JP2004127612A - Conductive fine particle, interconnecting method of electrode terminals, and conductive connection structure - Google Patents
Conductive fine particle, interconnecting method of electrode terminals, and conductive connection structure Download PDFInfo
- Publication number
- JP2004127612A JP2004127612A JP2002287582A JP2002287582A JP2004127612A JP 2004127612 A JP2004127612 A JP 2004127612A JP 2002287582 A JP2002287582 A JP 2002287582A JP 2002287582 A JP2002287582 A JP 2002287582A JP 2004127612 A JP2004127612 A JP 2004127612A
- Authority
- JP
- Japan
- Prior art keywords
- electrode terminals
- conductive fine
- fine particles
- electric circuit
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
- Coupling Device And Connection With Printed Circuit (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Manufacturing Of Electrical Connectors (AREA)
- Combinations Of Printed Boards (AREA)
- Non-Insulated Conductors (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Multi-Conductor Connections (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、導電性微粒子、電極端子の相互接続方法及び導電接続構造体に関する。
【0002】
【従来の技術】
球状基材微粒子の表面に導電性金属被膜が形成された導電性微粒子は、電子部品におけるリード電極、配線基板等を接合する際に使用される導電ペースト、電磁波シールドの導電性材料、上下導通用接着剤、異方性導電接着剤等に使用されるものである。
【0003】
従来、導電性微粒子を配線基板の電極端子上に配置し、この導電性微粒子を介して相対峙する配線基板の電極端子を電気的に相互接続する方法として、一方の配線基板の電極端子上に導電性微粒子を散布し、他方の配線基板の電極端子を位置合わせした後、加圧しながら絶縁性接着剤により接着、固定する方法が知られている。
しかしながら、このような方法では、導電性微粒子の物理的接着強度が弱く接続信頼性が低下しやすいという問題があった。
【0004】
これに対して、その表面が接着剤で被覆された導電性微粒子を帯電させ、この帯電させた導電性微粒子を第一の配線基板の電極端子上に散布し、加熱により固定した後、第二の配線基板を載置し、加熱圧着によって接着、固定することにより、導電性微粒子を介して相対峙する配線基板の電極端子を相互接続する方法が開示されている(例えば、特許文献1参照。)。
【0005】
特許文献1に開示の電極端子の相互接続方法では、配線基板の電極端子上に付着させた導電性微粒子は、加熱されることで接着剤により電極端子上に固定されるため、導電性微粒子の物理的接着強度は向上されたものであった。
しかしながら、相対峙する配線基板の電極端子を接着する導電性微粒子に被覆された接着剤の接着力は余り高くなく、相対峙する配線基板の電極端子間の機械的接続信頼性を充分に高くするためには、電極端子間に絶縁性接着剤を封止し、電極端子同士を接着する必要があった。また、電極端子と導電性微粒子との電気的接続は、板状の電極端子の表面と球状の導電性微粒子の表面とが接触している点のみで確保されており、電極端子と導電性微粒子との電気的接続が点接続となっていたため、相対峙する配線基板の電極端子間の電気的接続信頼性が低くなるという問題があった。更に、電極端子の位置合わせを行う前に導電性微粒子を帯電させる必要があり、工程が煩雑になるという問題もあった。
【0006】
一方、金属めっきされた球状高分子粒子の表面にホットメルト接着剤が被覆されてなる導電性微粒子が開示されている(例えば、特許文献2参照。)。
特許文献2に開示の導電性微粒子に被覆されたホットメルト接着剤は、特許文献1に開示の導電性微粒子に比べてより接着力が高いものであったため、特許文献2に開示の導電性微粒子を用いて相対峙する配線基板の電極端子の相互接続を行うと、電極端子間を絶縁性接着剤で封止し、電極端子同士を接着しなくても、ある程度高い機械的接続信頼性を得ることができ、また、電極端子の位置合わせを行う前に導電性微粒子を帯電させる必要がなく工程が簡便なものであった。
しかしながら、相対峙する配線基板の電極端子間の機械的接続信頼性は、充分であるとは言い難く、また、電極端子と導電性微粒子との電気的接続は、板状の電極端子の表面と球状の導電性微粒子の表面とが接触している点のみで確保されており、電極端子と導電性微粒子との電気的接続が点接続となっていたため、未だ相対峙する配線基板の電極端子間の電気的接続信頼性が低くなるという問題があった。
【0007】
【特許文献1】
特開平5−119337号公報
【特許文献2】
特開平9−204815号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記に鑑み、簡便な工程で電気的接続信頼性及び機械的接続信頼性の高い導電接続構造体を得ることができる導電性微粒子、該導電性微粒子を用いた電極端子の相互接続方法、及び、導電接続構造体を提供することを目的とする。
【0009】
【発明を解決するため手段】
本発明は、樹脂からなる球状基材微粒子と、前記球状基材微粒子の表面に形成された金属層と、前記金属層の表面に形成された接着剤層とからなる導電性微粒子であって、前記金属層は、2層以上の多層構造を有し、かつ、少なくとも最外層が半田層である導電性微粒子である。
以下に本発明を詳述する。
【0010】
本発明は、樹脂からなる球状基材微粒子と、上記球状基材微粒子の表面に形成された金属層と、上記金属層の表面に形成された接着剤層とからなる導電性微粒子である。
【0011】
図1は、本発明の導電性微粒子の一例を模式的に示す断面図である。
図1に示すように本発明の導電性微粒子10は、球状基材微粒子11と、球状基材微粒子11の表面に形成された金属層12と、金属層12の表面に形成された接着剤層14とから構成されており、金属層12は、その最外層が半田層13となっている。
【0012】
球状基材微粒子11を構成する樹脂としては特に限定されず、例えば、ポリスチレン、ポリスチレン共重合体、ポリアクリル酸エステル、ポリアクリル酸エステル共重合体、フェノール樹脂、シリコーン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリ塩化ビニル等が挙げられる。
また、球状基材微粒子11の形状は、球状であれば特に限定されず、例えば、中空状であってもよく、その内部にまで密に充填されていてもよい。
