[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004131832A - Apparatus and method for depositing film - Google Patents

Apparatus and method for depositing film Download PDF

Info

Publication number
JP2004131832A
JP2004131832A JP2002299948A JP2002299948A JP2004131832A JP 2004131832 A JP2004131832 A JP 2004131832A JP 2002299948 A JP2002299948 A JP 2002299948A JP 2002299948 A JP2002299948 A JP 2002299948A JP 2004131832 A JP2004131832 A JP 2004131832A
Authority
JP
Japan
Prior art keywords
shutter
vapor
electron beam
opening
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002299948A
Other languages
Japanese (ja)
Inventor
Yuji Ichinohe
一戸 裕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002299948A priority Critical patent/JP2004131832A/en
Publication of JP2004131832A publication Critical patent/JP2004131832A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To deposit a thin film without causing damage to a film depositing objective material. <P>SOLUTION: In a film depositing apparatus 1, the surrounding of a vapor-depositing source 6 and an EB (electron beam) gun 3, is covered with a deposit-preventive member 16 having an opening part 9 and under state of closing a shutter 15, this opening part 9 is covered with a plate part 12 of the shutter 15. Since the portion near the opening part 9 of the deposit-preventive member 16 is surrounded with a projected line 13 of the shutter 15, when the electron beam 25 is radiated under state of closing the shutter 15, even in the case of leaking energy ray developed by radiating the electron beam 25 from the interval between the plate part 12 and the edge part of the opening part 9, a substrate 11b as the film-depositing objective material does not receive the damage because the energy ray is shut off with the projected line 13. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜の成膜方法の技術分野に関し、特に、有機EL装置や半導体装置の電極膜を成膜する技術に関する。
【0002】
【従来の技術】
従来より、電極膜のような金属膜の成膜方法には、蒸着材料を加熱して蒸気を発生させ、該蒸気を成膜対象物に到達させる蒸着法が用いられている。
蒸着法のうち、蒸着材料に電子ビームを照射して蒸気を発生させるEB(Electron Beam)蒸着法は、抵抗加熱法等他の加熱方法に比べて、加熱能力が高い、使用可能な蒸着材料の種類が多い、量産性が高い、純度の高い薄膜が得られるなどの種々の利点がある。
【0003】
しかし、EB蒸着法で成膜を行うと、成膜中、蒸気の他に数keVの非常に高いエネルギーを持った反跳電子や、数eV以上のエネルギーを持った2次電子や、イオンや、電子を材料に照射することによって発生する紫外線やX線等の種々のエネルギー線が発生する。
【0004】
従って、有機EL装置や半導体装置の電極膜をEB蒸着法で形成する場合、上述したような荷電粒子や電磁波等のエネルギー線により、成膜中に装置本体がダメージを受ける場合がある。
【0005】
【発明が解決しようとする課題】
本発明は上記課題を解決するためのものであり、その目的は、装置本体にダメージを与えずに薄膜を形成する技術を提供するものである。
【0006】
【課題を解決するための手段】
本願発明者等は、従来のEB蒸着の成膜速度を調べたところ、例えば、図7に示すグラフのようにEB照射を停止した時刻Aを過ぎても成膜速度は直ちにゼロにならないことがわかった。その理由を調査したところ、余熱により蒸気の発生が続くためであることが判明した。
【0007】
従って、蒸着源を開口を有する防着部材で取り囲み、その開口をシャッターで覆った状態でEB照射を行えば、EB照射により発生する荷電粒子や電磁波等のエネルギー線が成膜対象物に到達せず、また、電子ビームを停止した後にシャッターを開ければ、蒸気が成膜対象物に到達するので、成膜対象物がダメージを受けることなく成膜を行えると考えられる。
【0008】
上記知見にもとづいてなされた請求項1記載の発明は、蒸着源と、EBガンと、基板ホルダと、シャッターとを有し、前記蒸着源と、前記EBガンの周囲は、開口を有する防着部材で覆われ、前記基板ホルダは前記開口の上方に配置され、前記シャッターは移動装置に取り付けられ、前記開口と前記基板ホルダの間の位置と、前記開口から離間した位置との間で移動可能にされ、前記シャッターを前記開口と前記基板ホルダとの間の位置に配置した状態で、前記EBガンにより前記蒸着源の蒸着材料に電子ビームを照射し、前記蒸着材料の蒸気を発生させると、該蒸気がシャッターに遮られ、前記基板ホルダに到達しないように構成された成膜装置であって、前記シャッターは前記開口よりも大きい板状の板部と、前記板部の底面に取り付けられた凸条とを有し、前記移動装置は前記シャッターを上下に移動可能にされ、前記シャッターが前記開口上で下降すると、前記防着部材の前記開口付近の部分は、前記凸条で取り囲まれるように構成された成膜装置である。
請求項2記載の発明は、蒸着材料に電子ビームを照射して前記蒸着材料の蒸気を発生させ、前記蒸着材料の上方位置に配置された成膜対象物に前記蒸気を到達させ、前記成膜対象物の表面に薄膜を形成する成膜方法であって、前記蒸着材料の上方にシャッターを配置した状態で前記電子ビームを照射し、前記蒸気の放出を開始させた後、前記電子ビームの照射を停止し、次いで前記シャッターを前記蒸着材料の上方位置から、前記蒸気が前記成膜対象物へ到達するのを妨げない退避位置に退避させ、前記蒸気を前記成膜対象物に到達させる成膜方法である。
請求項3記載の発明は、請求項2記載の成膜方法であって、前記シャッターを、前記蒸着材料の上方位置に配置し、電子ビームを照射する工程と、前記シャッターを前記退避位置に退避させ、前記電子ビームを照射しない状態で、前記蒸気を前記成膜対象物に到達させる工程を繰り返し行い、前期基板表面に薄膜を形成する成膜方法である。
