述の様に処理が行えるが、この状態での処理だけで完了したのでは発酵肥料として田畑に施肥した場合問題が起きてしまう。
【0090】
[31]これは[13]に記述の通り、発酵槽内を嫌気状態で発酵力の強い嫌気微生物菌の働きを利用するためである。
【0091】
[32]嫌気微生物菌は大きく分けると偏性嫌気性菌と通性嫌気性菌に分けられる。偏性嫌気性菌は非常に嫌気的で空気の中では生存できない微生物で、通性嫌気性菌は嫌気と好気の中間に位置するもので嫌気的ではあるけれど空気の中でも生存が可能な微生物である。(人間の大腸菌、乳酸菌、光合成菌)
【0092】
[33]実は、病原菌や腐敗菌のほとんどが嫌気性が強く、嫌気的になるほどその病原性や腐敗性も強くなる傾向がある。
【0093】
[34][13]に記述の通り、発酵処理を行うときはその発酵力を利用するが、発酵処理が完了間近になると嫌気性の強い偏性嫌気性菌は不要(いては困る)であるため、ハウス(発酵槽)内に空気を9.空気吸入口,より31.ブロワー,で吸引し、常圧状態にすることにより殺菌を行う。([32]に記述の通り偏性嫌気性菌は空気の中で生存できない)
【0094】
[35]常圧状態で12.自走式撹拌機,でまんべんなく撹拌された有機廃棄物は、次に好気微生物による発酵が開始され、通性嫌気性菌とブレンドされた良質の堆肥となる。
【0095】
[36]次に、13.紫外線照射装置,とハウス(発酵槽)にオゾンを噴霧する15.自走式オゾン噴霧装置,についてである。これは埋立地等の有機廃棄物を本発明のハウス型・有機物発酵処理システムで処理する場合に使用する。
【0096】
[37]ダイオキシン類等の有害物質を含む可能性がある有機廃棄物を処理する場合は、オゾンの持つ酸化力を利用して脱塩基化を行い、紫外線照射による殺菌を行う(光化学分解)方法としては、10.ハウス上部(発酵槽),に[6]〜[7]に記述の14.ヒーター,と交互に13.紫外線照射装置,が設けてあり、必要に応じて紫外線を照射し殺菌を行う。又、同じく10.ハウス上部(発酵槽),には[4]で記述の16.自走式スラリー散布装置と平行する形で備え付けられており、必要に応じて15.自走式オゾン噴霧装置から、オゾンが出される様に構成されている。
【0097】
[38]次に8.発酵微生物菌貯留タンク,であるが、これは主に[1]〜[4]で記述している有機廃棄物が家畜の糞尿ではなく、食物残渣や農業系残渣の場合主に使用される。その理由は家畜の糞尿には腸内菌や枯草菌等の発酵菌が多量に含まれているので、前記[1]〜[35]の様な環境を与えるとおのずと発酵しやすい。ところが食物残渣や農業系残渣物は人手が多く介在しているせいもあって、含まれている発酵菌が非常に少ない場合が多い。特に野菜の場合は農薬を使用している場合など、発酵菌がほとんどない場合がある。
【0098】
[39]前記の場合等は、家畜糞尿と混ぜ合せた上で発酵処理を行うか、8.発酵微生物菌貯留タンク,で培養されている市販又は採取した発酵菌を8a.発酵菌送入管,で送り、17.自走式発酵菌噴霧装置,で噴霧する。
【0099】
[40]発酵微生物菌の採取及び培養は難しいことではなく、誰にでも簡単に行うことができる。例えば、乳酸菌等は2〜3日分の米のとぎ汁に牛乳を入れ、3日位置けば乳酸菌培養液ができるし、稲の切り株に御飯を載せ、2〜3日置いてから容器に入れ35度前後のお湯と黒糖などの糖類を入れて置くと4〜5日で枯草菌培養液ができあがる。
【0100】
[41]尚、[5]に示している10.ハウス上部(発酵槽),に使用している耐圧ガラスは、透過性の良い耐圧素材であればその材質にこだわるものではない。又、[28]に示している12.自走式撹拌機,(スクープ方式)は、その機能を有していればスクリュー方式、オーガー方式等その型式にこだわるものではない。又、[6]〜[8]に示している加温方法(ソーラーシステムによる加温方法)は、その機能を有していればボイラー、買電等そのシステムにこだわるものではない。又、[4]に示している11.ハウス下部(発酵槽),は、その機能を有していれば材質及び形状(区切られた2槽)にこだわるものではない。例えば、発酵時間(開給から完了まで)が短い場合は3槽でも5槽でもよい。
【効果】
以上のごとく、構成し作用する本発明のハウス型・有機物発酵処理システムは、システム内部で発酵に適した環境を作り強制発酵を行うため、発酵が外的要因に左右されず大量の固形有機廃棄物を短時間(1/500〜1/1,500程度)で発酵処理し、且つ従来処理ができなかった液体有機廃棄物(スラリー)を消滅処理することができる。このため広大な場所や施設を必要とせず、イニシャルコストが安く済み経済的である。悪臭、還元物質(ガス体)、排水、廃液をシステム外部に放出しないため環境に優しい。本システムの動力源の大半を太陽光でまかなうため、ランニングコストが安く済み経済的であり、環境に優しい。
【図面の簡単な説明】
【図1】本発明に係るハウス型・有機物発酵処理システムの側面図である。
【図2】本発明に係るハウス型・有機物発酵処理システムの平面図である。
【図3】本発明に係るハウス型・有機物発酵処理システムの側面図と減圧システム部詳細図1である。
【図4】本発明に係るハウス型・有機物発酵処理システムの平面図と減圧システム部詳細図2である。
【図5】図2のIII−III断面図及び拡大図である。
【図6】本発明に係るハウス型・有機物発酵処理システムの断面図であり、発酵槽下部移動状況図である。
【図7】本発明に係るハウス型・有機物発酵処理システムの断面図であり、支圧壁詳細図1である。
【図8】本発明に係るハウス型・有機物発酵処理システムの側面図であり、支圧壁詳細図2である。
【図9】本発明に係るハウス型・有機物発酵処理システムの側面図であり、撹拌機詳細図である。
【図10】本発明に係るハウス型・有機物発酵処理システムのフロー図である。
【符号の説明】
1. 投入ホッパー           20.ハウス下部(発酵槽)開閉壁
1a.投入コンベアー          21.支圧壁
2. 固液分離機            22.支圧壁ジャッキ
2a.圧縮ジャッキ           23.メジ材
2b.押出しジャッキ          24.防塵器(サイクロン)
2c.排水管              24a.還元物質吸入管A
3. 排出ホッパー           24b.還元物質吸入管B
3a.排出コンベアー          25.熱交換器(コンデンサー)
4. 液体有機物貯留タンク       26.凝縮水タンク
4a.液体有機物送入管         26a.凝縮水送水管
5. 太陽電池             27.オゾン発生装置
6. 蓄電池              27a.オゾン送付管
7. 油圧ユニット           27b.オゾン送入ガイドレール
8. 発酵微生物菌貯留タンク      28.送水ポンプA
8a.発酵菌送入管           29.真空ポンプA
9. 空気吸入口            29a.真空ポンプB
10.ハウス上部(発酵槽)       29b.真空ポンプC
10a.断熱層空間           30.真空ポンプD
11.ハウス下部(発酵槽)       31.ブロワー
12.自走式撹拌機           32.送水ポンプB
12a.スクープ            33.クーリングタワー

Figure 2004136262
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a system having a function of converting organic substances, particularly organic waste, into fertilizer and feed.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there have been many proposals of plants (equipment) for fermenting organic waste and converting it into fertilizer and feed. However, it can be roughly divided into two types: solid fermentation and liquid fermentation. .
