【0001】
【発明の属する技術分野】
本発明は、例えば送電設備等の電力設備の異常を検知するための差動継電器の接続状態を確認する励磁突入電流を用いた差動継電器の現地試験方法に関する。
【0002】
【従来の技術】
従来技術を、図3に示される様な、2箇所から電流が入出力される電力機器を例に説明する。
送電線、変圧器等の電力機器70(電力設備)の両側には、遮断器CB1、CB2及び電流検出器CT1、CT2がそれぞれ設置され、この各電流検出器CT1、CT2の二次側巻線には比率差動継電器71(差動継電器)が接続されている。これにより、電力機器70に接続される他の電力設備(図示しない)を実際に稼働させる場合において、比率差動継電器71によって、電流検出器CT1の検出値である出力電流i1と電流検出器CT2の検出値である出力電流i2とが平衡(i1=i2)であることを検知したときは、電力機器70が正常な状態にあると判断され、各遮断器CB1、CB2の閉状態を維持させ、電力機器70に接続状態を維持させる。一方、他の電力設備に事故が発生し、例えば、電力機器70に急激に電流が流れ込んだり、また、図4(A)に示すように、比率差動継電器71によって、出力電流i1と出力電流i2とが不平衡(i1≠i2)であることを検知したときは、電力機器70が異常な状態にあると判断され、閉状態だった各遮断器CB1、CB2を開状態とし、電力機器70を他の電力設備から切り離して保護する。
【0003】
しかし、図4(B)に示すように、比率差動継電器71に接続する電流検出器CT2を電力機器70に対して誤った状態(誤結線)で接続し、電力機器70及び他の電力設備を実際に稼働させた場合、電力機器70で事故が発生していないにも関わらず、比率差動継電器71によって、出力電流i1と出力電流i2とが不平衡(i1≠i2)であることを検知する。これにより、比率差動継電器71によって、電力機器70が異常な状態にあると判断され、閉状態だった各遮断器CB1、CB2が開状態となり、各遮断器CB1、CB2の誤動作を招くことになる。このため、電力機器70が正常に稼働しているにも関わらず、電力機器70が他の電力設備から切り離されることになる。また、比率差動継電器71並びに各電流検出器CT1、CT2の設定不良等がある場合についても同様である。
そこで、電力機器70を稼働させる前に比率差動継電器71の動作試験を行うため、比率差動継電器の現地試験装置を用いた比率差動継電器の現地試験方法が提案されている。この方法は、図5に示すように、電力機器70の両側にそれぞれ接続された電流検出器CT12、CT22に試験用電源72を接続し、この試験用電源72から模擬的に実負荷と同等の試験電流i1′、i2′を電力機器70に対してそれぞれ注入することで、電力機器70に対する各電流検出器CT1、CT2の誤結線、比率差動継電器71の設定不良等を予め検知できる方法である(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開平8−205386号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記した比率差動継電器の現地試験方法には、以下の問題がある。
電力機器を備えた回路に、試験用電源が接続される各電流検出器CT12、CT22を接続する場合、回路への解結線作業が必要となり、作業性が良好でない。また、試験用電源が接続される各電流検出器CT12、CT22を回路に接続する場合に、誤結線等が発生する可能性があるので、前記したような各遮断器CB1、CB2の誤動作を招くことになり、他の電力設備が正常に稼働しているにも関わらず、電力機器を使用できなくなる。
そして、試験用電源が別途必要になるので経済性が悪く、しかも試験方式が煩雑になり試験時における作業性が良好でない。
本発明はかかる事情に鑑みてなされたもので、解結線作業の省略による差動継電器の動作試験の信頼性向上と、試験用電源の省略による動作試験の簡略化が可能な励磁突入電流を用いた差動継電器の現地試験方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記目的に沿う本発明に係る励磁突入電流を用いた差動継電器の現地試験方法は、上流側に電源を接続し、下流側に変圧器及び/又はリアクトルからなる誘導性機器を接続した電力設備で、電力設備の保護対象区間の上流側と下流側に各々第1の電流検出器を設け、この各第1の電流検出器で検出した電流値から保護対象区間の異常を差動継電器を用いて検知する際における差動継電器の接続状態を判定するための試験方法において、誘導性機器に電源を投入し、この電源投入により差動継電器に入力される両励磁突入電流の波形のズレにより差動継電器の接続状態の良否を判定する。このように、差動継電器の動作試験に、誘導性機器を電源投入した際に例えば数秒から数十秒の間流れる過渡的な電流である励磁突入電流を使用するので、従来行われていた試験用電源の接続に伴う解結線作業と、新たな試験用電源の準備とを解消できる。
ここで、本発明に係る励磁突入電流を用いた差動継電器の現地試験方法において、両励磁突入電流の波形の位相及び/又は波高値のズレにより差動継電器の接続の良否を判定することが好ましい。これにより、差動継電器の接続の良否を容易に判定できる。
【0007】
本発明に係る励磁突入電流を用いた差動継電器の現地試験方法において、波形のズレから差動継電器の接続の良否を判定する両励磁突入電流は、差動継電器の両入力側に各々接続した第2の電流検出器で検出したものであることが好ましい。これにより、各電流検出器の出力電流を独立に検知できる。
本発明に係る励磁突入電流を用いた差動継電器の現地試験方法において、電力設備は送電設備又は変電設備からなり、各第1の電流検出器の設置位置間には、電力設備を他の電力設備から切り離す遮断器がそれぞれ設けられていることが好ましい。これにより、例えば短絡事故(ショート)が発生した場合、差動継電器によって、電力設備が異常な状態にあると判断され、閉状態だった各遮断器を開状態にして、電力設備を他の電力設備から切り離して保護できる。