【0013】
球状基材微粒子11の直径の好ましい下限は1μm、好ましい上限は3000μmである。1μm未満であると、本発明の導電性微粒子10の粒径が小さくなりすぎ、導電性微粒子10を用いて相対峙する電極端子の相互接続を行うと、電極端子の平滑性の問題から導電性微粒子10が電極端子と接触せず、導通不良を発生する可能性があり、3000μmを超えると、微細ピッチの電極端子に対応できず隣接電極端子間でショートを発生することがある。より好ましい下限は10μm、より好ましい上限は1000μmである。
【0014】
本発明の導電性微粒子において金属層は、2層以上の多層構造であり、かつ、少なくとも金属層の最外層が半田層である。図1に示した導電性微粒子10において、金属層12は、その最外層が半田層13である2層構造であるが、最外層の半田層13の内側の層は、更に複数の層からなるものであってもよく、また、これらの複数の層は、同じ金属材料からなるものであってもよく、異なる金属材料からなるものであってもよい。
最外層を半田層とすることにより、上記構造の本発明の導電性微粒子を電極端子上に配置し、他の電極端子の位置合わせを行った後、加熱圧着することで、上記半田層が溶融されて上記電極端子が半田接合されるとともに、半田層の内側の金属表面が露出して電極端子と接触することから、電気的接続信頼性に優れる電極端子の相互接続を実現することができる。
【0015】
半田層13を構成する半田材料としては特に限定されず、例えば、Sn−Pb半田、Pbフリー半田等公知の半田材料が挙げられる。なかでも、融点が300℃以下のものが好ましい。
【0016】
金属層12のうち、最外層の半田層13の内側の層を構成する金属材料としては、その融点が、半田層13を構成する半田材料の融点よりも高いことが好ましい。上記金属材料の融点が半田層13を構成する半田材料の融点と同じか、それよりも低いと、本発明の導電性微粒子10を用いて相対峙する電極端子の相互接続を行う際における半田層13を溶融させるための加熱時に、金属層12全体が溶融してしまい、樹脂からなる球状基材微粒子11の表面が露出して電極端子間の電気的接続が図れないことがある。
上記半田材料の融点よりも高い融点を有する金属材料としては特に限定されず、例えば、金、銀、銅、白金、ニッケル等が挙げられる。なかでも、導電性に優れる銅であることが好ましい。
【0017】
金属層12の厚さの好ましい下限は0.01μm、好ましい上限は500μmである。0.01μm未満であると、上記金属材料の量が少なくなりすぎ、本発明の導電性微粒子を用いて相対峙する電極端子間の相互接続を行うと、上記電極端子間の導電性を充分に確保することができず、電気的接続信頼性が低下するおそれがあり、500μmを超えると、上記金属材料の量が多くなりすぎ、本発明の導電性微粒子が硬くなり、電極端子間に生じる応力等を緩和させることができなくなることがある。より好ましい下限は0.1μm、より好ましい上限は200μmである。
【0018】
また、半田層13の厚さの好ましい下限は0.005μm、好ましい上限は400μmである。0.005μm未満であると、半田の量が少なくなり、本発明の導電性微粒子を用いて相対峙する電極端子の相互接続を行うと、電極端子間の電気的接続を面接続とすることができず、電極端子間の導電性を充分に確保することができなくなることがあり、400μmを超えると、半田の量が多くなり、ブリードアウトして隣接電極端子間でショートを発生することがある。より好ましい下限は0.05μm、より好ましい上限は150μmである。
【0019】
金属層12は、球状基材微粒子11の表面に上記金属材料を用いた無電解めっき方法、電解めっき方法、イオンスパッタリングによるめっき方法等の公知のめっき方法により金属めっきして得ることができる。
【0020】
接着剤層14を構成する接着剤としては特に限定されないが、ホットメルト接着剤であることが好ましい。
上記ホットメルト接着剤は、熱可塑性ホットメルト接着剤であってもよく、熱硬化性ホットメルト接着剤であってもよく、例えば、スチレン−イソプレンブロック共重合体、スチレン−ブタジエンブロック共重合体、スチレン−エチレン−ブチレンブロック共重合体、エチレン−酢酸ビニル共重合体等が挙げられる。なかでも、信頼性の高い接合を得ることができることから、熱硬化性ホットメルト接着剤であることが好ましい。
なお、接着剤層14を構成する接着剤としては、非加熱状態では接着力を発揮しないものであることが好ましい。非加熱状態で接着力を発揮する接着剤であると、凝集等が発生してしまうことがある。
【0021】
接着剤層14の厚さの好ましい下限は0.05μm、好ましい上限は2000μmである。0.05μm未満であると、接着剤の量が少なくなり、本発明の導電性微粒子を用いて相対峙する電極端子の相互接続を行うと、電極端子間の接合強度を充分に確保することができなくなることがあり、2000μmを超えると、接着剤の量が多くなり、ブリードアウトして電極端子を汚染することがある。より好ましい下限は0.1μm、より好ましい上限は1000μmである。
【0022】
上記球状基材微粒子、金属層及び接着剤層から構成される本発明の導電性微粒子の大きさとしては特に限定されないが、例えば、その平均粒径の好ましい下限は10μm、好ましい上限は800μmである。10μm未満であると、本発明の導電性微粒子を用いて相対峙する電極端子の相互接続を行うと、電極端子の平滑性の問題から導電性微粒子が電極端子と接触せず、導通不良を発生する可能性があり、800μmを超えると、微細ピッチの電極端子に対応できず隣接電極端子間でショートを発生することがある。より好ましい下限は15μm、より好ましい上限は300μmである。
なお、上記平均粒径は、任意の導電性微粒子100個の粒径を顕微鏡を用いて測定し、その値を平均して得られる値である。
【0023】
本発明の導電性微粒子を用いて電極端子を相互接続する方法としては特に限定されないが、例えば、第一の電気回路基体又は上記第二の電気回路基体の少なくとも一方に形成された電極端子の上に本発明の導電性微粒子を配置する工程1と、上記第一の電気回路基体に形成された電極端子と上記第二の電気回路基体に形成された電極端子との位置合わせをして、加熱圧着する工程2とを有する電極端子の相互接続方法が好適である。
この方法によれば、簡便な工程で電気的接続信頼性及び機械的接続信頼性の高い導電接続構造体を得ることができる。
このような電極端子の相互接続方法も本発明の1つである。
【0024】
本発明の電極端子の相互接続方法の工程1では、第一又は第二の電気回路基体の少なくとも一方に形成された電極端子上に上記本発明の導電性微粒子を配置する。
本発明の電極端子の相互接続方法において、上記導電性微粒子は、上記第一の電気回路基体に形成された電極端子、又は、第二の電気回路基体に形成された電極端子のいずれか一方にのみに配置してもよいが、上記第一及び第二の電気回路基体に形成された電極端子の両方に導電性微粒子を配置してもよい。この場合、上記導電性微粒子は、第一及び第二の電気回路基体に形成された電極端子の位置合わせをした際に、重なり合わない位置に配置する必要がある。
また、上記導電性微粒子は、1の電極端子上に1個だけ配置してもよいが、導電性微粒子及び電極端子の大きさの関係によっては、1の電極端子上に2個以上を並べて配置してもよい。この場合、隣接する導電性微粒子は、互いに接触していてもよい。
【0025】
また、必要に応じて、上記第一又は第二の電気回路基体に形成された電極端子上に配置した導電性微粒子が移動することがないように、加熱処理を施して上記導電性微粒子を仮固定させてもよい。