[0003]
Before describing the two treatment methods, they will be described in advance because there is a difference between the current state of organic waste and, in particular, in the case of livestock manure, the state and amount of manure discharged according to the breeding form.
[0004]
[Current status of organic waste]
First, typical organic wastes include livestock manure, food residues, and agricultural and fishery residues.
In particular, livestock manure is serious, and in November 1999, “proper management and proper treatment of livestock manure” was legislated and required. However, the amount is enormous, and about 100 million tons of organic waste is discharged nationwide every year, and about 8% of it is only processed into compost and returned to farmland, and more than 90% is left unfilled. Or digging and filling a hole, or hanging.
[0005]
In the case of household garbage, approximately 40 million households nationwide emit 1.5 kg of garbage daily per household, which amounts to 21.9 million tons per year. About one-fifth of the emission amount occurs.
[0006]
Agricultural residues are left in the fields under the name of non-standard products, production adjustments due to abundant crops, imports, etc., causing odor pollution and soil rot, and causing illegal dumping. In addition, organic waste discharged from agricultural processing plants, for example, starch lees, soybean lees, liquor lees, fruit selection residue, etc., are discharged in enormous amounts, most of which are left unused or landfilled without being effectively used. I have.
[0007]
Fishery residues are prohibited from being dumped in the ocean from FY 2001, and seafood that has been landed upon landing in port has been treated as organic waste, including seaweed, shellfish, starfish, and fish, all of which are not commercialized. More than 30% of the amount. There are about 5.3 million tons of landings every year in the whole country, so about 1.59 million tons are generated annually, and when combined with about 1 million tons discharged from fisheries processing plants, the number is about 2.6 million tons. In addition, the amount of organic waste discharged from public facilities, the food service industry, and markets is enormous.
[0008]
As mentioned above, organic waste has been increasing every year, mainly in livestock manure, but the amount is too large to be able to keep up with the treatment at present, and the fact is It causes various problems such as pollution problems such as water pollution and air pollution, illegal dumping problems, incinerators (dioxin problems), and financial problems caused by landfill construction.
[0009]
[Differences and amounts of manure status depending on livestock breeding]
There are significant differences in the amount and condition of manure depending on the type of livestock. At present, the Ministry of Agriculture and Forestry defines livestock as six types of animals (dairy cattle, beef cattle, pigs, hens, horses, and broilers), and the amount of excreta generated is about 70% for dairy cattle and about 20% for beef cattle. About 6% of pigs, about 2% of laying hens, about 1% of horses, and about 1% of broilers. In the future, breeding of horses will decrease slightly and breeding of dairy cattle will tend to increase slightly.
[0010]
The state of manure is closely related to the breeding form, especially the amount of litter, and whether to treat as a solid or liquid is determined by the breeding form. Pigs, laying hens, horses, and broilers have a small amount of excretion, although there is some variation depending on the region, and the litter is sufficient and the breeding form is relatively well established. % Can be handled as a solid (a type called solid).
[0011]
The biggest problem with livestock manure is cattle, which make up about 90% of the total manure production. Because beef cattle are expensive, they are often bred in a so-called free burn (several cows are divided into rooms and raised with concentrated feed), and the litter is made of a large amount of materials that easily absorb moisture, such as sawdust. Most of them are used and can be treated as solid type.
[0012]
Particularly problematic is the excretion of dairy cattle, which is equivalent to 50-60 adult humans per adult cattle, about 50 kg of dung (including litter) and 15 kg of urine. It is almost three times as much as that. The breeding system is divided into two types: stanchion style (common for milking cows), which is bred in a cowshed, and free stalls (common for dry cows), which are bred separately in several rooms. Because the price is lower than that of litter, the moisture content of manure discharged using wheat culm, rice culm, and pasture that is also cheaper is increased, and the moisture content of the stanchion style is about 87% (called semi-solid) Type), and the free stall style has a water content exceeding 90% (a type called slurry) and is treated as a liquid substance.
[0013]
In recent years, the free stall style of breeding, which does not cost milking cows, has been increasing in order to reduce the total cost. That is, the state of manure has been shifted from the semi-solid type (solid-liquid separation is required for fermentation) to the slurry type (liquid), and it is on an increasing trend, as described in [Current state of organic waste]. The nationwide annual emission of livestock manure is about 100 million tons, so dairy cows, which account for 70% of them, especially slurry-type treatment is a major problem.
[0014]
Conventionally, as described above, techniques for fermenting organic waste can be roughly divided into two types: solid fermentation and liquid fermentation.
[0015]
The first is fermentation of solid organic waste. Basically, the water content of the organic waste is adjusted to about 70%, and then the fermentation microorganisms contained in the organic waste are directly fermented. Perform processing. As a method of adjusting the water content ratio, it is common to squeeze the water with a dehydrator to perform solid-liquid separation, or to mix other organic substances (rice husk, sawdust, rice bran, etc.) as auxiliary materials.
[0016]
Naturally, the sub-materials to be mixed will change depending on whether fermentation is used to make compost or feed for livestock and fish. The reason for adjusting the water content to about 70% is that fermentation of solid organic matter is usually expected to be fermentation by aerobic microorganisms. Fermentation of organic substances by aerobic microorganisms (activity of microorganisms to decompose organic substances) is actively promoted when the water content becomes 70% or less and air is supplied.
[0017]
In addition, turning over (inverting organic matter) is necessary to supply air, and the degree of this turning greatly changes the fermentation time. If the fermentation is carried out frequently every day and the water content is reduced to 60% or less while evaporating water under well-ventilated conditions, a good quality organic fertilizer or organic feed can be obtained about 120 days before or after. In general, when the quantity is small, it is performed with a heavy machine such as a backhoe or a shovel when the quantity is small, and in a house type treatment facility with an automatic stirring device when the quantity is large.
[0018]
The second is the fermentation of liquid organic waste. The main target organic wastes are the dairy cattle breeding method described above, and the slurry type excreta discharged by the free stall style and the semi-solid type manure. It is urine from which manure is drained by a dehydrator or allowed to flow naturally and separated into solid and liquid.
[0019]
Slurry type manure exhibits a fertilizer effect similar to that of a chemical fertilizer because the fertilizer effect is high and its components are almost inorganic or easily decomposed, but the components are hardly damaged by fermentation.
[0020]
Normally, liquid manure is collected in a tank, aerated by aeration (sending air) into the tank, to promote fermentation by aerobic microorganisms, reduce odor, and use as liquid fertilizer. If proper heat retention and aeration are performed, the fermentation period is about 30 days.