【0008】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここに、図1は本発明の一実施の形態に係る励磁突入電流を用いた差動継電器の現地試験方法を適用する動作試験装置の説明図、図2は本発明の一実施例に係る励磁突入電流を用いた差動継電器の現地試験方法を適用する電力設備の説明図である。なお、図1、図2、並びに以下の説明は、説明を容易にするため、3相中の1相分について記すが、他2相についても、同様の機能を持たせるものとする。
【0009】
本発明の一実施の形態に係る励磁突入電流を用いた差動継電器の現地試験方法を適用する動作試験装置10は、上流側に電源11を接続し、下流側に変圧器(誘導性機器の一例)12を接続した送電設備(電力設備の一例)13に適用可能な装置であり、この送電設備13の保護対象区間の上流側と下流側に、各々遮断器CB1、CB2を設置し、更に遮断器CB1と電源11の間、遮断器CB2と変圧器12の間には、電流検出器(第1の電流検出器)CT1、CT2がそれぞれ設置され、この各電流検出器CT1、CT2の二次側巻線に電線14、15を介して差動継電器の一例である比率差動継電器16が接続されたものである。以下、詳しく説明する。
【0010】
比率差動継電器16は、電流検出器CT1で検出した出力電流(電流値)i1と、電流検出器CT2で検出した出力電流(電流値)i2とが平衡(i1=i2)又は不平衡(i1≠i2)であることを検出できるものである。なお、出力電流i1、i2が平衡である場合は、比率差動継電器16によって、送電設備13が正常な状態にあると検知され、各電流検出器CT1、CT2の取付け位置に設けられた遮断器CB1、CB2をそれぞれ閉状態にして、送電設備13と電源11及び変圧器12との接続状態を維持する。一方、出力電流i1、i2が不平衡である場合は、比率差動継電器16によって、送電設備13が異常な状態にあると検知され、閉状態だった各遮断器CB1、CB2をそれぞれ開状態にして、送電設備13を電源11及び変圧器12から切り離して保護する。なお、出力電流i1、i2が不平衡である場合、出力電流i1に対する出力電流i2が所定の比率未満であれば、それを平衡とみなすこともできる。
ここで、各電流検出器CT1、CT2としては例えば変流器を使用できる。
【0011】
各電流検出器CT1、CT2と比率差動継電器16とを接続する電線14、15、即ち比率差動継電器16の両入力側には、各電流検出器CT1、CT2の二次側を流れる電流を検出する第2の電流検出器の一例である試験電流検出器CT1′、CT2′がそれぞれ接続されている。この試験電流検出器CT1′、CT2′には、開閉できる環状鉄心にコイルを巻き、環状鉄心を開いて電線14、15を通し、コイルに発生する電圧を計器で読むことにより電流を知ることができる例えばクランプメータ(クランプ電流計)等を用いることができる。
この試験電流検出器CT1′、CT2′には、2つの出力電流i1、i2の波形を出力できる2現象のオシロスコープ(オシロ表示装置の一例)17が接続されている。
これにより、各電流検出器CT1、CT2で検出された出力電流i1、i2は、更に試験電流検出器CT1′、CT2′で電流i1′、i2′として検出される。従って、各電流検出器CT1、CT2の2つの出力電流i1、i2の波形を、試験電流検出器CT1′、CT2′を介して取出すことができる。
【0012】
上記したように、各電流検出器CT1、CT2と比率差動継電器16とを接続する電線14、15に、クランプメータを用いてオシロスコープ17を接続することで、解結線作業を必要とせずに、試験電流検出器CT1′、CT2′を電線14、15に接続できるので、従来のように、例えば、電線へ電源などの試験用機器を接続する場合に発生する可能性がある誤結線とそれに伴う遮断器の誤動作の危険性が皆無になる。
なお、取出される出力電流の波形の数が2つより多い場合は、その波形の数に応じて複数現象のオシロスコープを使用する。これにより、各電流検出器の接続の良否をそれぞれ個別に判定できる。
【0013】
次に、本発明の一実施の形態に係る励磁突入電流を用いた差動継電器の現地試験方法について、前記した動作試験装置10を参照しながら説明する。
本発明の一実施の形態に係る励磁突入電流を用いた差動継電器の現地試験方法は、調査する送電設備13の各遮断器CB1、CB2の保護対象区間の上流側と下流側に各々電流検出器CT1、CT2を設け、この各電流検出器CT1、CT2で検出した電流値i1、i2から、保護対象区間の異常を比率差動継電器16で検知する方法であって、しかも比率差動継電器16の接続状態を判定するための試験方法である。
【0014】
まず、変圧器12に電源11を投入し、又は変圧器12に電源11が入った状態で、遮断器CB1を閉状態(投入)とした後に、遮断器CB2を開状態から閉状態(投入)に設定する。これにより、電源11から変圧器12に向けて励磁突入電流が流入する。
この励磁突入電流とは、巻線を鎖交する磁束を作るため巻線を流れる電流のことであり、変圧器12などを電源投入した際に、例えば数秒間流れる過渡的な電流のことである。なお、励磁突入電流のピーク値は、最大で変圧器12定格の数倍であり、これが数秒から数十秒の間持続するので、比率差動継電器16の動作試験に使用するには十分である。
この励磁突入電流は、変圧器鉄心のヒステリシス特性(非線形特性)により生じるものであり、電流が増加するほど、インピーダンスが小さくなる結果、変圧器の定格の数倍の大きさになることがある。
【0015】
励磁突入電流が、電源11から送電設備13を通過して変圧器12へと流れたとき、各電流検出器CT1、CT2は、出力電流i1、i2をそれぞれ検出する。更に、試験電流検出器CT1′、CT2′により、電流i1′、i2′を検出し、出力電流i1、i2の波形を電流i1′、i2′によってオシロスコープ17に出力する。
これにより、オシロスコープ17に出力される2つの出力電流i1、i2の波形から、波の高さ(波高値)のズレ、位相のズレを検出する。このとき、そのいずれか一方又は両方のズレが予め設定した許容値内(例えば、出力電流i2の波高は出力電流i1の高さの±1/10、出力電流i2の位相は出力電流i1の±10度)の場合、各電流検出器CT1、CT2の接続及び設定は間違っていないと判定される。一方、ズレが許容値より大きい場合は、各電流検出器CT1、CT2の接続が間違っていると判定される。これにより、各電流検出器CT1、CT2の接続の良否を判定できると共に、比率差動継電器16の接続状態を容易に確認できる。