上記加熱処理時の加熱温度としては特に限定されず、導電性微粒子に形成された接着剤層及び半田層を構成する材料の融点により適宜決定されるが、上記導電性微粒子を電極端子上に仮固定できればよいので、上記接着剤層のみを溶融させることができる温度であることが好ましい。
【0026】
本発明の電極端子の相互接続方法の工程2では、第一の電気回路基体に形成された電極端子と第二の電気回路基体に形成された電極端子との位置合わせをして、加熱圧着する。
【0027】
上記第一の電気回路基体に形成された電極端子と第二の電気回路基体に形成された電極端子との位置合わせを行う方法としては特に限定されず、例えば、赤外線カメラを用いて、各電気回路基体に形成された電極端子と該電極端子上に配置した導電性微粒子との位置を確認して行う方法;CCDカメラを用いて、各電気回路基体に形成された電極端子と該電極端子上に配置した導電性微粒子との位置を確認して行う方法;超音波顕微鏡を用いて、各電気回路基体に形成された電極端子と該電極端子上に配置した導電性微粒子との位置を確認して行う方法等任意の方法が挙げられる。
【0028】
上記位置合わせを行った第一及び第二の電気回路基体を加熱圧着する方法としては特に限定されず、例えば、ヒーターが付いた圧着機を用いる方法や、ボンディングマシーンを用いる方法等が挙げられる。
【0029】
上記第一及び第二の電気回路基体に形成された電極端子及び導電性微粒子を加熱圧着することで、図2に示すように、第一の電気回路基体21に形成された電極端子210と第二の電気回路基体22に形成された電極端子220とは、本発明の導電性微粒子に形成された半田層及び接着剤層が溶融されて形成された半田接合層23及び接着剤接合層24により相互に接続される。
【0030】
本発明の電極端子の相互接続方法によって接続される電気回路基体としては特に限定されず、例えば、液晶ディスプレー、パーソナルコンピュータ、携帯通信機器等の小型部品、チップ、基板等が挙げられる。
【0031】
上記チップとしては特に限定されず、例えば、IC、LSI等の半導体等の能動部品;コンデンサ、水晶振動子等の受動部品;ベアチップ等が挙げられる。
上記基板としては、フレキシブル基板とリジッド基板とに大別される。
上記フレキシブル基板としては、例えば、50〜500μm厚さを有するポリイミド、ポリアミド、ポリエステル、ポリスルホン等からなる樹脂シート等が挙げられる。
上記リジッド基板としては、樹脂製のものとセラミック製のものとに分けられ、上記樹脂製のものとしては、例えば、ガラス繊維強化エポキシ樹脂、フェノール樹脂、セルロース繊維強化フェノール樹脂等からなるものが挙げられ、上記セラミック製のものとしては、例えば、二酸化ケイ素、アルミナ等からなるものが挙げられる。
上記基板としては、単層基板であってもよいし、また、単位面積当たりの電極数を増やすために、例えば、スルーホール形成等の手段により、複数の層を形成し、相互に電気的接続を行わせる多層基板であってもよい。
【0032】
上記電気回路基体に形成された電極端子の材質としては特に限定されず、例えば、金、銀、銅、ニッケル、パラジウム、カーボン、アルミニウム、ITO等が挙げられる。接触抵抗を低減させるために、銅、ニッケル等の上に更に金を被覆したものを用いてもよい。上記電極の形状としては特に限定されず、例えば、縞状、ドット状、任意形状等が挙げられる。上記電極の厚さは、0.1〜100μmが好ましい。上記電極の幅は、1〜500μmが好ましい。
上記電極端子は、上記電気回路基体に1個だけ形成されていてもよく、相対応する位置に2個以上形成されていてもよい。
【0033】
本発明の電極端子の相互接続方法によれば、第一の電気回路基体に形成された電極端子と第二の電気回路基体に形成された電極端子との相互接続を本発明の導電性微粒子を用いて行うため、上記第一及び第二の電気回路基体に形成された電極端子と本発明の導電性微粒子とは、本発明の導電性微粒子に形成された半田層の内側の金属表面が電極端子に接触して接続されるとともに、溶融した半田層により半田接合されて面接続となるため、電気的に接続される面積が大きくなり、上記第一及び第二の電気回路基体に形成された電極端子間の電気的接続信頼性が高くなる。また、上記第一及び第二の電気回路基体に形成された電極端子と本発明の導電性微粒子とは、上記半田接合に加えて接着剤層により接着剤接合されるため、第一及び第二の電気回路基体に形成された電極端子間の機械的接続信頼性も高くなる。
更に、本発明の導電性微粒子の中心部分は、樹脂からなる球状基材微粒子により構成されており、上記樹脂の応力緩和効果により、本発明の導電性微粒子は優れた応力緩和効果を有するものとなる。従って、本発明の導電性微粒子を用いて第一の電気回路基体に形成された電極端子と第二の電気回路基体に形成された電極端子との相互接続を行った場合に、上記第一及び第二の電気回路基体の熱膨張係数の違いにより接続部に応力が発生しても、本発明の導電性微粒子により発生した応力を緩和することができ、断線等が生じるのを抑制できることから、上記第一及び第二の電気回路基体に形成された電極端子間の機械的及び電気的接続信頼性を優れたものとすることができる。
また、本発明の電極端子の相互接続方法によると、2種の接合が一工程でなされるのでより簡便な接続方法となり、この方法で作製された導電接続構造体を供給できる。
本発明の電極端子の相互接続方法により作製された導電接続構造体も本発明の1つである。
【0034】
【実施例】
(実施例1)
直径264μmの球状基材微粒子に、厚さ3μmの銅めっき、厚さ15μmの半田めっき(スズ−鉛共晶)が施された直径300μmの微粒子の表面に、厚さ10μmの熱硬化性ホットメルト接着剤を塗布することにより図1に示す構造の導電性微粒子を得た。
得られた導電性微粒子を2枚の配線基板でデイジーチェインを構成する一方の配線基板(500μmピッチ、8×8ピン)の電極端子(ランド直径240μm)上に配置し、他方の配線基板の電極端子を位置合わせした後、190℃、0.2kg/cm2で5分加熱圧着して電極端子と導電性微粒子とを接合し、電極端子を相互に接続し、図2に示す構造の導電接続構造体を作製した。
【0035】
(比較例1)
半田めっき層の代わりにニッケルめっき層を設けた以外は、実施例1と同様の導電性微粒子を作製し、得られた導電性微粒子を用いて実施例1と同様にして配線基板を接続し、導電接続構造体を作製した。
【0036】
実施例1及び比較例1に係る導電接続構造体の電気接続抵抗と180度引張試験による機械的接合強度とを測定した。
その結果を表1に示す。
【0037】
【表1】
【0038】
表1に示した結果から明らかなように、実施例1に係る導電接続構造体は、比較例1に係る導電接続構造体よりも、電気接続抵抗及び機械的接合強度のいずれにも優れるものであった。
即ち、導電性微粒子に形成された金属めっきの最外層が半田であることにより、互いに相対応する電極端子の電気的接続信頼性と機械的接続信頼性が明らかに向上した。
【0039】
【発明の効果】
本発明は、上記の構成からなるので、簡便な工程で電気的接続信頼性及び機械的接続信頼性の高い導電接続構造体を得ることができる導電性微粒子、該導電性微粒子を用いた電極端子の相互接続方法、及び、導電接続構造体を提供することができる。
【図面の簡単な説明】
【図1】本発明の電極端子の相互接続方法において用いる導電性微粒子の一例を模式的に示す断面図である。
【図2】本発明の導電接続構造体の一例を模式的に示す断面図である。
【符号の説明】
10 導電性微粒子
11 球状基材微粒子
12 金属層
13 半田層
14 接着剤層
20 導電接続構造体
21 第一の電気回路基体
22 第二の電気回路基体