[0021]
In addition, when excrement as liquid organic waste is put in a closed tank, fermentation by anaerobic microorganisms is performed for about 30 days, methane gas generated by fermentation is taken out for about 30 days, and energy is used effectively, and then used as liquid fertilizer. is there.
[0022]
[Problems to be solved by the invention]
Fertilization and feed conversion of the first solid organic waste by fermentation,
{Circle around (1)} In order to adjust the water content, there is a problem that auxiliary materials are required and the processing cost is increased.
(2) Due to the natural fermentation by switching, the fermentation state is affected by the outside air temperature and humidity. Particularly in a cold region where the outside air temperature decreases, there is a problem that the fermentation bacterium stops during the winter and the fermentation itself cannot be performed.
[0023]
(3) Due to the natural fermentation by turning back, if the turning back is not enough and the air supply is not enough or the adjustment of the water content is not enough (75% or more), etc., it is not fermentation by aerobic microorganisms but anaerobic microorganisms. Fertilizers and feeds that contain a large amount of spoilage bacteria. Naturally, it cannot be used as fertilizer or feed, and reverts to organic waste.
[0024]
▲ 4 ▼
2. Description of the Related Art As described in the prior art, the amount of organic waste is enormous. For example, the number of dairy farms in Hokkaido is about 11,000, and the number of dairy cows bred per household is 100 per farm. It is around the head. That is, if the amount of excreta discharged from one dairy cow per day is 65 kg, 100 tons will emit 500 kg of 6 tons, and in one year, 2,372 tons of 500 kg will be emitted from one farmhouse. It takes a long time (120 days for solids and 60 days for liquids) to ferment and process a huge amount of organic waste, which increases the scale of the facility to be treated, the area used, and increases initial costs. is there.
[0025]
(5) In order to reduce the water content of the organic waste by evaporating water into the atmosphere, reducing substances during fermentation such as ammonia, methane gas, nitrous oxide, and hydrogen sulfide are volatilized as gaseous substances, resulting in odor pollution ( It causes various problems such as ammonia) and global warming (mainly methane gas and nitrous oxide).
[0026]
(6) The fermentation conditions (organic matter constituents, aerobic microorganisms and anaerobic microorganisms) at the completion of the treatment, depending on the fermentation conditions (water content at the start of fermentation, ambient temperature, humidity, oxygen supply, etc.) for natural fermentation. Etc.) are not constant and uniform products cannot be produced even when the raw materials used are the same.
[0027]
The second liquid organic waste is made into fertilizer by fermentation treatment, but has various problems.
{Circle around (1)} The odor can be reduced by fermentation, but the odor is severe and difficult to handle, resulting in odor pollution after use.
[0028]
(2) Fermentation is expected to be effective because fermentation is hardly damaged by fermentation, but large quantities cannot be put into fields. This means that even if liquid fertilizer is made, there is no exit (market) and there is no marketability. Forcing the fertilizer into the fields will hinder the growth of plants.
[0029]
(3) Because it is in liquid form, it often penetrates underground and volatilizes in the atmosphere. Nitrogen contaminates water as nitrate nitrogen. Volatilized gas (ammonia, methane gas, nitrous oxide, hydrogen sulfide, etc.) causes air pollution. Will be.
[0030]
{Circle around (4)} If the fermentation time is long (around 30 to 60 days), a large amount of manure is discharged every day as described above, so that there is a problem that the facility scale becomes large and the initial cost increases. In particular, a biogas plant that performs fermentation with anaerobic microorganisms and extracts methane gas to effectively use energy has a problem that initial costs are high and running costs are increased.
[0031]
The biogas plant described in (5) and (4) is important in the future from the viewpoint of effective use of energy. However, taking biogas power generation as an example, the reality is that Apart. Although there are various manufacturers that cannot be discussed in general terms, the power that can be obtained by investing 200 million yen in capital is 8 to 10 ordinary households. Conversely, how long will it take to consume 200 million yen in electricity for 8 to 10 ordinary households, and there is no value effect on a commercial basis at all. The liquid fertilizer is obtained after biogas (methane gas, carbon gas) is taken out and energy is effectively used. However, there is a problem of marketability and cost as described above. In view of the above, biogas plants should be constructed as a future research topic.
[0032]
(6) The biggest problem of liquid organic waste, manure, is that fermentation cannot be applied in a large amount because fermentation does not change even if fermentation is performed for an enormous amount of waste. It is difficult to handle due to the nature.
[0033]
{Circle around (7)} In view of the above, as far as liquid organic waste is concerned, there is a complete difference from treatment with solid organic waste. It is possible to reduce the odor, but there is no use other than the use of energy. In general, there is a problem in that it does not belong to the field of “treating”, and there is currently no method for treating slurry, which is liquid organic waste.
[0034]
The present invention solves the above-mentioned problem, and forcibly fermenting many organic substances at once in a closed system does not require a lot of time (days), a large facility scale, a large use area, and requires a large amount of space. Fermentation is not affected by external conditions such as temperature and humidity, and almost no odor or reducing substances are emitted outside the system. In addition, the inside of the house, which is the fermentation tank of the system, is depressurized, the boiling point inside is reduced, forced drying and cell phenomenon (internal destruction) are performed simultaneously, and physical destruction that changes the properties of organic substances is performed. (Rice husk, sawdust, rice bran, etc.) is not required, and issuance time can be shortened, which is economical.
[0035]
In addition, the present invention can be sterilized by a photochemical decomposition method irrespective of an organic substance or an inorganic substance. In particular, an organic substance can be fermented with either aerobic microorganisms or anaerobic microorganisms, and is commercially available. Useful microbial bacteria can also be used.
[0036]
Further, the gaseous substance, which is a reducing substance generated in the house (fermenter), becomes condensed water in the heat exchanger. For example, hydrogen sulfide decomposes into CO2 + 2H2S → CH2O + H2O + S2, methane decomposes into CO2 + CH4 → 2CH2O, and ammonia decomposes into 2CO2 + 2NH4 → 2CH2O + 2H2O + N2, most of which decomposes into water and carbon compounds.
[0037]
Further, the condensed water is reused as cooling circulating water for use in the heat exchanger, and only the excess is evaporated and vaporized from the cooling tower as steam. That is, since no wastewater or wastewater is discharged outside the system, water pollution and air pollution do not occur.
[0038]
In addition, the present invention can perform solid-liquid separation of organic waste, and can treat solid-liquid simultaneously or with a time lag. Solid organic waste is fermented into high-quality fertilizer and feed, and liquid organic waste is almost completely fermented. Can be eliminated, and its fertilizing effect can be left on solid organic waste and secondary materials.
[0039]
As described above, the present invention has a function of performing fermentation treatment on a large amount of organic waste in a short time regardless of whether it is solid or liquid, without causing water pollution and air pollution, and sterilizing regardless of inorganic substances and organic substances. The purpose of the present invention is to provide a system.
[0040]
[Means for Solving the Problems]
[1] Means of this explanation taken to achieve the above object are as follows.
In the invention of claim 1, the house, which is the main body of the fermenter of the house-type / organic matter fermentation treatment system, is provided in the form of 10. 10. Upper part of the house (fermenter), and The lower part of the house (fermenter) was configured so that it could be separated.