このように、送電設備13に接続される変圧器12に励磁突入電流を流すことで、比率差動継電器16に入力される両励磁突入電流の波形のズレを用いて比率差動継電器16の動作試験を行うことができるので、試験方式を簡略化できる。
【0016】
【実施例】
本発明の一実施例に係る励磁突入電流を用いた差動継電器の現地試験方法について、図2を参照しながら説明するが、適用する動作試験装置においては、前記実施の形態に係る差動継電器の現地試験方法を適用する動作試験装置10と実質的に同一の部材には同一の番号を付し、詳しい説明を省略する。
図2に示すように、保護対象である送電設備(電力設備の一例)20の一方側及び他方側には、それぞれ他の電力設備21、22が接続されている。
送電設備20の一方側にある他の電力設備21は、送電設備20から下流側へ電力を送る送電線23、24、及び送電設備20を介して下流側へ電力を送る送電線25、26を有しており、各送電線23〜26は送電設備20にそれぞれ独立に接続されている。この各送電線23〜26には、送電設備20側から断路器27〜30、遮断器CB11〜CB14、電流検出器(第1の電流検出器)CT11〜CT14が、それぞれ順次接続されている。なお、各電流検出器CT11〜CT14は、前記した電流検出器CT1に相当するものであり、各電流検出器CT11〜CT14の出力電流i11〜i14の和が、前記した出力電流i1に相当する。
【0017】
送電線23、24の各電流検出器CT11、CT13の下流側には、それぞれ断路器31、32が接続されている。
送電線25、26の各電流検出器CT12、CT14の上流側には、変圧器33、34が接続されている。なお、変圧器33の上流側には、No.1発電装置35と、負荷である厚板工場36及びサイジングミル37が接続されている。また、変圧器34の上流側には、No.2発電装置38と、負荷である連熱工場39が接続されている。
これにより、各変圧器33、34の上流側の余剰電力は、各送電線25、26を介して送電設備20へ送られ、更に送電線23、24へと送られる。
【0018】
また、送電設備20には、2個の断路器40が接続されている。
送電設備20の他方側にある他の電力設備22は、送電設備20を介して下流側へ電力を送る送電線41を有しており、送電線41は送電設備20に接続されている。この送電線41には、送電設備20側から断路器42、遮断器CB2、電流検出器CT2、断路器43、変圧器12が順次接続されている。なお、変圧器12の上流側には、断路器44、遮断器45、発電装置46が順次接続され、また、変圧器12と断路器44との間に接続された電線47には、変圧器48を介して所内負荷設備49が接続されている。
これにより、発電装置46からの電力は、送電線41を介して送電設備20へ送られ、更に送電線23、24へと送られる。
【0019】
なお、保護対象である送電設備20に接続される動作試験装置50は、他の電力設備21と変圧器12との間に接続された送電設備20の両側、即ち送電線23〜26にそれぞれ接続された各遮断器CB11〜CB14及び各電流検出器CT11〜CT14と、送電線41に接続された遮断器CB2及び電流検出器CT2と、この各電流検出器CT11〜CT14、CT2の二次側巻線に並列に接続された差動継電器の一例である比率差動継電器(図示しない)とを有している。
【0020】
この比率差動継電器は、各電流検出器CT11〜CT14の検出値である出力電流i11〜i14と、電流検出器CT2の検出値である出力電流i2とが平衡(i11+i12+i13+i14=i2)又は不平衡(i1+i12+i13+i14≠i2)であることを検出できるものである。なお、出力電流が平衡である場合は、比率差動継電器によって、送電設備20が正常な状態にあると検知され、各電流検出器CT11〜CT14、CT2の取付け位置に設けられた遮断器CB11〜CB14、CB2をそれぞれ閉状態にして、送電設備20と他の電力設備21、22との接続状態を維持する。一方、出力電流(i11+i12+i13+i14)、i2が不平衡である場合は、比率差動継電器によって、送電設備20が異常な状態にあると検知され、閉状態だった各遮断器CB11〜CB14、CB2をそれぞれ開状態にして、送電設備20を他の電力設備21、22から切り離して保護する。
ここで、各電流検出器CT11〜CT14、CT2としては例えば変流器を使用できる。
【0021】
各電流検出器CT11〜CT14、CT2と比率差動継電器とを接続する電線には、各電流検出器CT11〜CT14の二次側を流れる電流を検出する第2の電流検出器の一例である試験電流検出器CT1′、電流検出器CT2の二次側を流れる電流を検出する第2の電流検出器の一例である試験電流検出器CT2′がそれぞれ設けられている。この試験電流検出器CT1′、CT2′には、例えば前記したクランプメータ等を用いることができる。
この試験電流検出器CT1′、CT2′には、2つの出力電流(i11+i12+i13+i14)、i2の波形を出力できる2現象のオシロスコープ(オシロ表示装置の一例)が接続されている。
これにより、各電流検出器CT11〜CT14、CT2で検出された出力電流(i11+i12+i13+i14)、i2は、更に試験電流検出器CT1′、CT2′で電流i1′、i2′として検出される。従って、各電流検出器CT11〜CT14、CT2の2つの出力電流(i11+i12+i13+i14)、i2の波形を、試験電流検出器CT1′、CT2′を介して取出すことができる。
【0022】
次に、実施例に係る励磁突入電流を用いた差動継電器の現地試験方法について、前記した動作試験装置50を参照しながら説明する。
まず、遮断器CB11〜CB14が閉状態(投入)となっている場合に、遮断器CB2を開状態から閉状態(投入)に設定する。このとき、他の電力設備21は稼働し、他の電力設備22の発電装置46は停止している。
これにより、送電線23、24の下流側、変圧器33、34の上流側から、送電設備20を介して変圧器12に向けて、例えば、数百Aの励磁突入電流が数秒以上流入する。
【0023】
励磁突入電流が、送電設備20を通過して変圧器12へと流れたとき、各電流検出器CT11〜CT14、CT2は、出力電流i11〜i14、i2をそれぞれ検出する。更に、試験電流検出器CT1′、CT2′により、電流i1′、i2′を検出し、出力電流(i11+i12+i13+i14)、i2の波形を電流i1′、i2′によってオシロスコープに出力する。
オシロスコープに出力される2つの出力電流の波形から、波の高さのズレ、位相のズレを検出する。このとき、その両方のズレが前記した予め設定した許容値内の場合、各電流検出器CT11〜CT14、CT2の接続は間違っていないと判定される。また、いずれか一方又は両方のズレが許容値より大きい場合は、各電流検出器CT11〜CT14、CT2の接続が間違っていると判定される。これにより、各電流検出器CT11〜CT14、CT2の接続の良否を判定できると共に、比率差動継電器の接続状態を容易に確認できる。
【0024】
以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の励磁突入電流を用いた差動継電器の現地試験方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、調査する電力設備として送電設備を使用した場合について説明したが、他の電力設備、例えば変電所の母線(変電設備)や発電所の発電機等を使用した場合についても本発明は適用される。
【0025】
そして、前記実施の形態においては、各電流検出器CT1、CT2と比率差動継電器とを接続する各電線に、オシロスコープが接続された試験電流検出器CT1′、CT2′をそれぞれ取付け、各電流検出器CT1、CT2の2つの出力電流の波形を、試験電流検出器CT1′、CT2′を介して取出した場合について説明した。しかし、各電線に予め抵抗を設け、この各抵抗にオシロスコープを接続することで、各電流検出器CT1、CT2の出力電流の波形を、オシロスコープに出力して、各電流検出器CT1、CT2の接続の良否判定を行うことも可能である。
更に、前記実施の形態においては、動作試験装置を、誘導性機器として変圧器を下流側に接続した送電設備に適用した場合について説明したが、リアクトルを接続した送電設備、また変圧器及びリアクトルを接続した送電設備に適用することも可能である。
【0026】
【発明の効果】
請求項1〜4記載の励磁突入電流を用いた差動継電器の現地試験方法においては、差動継電器の動作試験に、誘導性機器を電源投入した際に例えば数秒から数十秒の間流れる過渡的な電流である励磁突入電流を使用するので、従来行われていた試験用電源の接続に伴う解結線作業と、新たな試験用電源の準備とを解消できる。このように、解結線作業を行う必要がなくなるので、誤結線による差動継電器の誤動作を防止でき、電力設備が異常な状態にあることを確実に検知できる。また、新たな試験用電源の準備が不要となるので経済的である。
従って、解結線作業の省略により差動継電器の動作試験の信頼性を向上させることができると共に、試験用電源の省略による動作試験の簡略化を図ることができる。
【0027】
特に、請求項2記載の励磁突入電流を用いた差動継電器の現地試験方法においては、両励磁突入電流の波形の位相及び/又は波高値のズレにより、差動継電器の接続の良否を容易に判定できる。ここで、各出力電流の位相やピーク値(波高値)に所定値以上のズレが発生した場合、電力設備に対して各電流検出器の接続が正常に行われていないことを検知でき、また、ズレが発生しない場合及び所定値未満のズレが発生した場合、各電流検出器の接続が正常に行われていることを検知できる。従って、電力設備に対する各電流検出器の接続状態を容易に検知できるので、作業性が良好である。
請求項3記載の励磁突入電流を用いた差動継電器の現地試験方法においては、各電流検出器の出力電流を独立に検知できるので、異常が発生した部分を容易に把握できる。
請求項4記載の励磁突入電流を用いた差動継電器の現地試験方法においては、例えば短絡事故が発生した場合、差動継電器によって、電力設備が異常な状態にあると判断され、閉状態だった各遮断器を開状態にして、電力設備を他の電力設備から切り離して保護できる。従って、容易な構成で電力設備の損傷を予め防止できるので経済的である。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る励磁突入電流を用いた差動継電器の現地試験方法を適用する動作試験装置の説明図である。
【図2】本発明の一実施例に係る励磁突入電流を用いた差動継電器の現地試験方法を適用する電力設備の説明図である。
【図3】電力機器が正常な状態にある場合の説明図である。
【図4】(A)、(B)はそれぞれ比率差動継電器によって電力機器が異常な状態にあることを検知した場合の説明図、比率差動継電器が誤動作した場合の説明図である。
【図5】従来例に係る比率差動継電器の接続状態を確認する現地試験装置の説明図である。
【符号の説明】
10:動作試験装置、11:電源、12:変圧器(誘導性機器)、13:送電設備(電力設備)、14、15:電線、16:比率差動継電器(差動継電器)、17:オシロスコープ(オシロ表示装置)、20:送電設備(電力設備)、21、22:他の電力設備、23〜26:送電線、27〜30:断路器、31、32:断路器、33、34:変圧器、35:No.1発電装置、36:厚板工場、37:サイジングミル、38:No.2発電装置、39:連熱工場、40:断路器、41:送電線、42〜44:断路器、45:遮断器、46:発電装置、47:電線、48:変圧器、49:所内負荷設備、50:動作試験装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an on-site test method of a differential relay using an inrush current for excitation for checking a connection state of a differential relay for detecting an abnormality of power equipment such as a power transmission equipment.
[0002]
[Prior art]
The prior art will be described by taking as an example a power device that inputs and outputs current from two locations as shown in FIG.
Circuit breakers CB1, CB2 and current detectors CT1, CT2 are respectively installed on both sides of a power device 70 (power equipment) such as a transmission line and a transformer, and secondary windings of the respective current detectors CT1, CT2. Is connected to a ratio differential relay 71 (differential relay). Thereby, when actually operating other power equipment (not shown) connected to the power equipment 70, the output current i1 which is the detection value of the current detector CT1 and the current detector CT2 are output by the ratio differential relay 71. When it is detected that the output current i2, which is the detection value of the power device 70, is in equilibrium (i1 = i2), it is determined that the power device 70 is in a normal state, and the circuit breakers CB1, CB2 are kept closed. , And causes the power device 70 to maintain the connection state. On the other hand, an accident occurs in other power equipment, for example, a current suddenly flows into the power equipment 70, and the output current i1 and the output current i are output by the ratio differential relay 71 as shown in FIG. When it is detected that i2 is unbalanced (i1 ≠ i2), it is determined that the power device 70 is in an abnormal state, and the circuit breakers CB1 and CB2 that have been closed are opened, and the power device 70 is turned off. Is protected from other power equipment.
[0003]
However, as shown in FIG. 4B, the current detector CT2 connected to the ratio differential relay 71 is connected to the power device 70 in an incorrect state (wrong connection), and the power device 70 and other power equipment are connected. Is actually operated, the output current i1 and the output current i2 are unbalanced (i1 ≠ i2) by the ratio differential relay 71 even though no accident has occurred in the power equipment 70. Detect. As a result, the power device 70 is determined to be in an abnormal state by the ratio differential relay 71, and each of the closed circuit breakers CB1, CB2 is opened, resulting in malfunction of each of the circuit breakers CB1, CB2. Become. For this reason, even though the power device 70 is operating normally, the power device 70 is disconnected from other power equipment. The same applies to the case where there is a setting failure of the ratio differential relay 71 and each of the current detectors CT1 and CT2.
Therefore, in order to conduct an operation test of the ratio differential relay 71 before operating the power device 70, a field test method of the ratio differential relay using a field test device of the ratio differential relay has been proposed. In this method, as shown in FIG. 5, a test power supply 72 is connected to current detectors CT12 and CT22 connected to both sides of a power device 70, respectively. By injecting the test currents i1 'and i2' into the power device 70, respectively, it is possible to detect in advance the erroneous connection of each of the current detectors CT1 and CT2 to the power device 70, the setting failure of the ratio differential relay 71, and the like. (For example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-8-205386 [0005]
[Problems to be solved by the invention]
However, the above-described on-site test method of the ratio differential relay has the following problems.
When each of the current detectors CT12 and CT22 to which a test power supply is connected is connected to a circuit including a power device, a work of disconnecting and connecting the circuit is required, and workability is not good. In addition, when each of the current detectors CT12 and CT22 to which the test power supply is connected is connected to a circuit, an erroneous connection or the like may occur, thereby causing the above-described malfunctions of the respective breakers CB1 and CB2. This means that the power equipment cannot be used even though other power equipment is operating normally.
In addition, since a test power supply is required separately, the cost is low, and the test method is complicated, so that the workability during the test is not good.
The present invention has been made in view of the above circumstances, and uses an exciting rush current that can improve the reliability of the operation test of a differential relay by omitting the disconnection work and simplify the operation test by omitting the test power supply. The purpose of the present invention is to provide an on-site test method for the differential relay.
[0006]
[Means for Solving the Problems]
A field test method of a differential relay using an inrush current according to the present invention according to the present invention, which meets the above object, is a power facility in which a power supply is connected to an upstream side and an inductive device including a transformer and / or a reactor is connected to a downstream side. Then, a first current detector is provided on each of the upstream side and the downstream side of the protection target section of the power equipment, and an abnormality in the protection target section is determined using a differential relay based on the current value detected by each of the first current detectors. In the test method for determining the connection state of the differential relay at the time of detection, the power is supplied to the inductive device, and the difference between the waveforms of the dual excitation rush currents input to the differential relay due to the power-on is provided. The connection state of the moving relay is determined. As described above, in the operation test of the differential relay, the excitation inrush current which is a transient current flowing for several seconds to several tens of seconds when the inductive device is turned on is used, for example, so that the conventionally performed test is performed. The connection and disconnection work accompanying the connection of the test power supply and the preparation of a new test power supply can be eliminated.
Here, in the field test method of the differential relay using the inrush current according to the present invention, it is possible to determine whether the connection of the differential relay is good or not based on the phase and / or peak value deviation of the waveforms of the two inrush currents. preferable. Thereby, the quality of the connection of the differential relay can be easily determined.
[0007]
In the field test method of the differential relay using the inrush current according to the present invention, the two inrush currents for judging the connection of the differential relay from the waveform deviation are connected to both input sides of the differential relay, respectively. It is preferable that the current is detected by the second current detector. Thus, the output current of each current detector can be independently detected.
In the field test method of the differential relay using the inrush current according to the present invention, the power equipment includes a power transmission equipment or a substation equipment, and the power equipment is connected to another power supply between the installation positions of the first current detectors. Preferably, a circuit breaker for disconnecting from the equipment is provided. Thereby, for example, when a short circuit accident (short) occurs, the power equipment is determined to be in an abnormal state by the differential relay, and each closed circuit breaker is opened, and the power equipment is switched to another power supply. Can be protected separately from equipment.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
Here, FIG. 1 is an explanatory diagram of an operation test apparatus to which a field test method of a differential relay using an inrush current according to an embodiment of the present invention is applied, and FIG. 2 is an exciting device according to an embodiment of the present invention. It is explanatory drawing of the electric power equipment which applies the field test method of the differential relay using an inrush current. 1 and 2 and the following description, one phase of the three phases is described for ease of description, but the other two phases have the same function.
[0009]
An operation test apparatus 10 applying a field test method of a differential relay using an inrush current according to an embodiment of the present invention connects a power supply 11 to an upstream side and a transformer (of an inductive device) to a downstream side. This is a device that can be applied to a power transmission facility (an example of power equipment) 13 to which an example 12 is connected. Circuit breakers CB1 and CB2 are installed on the upstream side and the downstream side of the protection target section of the power transmission facility 13, respectively. Current detectors (first current detectors) CT1 and CT2 are respectively installed between the circuit breaker CB1 and the power supply 11 and between the circuit breaker CB2 and the transformer 12, and two current detectors CT1 and CT2 are provided. A ratio differential relay 16 which is an example of a differential relay is connected to the secondary winding via electric wires 14 and 15. The details will be described below.