23 半田接合層
24 接着剤接合層
210、220 電極端子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to conductive fine particles, a method for interconnecting electrode terminals, and a conductive connection structure.
[0002]
[Prior art]
The conductive fine particles having a conductive metal film formed on the surface of the spherical base fine particles are used for bonding a lead electrode, a wiring board, etc. in an electronic component, a conductive paste, a conductive material of an electromagnetic wave shield, and a vertical conductive material. It is used for adhesives, anisotropic conductive adhesives and the like.
[0003]
Conventionally, conductive fine particles are arranged on an electrode terminal of a wiring board, and as a method of electrically interconnecting the electrode terminals of the wiring substrate facing each other through the conductive fine particles, the conductive fine particles are placed on the electrode terminal of one wiring substrate. A method is known in which conductive fine particles are sprayed, electrode terminals of the other wiring substrate are aligned, and then bonded and fixed with an insulating adhesive while applying pressure.
However, such a method has a problem that the physical adhesion strength of the conductive fine particles is weak and the connection reliability is likely to be reduced.
[0004]
On the other hand, the conductive fine particles whose surface is coated with the adhesive are charged, and the charged conductive fine particles are sprayed on the electrode terminals of the first wiring board, and fixed by heating, and then the second conductive fine particles are fixed. A method of interconnecting opposing electrode terminals of a wiring board via conductive fine particles by mounting the above-mentioned wiring board and bonding and fixing the same by heating and pressing is disclosed (for example, see Patent Document 1). ).
[0005]
In the method for interconnecting electrode terminals disclosed in Patent Document 1, the conductive fine particles adhered on the electrode terminals of the wiring board are fixed on the electrode terminals by an adhesive by being heated, so that the conductive fine particles Physical bond strength was improved.
However, the adhesive strength of the adhesive coated with the conductive fine particles that adhere the electrode terminals of the opposing wiring boards is not so high, and the mechanical connection reliability between the electrode terminals of the opposing wiring boards is sufficiently increased. Therefore, it is necessary to seal the insulating adhesive between the electrode terminals and bond the electrode terminals to each other. Further, the electrical connection between the electrode terminal and the conductive fine particles is ensured only at the point where the surface of the plate-like electrode terminal and the surface of the spherical conductive fine particle are in contact with each other. Since the electrical connection with the wiring board is a point connection, there is a problem that the electrical connection reliability between the electrode terminals of the wiring board facing each other is reduced. Furthermore, it is necessary to charge the conductive fine particles before the alignment of the electrode terminals, and there is a problem that the process becomes complicated.
[0006]
On the other hand, conductive fine particles in which a hot-melt adhesive is coated on the surface of metal-plated spherical polymer particles are disclosed (for example, see Patent Document 2).
The hot-melt adhesive coated with the conductive fine particles disclosed in Patent Document 2 has higher adhesive strength than the conductive fine particles disclosed in Patent Document 1, and therefore, the conductive fine particles disclosed in Patent Document 2 When the electrode terminals of the wiring board facing each other are interconnected by using, the electrode terminals are sealed with an insulating adhesive, and a high degree of mechanical connection reliability is obtained without bonding the electrode terminals. In addition, it was not necessary to charge the conductive fine particles before the positioning of the electrode terminals, and the process was simple.
However, it is difficult to say that the mechanical connection reliability between the opposing electrode terminals of the wiring board is sufficient, and the electric connection between the electrode terminal and the conductive fine particles is made in contact with the surface of the plate-like electrode terminal. It is secured only at the point where the surface of the spherical conductive fine particles is in contact, and since the electrical connection between the electrode terminals and the conductive fine particles is a point connection, the electrode terminals of the wiring board still facing each other However, there is a problem that the electrical connection reliability becomes low.
[0007]
[Patent Document 1]
JP-A-5-119337 [Patent Document 2]
Japanese Patent Application Laid-Open No. 9-204815
[Problems to be solved by the invention]
In view of the above, the present invention provides a conductive fine particle capable of obtaining a conductive connection structure having high electrical connection reliability and high mechanical connection reliability in a simple process, and interconnection of electrode terminals using the conductive fine particle. It is an object to provide a method and a conductive connection structure.
[0009]
Means for Solving the Invention
The present invention is a spherical fine particles of a resin, a metal layer formed on the surface of the fine spherical particles, and conductive fine particles comprising an adhesive layer formed on the surface of the metal layer, The metal layer is a conductive fine particle having a multilayer structure of two or more layers, and at least the outermost layer is a solder layer.
Hereinafter, the present invention will be described in detail.
[0010]
The present invention is a conductive fine particle comprising a spherical base particle made of a resin, a metal layer formed on the surface of the spherical base particle, and an adhesive layer formed on the surface of the metal layer.
[0011]
FIG. 1 is a cross-sectional view schematically showing one example of the conductive fine particles of the present invention.
As shown in FIG. 1, the conductive fine particles 10 of the present invention include a spherical base fine particle 11, a metal layer 12 formed on the surface of the spherical base fine particle 11, and an adhesive layer formed on the surface of the metal layer 12. The outermost layer of the metal layer 12 is the solder layer 13.
[0012]
The resin constituting the spherical base fine particles 11 is not particularly limited, and examples thereof include polystyrene, a polystyrene copolymer, a polyacrylate, a polyacrylate copolymer, a phenol resin, a silicone resin, a polyamide resin, and a polyester resin. Polyvinyl chloride and the like.
In addition, the shape of the spherical base particles 11 is not particularly limited as long as it is spherical. For example, the shape may be hollow, and the inside may be densely filled.
[0013]
A preferred lower limit of the diameter of the spherical base particles 11 is 1 μm, and a preferred upper limit is 3000 μm. When the particle diameter is less than 1 μm, the particle diameter of the conductive fine particles 10 of the present invention becomes too small. The fine particles 10 may not be in contact with the electrode terminals, which may cause a conduction failure. If the particle diameter exceeds 3000 μm, it may not be possible to cope with electrode terminals having a fine pitch and a short circuit may occur between adjacent electrode terminals. A more preferred lower limit is 10 μm, and a more preferred upper limit is 1000 μm.
[0014]
In the conductive fine particles of the present invention, the metal layer has a multilayer structure of two or more layers, and at least the outermost layer of the metal layer is a solder layer. In the conductive fine particles 10 shown in FIG. 1, the metal layer 12 has a two-layer structure in which the outermost layer is the solder layer 13, but the inner layer of the outermost solder layer 13 further includes a plurality of layers. These layers may be made of the same metal material or different metal materials.
By using the outermost layer as a solder layer, the conductive fine particles of the present invention having the above structure are arranged on the electrode terminals, and the other electrode terminals are aligned, and then heat-pressed to melt the solder layer. Then, the electrode terminals are solder-bonded and the metal surface inside the solder layer is exposed and comes into contact with the electrode terminals, so that interconnection of the electrode terminals with excellent electrical connection reliability can be realized.
[0015]
The solder material constituting the solder layer 13 is not particularly limited, and examples thereof include known solder materials such as Sn-Pb solder and Pb-free solder. Among them, those having a melting point of 300 ° C. or less are preferred.
[0016]
Among the metal layers 12, the melting point of the metal material forming the inner layer of the outermost solder layer 13 is preferably higher than the melting point of the solder material forming the solder layer 13. If the melting point of the metal material is equal to or lower than the melting point of the solder material forming the solder layer 13, the solder layer when interconnecting opposing electrode terminals using the conductive fine particles 10 of the present invention is used. At the time of heating for melting the 13, the entire metal layer 12 may be melted, and the surface of the spherical base particles 11 made of resin may be exposed and electrical connection between the electrode terminals may not be achieved.
The metal material having a melting point higher than the melting point of the solder material is not particularly limited, and examples thereof include gold, silver, copper, platinum, and nickel. Especially, it is preferable that it is copper excellent in electroconductivity.
[0017]
A preferred lower limit of the thickness of the metal layer 12 is 0.01 μm, and a preferred upper limit is 500 μm. When the thickness is less than 0.01 μm, the amount of the metal material is too small, and when interconnecting between opposing electrode terminals using the conductive fine particles of the present invention, the conductivity between the electrode terminals is sufficiently increased. When the thickness exceeds 500 μm, the amount of the metal material becomes too large, the conductive fine particles of the present invention become hard, and the stress generated between the electrode terminals is reduced. May not be able to be alleviated. A more preferred lower limit is 0.1 μm and a more preferred upper limit is 200 μm.