[0041]
[2] 10. The upper part of the house (fermentation tank) has a double structure of pressure-resistant glass with good permeability to take in sunlight into the fermentation tank. Heat insulation layer space. Also, 10. The upper part of the house (fermenter), the support and 21. It is connected and fixed to the foundation together with the bearing wall.
[0042]
[3] 11. 18. The lower part of the house (fermenter) is composed of two integrated tanks. The lower part of the house (fermenter) is moved by a roller. Processing territory A, ~ ▲ 6 ▼. It can move between processing territories C. Also, {4}. When fermentation is performed in processing territory B, 18. By jack installed in the lower part of the house (fermenter). It is closely attached to the upper part of the house (fermenter). At this time, 10. 21. connected to the upper part of the house (fermenter) 22. The supporting wall has a movable inner wall. Close contact with the supporting wall jack. 10. 10. Upper part of the house (fermenter), and 23. All on the surface where the lower part of the house (fermenter) is in close contact Completely sealed fermentation tanks are provided with media.
[0043]
[4] 10. In the upper part of the house (fermenter), a plurality of vacuum pumps (29. vacuum pump A, 29a. Vacuum pump B, 29b. Vacuum pump C.) are provided. Dust proof (cyclone), and 25. 8. It is installed in parallel via a heat exchanger (condenser), and 9. 31. Opening and closing of the air intake valve The atmospheric pressure in the house (fermentation tank) can be arbitrarily set to a normal pressure state and a reduced pressure state by operating the blower in conjunction with it. Also, the vacuum pumps installed in parallel stop moving except for one when the pressure reduction rate in the house (fermenter) reaches the set value, but move sequentially when the temperature in the house (fermenter) rises. It is configured to maintain a constant decompressed state.
[0044]
[5] Also, 10. The upper part of the house (fermenter) is 13. 13. UV irradiation device, multiple units, 14. heater, multiple units, Self-propelled ozone sprayer, 16. 16. Self-propelled slurry sprayer, 11. Self-propelled fermentation bacteria spraying device, A self-propelled stirrer is provided.
[0045]
[6] Also, 11. The lower part of the house (fermenter), 21. The surface that contacts the bearing wall is 20. The lower part of the house (fermentation tank) is an open / close wall. Processing territory A, or <6>. When moving to the processing territory C, it can be arbitrarily opened and closed. Also, 11. 20. House lower part (fermenter) 34. On all surfaces except the lower part of the house (fermenter) Heating is provided.
[0046]
[7] In claim 2, claim 10. There is a beam at the top of the house (fermentation tank) and at the bottom of both sides. 11. A stirrer rail is installed, and the upper part is 12. The self-propelled stirrer is designed to move in both directions.
[0047]
[8] <4>. The organic waste treated in the treatment territory B is: The lower part of the house (fermentation tank), every ▲ 2 ▼. Processing territory A, or <6>. 19. Processing territory C. Moved by the lower part of the house (fermenter) rollers, 20. After opening the lower part of the house (fermenter), the shovel loader takes it out.
[0048]
[9] In the case of claim 3, claim 10. 13. Upper part of the house (fermenter), on both sides of the middle stage 13. UV irradiation device, and Heaters are provided alternately, and 27b. 14. Ozone feeding guide rails, arranged along the track Self-propelled ozone sprayer, 27. The ozone generated by the ozone generator is sprayed.
[0049]
[10] 11. In the lower part of the house (fermenter), 20. 34. On all surfaces except the lower part of the house (fermenter) 4. Heating is provided. 5. Electricity produced by solar cells. Through the battery, 34. Sent to heating. (At this time, it is the inverter that exchanges DC current for AC current.)
[0050]
[11] In the request of claim 4, 10. The upper part of the house (fermentation tank) has a double structure of pressure-resistant glass with good permeability to take in the heat of sunlight into the fermentation tank. Insulation layer space, which is 30. The vacuum pump D is connected, and an arbitrary pressure insulation layer can be formed.
[0051]
[12] In claim 5, claim {1}. Loading territory A, and (5). 1. In territory B, A solid-liquid separator, and the solid organic waste separated at this time is {2}. Processing territory A, or <6>. It is carried into the processing territory C by a shovel loader or the like, and {4}. The fermentation treatment is performed in the treatment territory B. The liquid organic waste separated at this time is: 2c. Provided below the solid-liquid separator. 3. through drain pipe It is stored in a liquid organic matter storage tank. The stored liquid organic waste is 10. 4a. In 16 self-propelled slurry disperser provided in the upper part of the house (fermenter). It is sent and sprayed through a liquid organic matter inlet pipe. At this time, the timing of spraying is (4). It is configured so that it can be arbitrarily set because it greatly affects the water content of the solid organic waste being treated in the treatment territory B.
[0052]
[13] In claim 6, claim 10. 10. Upper part of the house (fermenter), and The lower part of the house (fermenter) was configured so that it could be separated. 10. The upper part of the house (fermenter), the support and 21. It is connected and fixed to the foundation together with the bearing wall. 11. 20. The lower part of the house (fermenter) is composed of two integrated tanks. It has an opening / closing wall at the bottom of the house (fermenter). 11. In the lower part of the house lower part (fermenter), 18. 19. Jack installed at the bottom of the house (fermenter) The lower part of the house (fermentation tank) is equipped with a moving roller. The upper part of the house (fermenter) is installed. ▲ 4 ▼. It is configured so that it can be moved to and installed in the processing territory B.
[0053]
[14] 10. 12. In the upper part of the house (fermenter). 9. equipped with a self-propelled stirrer; 10. Upper part of the house (fermenter), and The lower part of the house (fermenter) is integrated, and {4}. When the fermentation treatment is performed in the treatment territory B, the stirring posture is set and automatic stirring is performed. Fermentation treatment in treatment territory B is completed {2}. Processing territory A, or <6>. 11. In processing territory C, If the lower part of the house (fermenter) moves, 12a. 10. Scoop jumped up. It is configured not to hinder the movement of the lower part of the house (fermenter).
[0054]
[15] In the request of claim 7, 10. 24. A plurality of vacuum pumps (29. Vacuum pump A, 29a. Vacuum pump B, 29b. Vacuum pump C) are provided at the top of the house (fermenter). Dustproof device (cyclone), 25. 31. Installed in parallel via a heat exchanger (condenser) Blower, directly 10. Installed in the upper part of the house (fermenter). A plurality of vacuum pumps (29. Vacuum pump A, 29a. Vacuum pump B, 29b. Vacuum pump C.) remove water vapor and gas (reducing substance) 25. 25. Condensed water in the heat exchanger (condenser), Collected in a condensate tank, 26a. 33. through condensate water pipe The cooling water is sent to the cooling tower where excess water evaporates, and the rest is 25. Used as cooling circulating water for heat exchangers (condensers).
[0055]
[16] At this time, 26. In the condensate tank, 27a. Through an ozone delivery tube, 27. Since ozone produced by the ozone generator is introduced and debasification is performed, cooling circulating water and 33. Water evaporating from the cooling tower is converted into harmless water (H2O) and carbon compound (C), and does not cause any problem. 31. The gas (reducing substance) and moisture extracted by the blower are also 25. Heat exchanger (condenser), and 26. 33. via a condensate tank, or directly As described above, no problem occurs because the cooling tower is sent to the cooling tower.