[0010]
In the ratio differential relay 16, the output current (current value) i1 detected by the current detector CT1 and the output current (current value) i2 detected by the current detector CT2 are balanced (i1 = i2) or unbalanced (i1). ≠ i2) can be detected. When the output currents i1 and i2 are balanced, the ratio differential relay 16 detects that the power transmission facility 13 is in a normal state, and the circuit breaker provided at the mounting position of each of the current detectors CT1 and CT2. CB1 and CB2 are each closed, and the connection state between the power transmission facility 13 and the power supply 11 and the transformer 12 is maintained. On the other hand, when the output currents i1 and i2 are unbalanced, the ratio differential relay 16 detects that the power transmission equipment 13 is in an abnormal state, and opens the respective closed circuit breakers CB1 and CB2. Thus, the power transmission equipment 13 is separated from the power supply 11 and the transformer 12 and protected. When the output currents i1 and i2 are unbalanced, if the output current i2 with respect to the output current i1 is less than a predetermined ratio, it can be regarded as balanced.
Here, as each of the current detectors CT1 and CT2, for example, a current transformer can be used.
[0011]
Currents flowing on the secondary sides of the current detectors CT1 and CT2 are applied to the electric wires 14 and 15 connecting the respective current detectors CT1 and CT2 and the ratio differential relay 16, that is, both input sides of the ratio differential relay 16. Test current detectors CT1 'and CT2', which are examples of a second current detector for detection, are connected respectively. In the test current detectors CT1 'and CT2', a coil is wound around an annular core that can be opened and closed, the annular core is opened, electric wires 14 and 15 are passed, and the current generated by reading the voltage generated in the coil with a meter can be obtained. For example, a clamp meter (clamp ammeter) or the like can be used.
The test current detectors CT1 'and CT2' are connected to an oscilloscope (an example of an oscilloscope display) 17 of two phenomena capable of outputting waveforms of two output currents i1 and i2.
Thus, the output currents i1 and i2 detected by the current detectors CT1 and CT2 are further detected as currents i1 'and i2' by the test current detectors CT1 'and CT2'. Therefore, the waveforms of the two output currents i1 and i2 of the current detectors CT1 and CT2 can be extracted through the test current detectors CT1 'and CT2'.
[0012]
As described above, by connecting the oscilloscope 17 to the electric wires 14 and 15 connecting the current detectors CT1 and CT2 and the ratio differential relay 16 using a clamp meter, there is no need for disconnection and connection work. Since the test current detectors CT1 'and CT2' can be connected to the electric wires 14 and 15, as in the related art, for example, when a test device such as a power supply is connected to the electric wire, there is a possibility that a wrong connection may occur and a connection therewith. There is no risk of malfunction of the circuit breaker.
When the number of output current waveforms to be extracted is more than two, an oscilloscope having a plurality of phenomena is used according to the number of waveforms. Thereby, the quality of connection of each current detector can be individually determined.
[0013]
Next, an on-site test method for a differential relay using an inrush current according to an embodiment of the present invention will be described with reference to the above-described operation test apparatus 10.
The on-site test method of the differential relay using the inrush current according to the embodiment of the present invention includes detecting currents on the upstream and downstream sides of the protection target section of each of the circuit breakers CB1 and CB2 of the power transmission equipment 13 to be investigated. A method of detecting an abnormality in a section to be protected by the ratio differential relay 16 from the current values i1 and i2 detected by the current detectors CT1 and CT2. This is a test method for judging the connection state.
[0014]
First, after the power supply 11 is turned on to the transformer 12, or while the power supply 11 is turned on to the transformer 12, the circuit breaker CB1 is closed (turned on), and then the circuit breaker CB2 is changed from the open state to the closed state (turn on). Set to. As a result, an exciting rush current flows from the power supply 11 toward the transformer 12.
The exciting inrush current is a current flowing through the winding to generate a magnetic flux interlinking the winding, and is a transient current flowing for several seconds when the power of the transformer 12 or the like is turned on. . It should be noted that the peak value of the inrush current is several times the rating of the transformer 12 at the maximum, and lasts for several seconds to several tens of seconds. Therefore, the peak value is sufficient for use in the operation test of the ratio differential relay 16. .
This exciting inrush current is caused by the hysteresis characteristic (non-linear characteristic) of the transformer core. As the current increases, the impedance decreases, and as a result, the current may become several times larger than the rating of the transformer.
[0015]
When the exciting inrush current flows from the power supply 11 to the transformer 12 through the power transmission equipment 13, the current detectors CT1 and CT2 detect the output currents i1 and i2, respectively. Further, the currents i1 'and i2' are detected by the test current detectors CT1 'and CT2', and the waveforms of the output currents i1 and i2 are output to the oscilloscope 17 by the currents i1 'and i2'.
As a result, from the waveforms of the two output currents i1 and i2 output to the oscilloscope 17, a shift in the wave height (crest value) and a shift in the phase are detected. At this time, one or both of the deviations are within a preset allowable value (for example, the wave height of the output current i2 is ± 1/10 of the height of the output current i1, and the phase of the output current i2 is ± 1/10 of the output current i1. In the case of 10 degrees), it is determined that the connection and setting of each of the current detectors CT1 and CT2 are correct. On the other hand, if the deviation is larger than the allowable value, it is determined that the connection between the current detectors CT1 and CT2 is incorrect. This makes it possible to determine the connection of the current detectors CT1 and CT2, and to easily check the connection state of the ratio differential relay 16.
As described above, by flowing the exciting rush current to the transformer 12 connected to the power transmission equipment 13, the operation of the ratio differential relay 16 is performed using the deviation of the waveforms of the both exciting rush currents input to the ratio differential relay 16. Since the test can be performed, the test method can be simplified.
[0016]
【Example】
An on-site test method for a differential relay using an inrush current according to one embodiment of the present invention will be described with reference to FIG. 2. In an operation test apparatus to be applied, the differential relay according to the embodiment is applied. The same reference numerals are given to members substantially the same as those of the operation test apparatus 10 to which the on-site test method is applied, and detailed description is omitted.
As shown in FIG. 2, other power facilities 21 and 22 are connected to one side and the other side of a power transmission facility (an example of power facility) 20 to be protected.
Other power facilities 21 on one side of the power transmission facility 20 include transmission lines 23 and 24 for transmitting power from the power transmission facility 20 to the downstream side, and transmission lines 25 and 26 for transmitting power to the downstream side via the power transmission facility 20. Each of the transmission lines 23 to 26 is independently connected to the power transmission facility 20. Disconnectors 27 to 30, breakers CB11 to CB14, and current detectors (first current detectors) CT11 to CT14 are sequentially connected to the transmission lines 23 to 26, respectively, from the power transmission facility 20 side. Each of the current detectors CT11 to CT14 corresponds to the above-described current detector CT1, and the sum of the output currents i11 to i14 of each of the current detectors CT11 to CT14 corresponds to the above-described output current i1.
[0017]
Disconnectors 31 and 32 are connected to the transmission lines 23 and 24 downstream of the current detectors CT11 and CT13, respectively.
Transformers 33 and 34 are connected to the transmission lines 25 and 26 on the upstream side of the respective current detectors CT12 and CT14. In addition, on the upstream side of the transformer 33, 1 A power generator 35 is connected to a plate factory 36 and a sizing mill 37 which are loads. Also, on the upstream side of the transformer 34, The second power generator 38 and a continuous heat plant 39 as a load are connected.
Thereby, the surplus power on the upstream side of each of the transformers 33 and 34 is transmitted to the power transmission facility 20 via the transmission lines 25 and 26, and further transmitted to the transmission lines 23 and 24.
[0018]
Further, two disconnectors 40 are connected to the power transmission facility 20.
The other power equipment 22 on the other side of the power transmission equipment 20 has a power transmission line 41 that transmits power to the downstream side via the power transmission equipment 20, and the power transmission line 41 is connected to the power transmission equipment 20. A disconnector 42, a circuit breaker CB2, a current detector CT2, a disconnector 43, and a transformer 12 are sequentially connected to the power transmission line 41 from the power transmission facility 20 side. A disconnector 44, a circuit breaker 45, and a power generator 46 are sequentially connected upstream of the transformer 12, and a transformer 47 is connected to an electric wire 47 connected between the transformer 12 and the disconnector 44. An in-house load facility 49 is connected via 48.
Thereby, the electric power from the power generation device 46 is transmitted to the power transmission equipment 20 via the power transmission line 41 and further transmitted to the power transmission lines 23 and 24.
[0019]
The operation test apparatus 50 connected to the power transmission equipment 20 to be protected is connected to both sides of the power transmission equipment 20 connected between the other power equipment 21 and the transformer 12, that is, to the transmission lines 23 to 26, respectively. Of each of the circuit breakers CB11 to CB14 and each of the current detectors CT11 to CT14, the circuit breaker CB2 and the current detector CT2 connected to the power transmission line 41, and the secondary windings of the current detectors CT11 to CT14 and CT2. And a ratio differential relay (not shown), which is an example of a differential relay connected in parallel to the line.
[0020]
In this ratio differential relay, the output currents i11 to i14 detected by the current detectors CT11 to CT14 and the output current i2 detected by the current detector CT2 are balanced (i11 + i12 + i13 + i14 = i2) or unbalanced (i11 + i12 + i13 + i14 = i2). i1 + i12 + i13 + i14 ≠ i2) can be detected. When the output currents are balanced, the ratio differential relay detects that the power transmission equipment 20 is in a normal state, and the circuit breakers CB11 to CB11 provided at the mounting positions of the current detectors CT11 to CT14 and CT2. The CBs 14 and CB2 are each closed, and the connection state between the power transmission facility 20 and the other power facilities 21 and 22 is maintained. On the other hand, if the output currents (i11 + i12 + i13 + i14) and i2 are unbalanced, the ratio differential relay detects that the power transmission facility 20 is in an abnormal state, and disconnects each of the closed circuit breakers CB11 to CB14 and CB2. In the open state, the power transmission facility 20 is separated from the other power facilities 21 and 22 and protected.
Here, as each of the current detectors CT11 to CT14 and CT2, for example, a current transformer can be used.
[0021]
A test that is an example of a second current detector that detects a current flowing on the secondary side of each of the current detectors CT11 to CT14 is provided on a wire connecting each of the current detectors CT11 to CT14 and CT2 and the ratio differential relay. A test current detector CT2 ', which is an example of a second current detector for detecting a current flowing on the secondary side of the current detector CT1' and the current detector CT2, is provided. For the test current detectors CT1 'and CT2', for example, the above-described clamp meters can be used.
The test current detectors CT1 'and CT2' are connected to an oscilloscope (an example of an oscilloscope display device) which can output two output currents (i11 + i12 + i13 + i14) and a waveform of i2.
Thus, the output currents (i11 + i12 + i13 + i14) and i2 detected by the current detectors CT11 to CT14 and CT2 are further detected as currents i1 'and i2' by the test current detectors CT1 'and CT2'. Therefore, the waveforms of the two output currents (i11 + i12 + i13 + i14) and i2 of the current detectors CT11 to CT14 and CT2 can be extracted via the test current detectors CT1 'and CT2'.
[0022]
Next, an on-site test method for a differential relay using an inrush current according to the embodiment will be described with reference to the operation test apparatus 50 described above.