[0018]
The preferred lower limit of the thickness of the solder layer 13 is 0.005 μm, and the preferred upper limit is 400 μm. When the thickness is less than 0.005 μm, the amount of solder is reduced, and when the opposing electrode terminals are interconnected using the conductive fine particles of the present invention, the electrical connection between the electrode terminals may be a surface connection. In some cases, the conductivity between the electrode terminals cannot be sufficiently ensured. If the thickness exceeds 400 μm, the amount of solder increases, and bleed out to cause a short circuit between adjacent electrode terminals. . A more preferred lower limit is 0.05 μm, and a more preferred upper limit is 150 μm.
[0019]
The metal layer 12 can be obtained by performing metal plating on the surface of the spherical base particles 11 by a known plating method such as an electroless plating method, an electrolytic plating method, or a plating method using ion sputtering using the above-described metal material.
[0020]
The adhesive constituting the adhesive layer 14 is not particularly limited, but is preferably a hot melt adhesive.
The hot melt adhesive may be a thermoplastic hot melt adhesive or a thermosetting hot melt adhesive, for example, a styrene-isoprene block copolymer, a styrene-butadiene block copolymer, Styrene-ethylene-butylene block copolymer, ethylene-vinyl acetate copolymer and the like can be mentioned. Among them, a thermosetting hot melt adhesive is preferable because a highly reliable bonding can be obtained.
In addition, it is preferable that the adhesive constituting the adhesive layer 14 does not exhibit an adhesive force in a non-heated state. If the adhesive exerts an adhesive force in a non-heated state, aggregation or the like may occur.
[0021]
A preferred lower limit of the thickness of the adhesive layer 14 is 0.05 μm, and a preferred upper limit is 2000 μm. When the thickness is less than 0.05 μm, the amount of the adhesive decreases, and when the electrode terminals facing each other are interconnected using the conductive fine particles of the present invention, it is possible to sufficiently secure the bonding strength between the electrode terminals. When the thickness exceeds 2000 μm, the amount of the adhesive increases, and bleed-out may contaminate the electrode terminals. A more preferred lower limit is 0.1 μm and a more preferred upper limit is 1000 μm.
[0022]
The size of the conductive fine particles of the present invention composed of the spherical base fine particles, the metal layer and the adhesive layer is not particularly limited. For example, a preferable lower limit of the average particle size is 10 μm, and a preferable upper limit is 800 μm. . If the thickness is less than 10 μm, when the electrode terminals facing each other are interconnected using the conductive fine particles of the present invention, the conductive fine particles do not come into contact with the electrode terminals due to a problem of smoothness of the electrode terminals, and a conduction failure occurs. If the thickness exceeds 800 μm, it is impossible to cope with electrode terminals having a fine pitch, and a short circuit may occur between adjacent electrode terminals. A more preferred lower limit is 15 μm, and a more preferred upper limit is 300 μm.
The average particle size is a value obtained by measuring the particle size of 100 arbitrary conductive fine particles using a microscope and averaging the values.
[0023]
The method for interconnecting the electrode terminals using the conductive fine particles of the present invention is not particularly limited. For example, a method for connecting the electrode terminals formed on at least one of the first electric circuit substrate or the second electric circuit substrate may be used. Step 1 of arranging the conductive fine particles of the present invention, and aligning the electrode terminals formed on the first electric circuit base with the electrode terminals formed on the second electric circuit base, The method for interconnecting electrode terminals, which includes the step 2 of crimping, is preferable.
According to this method, a conductive connection structure having high electrical connection reliability and high mechanical connection reliability can be obtained by simple steps.
Such an interconnection method of the electrode terminals is also one of the present invention.
[0024]
In step 1 of the method for interconnecting electrode terminals of the present invention, the conductive fine particles of the present invention are arranged on the electrode terminals formed on at least one of the first and second electric circuit substrates.
In the method for interconnecting electrode terminals of the present invention, the conductive fine particles may be attached to one of the electrode terminals formed on the first electric circuit substrate or the electrode terminals formed on the second electric circuit substrate. The conductive fine particles may be arranged only on the electrode terminals formed on the first and second electric circuit bases. In this case, the conductive fine particles need to be arranged at positions where they do not overlap when the electrode terminals formed on the first and second electric circuit substrates are aligned.
Further, only one conductive fine particle may be arranged on one electrode terminal, but two or more conductive fine particles may be arranged on one electrode terminal depending on the size of the conductive fine particles and the electrode terminal. May be. In this case, adjacent conductive fine particles may be in contact with each other.
[0025]
Further, if necessary, the conductive fine particles are temporarily treated by performing a heat treatment so that the conductive fine particles arranged on the electrode terminals formed on the first or second electric circuit substrate do not move. It may be fixed.
The heating temperature during the heat treatment is not particularly limited, and is appropriately determined according to the melting points of the materials forming the adhesive layer and the solder layer formed on the conductive fine particles. It is preferable that the temperature be such that only the adhesive layer can be melted, as long as it can be fixed.
[0026]
In step 2 of the method for interconnecting electrode terminals according to the present invention, the electrode terminals formed on the first electric circuit substrate and the electrode terminals formed on the second electric circuit substrate are aligned and heated and pressed. .
[0027]
The method for aligning the electrode terminals formed on the first electric circuit substrate with the electrode terminals formed on the second electric circuit substrate is not particularly limited. For example, each method may be performed using an infrared camera. A method of confirming the positions of the electrode terminals formed on the circuit substrate and the conductive fine particles arranged on the electrode terminals; and performing the method by using a CCD camera. A method for confirming the position of the conductive fine particles arranged on the substrate; using an ultrasonic microscope, confirming the positions of the electrode terminals formed on each electric circuit substrate and the conductive fine particles arranged on the electrode terminals. And any other method.
[0028]
The method for heat-pressing the first and second electric circuit substrates having been subjected to the above-described alignment is not particularly limited, and examples thereof include a method using a press-fitting machine equipped with a heater and a method using a bonding machine.
[0029]
The electrode terminals formed on the first and second electric circuit bases and the conductive fine particles are heated and pressed, as shown in FIG. The electrode terminal 220 formed on the second electric circuit base 22 is formed by the
[0030]
The electric circuit substrate connected by the electrode terminal interconnection method of the present invention is not particularly limited, and examples thereof include small components such as a liquid crystal display, a personal computer, and a portable communication device, a chip, and a substrate.
[0031]
The chip is not particularly limited and includes, for example, active components such as semiconductors such as ICs and LSIs; passive components such as capacitors and quartz oscillators; and bare chips.
The above substrates are roughly classified into a flexible substrate and a rigid substrate.
Examples of the flexible substrate include a resin sheet made of polyimide, polyamide, polyester, polysulfone, or the like having a thickness of 50 to 500 μm.
The rigid substrate is divided into a resin substrate and a ceramic substrate.Examples of the resin substrate include a glass fiber reinforced epoxy resin, a phenol resin, and a cellulose fiber reinforced phenol resin. Examples of the ceramics include those made of silicon dioxide, alumina and the like.
The substrate may be a single-layer substrate, or, in order to increase the number of electrodes per unit area, for example, by forming a plurality of layers by means such as through-hole formation and electrically connecting each other. May be performed.
[0032]
The material of the electrode terminals formed on the electric circuit substrate is not particularly limited, and examples thereof include gold, silver, copper, nickel, palladium, carbon, aluminum, and ITO. In order to reduce contact resistance, copper, nickel, or the like, which is further covered with gold, may be used. The shape of the electrode is not particularly limited, and examples thereof include a stripe shape, a dot shape, and an arbitrary shape. The thickness of the electrode is preferably 0.1 to 100 μm. The width of the electrode is preferably 1 to 500 μm.
Only one electrode terminal may be formed on the electric circuit substrate, or two or more electrode terminals may be formed at corresponding positions.
[0033]
According to the electrode terminal interconnection method of the present invention, the interconnection between the electrode terminal formed on the first electric circuit substrate and the electrode terminal formed on the second electric circuit substrate is performed by the conductive fine particles of the present invention. Since the electrode terminals formed on the first and second electric circuit substrates and the conductive fine particles of the present invention are used, the metal surface inside the solder layer formed on the conductive fine particles of the present invention is an electrode. While being in contact with the terminal and being connected, the surface is connected by soldering with the molten solder layer, so that the area to be electrically connected is increased, and the first and second electric circuit substrates are formed. The electrical connection reliability between the electrode terminals is increased. Further, the electrode terminals formed on the first and second electric circuit bases and the conductive fine particles of the present invention are bonded by an adhesive layer by an adhesive layer in addition to the solder bonding. The mechanical connection reliability between the electrode terminals formed on the electric circuit substrate is also increased.
Furthermore, the central portion of the conductive fine particles of the present invention is constituted by spherical base fine particles made of a resin, and the conductive fine particles of the present invention have an excellent stress relaxing effect due to the stress relaxing effect of the resin. Become. Therefore, when the electrode terminals formed on the first electric circuit substrate and the electrode terminals formed on the second electric circuit substrate are interconnected using the conductive fine particles of the present invention, Even if stress is generated in the connection portion due to the difference in the thermal expansion coefficient of the second electric circuit substrate, the stress generated by the conductive fine particles of the present invention can be relaxed, and the occurrence of disconnection and the like can be suppressed, The mechanical and electrical connection reliability between the electrode terminals formed on the first and second electric circuit substrates can be improved.
Further, according to the method for interconnecting electrode terminals of the present invention, since two types of bonding are performed in one step, the connection method becomes simpler, and a conductive connection structure manufactured by this method can be supplied.
The present invention also includes a conductive connection structure manufactured by the electrode terminal interconnection method of the present invention.
[0034]
【Example】
(Example 1)
A thermosetting hot melt with a thickness of 10 μm is applied to the surface of a fine particle with a diameter of 300 μm obtained by applying copper plating with a thickness of 3 μm and solder plating (tin-lead eutectic) with a thickness of 15 μm on spherical base particles with a diameter of 264 μm. By applying an adhesive, conductive fine particles having a structure shown in FIG. 1 were obtained.
The obtained conductive fine particles are arranged on an electrode terminal (land diameter 240 μm) of one wiring board (500 μm pitch, 8 × 8 pins) constituting a daisy chain with two wiring boards, and the electrode of the other wiring board is arranged. After the terminals are aligned, they are heated and pressed at 190 ° C. and 0.2 kg / cm 2 for 5 minutes to join the electrode terminals to the conductive fine particles, connect the electrode terminals to each other, and form a conductive connection having the structure shown in FIG. A structure was produced.
[0035]
(Comparative Example 1)
Except that a nickel plating layer was provided instead of the solder plating layer, the same conductive fine particles as those in Example 1 were prepared, and a wiring board was connected in the same manner as in Example 1 using the obtained conductive fine particles. A conductive connection structure was produced.
[0036]
The electrical connection resistance and the mechanical bonding strength of the conductive connection structure according to Example 1 and Comparative Example 1 by a 180-degree tensile test were measured.
Table 1 shows the results.
[0037]
[Table 1]
[0038]
As is clear from the results shown in Table 1, the conductive connection structure according to Example 1 is superior to the conductive connection structure according to Comparative Example 1 in both electrical connection resistance and mechanical bonding strength. there were.
That is, since the outermost layer of the metal plating formed on the conductive fine particles was solder, the electrical connection reliability and the mechanical connection reliability of the electrode terminals corresponding to each other were clearly improved.
[0039]
【The invention's effect】
Since the present invention has the above-described structure, conductive fine particles capable of obtaining a conductive connection structure having high electrical connection reliability and high mechanical connection reliability in a simple process, and an electrode terminal using the conductive fine particles And a conductive connection structure can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing one example of conductive fine particles used in the method for interconnecting electrode terminals of the present invention.