[0056]
[Action]
The house-type / organic matter fermentation treatment system of the present invention thus configured is capable of performing a fermentation treatment or an annihilation treatment of a large amount of organic waste (solid / liquid) charged in a house (fermenter) in a few hours. It does not require a large area or long time.
[0057]
In addition, the pressure in the house (fermentation tank) is reduced to lower the boiling point, and forced drying and forced fermentation are performed simultaneously. Therefore, the water in the processed material is vaporized with a small amount of energy, and organic waste is used to maximize the use of solar energy. It does not require auxiliary materials to lower the water content of the product, and is economical because the running cost is reduced. It is environmentally friendly because it does not emit any wastewater or wastewater from the organic matter treatment system.
[0058]
【Example】
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0059]
This house-type / organic matter fermentation treatment system has the same structure as that described in the section of the means for solving the problems, and further includes the following items: Input hopper, 1a. Input conveyor, 2a. Compression jack, 2b. Extrusion jack, 3. Discharge hopper, 3a. Discharge conveyor, 7. Hydraulic unit, 8. Fermentation microorganism storage tank, 8a. Fermentation bacteria feed tube, 24a. Reducing substance suction pipe A, 24b. Reducing substance suction pipe B, 28. Water pump A, 32. Water pump B, B. Temperature measuring instrument, C.I. Humidity measuring device, (3). Unloading territory A, {7}. The unloading territory B is shown in FIG.
[0060]
First, [1] {1}. Loading territory A, or <5>. The organic waste carried into the carry-in territory B, as described in 2. Separation by solid-liquid separator, or directly <2>. Processing territory A, or {6}. 10. Exposed to processing territory C. Carry in the lower part of the house (fermenter) with a shovel loader.
[0061]
[2] At this time, when the solid-liquid separation is performed, the organic waste is added to 1. Into the charging hopper, 1a. 1. Conveyor, Send to solid-liquid separation processor. The incoming organic waste was 2a. It is crushed by a compression jack and separated into solid and liquid. 2. The bottom surface in the tank of the solid-liquid separator is a perforated plate, and the separated liquid is 2c. 3. through the water pipe. The liquid is stored in a liquid organic matter storage tank, and the solid is 2b. 2. By extrusion jack. Into the discharge hopper, 3a. (1) again at the discharge conveyor. Loading territory A, or <5>. 10. Returned to loading territory B, It is thrown into the lower part of the house (fermenter).
[0062]
[3] Input of organic waste is completed The lower part of the house (fermenter) is 20. 19. Close the lower part of the house (fermentation tank). At the bottom of the house (fermentation tank) moving roller, ▲ 4 ▼. Move to processing territory B, 18. 21. Jack installed at the bottom of the house (fermenter). 9. The support wall is activated. It is configured to form an integrated fermenter that is completely in close contact with the upper part of the house (fermenter).
[0063]
[4] 11. Since the lower part of the house (fermentation tank) is composed of two integrated fermentation tanks, (4). The fermenter located in processing territory B, is exposed in the opposite direction to the processing territory where the fermenter to be processed was located. Thus, the completed processed material of the exposed fermenter is carried out, and the organic waste is charged. Also, in [2], 4. The liquid organic matter stored in the liquid organic matter storage tank is 4a. 15. through the liquid organics inlet. The fertilizer is sprayed into the fermenter by a self-propelled slurry sprayer, and fermentation is performed together with the solid organic matter. At this time, most of the liquid organic matter disappears in volume.
[0064]
[5] 10. 10. Upper part of the house (fermenter), and The lower part of the house (fermentation tank) is a house-type / organic matter fermentation treatment tank that is sealed and integrated, but the upper part is 10. The upper part of the house (fermenter) has a double structure of pressure-resistant glass with good permeability to take in sunlight, and 10a. A heat-insulating layer space is provided, and a pressure-resistant layer is also formed together with heat insulation. This provides a significant greenhouse effect throughout the four seasons. The purpose of the double structure is to provide a heat-insulating layer and to form a relaxation layer (pressure-resistant layer) at atmospheric pressure so that the structure does not directly receive atmospheric pressure.
[0065]
[6] Although it is a closed house / organic matter fermentation treatment tank, other than the heating method by the greenhouse effect shown in [5], 14. Heater, and 34. A heating device for heating is provided.
[0066]
[7] 14. Heater, and 34. For heating, 5. The battery made of solar cells is 6. It is stored in a storage battery and is sent under the control of an inverter.
[0067]
[8] As described in [1] to [4], the organic waste (solid or liquid) put into the house (fermenter) is a greenhouse effect. Heater, 34. It will be heated by heating.
[0068]
[9] Thus, as described in [8], the organic waste (solid or liquid) is heated, but is simultaneously depressurized by the operation of the vacuum pump.
[0069]
[10] The organic waste (solid or liquid) in the house (fermenter) described in [3] is simultaneously subjected to the heating described in [8] and the reduced pressure described in [9], and fermentation by the fermenting microorganisms is promoted. You.
[0070]
[11] At this time, the boiling point in the house (fermenter) is lowered by the reduced pressure. As will be described later, if the boiling point is about 60 degrees, most of the heat in the house (fermenter) can be covered by the greenhouse effect. Heater, and 34. Heating is considered supplementary (winter, night).
[0071]
[12] 10. 24. In the upper part of the house (fermenter). Dust proof (cyclone), and 25. A plurality of vacuum pumps (29. Vacuum pump A, 29a. Vacuum pump B, 29b. Vacuum pump C.) are connected via a heat exchanger (condenser), and water is supplied from a house type / organic matter fermentation tank. And 25. 33. Change to condensed water with a heat exchanger (condenser). It is sent to a cooling tower and circulated as cooling circulation water used for evapotranspiration and heat exchange.
[0072]
[13] Using a vacuum pump to draw air, moisture, and gas from the house-type / organic fermentation tank to reduce the pressure is to lower the boiling point in the house-type / organic fermentation tank and reduce the evaporation point in the tank. The purpose is to explode the cross-section where fermenting microorganisms grow by changing the properties of organic substances by causing cell phenomena (internal destruction) in organic substances while performing forced drying while reducing the amount of thermal energy sooted. And Naturally, the inside of the tank is decompressed and becomes anaerobic, so that anaerobic microorganisms having strong fermentation power also explode.
[0073]
[14] Forced drying of [13], changes in the properties of organic substances (because they are destroyed from the inside, it becomes spongy and easily decomposed), and secures a breeding cross section of fermenting microorganisms associated with the changes in properties, anaerobic state Explosive growth of anaerobic microbes in the environment, these have a synergistic effect, and the fermentation treatment of organic waste, which conventionally took about 120 days by natural fermentation, can be treated in a few hours (2 hours to a maximum of 5 hours) .