【0009】
本発明は上記のように構成されており、本発明の成膜装置の板部は、平面形状が開口よりも大きくなっているので、シャッターを開口上に配置すると、開口が板部で覆われるようになっている。
また、凸条は板部の裏面に配置されているので、シャッターを開口上に配置し、凸条が開口よりも上方に配置した状態で、シャッターを下降させれば、防着部材の開口付近が凸条で囲まれるようになっている。
【0010】
少なくともシャッターの開口を覆う部分に鉛のようなX線吸収物質の膜を形成する、又は板部の膜厚を十分量に大きくしておけば、紫外線だけではなく、X線やγ線のような高エネルギー線を遮蔽することができる。
【0011】
次に、本発明の成膜方法について説明する。
電子ビームを照射すると、蒸着材料の温度が上がり、終には全体が昇温するので、電子ビームの照射時間が長くなる程成膜速度が増加する。他方、電子ビームの照射を停止すると、温度が下がるため、成膜速度は徐々に低下する。
【0012】
電子ビームの照射を停止した後、シャッターを開け、成膜を開始する場合には、成膜開始直後の成膜速度が大きくて、時間の経過につれて成膜速度が徐々に低下する。成膜速度がある速度よりも小さくなると、それ以上は薄膜が成長しなくなるので、シャッターを閉じて成膜作業を終了させる。
【0013】
シャッターを開けてから閉じるまでが成膜時間であり、一般に成膜時間は装置等の条件で予め設定されるので、一定の成膜時間で膜厚を大きくするには、シャッターを開けたときの成膜速度が大きい程よい。
【0014】
蒸着材料の種類と用いるEBガンの電力投入量と、電子ビームを照射したときの成膜速度の変化との関係は予め測定されており、設定された成膜時間で所望の膜厚の薄膜を得るためのシャッター開時の成膜速度は予め測定又は計算により求めることができる。従って、予め求めた照射時間だけ電子ビームの照射を行えば、所望膜厚の薄膜を得ることができる。
【0015】
その他、開口の上方であって、基板ホルダの近傍に膜厚センサーを配置しておき、該膜厚センサーによって膜厚を測定しながら成膜を行えば、成膜時間や成膜速度を予め求めておかなくても、所望膜厚の薄膜を得ることができる。
【0016】
膜厚の大きい薄膜を形成する場合は、1回のシャッターの開閉で形成される薄膜の膜厚を予め求めておき、1枚の基板に対してシャッターの開閉を繰り返して成膜を行えば、所望膜厚の薄膜を得ることができる。その場合も、照射時間をあらかじめ求めておけば、成膜速度を測定せずに、一定の成膜時間で所定膜厚の薄膜を形成することができる。
【0017】
【発明の実施の形態】
図1の符号1は本発明の成膜装置の一例を示している。この成膜装置1は、真空槽2と、蒸着源6と、EBガン3と、防着部材16と、シャッター15と、基板ホルダ7とを有している。
【0018】
防着部材16は金属の薄板が円筒状に形成されて構成されており、筒の中心軸線を鉛直にして真空槽2の底壁に設置されている。即ち、防着部材16の一方の開口は天井側に向けられ、他方は底壁に密着している。
図1の符号9は上側の開口を示しており、防着部材16の上側の開口9付近は、中心部よりも小径にされている。
【0019】
真空槽2外には真空ポンプ19と、移動装置17が設置されている。真空槽2には、棒状の指示軸14が鉛直且つ気密に挿通されており、その下端部が移動装置17に取り付けられ、真空槽2内の上端部には、棒状の腕部21が水平に取り付けられている。
【0020】
シャッター15は円板状の板部12を有しており、この板部12は、腕部21の先端に水平に取り付けられている。板部12の下側の面の縁に沿った位置には、凸条13が配置されている。即ち、凸条13はリング状になっている。板部12は開口9よりも大径の円盤であり、凸条13のリングの内径は開口9よりも大きくされている。
【0021】
移動装置17は不図示の制御装置の信号に基づいて、支持軸14を回転させ、又は上下させるように構成されており、支持軸14を上方に移動させ、シャッター15を防着部材16よりも上方に位置させ、支持軸14を回転させてシャッター15を開口9の真上位置に配置した後、シャッター15を下降させると、開口9が板部12で覆われ、開口9がシャッター15で塞がれた状態になる。この状態で開口9はシャッター15によって閉じられており、防着部材16の開口9付近の部分が凸条13で取り囲まれた状態になる。
【0022】
蒸着源6とEBガン3は防着部材16の内側に配置されており、EBガン3は、真空槽2外に配置された不図示の電源に接続されている。
真空ポンプ19は真空槽2の防着部材16で囲まれた空間と、防着部材16の外側の空間の両方に接続されており、真空ポンプ19を起動し、防着部材16で囲まれた空間と外側の空間の両方を所定圧力まで真空排気した後、電源を起動し、EBガン3から電子ビームを放射する。
【0023】
図3は電子ビーム25を放射した状態を示しており、電子ビーム25は予め蒸着源6に配置された蒸着材料5に照射され、蒸着材料5が加熱される。蒸着材料5がその物性によって決まる一定温度以上の温度に昇温すると、蒸着材料5の蒸気が発生する。
【0024】
蒸着源6は開口9直下に配置されており、発生した蒸気は開口9に向かって放出される。電子ビーム25を照射している間中、紫外線やX線や電磁波のようなエネルギー線も放射されるが、開口9をシャッター15で塞いでおけば、エネルギー線が板部12で吸収又は反射される。更にエネルギー線が板部12と防着部材16の開口9端部から漏れた場合でも凸条13で遮られるので、シャッター15よりも上方の空間に侵入しないようになっている。
【0025】
シャッター15を閉じた状態から、凸条13が開口9よりも上方に位置するまで、移動装置17により支持軸14を上方に移動させる。図4はその状態を示している。次いで、支持軸14を回転させ、板部12が開口9上から完全に退避され、開口9が板部12によって遮られない退避位置まで移動させる。
【0026】
図5はその状態のシャッター15と開口9との位置関係を示す相対的な断面図であり、この状態では、シャッター15は空けられ、発生した蒸気は開口9から天井側に向けて飛ぶ。
基板ホルダ7は開口9真上位置に配置されており、成膜対象物である基板を成膜面を開口9側に向けた状態で、基板ホルダ7に保持させた場合には、開口9から放出された蒸気が基板に到達し、その表面に薄膜が成長するようになっている。
【0027】
シャッター15が開けられた状態では、電子ビーム25の照射は停止しているので、エネルギー線が発生せず、基板がダメージを受けないようになっている。この成膜装置1を用いて複数の基板を連続して成膜処理する工程について説明する。
【0028】
図2の符号11aは後述する工程で成膜処理が終了した基板を示しており、同図の符号22aは基板11a表面に形成された薄膜を示している。
真空槽2には不図示の搬出入室が接続され、真空槽2と搬出入室内は予め所定圧力の真空雰囲気が形成されており、搬出入室に配置された不図示の搬送ロボットによって、成膜が終了した基板11aを基板ホルダ7から搬出入室へ搬送し、搬出入室で未処理の基板と交換し、該基板を真空槽2内へ搬入し、成膜面を下側へ向けた状態で基板ホルダ7に保持させる。
【0029】
図3は未処理の基板11bが基板ホルダ7に保持された状態を示している。
このとき、シャッター15は閉じられた状態で電子ビーム25が照射され、蒸着材料5が加熱されている。
【0030】
照射時間と、成膜速度との関係は予め求められており、電子ビーム25の照射開始から予め設定された照射時間が経過するまで照射すると、所定量の蒸気が放出される。電子ビーム25が照射されている間はシャッター15は閉じられているので、蒸気は基板11bには到達しない。
【0031】
照射時間経過後、電子ビーム25の照射を停止し、シャッター15を開けると、蒸気は基板11bに到達し、その表面に薄膜が成長する。薄膜の成長速度と時間との関係はあらかじめ求められており、シャッター15を開けた時刻から、予め設定された成膜時間が経過し、蒸気放出量が低下したときにシャッター15を閉じ、電子ビーム25の照射を再開する。
【0032】
電子ビーム25を一定時間照射し、蒸着材料5から所定量の蒸気が放出されるようになると電子ビーム25の照射を停止し、シャッター15を開け、成膜を行う。基板11bを同じ位置に置いたまま、上記のように電子ビーム25の照射を停止した状態での成膜を繰り返し行い、所望膜厚に達する回数が終了したところで、シャッター15を閉じ、電子ビーム25の照射を開始した後、基板11bを真空槽2から搬出入室へ搬出する。
【0033】
電子ビーム25により蒸着材料5を加熱している間に、未処理の基板を真空槽2内に搬入して基板ホルダ7により保持させ、加熱により所定量の蒸気が放出したところで、電子ビーム25を停止してシャッター15を開け、新しい未処理の基板に対して成膜を開始する。このように、1枚ずつ基板を繰り返し処理すると、複数枚の基板に所望膜厚の薄膜を連続して形成することができる。
【0034】
上述した成膜工程における、電子ビーム25の照射を開始した時間と、電子ビームの照射を停止する時間と、成膜速度との関係を図4に示す。
図6の符号S、S、Sは電子ビームの照射を開始した照射開始時間を示し、符号E、E、Eは電子ビームの照射を終了した照射終了時間を示している。
【0035】
照射終了時間E、E、E後は、蒸気の放出量が低下し、成膜速度が低下する。成膜速度がある程度遅くなると、それ以上成膜を続けても、薄膜の成長が極端に遅くなり、成膜効率が低くなる。成膜速度がゼロになる前の時間を照射開始時間S、S、Sとし、加熱を開始すれば、照射時間も短くてすみ、全体の作業時間が短縮するこができる。
【0036】
以上は、電子ビーム25の照射を停止した後、非常に短い間にシャッター15を開ける場合について説明したが、本発明はこれに限定されず、例えば、電子ビーム25の照射を停止してから一定時間を経過し、エネルギー線が完全に消滅した後にシャッター15を開けることもできる。
【0037】
以上はシャッター15を閉じ、非常に短い間に電子ビーム25の照射を開始する場合について説明したが、本発明はこれに限定されず、シャッター15を閉じ始めてから、一定時間を経過し、シャッター15が完全に閉じた後に、電子ビーム25の照射を開始することもできる。
【0038】
また、以上は成膜が終了した基板11bを基板ホルダ7から搬出する前に、電子ビーム25の照射を開始する場合について説明したが、本発明はこれに限定されず、例えば、成膜が終了した基板11bを基板ホルダ7から搬出するときに電子ビーム25の照射を開始する、未処理の基板を搬入するときに電子ビーム25の照射を開始する、又は未処理の基板を基板ホルダ7に保持させた後、電子ビーム25の照射を開始することもできる。
【0039】
以上はシャッター15を閉じた後、成膜が終了した基板11bを搬出する場合について説明したが、本発明はこれに限定されず、電子ビーム25の照射が停止している状態であれば、シャッター15を開けたまま基板11bを搬出してもよい。
【0040】
以上は、基板11bを基板ホルダ7に保持したまま、シャッター15の開閉と、電子ビームの照射を繰り返し、1枚の基板11bに対して成膜を複数回繰り返す場合について説明したが、本発明はこれに限定されるものではなく、1回の成膜工程で十分量の膜厚が確保できるのであれば、1回のシャッター15の開閉で成膜工程を終了させ、基板11を真空槽2外へ搬出することもできる。また、移動装置17により、支持軸14を上下させるのと同時に回転させ、シャッター15をらせん状に移動させる場合も本発明には含まれる。
【0041】
蒸着材料5としては、アルミニウムのような金属材料や、酸化マグネシウム、酸化カルシウムのような金属酸化物等種々のものを用いることができる。
また、酸素のような反応ガスを蒸着源6の近傍位置に供給しながら電子ビームを放射すれば、蒸着材料の酸化物の薄膜を形成することができる。
【0042】
【発明の効果】
本発明の成膜装置を用いれば、成膜時に紫外線等のエネルギー線を成膜対象物から遮断することができる。従って、本発明の成膜装置を用いて、有機EL装置の電極膜や、半導体の保護膜等を成膜する場合、紫外線や電磁波等によって成膜時に装置にダメージが生じることがない。
【図面の簡単な説明】
【図1】本発明の成膜装置を説明する断面図
【図2】成膜処理が終了した状態を説明する断面図
【図3】電子ビームを照射している状態を説明する断面図
【図4】シャッターを上方に移動させた状態を説明する断面図
【図5】シャッターを水平面内で移動させた状態を説明する断面図
【図6】電子ビームの照射開始の時間と、照射停止の時間と、成膜速度との関係を示すグラフ
【図7】従来のEB蒸着の成膜速度と時間との関係を示すグラフ
【符号の説明】
1……成膜装置  2……真空槽  3……EBガン  5……蒸着材料  6・・・・・・蒸着源  7……基板ホルダ  9……開口  11……成膜対象物(基板)  12……板部  13……凸条  15……シャッター  16……防着部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technical field of a method of forming a thin film, and more particularly to a technique of forming an electrode film of an organic EL device or a semiconductor device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a method for forming a metal film such as an electrode film, a vapor deposition method is used in which a vapor deposition material is heated to generate vapor and the vapor reaches a film formation target.
Among the vapor deposition methods, an EB (Electron Beam) vapor deposition method in which a vapor is generated by irradiating an electron beam to the vapor deposition material has a higher heating capability than other heating methods such as a resistance heating method. There are various advantages such as many types, high mass productivity, and a high purity thin film.
[0003]
However, when the film is formed by the EB evaporation method, during the film formation, in addition to the vapor, a recoil electron having a very high energy of several keV, a secondary electron having an energy of several eV or more, an ion, In addition, various energy rays such as ultraviolet rays and X-rays generated by irradiating the material with electrons are generated.
[0004]
Therefore, when an electrode film of an organic EL device or a semiconductor device is formed by the EB evaporation method, the device body may be damaged during the film formation due to the above-described energy rays such as charged particles and electromagnetic waves.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a technique for forming a thin film without damaging a device main body.
[0006]
[Means for Solving the Problems]
The inventors of the present application have examined the film forming rate of the conventional EB vapor deposition, and found that the film forming rate does not immediately become zero even after the time A when the EB irradiation was stopped as shown in the graph of FIG. all right. Investigation of the reason revealed that the generation of steam continued due to residual heat.
[0007]
Therefore, if EB irradiation is performed in a state where the evaporation source is surrounded by a deposition-preventing member having an opening and the opening is covered with a shutter, energy rays such as charged particles and electromagnetic waves generated by the EB irradiation can reach the film formation target. In addition, if the shutter is opened after stopping the electron beam, the vapor reaches the film formation target, so that the film formation can be performed without being damaged.
[0008]
The invention according to claim 1, which has been made based on the above knowledge, has a deposition source, an EB gun, a substrate holder, and a shutter, and the deposition source and the periphery of the EB gun have openings. Covered with a member, the substrate holder is disposed above the opening, the shutter is attached to a moving device, and is movable between a position between the opening and the substrate holder and a position separated from the opening. In the state where the shutter is arranged at a position between the opening and the substrate holder, the EB gun irradiates an electron beam to the deposition material of the deposition source to generate a vapor of the deposition material, A film forming apparatus configured such that the vapor is blocked by a shutter and does not reach the substrate holder, wherein the shutter is attached to a plate-shaped plate portion larger than the opening and a bottom surface of the plate portion. The moving device is configured to be able to move the shutter up and down, and when the shutter is lowered over the opening, a portion near the opening of the attachment-preventing member is surrounded by the projecting ridge. This is a film forming apparatus configured to be operated.
According to a second aspect of the present invention, the vapor deposition material is irradiated with an electron beam to generate vapor of the vapor deposition material, and the vapor reaches a film formation target disposed above the vapor deposition material, and the vapor deposition is performed. A film forming method for forming a thin film on a surface of an object, comprising irradiating the electron beam with a shutter disposed above the vapor deposition material, starting emission of the vapor, and then irradiating the electron beam. Is stopped, and then the shutter is retracted from a position above the vapor deposition material to a retracted position that does not prevent the vapor from reaching the film formation target, and the film reaches the film formation target. Is the way.
The invention according to claim 3 is the film forming method according to claim 2, wherein the step of arranging the shutter at a position above the vapor deposition material and irradiating an electron beam, and retracting the shutter to the retracted position. And forming a thin film on the substrate surface by repeating the step of causing the vapor to reach the object to be film-formed without irradiating the electron beam.
[0009]
The present invention is configured as described above, and the plate portion of the film forming apparatus of the present invention has a planar shape larger than the opening, so that when the shutter is arranged over the opening, the opening is covered with the plate portion. It has become.
Also, since the ridges are arranged on the back surface of the plate portion, the shutter is arranged above the opening, and the shutter is lowered in a state where the ridges are arranged above the opening, the vicinity of the opening of the attachment-preventing member is reduced. Are surrounded by ridges.
[0010]
If a film of an X-ray absorbing material such as lead is formed at least in the portion covering the opening of the shutter, or if the thickness of the plate portion is made sufficiently large, not only ultraviolet rays but also X-rays and γ-rays High energy rays can be shielded.
[0011]
Next, the film forming method of the present invention will be described.
When the electron beam is irradiated, the temperature of the deposition material rises, and the temperature of the entire deposition material rises at the end. Therefore, as the irradiation time of the electron beam becomes longer, the deposition rate increases. On the other hand, when the irradiation of the electron beam is stopped, the temperature decreases, and the film forming speed gradually decreases.
[0012]
When the shutter is opened and the film formation is started after the irradiation of the electron beam is stopped, the film formation speed is large immediately after the start of the film formation, and the film formation speed gradually decreases with time. When the film forming speed becomes lower than a certain speed, the thin film no longer grows, so that the shutter is closed to terminate the film forming operation.
[0013]
The time from when the shutter is opened to when it is closed is the film formation time. Generally, the film formation time is set in advance according to the conditions of the apparatus or the like. The higher the deposition rate, the better.
[0014]
The relationship between the type of deposition material and the amount of power supplied to the EB gun to be used, and the change in the deposition rate when irradiating an electron beam is measured in advance, and a thin film having a desired thickness can be formed at a set deposition time. The film formation speed at the time of opening the shutter to obtain the thickness can be obtained in advance by measurement or calculation. Therefore, a thin film having a desired film thickness can be obtained by irradiating the electron beam for the irradiation time obtained in advance.
[0015]
In addition, if a film thickness sensor is arranged above the opening and near the substrate holder and film formation is performed while measuring the film thickness with the film thickness sensor, the film formation time and the film formation speed are obtained in advance. A thin film having a desired film thickness can be obtained without performing the above.
[0016]
When a thin film having a large thickness is formed, the film thickness of the thin film formed by opening and closing the shutter once is obtained in advance, and the film is formed by repeatedly opening and closing the shutter on one substrate. A thin film having a desired thickness can be obtained. Also in this case, if the irradiation time is determined in advance, a thin film having a predetermined thickness can be formed in a constant film formation time without measuring the film formation rate.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Reference numeral 1 in FIG. 1 indicates an example of a film forming apparatus of the present invention. The film forming apparatus 1 includes a vacuum chamber 2, an evaporation source 6, an EB gun 3, a deposition prevention member 16, a shutter 15, and a substrate holder 7.
[0018]
The deposition-inhibiting member 16 is formed by forming a thin metal plate into a cylindrical shape, and is installed on the bottom wall of the vacuum chamber 2 with the center axis of the cylinder being vertical. That is, one opening of the attachment member 16 is directed toward the ceiling, and the other is in close contact with the bottom wall.
Reference numeral 9 in FIG. 1 denotes an upper opening, and the vicinity of the upper opening 9 of the deposition-inhibiting member 16 is smaller in diameter than the center.
[0019]
A vacuum pump 19 and a moving device 17 are provided outside the vacuum chamber 2. A rod-shaped pointing shaft 14 is vertically and airtightly inserted into the vacuum chamber 2, and the lower end thereof is attached to the moving device 17. Installed.
[0020]
The shutter 15 has a disk-shaped plate portion 12, and the plate portion 12 is horizontally attached to the tip of the arm portion 21. A ridge 13 is disposed at a position along the edge of the lower surface of the plate portion 12. That is, the ridge 13 has a ring shape. The plate portion 12 is a disk having a larger diameter than the opening 9, and the inner diameter of the ring of the ridge 13 is made larger than the opening 9.
[0021]
The moving device 17 is configured to rotate or raise and lower the support shaft 14 based on a signal from a control device (not shown), move the support shaft 14 upward, and make the shutter 15 After the shutter 15 is positioned above the opening 9 by rotating the support shaft 14 and then the shutter 15 is lowered, the opening 9 is covered with the plate portion 12 and the opening 9 is closed with the shutter 15. Become loose. In this state, the opening 9 is closed by the shutter 15, and a portion near the opening 9 of the deposition-inhibiting member 16 is surrounded by the ridge 13.
[0022]
The evaporation source 6 and the EB gun 3 are arranged inside the deposition-inhibiting member 16, and the EB gun 3 is connected to a power supply (not shown) arranged outside the vacuum chamber 2.
The vacuum pump 19 is connected to both the space surrounded by the deposition prevention member 16 of the vacuum chamber 2 and the space outside the deposition prevention member 16, and starts the vacuum pump 19 to be surrounded by the deposition prevention member 16. After evacuating both the space and the outer space to a predetermined pressure, the power supply is activated and the EB gun 3 emits an electron beam.
[0023]
FIG. 3 shows a state in which the electron beam 25 is emitted. The electron beam 25 is irradiated on the vapor deposition material 5 arranged in advance on the vapor deposition source 6, and the vapor deposition material 5 is heated. When the temperature of the vapor deposition material 5 rises to a temperature equal to or higher than a certain temperature determined by its physical properties, vapor of the vapor deposition material 5 is generated.
[0024]
The evaporation source 6 is disposed immediately below the opening 9, and the generated vapor is discharged toward the opening 9. During irradiation with the electron beam 25, energy rays such as ultraviolet rays, X-rays and electromagnetic waves are also emitted. However, if the opening 9 is closed with the shutter 15, the energy rays are absorbed or reflected by the plate portion 12. You. Further, even when the energy ray leaks from the plate portion 12 and the end of the opening 9 of the attachment member 16, the energy beam is blocked by the ridge 13, so that it does not enter the space above the shutter 15.
[0025]
From the state in which the shutter 15 is closed, the support shaft 14 is moved upward by the moving device 17 until the ridge 13 is positioned above the opening 9. FIG. 4 shows this state. Next, the support shaft 14 is rotated so that the plate portion 12 is completely retracted from above the opening 9, and is moved to a retracted position where the opening 9 is not blocked by the plate portion 12.
[0026]
FIG. 5 is a relative sectional view showing a positional relationship between the shutter 15 and the opening 9 in this state. In this state, the shutter 15 is opened, and the generated steam flies from the opening 9 toward the ceiling.
The substrate holder 7 is disposed right above the opening 9. When the substrate to be formed is held by the substrate holder 7 with the film formation surface facing the opening 9, the substrate holder 7 is moved from the opening 9. The released vapor reaches the substrate, and a thin film grows on the surface.
[0027]
When the shutter 15 is opened, the irradiation of the electron beam 25 is stopped, so that no energy rays are generated and the substrate is not damaged. A process of continuously forming a film on a plurality of substrates using the film forming apparatus 1 will be described.
[0028]
Reference numeral 11a in FIG. 2 indicates a substrate on which a film forming process has been completed in a later-described step, and reference numeral 22a in FIG. 2 indicates a thin film formed on the surface of the substrate 11a.
A not-shown carry-in / out chamber is connected to the vacuum chamber 2, and a vacuum atmosphere of a predetermined pressure is formed in advance in the vacuum chamber 2 and the carry-in / out chamber, and a film is formed by a transfer robot (not shown) arranged in the carry-in / out chamber. The completed substrate 11a is transported from the substrate holder 7 to the loading / unloading chamber, replaced with an unprocessed substrate in the loading / unloading chamber, the substrate is loaded into the vacuum chamber 2, and the substrate holder is placed in a state where the film formation surface faces downward. 7 is held.
[0029]
FIG. 3 shows a state where the unprocessed substrate 11 b is held by the substrate holder 7.
At this time, the electron beam 25 is irradiated while the shutter 15 is closed, and the deposition material 5 is heated.
[0030]
The relationship between the irradiation time and the film formation rate is obtained in advance, and when irradiation is performed until the preset irradiation time elapses from the start of irradiation of the electron beam 25, a predetermined amount of vapor is released. Since the shutter 15 is closed while the electron beam 25 is being irradiated, the vapor does not reach the substrate 11b.
[0031]
When the irradiation of the electron beam 25 is stopped and the shutter 15 is opened after the elapse of the irradiation time, the vapor reaches the substrate 11b and a thin film grows on the surface thereof. The relationship between the growth rate of the thin film and the time is determined in advance, and the shutter 15 is closed when the predetermined film forming time has elapsed from the time when the shutter 15 was opened and the amount of vapor emission has decreased, and the electron beam The irradiation of 25 is restarted.
[0032]
The electron beam 25 is irradiated for a certain time, and when a predetermined amount of vapor is released from the vapor deposition material 5, the irradiation of the electron beam 25 is stopped, the shutter 15 is opened, and a film is formed. While the substrate 11b is kept at the same position, the film formation is repeated while the irradiation with the electron beam 25 is stopped as described above. When the number of times to reach the desired film thickness is completed, the shutter 15 is closed and the electron beam 25 is closed. , The substrate 11b is carried out of the vacuum chamber 2 to the carry-in / out room.
[0033]
While the deposition material 5 is being heated by the electron beam 25, the unprocessed substrate is carried into the vacuum chamber 2 and held by the substrate holder 7, and when a predetermined amount of vapor is released by heating, the electron beam 25 is discharged. After stopping, the shutter 15 is opened, and film formation is started on a new unprocessed substrate. By repeatedly processing the substrates one by one as described above, a thin film having a desired thickness can be continuously formed on a plurality of substrates.
[0034]
FIG. 4 shows the relationship between the time at which the irradiation with the electron beam 25 is started, the time at which the irradiation with the electron beam is stopped, and the film forming speed in the above-described film forming process.
Symbols S 1 , S 2 , and S 3 in FIG. 6 indicate irradiation start times at which electron beam irradiation has started, and symbols E 1 , E 2 , and E 3 indicate irradiation end times at which electron beam irradiation has ended. .
[0035]
After the irradiation end times E 1 , E 2 , and E 3 , the amount of released steam is reduced, and the deposition rate is reduced. If the deposition rate is reduced to some extent, even if the deposition is continued further, the growth of the thin film becomes extremely slow, and the deposition efficiency is reduced. If the time before the film formation rate becomes zero is defined as irradiation start times S 1 , S 2 , and S 3 and heating is started, the irradiation time can be shortened, and the overall work time can be shortened.
[0036]
Although the case where the shutter 15 is opened for a very short time after stopping the irradiation of the electron beam 25 has been described above, the present invention is not limited to this. After a lapse of time, the shutter 15 can be opened after the energy rays have completely disappeared.
[0037]
The case where the shutter 15 is closed and the irradiation of the electron beam 25 is started in a very short time has been described above. However, the present invention is not limited to this. After the is completely closed, the irradiation of the electron beam 25 can be started.