FIG. 2 is a cross-sectional view schematically showing one example of the conductive connection structure of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 10 conductive fine particles 11 spherical base fine particles 12 metal layer 13 solder layer 14 adhesive layer 20 conductive connection structure 21 first electric circuit substrate 22 second
Claims (3)
前記金属層は、2層以上の多層構造を有し、かつ、少なくとも最外層が半田層であることを特徴とする導電性微粒子。Spherical base particles made of a resin, a metal layer formed on the surface of the spherical base particles, and conductive fine particles comprising an adhesive layer formed on the surface of the metal layer,
The conductive fine particles, wherein the metal layer has a multilayer structure of two or more layers, and at least an outermost layer is a solder layer.
前記第一の電気回路基体又は前記第二の電気回路基体の少なくとも一方に形成された電極端子の上に前記導電性微粒子を配置する工程1と、
前記第一の電気回路基体に形成された電極端子と前記第二の電気回路基体に形成された電極端子との位置合わせをして、加熱圧着する工程2とを有する
ことを特徴とする電極端子の相互接続方法。An electrode terminal formed on the first electric circuit base and an electrode terminal formed on the second electric circuit base are electrically connected to each other and held and fixed using the conductive fine particles according to claim 1. A method of interconnecting electrode terminals,
A step 1 of disposing the conductive fine particles on an electrode terminal formed on at least one of the first electric circuit substrate or the second electric circuit substrate;
A step of aligning the electrode terminals formed on the first electric circuit base with the electrode terminals formed on the second electric circuit base, and performing heat compression bonding. Interconnection method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002287582A JP2004127612A (en) | 2002-09-30 | 2002-09-30 | Conductive fine particle, interconnecting method of electrode terminals, and conductive connection structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002287582A JP2004127612A (en) | 2002-09-30 | 2002-09-30 | Conductive fine particle, interconnecting method of electrode terminals, and conductive connection structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004127612A true JP2004127612A (en) | 2004-04-22 |
Family
ID=32280310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002287582A Pending JP2004127612A (en) | 2002-09-30 | 2002-09-30 | Conductive fine particle, interconnecting method of electrode terminals, and conductive connection structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004127612A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006040546A (en) * | 2004-07-22 | 2006-02-09 | Sanyo Chem Ind Ltd | Conductive particulate |
JP2009123684A (en) * | 2007-10-24 | 2009-06-04 | Hitachi Chem Co Ltd | Conductive particle, circuit connection material, and connection structure |
JP2012174357A (en) * | 2011-02-17 | 2012-09-10 | Sekisui Chem Co Ltd | Connection structure and method of manufacturing the same |
JP2016523447A (en) * | 2013-05-29 | 2016-08-08 | フィニサー コーポレイション | Rigid-flexible circuit interconnect |
-
2002
- 2002-09-30 JP JP2002287582A patent/JP2004127612A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006040546A (en) * | 2004-07-22 | 2006-02-09 | Sanyo Chem Ind Ltd | Conductive particulate |
JP2009123684A (en) * | 2007-10-24 | 2009-06-04 | Hitachi Chem Co Ltd | Conductive particle, circuit connection material, and connection structure |
JP2013030485A (en) * | 2007-10-24 | 2013-02-07 | Hitachi Chem Co Ltd | Conductive particle, circuit connection material and connection structure |
KR101254474B1 (en) * | 2007-10-24 | 2013-04-12 | 히타치가세이가부시끼가이샤 | Circuit connecting material and connection structure |
JP2012174357A (en) * | 2011-02-17 | 2012-09-10 | Sekisui Chem Co Ltd | Connection structure and method of manufacturing the same |
JP2016523447A (en) * | 2013-05-29 | 2016-08-08 | フィニサー コーポレイション | Rigid-flexible circuit interconnect |
US9723725B2 (en) | 2013-05-29 | 2017-08-01 | Finisar Corporation | Rigid-flexible circuit interconnects |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100478314B1 (en) | Multi-layer flexible wiring boards and fabricating methods thereof | |
CN102482540B (en) | Anisotropic conductive adhesive for ultrasonic bonding, and electronic component connection method using same | |
JP4123998B2 (en) | Electronic circuit device and manufacturing method thereof | |
JPH07161400A (en) | Anisotropic conductive film, its manufacture and connector using it | |
JPH07240496A (en) | Semiconductor device, its manufacture method and board for testing semiconductor and manufacture of test board | |
US20080283280A1 (en) | Method for Connecting Printed Circuit Boards | |
JP2004127612A (en) | Conductive fine particle, interconnecting method of electrode terminals, and conductive connection structure | |
JPH09198916A (en) | Conductive fine grain | |
JP2004342802A (en) | Printed board with bump electrode and manufacturing method thereof | |
JP3743716B2 (en) | Flexible wiring board and semiconductor element mounting method | |
KR100807352B1 (en) | Electrode having projections on electrode pad, electronic apparatus including device mounting structure having the same and method of mounting device of electronic apparatus | |
JPH09306231A (en) | Conductive particulate and substrate | |
JP2001004700A (en) | Interposer board | |
WO2013012139A1 (en) | Method and apparatus for connecting an electronic component using a high frequency electromagnetic field | |
JP3596572B2 (en) | Board connection method | |
JPH0574846A (en) | Electrically connecting method | |
JP2967560B2 (en) | Connection structure of film carrier | |
JP2003100367A (en) | Conductive bond, and connection method and connection structure between circuit boards using bond | |
JP2979151B2 (en) | How to connect electronic components | |
JP3505321B2 (en) | Conductive fine particles and substrate | |
JP2005050882A (en) | Laminated wiring board, electric apparatus, and its mounting structure | |
JPH11135173A (en) | Thickness direction conductive sheet and manufacture thereof | |
JP2007220839A (en) | Circuit board and electrode connection structure of circuit | |
JP2007281080A (en) | Device, and board adhering method | |
JP3149083B2 (en) | Conductive binder and conductive connection structure |