[0074]
[15] In [12], the plurality of vacuum pumps (29. Vacuum pump A, 29a. Vacuum pump B, 29b. Vacuum pump C) are connected in parallel in the tank of the house type organic fermentation processing system. This is for maintaining a constant reduced pressure state. If the vacuum pump with the same ultimate pressure performance is used to depressurize a closed tank or container with nothing, the difference in time until the ultimate pressure is reached will occur depending on the size of the vacuum pump, but once, If the ultimate pressure is reached, maintaining it is the same regardless of the size of the vacuum pump, and naturally there is no relationship such as the number of vacuum pumps.
[0075]
[16] However, since the present invention is not a closed tank having nothing but a system for fermenting organic matter as described in [1] to [4], a fermenter having airtightness is naturally used. Organic matter is put inside.
[0076]
[17] The inside of the fermenter is a single vacuum pump. As soon as the pressure is reduced, the set pressure is reached and the boiling point is lowered. However, when the evaporation of water from the organic matter starts, fermentation is promoted by the activity of the fermenting microorganisms, and a reducing substance, which is a gaseous substance, is generated, the temperature in the fermenter starts rising ignoring the boiling point. At this time, the pressure gauge of the vacuum pump indicates the set ultimate pressure.
[0077]
[18] This indicates that even if the pressure gauge indicates the ultimate pressure, the inside of the fermenter does not maintain a constant reduced pressure. This is because the boiling point in the fermenter is lowered by the reduced pressure, and the temperature does not rise above the boiling point if a constant reduced pressure state is maintained. For the same reason, no matter how much water is heated at atmospheric pressure, it does not rise to a temperature of 100 degrees or more.
[0078]
In [19], the reason why the pressure gauge in the vacuum pump indicates the set ultimate pressure and the temperature in the fermenter rises despite the fact that the boiling point in the fermenter has fallen is that the set ultimate pressure is maintained. Because there is no.
[0079]
[20] This is because the amount of dissolved water, dissolved air, and the gaseous substance that is a reducing substance exceeds the intake / exhaust capacity (time required to reach the ultimate pressure) of the vacuum pump is discharged from the organic matter.
[0080]
[21] If the temperature rise in the fermenter is overlooked by ignoring the pressure gauge of the vacuum pump or ignored, the organic waste can be dried over time, but cannot be fermented. As described in [13] and [14].
[0081]
[22] In the house-type / organic matter fermentation treatment system of the present invention, reducing the pressure to the set ultimate pressure and keeping it at the set ultimate pressure is a lifeline and more important than anything.
[0082]
[23] In the house-type / organic matter fermentation treatment system of the present invention, in order to keep the decompressed state in the fermenter constant, the temperature in the fermenter is controlled and linked with the operation of the vacuum pump. That is, when the pressure reduction is started, all the vacuum pumps are operated to reach the set pressure reduction state. However, when the set pressure reduction state is reached, 29. Only the vacuum pump A is operated to maintain the set reduced pressure state, and 29a. Vacuum pump B, and 29b. The vacuum pump C stops. At this time, 29a. Vacuum pump B, and 29b. Vacuum pump C, regardless of the pressure gauge of the vacuum pump, B.I. Set to move in conjunction with the temperature measuring device. When the temperature starts to rise above the boiling point temperature in the fermenter which should have been set by the reduced pressure state, 29a. The vacuum pump B starts moving and maintains the set reduced pressure state. Naturally, when the temperature starts to rise again, the last 29b. The operation of the vacuum pump C is started, so that the set vacuum state is maintained.
[0083]
[24] That is, the required number of vacuum pumps that can be operated in conjunction with the temperature of the fermenter is proportional to the quality and quantity of the organic waste to be treated. Conversely, the required number of vacuum pumps can be operated. This means that the fermentation tank can be expanded and the amount of organic waste to be treated can be increased.
[0084]
[25] In the house-type / organic matter fermentation treatment system of the present invention, all are vacuum pumps of the ultimate pressure of -740 mmHg (absolute pressure 20 mmHg), and the pressure in the fermenter is set to be -600 mmHg or more. The boiling point at -600 mmHg is about 60 degrees, which is about 20% of the atmospheric oxygen concentration.
[0085]
[26] When the temperature in the fermenter reaches 80 ° C. or higher (about −400 mmHg, absolute pressure 360 mmHg), the fermentation treatment of the organic waste described in [13] and [14] can hardly be expected.
[0086]
[27] Next, water, air, and gas (reducing substance) sucked from the fermentation tank by a plurality of vacuum pumps (29. vacuum pump A, 29a. Vacuum pump B, 29b. Vacuum pump C.) In the heat exchanger (condenser), it is converted into condensed water, and finally it is 33. Sent to the cooling tower for processing, but before that, once, 26. Collected in the condensate tank, 27. The ozone produced by the ozone generator, 27a. Ozone sending tube, by being injected and stirred,
[Prior art]
And
As described in [15], the configuration is such that no problem occurs.
[0087]
[28] Next, in the house (fermenter) described in [1] to [4], 12. A self-propelled stirrer is provided to stir the organic waste to be treated while self-propelled. This is to speed up the processing and prevent the processing from becoming uneven.
[0088]
[29] Next, in the house (fermenter) described in [1] to [4], 31. Blowers, and 9. An air inlet is provided. In this method, as described in [13] to [26], organic waste is put into a sealed house (fermenter), heated, decompressed, and dried to perform fermentation treatment. This is because the fermentation process cannot be completed only by the process in the state.
[0089]
[30] As described above, if fermentation treatment by heating, decompression, and drying is performed, the treatment can be performed as described in [13] to [14]. Problems occur when fertilizing the fields.
[0090]
[31] As described in [13], this is to utilize the action of anaerobic microorganisms having strong fermentation power in an anaerobic state in the fermenter.
[0091]
[32] Anaerobic microorganisms are roughly classified into obligate anaerobic bacteria and facultative anaerobic bacteria. Obligate anaerobic bacteria are very anaerobic and cannot survive in the air, and facultative anaerobic bacteria are intermediate between anaerobic and aerobic and are anaerobic but can survive in the air. It is. (Human Escherichia coli, lactic acid bacteria, photosynthetic bacteria)
[0092]
[33] In fact, most of the pathogenic bacteria and putrefactive bacteria are highly anaerobic, and the more anaerobic, the more the pathogenicity and putrefaction tend to be.
[0093]
[34] As described in [13], the fermentation treatment is performed when the fermentation treatment is performed. However, when the fermentation treatment is almost completed, strongly anaerobic obligate anaerobic bacteria are unnecessary (and difficult). For this reason, air was introduced into the house (fermenter). Air inlet, more 31. Sterilization is performed by suctioning with a blower and bringing the pressure to a normal pressure. (As described in [32], obligate anaerobic bacteria cannot survive in air.)
[0094]
[35] At normal pressure The organic waste uniformly stirred by the self-propelled stirrer is then fermented by aerobic microorganisms, and becomes a high-quality compost blended with facultative anaerobic bacteria.
[0095]
[36] Next, 13. 14. Spray ozone on ultraviolet irradiation equipment and house (fermenter) Self-propelled ozone sprayer. This is used when treating organic waste such as landfills with the house type organic matter fermentation treatment system of the present invention.