[0038]
Further, the case where the irradiation of the electron beam 25 is started before the substrate 11b on which the film formation has been completed is carried out from the substrate holder 7 has been described above, but the present invention is not limited to this. Starts the irradiation of the electron beam 25 when unloading the substrate 11b from the substrate holder 7, starts the irradiation of the electron beam 25 when unloading the unprocessed substrate, or holds the unprocessed substrate in the substrate holder 7. After that, irradiation of the electron beam 25 can be started.
[0039]
The case where the substrate 11b on which film formation has been completed is carried out after the shutter 15 is closed has been described above. However, the present invention is not limited to this case. The substrate 11b may be carried out with the 15 open.
[0040]
In the above description, the case where the opening and closing of the shutter 15 and the irradiation of the electron beam are repeated while the substrate 11b is held in the substrate holder 7 and the film formation is repeated a plurality of times on one substrate 11b has been described. The present invention is not limited to this. If a sufficient film thickness can be ensured in one film forming step, the film forming step is completed by opening and closing the shutter 15 once, and the substrate 11 is removed from the vacuum chamber 2. It can also be carried out to The present invention also includes a case where the shutter 15 is spirally moved by simultaneously rotating the support shaft 14 up and down by the moving device 17.
[0041]
Various materials such as a metal material such as aluminum and a metal oxide such as magnesium oxide and calcium oxide can be used as the deposition material 5.
When an electron beam is emitted while supplying a reaction gas such as oxygen to a position near the deposition source 6, a thin film of an oxide of a deposition material can be formed.
[0042]
【The invention's effect】
With the use of the film forming apparatus of the present invention, energy rays such as ultraviolet rays can be shielded from a film formation target during film formation. Therefore, when an electrode film of an organic EL device, a protective film of a semiconductor, or the like is formed using the film forming apparatus of the present invention, the device is not damaged at the time of film formation due to ultraviolet rays, electromagnetic waves, or the like.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a film forming apparatus of the present invention. FIG. 2 is a cross-sectional view illustrating a state where a film forming process is completed. FIG. 3 is a cross-sectional view illustrating a state where an electron beam is irradiated. 4 is a cross-sectional view illustrating a state in which the shutter is moved upward. FIG. 5 is a cross-sectional view illustrating a state in which the shutter is moved in a horizontal plane. FIG. 6 is a time for starting irradiation of the electron beam and a time for stopping irradiation. FIG. 7 is a graph showing a relationship between a film forming speed and a film forming speed. FIG. 7 is a graph showing a relationship between a film forming speed and time in conventional EB vapor deposition.
DESCRIPTION OF SYMBOLS 1 ... Deposition apparatus 2 ... Vacuum tank 3 ... EB gun 5 ... Deposition material 6 ... Deposition source 7 ... Substrate holder 9 ... Opening 11 ... Deposition target (substrate) 12 ... Plate part 13... Protrusion 15... Shutter 16.

Claims (3)

蒸着源と、EBガンと、基板ホルダと、シャッターとを有し、
前記蒸着源と、前記EBガンの周囲は、開口を有する防着部材で覆われ、
前記基板ホルダは前記開口の上方に配置され、
前記シャッターは移動装置に取り付けられ、前記開口と前記基板ホルダの間の位置と、前記開口から離間した位置との間で移動可能にされ、
前記シャッターを前記開口と前記基板ホルダとの間の位置に配置した状態で、前記EBガンにより前記蒸着源の蒸着材料に電子ビームを照射し、前記蒸着材料の蒸気を発生させると、該蒸気がシャッターに遮られ、前記基板ホルダに到達しないように構成された成膜装置であって、
前記シャッターは前記開口よりも大きい板状の板部と、前記板部の底面に取り付けられた凸条とを有し、
前記移動装置は前記シャッターを上下に移動可能にされ、
前記シャッターが前記開口上で下降すると、前記防着部材の前記開口付近の部分は、前記凸条で取り囲まれるように構成された成膜装置。
An evaporation source, an EB gun, a substrate holder, and a shutter,
The vapor deposition source and the periphery of the EB gun are covered with a deposition prevention member having an opening,
The substrate holder is disposed above the opening,
The shutter is attached to a moving device, and is movable between a position between the opening and the substrate holder and a position separated from the opening,
In a state where the shutter is arranged at a position between the opening and the substrate holder, the EB gun irradiates the deposition material of the deposition source with an electron beam to generate vapor of the deposition material. A film forming apparatus configured to be blocked by a shutter and not reach the substrate holder,
The shutter has a plate-like plate portion larger than the opening, and a ridge attached to a bottom surface of the plate portion,
The moving device is configured to move the shutter up and down,
A film forming apparatus configured such that when the shutter moves down on the opening, a portion near the opening of the deposition-inhibiting member is surrounded by the ridge.
蒸着材料に電子ビームを照射して前記蒸着材料の蒸気を発生させ、前記蒸着材料の上方位置に配置された成膜対象物に前記蒸気を到達させ、前記成膜対象物の表面に薄膜を形成する成膜方法であって、
前記蒸着材料の上方にシャッターを配置した状態で前記電子ビームを照射し、前記蒸気の放出を開始させた後、前記電子ビームの照射を停止し、次いで前記シャッターを前記蒸着材料の上方位置から、前記蒸気が前記成膜対象物へ到達するのを妨げない退避位置に退避させ、前記蒸気を前記成膜対象物に到達させる成膜方法。
The vapor deposition material is irradiated with an electron beam to generate vapor of the vapor deposition material, and the vapor reaches the film formation target disposed above the vapor deposition material, forming a thin film on the surface of the film formation target. Film forming method,
Irradiating the electron beam in a state where a shutter is disposed above the vapor deposition material, after starting the emission of the vapor, stopping the irradiation of the electron beam, and then moving the shutter from a position above the vapor deposition material, A film forming method in which the vapor is retracted to a retreat position that does not prevent the vapor from reaching the film formation target, and the vapor reaches the film formation target.
前記シャッターを、前記蒸着材料の上方位置に配置し、電子ビームを照射する工程と、前記シャッターを前記退避位置に退避させ、前記電子ビームを照射しない状態で、前記蒸気を前記成膜対象物に到達させる工程を繰り返し行い、前期基板表面に薄膜を形成する請求項2記載の成膜方法。The step of arranging the shutter at a position above the vapor deposition material and irradiating an electron beam, and retracting the shutter to the retracted position, in a state where the electron beam is not irradiated, and applying the vapor to the film-forming target. 3. The film forming method according to claim 2, wherein the step of reaching is repeated to form a thin film on the substrate surface.
JP2002299948A 2002-10-15 2002-10-15 Apparatus and method for depositing film Pending JP2004131832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299948A JP2004131832A (en) 2002-10-15 2002-10-15 Apparatus and method for depositing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299948A JP2004131832A (en) 2002-10-15 2002-10-15 Apparatus and method for depositing film

Publications (1)

Publication Number Publication Date
JP2004131832A true JP2004131832A (en) 2004-04-30

Family

ID=32288934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299948A Pending JP2004131832A (en) 2002-10-15 2002-10-15 Apparatus and method for depositing film

Country Status (1)

Country Link
JP (1) JP2004131832A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138235A (en) * 2005-11-17 2007-06-07 Tokki Corp Electron beam vacuum vapor deposition method, and its apparatus
JP2009256705A (en) * 2008-04-15 2009-11-05 Hitachi Zosen Corp Vacuum vapor deposition apparatus
KR20180114581A (en) * 2017-04-10 2018-10-19 삼성디스플레이 주식회사 Apparatus and method for manufacturing a display apparatus
WO2019204185A1 (en) * 2018-04-18 2019-10-24 Applied Materials, Inc. Two piece shutter disk assembly with self-centering feature
WO2022025999A1 (en) * 2020-07-27 2022-02-03 Applied Materials, Inc. Substrate holder replacement with protective disk during pasting process

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138235A (en) * 2005-11-17 2007-06-07 Tokki Corp Electron beam vacuum vapor deposition method, and its apparatus
JP2009256705A (en) * 2008-04-15 2009-11-05 Hitachi Zosen Corp Vacuum vapor deposition apparatus
KR20180114581A (en) * 2017-04-10 2018-10-19 삼성디스플레이 주식회사 Apparatus and method for manufacturing a display apparatus
CN108690955A (en) * 2017-04-10 2018-10-23 三星显示有限公司 Manufacture shows the device and method of equipment
KR102369676B1 (en) * 2017-04-10 2022-03-04 삼성디스플레이 주식회사 Apparatus and method for manufacturing a display apparatus
US11534790B2 (en) 2017-04-10 2022-12-27 Samsung Display Co., Ltd. Apparatus and method of manufacturing display apparatus
WO2019204185A1 (en) * 2018-04-18 2019-10-24 Applied Materials, Inc. Two piece shutter disk assembly with self-centering feature
US11043406B2 (en) 2018-04-18 2021-06-22 Applied Materials, Inc. Two piece shutter disk assembly with self-centering feature
WO2022025999A1 (en) * 2020-07-27 2022-02-03 Applied Materials, Inc. Substrate holder replacement with protective disk during pasting process
US11817331B2 (en) 2020-07-27 2023-11-14 Applied Materials, Inc. Substrate holder replacement with protective disk during pasting process

Similar Documents

Publication Publication Date Title
US4909314A (en) Apparatus for thermal treatment of a wafer in an evacuated environment
TW202100794A (en) Substrate processing apparatus and method for processing substrate
JP5355382B2 (en) Sputtering equipment
JP7122854B2 (en) Plasma processing apparatus and member for plasma processing apparatus, or method for manufacturing plasma processing apparatus and method for manufacturing member for plasma processing apparatus
JPH0751754B2 (en) Wafer heat treatment equipment
WO2019208035A1 (en) Film formation device and film formation method
TWI620232B (en) Film forming device and film forming method
JP2021511443A (en) Shape dimensions of process kit for particle reduction in PVD process
JP2004131832A (en) Apparatus and method for depositing film
TWI709164B (en) System and method for selective processing of workpiece
TWI714254B (en) Plasma film forming device and plasma film forming method
JP2021147702A (en) Single crystal metal oxide semiconductor epitaxial growth apparatus
TW202025287A (en) Target object processing method and plasma processing apparatus
KR101871899B1 (en) Method and apparatus for depositing aluminum oxide film and sputtering apparatus
JPS6154631A (en) Etching process
JP3777436B2 (en) Boron film forming method and boron film forming apparatus
JP2011074442A (en) Vacuum vapor-deposition apparatus
US20230411131A1 (en) Film forming apparatus
JP2006028563A (en) Cathodic-arc film deposition method, and film deposition system
JP7286851B2 (en) OPERATING METHOD OF PLASMA PROCESSING APPARATUS AND MEMBER FOR PLASMA PROCESSING APPARATUS
JP7325278B2 (en) Sputtering method and sputtering apparatus
JP2007059617A (en) Manufacturing method of semiconductor device
JP2004131831A (en) Method for forming film
KR20060018112A (en) Pulsed laser depostion apparatus for decreasing target consumption
JP2005109104A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216