First, when the circuit breakers CB11 to CB14 are in the closed state (closed), the circuit breaker CB2 is set from the open state to the closed state (closed). At this time, the other power equipment 21 is operating, and the power generator 46 of the other power equipment 22 is stopped.
Thereby, for example, an inrush current of several hundred A flows from the downstream side of the transmission lines 23 and 24 and the upstream side of the transformers 33 and 34 toward the transformer 12 via the power transmission equipment 20 for several seconds or more.
[0023]
When the exciting inrush current flows through the power transmission equipment 20 to the transformer 12, the current detectors CT11 to CT14 and CT2 detect the output currents i11 to i14 and i2, respectively. Further, the currents i1 'and i2' are detected by the test current detectors CT1 'and CT2', and the waveforms of the output currents (i11 + i12 + i13 + i14) and i2 are output to the oscilloscope by the currents i1 'and i2'.
From the waveforms of the two output currents output to the oscilloscope, a shift in wave height and a shift in phase are detected. At this time, when both of the deviations are within the above-described preset allowable value, it is determined that the connection between the current detectors CT11 to CT14 and CT2 is correct. If one or both of the deviations are larger than the allowable value, it is determined that the connection between the current detectors CT11 to CT14 and CT2 is incorrect. This makes it possible to determine the connection of the current detectors CT11 to CT14 and CT2, and to easily check the connection state of the ratio differential relay.
[0024]
As described above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, and the matters described in the claims are not limited. Other embodiments and modifications that can be considered within the scope are also included. For example, the case where a part or all of the above-described embodiments and modified examples are combined to configure a field test method of a differential relay using an inrush current of the present invention is also included in the scope of the present invention.
Further, in the above-described embodiment, the case where the power transmission equipment is used as the power equipment to be investigated has been described. However, the case where another power equipment such as a substation bus (substation equipment) or a power generator is used. The present invention is also applied to
[0025]
In the above embodiment, test current detectors CT1 'and CT2' each connected to an oscilloscope are attached to each electric wire connecting each of the current detectors CT1 and CT2 and the ratio differential relay. The case where the waveforms of the two output currents of the detectors CT1 and CT2 are extracted via the test current detectors CT1 'and CT2' has been described. However, by providing a resistor in advance to each wire and connecting an oscilloscope to each resistor, the waveform of the output current of each of the current detectors CT1 and CT2 is output to the oscilloscope, and the connection of each of the current detectors CT1 and CT2 is performed. Can be determined.
Further, in the above embodiment, the case where the operation test apparatus is applied to the power transmission equipment in which the transformer is connected to the downstream side as the inductive device has been described, but the power transmission equipment connected with the reactor, the transformer and the reactor It is also possible to apply to connected power transmission equipment.
[0026]
【The invention's effect】
In the field test method of a differential relay using an inrush current according to any one of claims 1 to 4, in the operation test of the differential relay, for example, a transient that flows for several seconds to several tens of seconds when power is supplied to an inductive device. Since the exciting inrush current, which is a typical current, is used, the connection and disconnection work associated with the connection of the test power supply and the preparation of a new test power supply, which have been conventionally performed, can be eliminated. As described above, since it is not necessary to perform the disconnection and connection work, it is possible to prevent the malfunction of the differential relay due to the incorrect connection, and it is possible to reliably detect that the power equipment is in an abnormal state. Also, it is economical because it is not necessary to prepare a new test power supply.
Therefore, the reliability of the operation test of the differential relay can be improved by omitting the disconnection and connection work, and the operation test can be simplified by omitting the test power supply.
[0027]
In particular, in the field test method of the differential relay using the inrush current according to the second aspect, the connection of the differential relay can be easily determined by the deviation of the phase and / or the peak value of the waveform of the two inrush currents. Can be determined. Here, when the phase or peak value (peak value) of each output current is shifted by a predetermined value or more, it can be detected that the connection of each current detector to the power equipment is not normally performed, and When no deviation occurs and when a deviation less than a predetermined value occurs, it can be detected that the connection of each current detector is normally performed. Therefore, since the connection state of each current detector to the power equipment can be easily detected, workability is good.
According to the field test method of the differential relay using the inrush current of the magnet according to the third aspect, the output current of each current detector can be independently detected, so that the portion where the abnormality has occurred can be easily grasped.
According to the on-site test method for a differential relay using the inrush current according to claim 4, for example, when a short-circuit accident occurs, the differential relay determines that the power equipment is in an abnormal state and is in a closed state. By opening each circuit breaker, the power equipment can be separated and protected from other power equipment. Therefore, it is economical because damage to the power equipment can be prevented in advance with a simple configuration.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an operation test apparatus to which a field test method for a differential relay using an inrush current according to an embodiment of the present invention is applied.
FIG. 2 is an explanatory diagram of power equipment to which a field test method for a differential relay using an inrush current according to an embodiment of the present invention is applied.
FIG. 3 is an explanatory diagram when a power device is in a normal state.
FIGS. 4A and 4B are an explanatory diagram when a ratio differential relay detects that a power device is in an abnormal state, and an explanatory diagram when a ratio differential relay malfunctions, respectively.
FIG. 5 is an explanatory diagram of an on-site test device for checking a connection state of a ratio differential relay according to a conventional example.
[Explanation of symbols]
10: operation test equipment, 11: power supply, 12: transformer (inductive equipment), 13: power transmission equipment (electric power equipment), 14, 15: electric wire, 16: ratio differential relay (differential relay), 17: oscilloscope (Oscilloscope display device), 20: Power transmission equipment (power equipment), 21, 22: Other power equipment, 23 to 26: Transmission line, 27 to 30: Disconnector, 31, 32: Disconnector, 33, 34: Transformation Container, 35: No. No. 1 power generator, 36: plate mill, 37: sizing mill, 38: No. 2 power generator, 39: continuous heat plant, 40: disconnector, 41: transmission line, 42 to 44: disconnector, 45: circuit breaker, 46: power generator, 47: electric wire, 48: transformer, 49: in-plant load Equipment, 50: Operation test equipment