[0096]
[37] In the case of treating organic waste that may contain harmful substances such as dioxins, a method of debasing utilizing the oxidizing power of ozone and sterilizing by ultraviolet irradiation (photochemical decomposition) As 10. 13. Upper part of the house (fermenter), described in [6]-[7]. 13. alternately with heater An ultraviolet irradiation device is provided, and sterilizes by irradiating ultraviolet rays as needed. Also, 10. In the upper part of the house (fermenter), 16. described in [4]. 14. It is provided in parallel with the self-propelled slurry spraying device. The self-propelled ozone spray device is configured to emit ozone.
[0097]
[38] Next, 8. The fermentation microorganism storage tank is mainly used when the organic waste described in [1] to [4] is not animal manure but food residue or agricultural residue. The reason is that the excrement of livestock contains a large amount of fermenting bacteria such as intestinal bacteria and Bacillus subtilis, so that it is easy to ferment naturally when an environment as described in [1] to [35] above is given. However, food residues and agricultural residues often contain a very small amount of fermentation bacteria, partly due to the presence of many human interventions. Especially in the case of vegetables, there are cases where there are almost no fermentation bacteria, such as when pesticides are used.
[0098]
[39] In the above case, fermentation is performed after mixing with livestock manure, or 8. A commercially available or collected fermentative bacterium cultivated in a fermentation microorganism bacterium storage tank is collected in 8a. 17. Fermentation bacteria feeding tube Spray with a self-propelled fermentation bacteria sprayer.
[0099]
[40] The collection and culture of the fermenting microorganisms is not difficult, and can be easily performed by anyone. For example, lactic acid bacteria and the like are put into milk of rice for 2-3 days, and milk is put in 3 days. A lactic acid bacteria culture solution can be obtained. Rice is placed on a rice stump, put in rice for 2 to 3 days, and then put in a container. If you put hot water and sugars such as brown sugar around the temperature, a Bacillus subtilis culture solution is completed in 4 to 5 days.
[0100]
[41] Note that 10. shown in [5]. The pressure-resistant glass used for the upper part of the house (fermenter) is not limited to the material as long as it is a pressure-resistant material having good permeability. Also, 12. shown in [28]. The self-propelled stirrer (scoop type) is not limited to a screw type, an auger type or the like as long as it has the function. Further, the heating method (heating method using a solar system) described in [6] to [8] is not limited to a boiler, power purchase, or the like as long as it has the function. Also, 11 shown in [4]. The lower part of the house (fermentation tank) is not limited to the material and shape (two partitioned tanks) as long as it has the function. For example, when the fermentation time (from opening to completion) is short, three or five tanks may be used.
【effect】
As described above, the house-type / organic matter fermentation treatment system of the present invention, which is configured and operates, creates an environment suitable for fermentation in the system and performs forced fermentation, so that fermentation is not affected by external factors and a large amount of solid organic waste is disposed. The material can be fermented in a short time (approximately 1/500 to 1 / 1,500), and liquid organic waste (slurry) that could not be conventionally treated can be eliminated. For this reason, it does not require a vast area or facilities, and the initial cost is low and economical. It is environmentally friendly because it does not release odors, reducing substances (gas bodies), wastewater, and waste liquids to the outside of the system. Since most of the power source of this system is covered by sunlight, running costs are low, economical and environmentally friendly.
[Brief description of the drawings]
FIG. 1 is a side view of a house type / organic matter fermentation treatment system according to the present invention.
FIG. 2 is a plan view of a house-type / organic matter fermentation treatment system according to the present invention.
FIG. 3 is a side view of a house-type / organic matter fermentation treatment system according to the present invention and a detailed diagram 1 of a decompression system unit.
FIG. 4 is a plan view of a house-type / organic matter fermentation treatment system according to the present invention and FIG.
FIG. 5 is a cross-sectional view and an enlarged view of FIG. 2 along the line III-III.
FIG. 6 is a cross-sectional view of a house-type / organic matter fermentation treatment system according to the present invention, showing a state of movement of a lower portion of a fermenter.
FIG. 7 is a sectional view of a house type / organic matter fermentation treatment system according to the present invention, and is a detailed view of a supporting wall 1;
FIG. 8 is a side view of the house-type / organic matter fermentation treatment system according to the present invention, and is a detailed view of a supporting wall 2;
FIG. 9 is a side view of the house type organic matter fermentation treatment system according to the present invention, and is a detailed view of a stirrer.
FIG. 10 is a flow chart of a house type organic matter fermentation treatment system according to the present invention.
[Explanation of symbols]
1. Input hopper 20. House bottom (fermentation tank) opening and closing wall
1a. Input conveyor 21. Bearing wall
2. Solid-liquid separator 22. Bearing wall jack
2a. Compression jack 23. Media
2b. Extrusion jack 24. Dustproof (cyclone)
2c. Drain pipe 24a. Reducing substance suction pipe A
3. Discharge hopper 24b. Reducing substance suction pipe B
3a. Discharge conveyor 25. Heat exchanger (condenser)
4. Liquid organic matter storage tank 26. Condensed water tank
4a. Liquid organic matter inlet pipe 26a. Condensate water pipe
5. Solar cell 27. Ozone generator
6. Storage battery 27a. Ozone delivery tube
7. Hydraulic unit 27b. Ozone feeding guide rail
8. Fermentation microorganism storage tank 28. Water pump A
8a. Fermentation bacterium inlet tube 29. Vacuum pump A
9. Air inlet 29a. Vacuum pump B
10. Upper part of the house (fermenter) 29b. Vacuum pump C
10a. Insulation layer space 30. Vacuum pump D
11. House bottom (fermenter) 31. Blower
12. Self-propelled stirrer 32. Water pump B
12a. Scoop 33. cooling tower
Figure 2004136262

Claims (7)

有機物質(家畜糞尿・食物残渣・農漁業系残渣等)の発酵を促し肥料化及び飼料化を行う機能を有する、ハウス型・発酵処理システムで、高い気密性を有しハウス(発酵槽)内の大気圧を任意に常圧状態と減圧状態にすることができ、且つ一定の減圧状態を保つことができる装置を備えている。House type fermentation treatment system that has the function of promoting fermentation of organic substances (livestock manure, food residues, agricultural residues, etc.) and turning it into fertilizer and feed. It has a high airtightness inside the house (fermentation tank). A device capable of arbitrarily changing the atmospheric pressure to a normal pressure state and a reduced pressure state and maintaining a constant reduced pressure state is provided. ハウス(発酵槽)内の有機物質を撹拌し、処理有機物質を効率良くハウスの外に排出する装置を備えていることを特徴とする請求項1に記載のシステム。The system according to claim 1, further comprising a device for stirring the organic substance in the house (fermenter) and efficiently discharging the treated organic substance out of the house. ハウス(発酵槽)内に殺菌装置と加温装置を備えていることを特徴とする請求項1に記載のシステム。The system according to claim 1, further comprising a sterilizer and a heater in the house (fermenter). ハウス(発酵槽)内に太陽エネルギーを取り込みつつ、断熱設備(保温)を備えていることを特徴とする請求項1に記載のシステム。The system according to claim 1, further comprising a heat insulation facility (heating) while taking in solar energy into the house (fermenter). 有機物質の固液分離が行え、固液を同時あるいは時間差で処理する装置を備えていることを特徴とする請求項1に記載のシステム。The system according to claim 1, further comprising an apparatus for performing solid-liquid separation of an organic substance and treating the solid-liquid simultaneously or with a time difference. 有機物の発酵処理時は、ハウス(発酵槽)本体が一体となり、発酵処理終了時には上部ハウス(発酵槽)と下部ハウス(発酵槽)に分離できる装置を備えていることを特徴とする請求項1に記載のシステム。2. The apparatus according to claim 1, wherein a body of the house (fermenter) is integrated during the fermentation treatment of the organic matter, and a device capable of separating into an upper house (fermenter) and a lower house (fermenter) at the end of the fermentation treatment. System. 有機物処理システム内から、一切の排水、廃液を出さないことを特徴とする請求項1に記載のシステム。The system according to claim 1, wherein no wastewater or waste liquid is discharged from the organic matter treatment system.
JP2002340123A 2002-10-18 2002-10-18 Organic waste fermentation treatment system Expired - Fee Related JP3706097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340123A JP3706097B2 (en) 2002-10-18 2002-10-18 Organic waste fermentation treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340123A JP3706097B2 (en) 2002-10-18 2002-10-18 Organic waste fermentation treatment system

Publications (2)

Publication Number Publication Date
JP2004136262A true JP2004136262A (en) 2004-05-13
JP3706097B2 JP3706097B2 (en) 2005-10-12

Family

ID=32462701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340123A Expired - Fee Related JP3706097B2 (en) 2002-10-18 2002-10-18 Organic waste fermentation treatment system

Country Status (1)

Country Link
JP (1) JP3706097B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200449463Y1 (en) 2010-06-15 2010-07-15 주식회사두합크린텍 Floating water purification device of advanced oxidation process using solar energy
KR101157517B1 (en) * 2011-11-22 2012-06-20 비케이환경종합건설 주식회사 A system of a barnyard manure factory having a close type fermenter
JP2013505816A (en) * 2009-09-28 2013-02-21 グアンチョウ、ピュデ、エンバイロンメンタル、プロテクション、エキップメント、リミテッド A method for integrating sewage sludge concentration-dehydration and aerobic air drying
KR101345486B1 (en) 2011-08-19 2013-12-27 주식회사 에이티생명과학 An integrated dry and wet anaerobic composting system
KR101366496B1 (en) * 2013-09-23 2014-02-28 (주)백암바이오 Method for manufacturing concentrated liquefied fertilizer using butchery blood
CN104649725A (en) * 2015-03-05 2015-05-27 苏州市协进升降设备有限公司 Pollution-free processing system based on animal carcasses and control method thereof
KR101898269B1 (en) * 2018-06-28 2018-09-12 마이크로맥스 영농조합법인 ferment treat apparatus of organic wastes
CN111606744A (en) * 2020-07-07 2020-09-01 山东省临沂科威机械有限公司 Hopper type fermentation equipment and process for comprehensive treatment of rural organic wastes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106116736B (en) * 2016-07-11 2021-12-24 湖南屎壳郎环境科技有限公司 System and method for treating feces and urine of livestock and poultry and placenta of livestock and poultry died of diseases in large-scale farm

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505816A (en) * 2009-09-28 2013-02-21 グアンチョウ、ピュデ、エンバイロンメンタル、プロテクション、エキップメント、リミテッド A method for integrating sewage sludge concentration-dehydration and aerobic air drying
US8808419B2 (en) 2009-09-28 2014-08-19 Guangzhou New Extend Rising Environmental Protection Technologies Machinery Equipment Co., Ltd. Method of integration of concentration-dehydration and aerobic air-drying of sewage sludge
KR200449463Y1 (en) 2010-06-15 2010-07-15 주식회사두합크린텍 Floating water purification device of advanced oxidation process using solar energy
KR101345486B1 (en) 2011-08-19 2013-12-27 주식회사 에이티생명과학 An integrated dry and wet anaerobic composting system
KR101157517B1 (en) * 2011-11-22 2012-06-20 비케이환경종합건설 주식회사 A system of a barnyard manure factory having a close type fermenter
KR101366496B1 (en) * 2013-09-23 2014-02-28 (주)백암바이오 Method for manufacturing concentrated liquefied fertilizer using butchery blood
WO2015041421A1 (en) * 2013-09-23 2015-03-26 (주)백암바이오 Production method for concentrated liquid fertiliser using livestock blood
CN104649725A (en) * 2015-03-05 2015-05-27 苏州市协进升降设备有限公司 Pollution-free processing system based on animal carcasses and control method thereof
KR101898269B1 (en) * 2018-06-28 2018-09-12 마이크로맥스 영농조합법인 ferment treat apparatus of organic wastes
WO2020004800A1 (en) * 2018-06-28 2020-01-02 마이크로맥스 영농조합법인 Fermentation treatment apparatus of organic waste
CN111606744A (en) * 2020-07-07 2020-09-01 山东省临沂科威机械有限公司 Hopper type fermentation equipment and process for comprehensive treatment of rural organic wastes
CN111606744B (en) * 2020-07-07 2024-05-14 山东省临沂科威机械有限公司 Rural organic waste comprehensive treatment split-bucket type fermentation equipment and technology

Also Published As

Publication number Publication date
JP3706097B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
CN107759254B (en) A system and method for pollution ecological management of livestock and poultry farms based on the combination of planting and breeding
DE60114863T2 (en) CONCEPT FOR SEPARATION OF BATTERY AND PRODUCTION OF BIOGAS
CN103265154B (en) Resource utilization and comprehensive treatment process for sewage and manure generated during cultivation
CN103396180B (en) Method for treating animals died from illness by using flammulina velutipes dreg
BR112012023753B1 (en) organic waste treatment
CN104892052A (en) Organic fertilizer production process for treating straws by acid and alkali
CN104193426B (en) A kind of manure fermentation is dried the method and apparatus that a step completes
CN103664259B (en) Method for fermentation production of bio-organic fertilizer by using duck manure
CN104222506A (en) Environmentally-friendly pig breeding method
CN111454086A (en) Guide rail vehicle type anaerobic-aerobic combined fermentation composting device
CN106345216A (en) Innocent treatment technique for three wastes of agricultural culture and application thereof
CN115806449A (en) A method for full resource utilization of livestock and poultry manure
JP3706097B2 (en) Organic waste fermentation treatment system
Marchaim et al. A suggested solution for slaughterhouse wastes: Uses of the residual materials after anaerobic digestion
CN109678565A (en) Cultivate temperature solar aerobic fermentation tank in waste
CN219752189U (en) Aerobic composting room
CN212246803U (en) Processing equipment of fertilizer
CN111533588A (en) A kind of organic fertilizer production method and processing equipment
KR101595184B1 (en) Composting method organic waste
JP2003171191A (en) Production method for organic fertilizer such as domestic animal dung and apparatus therefor
CN208166874U (en) A kind of pre-heated aerobic composting device
CN110183279A (en) A kind of charcoal base method for producing biological organic fertilizer and equipment
CN213202855U (en) A device for decomposing heat-generating microorganisms of livestock and poultry manure
WO2019132793A1 (en) Organic fertilizer production method with automation controlled machine
CN1820577A (en) Recovery agent for degraded soil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees