[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004123210A - Thermally insulated container - Google Patents

Thermally insulated container Download PDF

Info

Publication number
JP2004123210A
JP2004123210A JP2002292741A JP2002292741A JP2004123210A JP 2004123210 A JP2004123210 A JP 2004123210A JP 2002292741 A JP2002292741 A JP 2002292741A JP 2002292741 A JP2002292741 A JP 2002292741A JP 2004123210 A JP2004123210 A JP 2004123210A
Authority
JP
Japan
Prior art keywords
container
container body
main body
heat
container main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002292741A
Other languages
Japanese (ja)
Inventor
Noboru Kato
加藤 昇
Mikiya Izuhara
出原 幹也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002292741A priority Critical patent/JP2004123210A/en
Publication of JP2004123210A publication Critical patent/JP2004123210A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Stackable Containers (AREA)
  • Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulated container capable of exposing an inner portion of a downward container main body to an atmosphere of a freezer or a refrigerator by preventing an upward opening of the downward container main body from being clogged when the container main bodies are vertically stacked on each other. <P>SOLUTION: In the thermally insulated container provided with the container main body having a thermally insulated circumferential wall, a thermally insulated circumferential bottom and an upward opening and a thermally insulated lid capable of opening and closing the opening of the container main body, the container main body has a step portion formed by recessing the circumferential wall downward from the upward edge surface on the upward edge inner margin side and the step portion is sized so that the downward edge portion of the container main body enters the inner side of the container main body from the upward opening. A plurality of ribs are vertically mounted in the step portion to receive a part of the downward edge surface of the upward container main body and produce a clearance for air permeation between the upward container main body and the downward container main body. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍食品、冷蔵食品等を搬送するのに使用される断熱容器に関する。
【0002】
【従来の技術】
冷凍食品や冷蔵食品等の要冷食品は、周壁および底が断熱構造を有し上部開口の容器本体と、この容器本体の開口部を開閉自在で断熱構造を有する蓋とを備える断熱容器内に充填され保冷した状態でトラック等に載せられて搬送されるようになっている。
このような断熱容器としては、従来から発泡ポリスチレン製の断熱容器が用いられてきたが、昨今は、表面に固い強度的に優れたスキン層を有し、内部に発泡層が形成されて発泡ポリスチレン製のものに比べ強度的に優れていることから、特開平8−90620号公報に開示されている金型内のキャビティ空間に発泡剤を含むポリオレフィン系樹脂を射出した後、キャビティ空間を拡大して樹脂を発泡させる方法で作製された断熱容器なども用いられるようになっている。
【0003】
ところで、このような断熱容器に冷凍食品や冷蔵食品を充填する作業は、人手によって行われる事が多いが、冷凍庫や冷蔵庫内では作業者が長時間作業できない。そこで、充填する要冷食品を冷凍庫あるいは冷蔵庫から一旦冷凍庫あるいは冷蔵庫より温度が高い作業場まで運び、作業場で要冷食品を断熱容器に充填した後、充填済の断熱容器を蓋を開けた状態で冷凍庫や冷蔵庫に運び入れ、充填作業中に温度が上がった要冷食品を所定温度まで再冷却したのち保管し出荷するようになっている。
【0004】
なお、上記のような再冷却は、できるだけ少ないスペースで多量に再冷却できるように複数の容器本体を上下方向に積み上げて行われるが、従来の断熱容器の場合、容器本体を垂直に積み上げると、下方の容器本体の上部開口が上側の容器本体の底で完全に塞がれてしまい、下側の容器本体内の要冷食品が冷凍庫あるいは冷蔵庫の冷気にほとんど触れず、十分な冷却が行われない。そこで、下側の容器本体の上部開口が完全に塞がれないように容器本体をその軸が上下でずれるように積み上げるようにしている。
【0005】
しかし、上記のような積み上げ方では、安定性に欠けるので、あまり高く積み上げることができない。したがって、スペース的にもまだ問題がある。
【0006】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みて、容器本体を垂直に積み上げて、下側の容器本体の上部開口が閉鎖されることがなく、下側の容器本体の内部を冷凍庫あるいは冷蔵庫内の雰囲気に曝すことができる断熱容器を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に記載の断熱容器(以下、「請求項1の断熱容器」と記す)は、周壁および底が断熱構造を有し上部開口の容器本体と、この容器本体の開口部を開閉自在で断熱構造を有する蓋とを備える断熱容器において、容器本体は、その周壁が上端内縁側に上端面から下方に凹んだ段落部を有し、容器本体の下端部が上部開口から容器本体内部に入り込む大きさに形成されているとともに、段落部に、複数の容器本体を積み上げた時、上側の容器本体の下端面の一部を受けて、上側の容器本体と、下側の容器本体との間に通気用の隙間を生じさせる複数のリブが立設されていることを特徴としている。
【0008】
本発明の請求項2に記載の断熱容器(以下、「請求項2の断熱容器」と記す)は、請求項1の断熱容器において、両端部が容器本体の対面する段落部に受けられるとともに、隣接するリブ間に嵌まり込んで位置決めされた状態で容器本体に着脱自在な保冷材を備えていることを特徴としている。
【0009】
本発明の請求項3に記載の断熱容器(以下、「請求項3の断熱容器」と記す)は、周壁および底が断熱構造を有し上部開口の容器本体と、この容器本体の開口部を開閉自在で断熱構造を有する蓋とを備える断熱容器において、容器本体は、その下面に脚が突設されているとともに、複数の容器本体を垂直に積み上げた時、上側の容器本体の脚が入り込んで、上側の容器本体の位置決めを行うとともに、上側の容器本体と、下側の容器本体との間に通気用の隙間を生させるように脚を受ける凹部が容器本体の上面に形成されていることを特徴としている。
【0010】
本発明の請求項4に記載の断熱容器(以下、「請求項4の断熱容器」と記す)は、請求項1〜請求項4のいずれかの断熱容器において、容器本体および蓋が、金型内のキャビティ空間に不活性ガスが高圧で含浸されてなる溶融熱可塑性樹脂を射出した後、容器本体および蓋の断熱必要部に当たる部分のキャビティ空間を拡大して樹脂を発泡させる射出発泡成形法で形成されていることを特徴としている。
本発明の請求項5に記載の断熱容器(以下、「請求項5の断熱容器」と記す)は、請求項1または請求項2の断熱容器において、容器本体が、請求項4に記載の射出発泡成形方法で形成され、容器本体の底が発泡していて、底の下面には未発泡状態の枠状部が備えられ、この枠状部の一部が、容器本体を上下方向に積み上げたとき、リブに受けられるようになっているとともに、このリブに受けられる部分が、枠状部の他の部分に比べ、容器本体の外側に向かって幅広に形成されていることを特徴としている。
【0011】
本発明において、容器本体および蓋の製造方法や材質は特に限定されないが、請求項4の断熱容器のように金型内のキャビティ空間に不活性ガスが高圧で含浸されてなる溶融熱可塑性樹脂を射出した後、キャビティ空間を拡大して樹脂を発泡させる射出発泡成形法で形成されていることが、生産性がよく、かつ、表面の強度が優れていることから好ましい。
上記射出発泡成形方法によれば、不活性ガスが含浸された発泡性熱可塑性樹脂を、例えば射出成形装置により可塑化計量し、金型内に射出充填した後、前記樹脂が溶融している状態で、金型に設けられたスライド型を移動させて金型キャビティの少なくとも一部を拡開させることにより容器本体および蓋を得ることができる。
【0012】
すなわち、金型キャビティ空間の拡大に伴い、急速に金型キャビティ内を減圧して気泡核を生成させ樹脂を発泡させると共に、金型を停止させた状態で、所定時間冷却することによって、均質で微細な気泡を有する内部発泡層の周囲にスキン層を備えた、厚さ方向でみるとスキン層−内部発泡層(断熱層)−スキン層の三層構造にて構成された、軽量で剛性のある発泡成形体を得ることができる。
【0013】
上記のように、不活性ガスが高圧で含浸されてなる溶融熱可塑性樹脂を形成する方法は、特に限定されず、例えば、固体状態の樹脂に不活性ガスを高圧下で含浸させてから該樹脂を溶融させる方法、溶融状態の樹脂に不活性ガスを高圧下で含浸させる方法が挙げられる。
【0014】
上記不活性ガスは、常温・常圧で気体である不活性な無機物質であって、上記樹脂を劣化させないものであれば、特に限定されず使用できる。例えば、炭酸(CO)ガス、窒素、アルゴン、ネオン、ヘリウム、酸素等が挙げられ、これらを単独で使用しても良いし、2種以上併用しても良いが、樹脂に対する含浸度が高く、樹脂の溶融粘度の低下が大きいため炭酸ガスを用いることが最も好ましい。
【0015】
上記不活性ガスが含浸されてなる溶融熱可塑性樹脂を形成する方法のうち、固体状態の樹脂にガスを高圧下で含浸させる方法としては、例えば以下のような方法が挙げられる。
(1)予め高圧容器等でペレットまたはパウダー状態の樹脂に不活性ガスを含浸させる方法、及び、(2)成形装置のホッパーから固体輸送部に至る領域に不活性ガスを供給し含浸させる方法。
(2)の場合は、混練装置からガスが揮散しないようにスクリュー駆動軸及びホッパーの耐圧シール構造を組み入れることが好ましい。
【0016】
また、溶融状態の樹脂に不活性ガスを高圧下で含浸させる方法としては、例えば以下のような方法が挙げられる。この場合、溶融状態の樹脂で圧力シールを行うのが好ましい。
(1)射出機のシリンダ内で溶融状態になった溶融樹脂に、ベントタイプスクリューを使用して、不活性ガスを、シリンダの途中のベント部分から供給する方法等、及び、(2)射出機のシリンダ内で溶融状態になった溶融樹脂に、スクリューの後方に設けた流入口からスクリュー内部に設けた供給路を経て先端部手前のスクリュー内の不活性ガス供給口から供給する方法。
【0017】
熱可塑性樹脂へのガスの含浸量は、樹脂の溶融粘度を必要量減少できる量であればよく、樹脂の種類、ガスの種類によって適宜選択することができ、樹脂100重量部に対し0.1〜50重量部のガスを溶解させることが望ましく、0.1〜5重量部のガスを溶解させることがより望ましい。また、ガスの溶解は飽和状態であることが最も好ましいが、この点は必ずしも達成される必要は無い。
【0018】
上記ガスの含浸時の圧力は、(ガスの臨界圧力−5MPa)以上で(ガスの臨界圧力+20MPa)以下が好ましく、(ガスの臨界圧力−4MPa)以上で(ガスの臨界圧力+5MPa)以下がより好ましく、熱可塑性樹脂にガスを均一に含浸させるため、ガスが超臨界状態であるのが特に好ましい。
なお、超臨界状態とは、臨界温度、かつ臨界圧力以上の状態をいう。例えば、ガスが炭酸ガスの場合、臨界温度は30.9℃、臨界圧力は7.4MPa、窒素の場合臨界温度は−146.9℃、臨界圧力は3.4MPaである。
【0019】
即ち、(ガスの臨界圧力−5MPa)未満では、含浸量が少なく発泡倍率が低くなってしまい、(ガスの臨界圧力+20MPa)を越えると圧力が高すぎ、設備が大がかりなものとなってしまい、好ましくない。
また、ガスを熱可塑性樹脂に供給後、十分な量のガスを含浸させるため、上記温度・圧力は一定時間保たれることが好ましい。
【0020】
不活性ガスを熱可塑性樹脂に含浸させるいずれの方法においても、不活性ガスの圧力、供給・注入位置、樹脂温度等により樹脂に含浸される割合が変わり、それに影響されて、発泡成形体の発泡形態、発泡倍率等も変化し断熱効果が変わる。例えば、不活性ガスの圧力が高ければ樹脂に含浸される割合が高くなり、得られる発泡成形体の発泡倍率が高くなる。
【0021】
不活性ガス含浸樹脂の金型内への射出充填後、金型キャビティを拡開するまでの時間やキャビティ空間を拡開させる速度、金型内の樹脂温度等の製造条件を制御することによって、得られる発泡成形体のスキン層及び内部発泡層の厚さ、独立気泡・連続気泡等の気泡構造、発泡径等を調整することが可能である。
因みに、金型キャビティ厚さ方向の拡開速度は、特に限定されないが、0.5mm/秒〜15mm/秒が好ましい。即ち、速過ぎると金型面から樹脂が離れてしまい、金型への転写が悪くなり外観不良が発生するおそれがある。また、遅すぎても金型キャビティを拡開している内に樹脂が固化してしまい、金型に追従できなくなって外観不良が発生するか発泡の径が大きくなってしまい、得られる発泡成形体の断熱効果が乏しいものになってしまうおそれがある。
【0022】
上記熱可塑性樹脂は特に限定されるものではないが、好ましくは、発泡に適した溶融張力(具体的には、200℃で0.069N=7gf以上)、伸張粘度特性を有するものであって、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂等のポリオレフィン系樹脂の他、ポリスチレン系樹脂、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂などが挙げられ、これらを単独で、あるいは2種以上併用して用いることができるが、これらの樹脂の内でも、ポリオレフィン系樹脂が好ましく、ポリプロピレン系樹脂を用いることがリサイクル性や物性等の点で特に好ましい。
【0023】
ここでいうポリプロピレン系樹脂は、ポリプロピレンのホモポリマーに限られず、他の共重合性モノマーとのランダムコポリマーやブロックコポリマー等の一般的なポリプロピレン、及び、メタロセン触媒を用いて得られたメタロセンポリプロピレン、またポリプロピレンに長鎖分岐を持たせたもの、他成分をグラフト重合したものも含み、これらは単独で使用されても良いし、2種以上併用されても良い。
【0024】
なお、内部発泡層及びスキン層の厚さは、発泡成形体の材質、形状、用途にもよるが、一般的に最大厚さ部分で内部発泡層の厚さが10〜30mm程度、スキン層の厚さが0.4〜1.2mm程度が好ましい。
また、断熱性能を最大限に引き出す内部発泡層の発泡気泡径は、一般に10〜800μmの微細発泡形態であり、内部発泡層の発泡倍率は、好ましくは8倍以上50倍以下、より好ましくは10倍以上40倍以下である。
【0025】
即ち、発泡気泡径が小さ過ぎると、十分な断熱性能を確保できなくなる恐れがあり、大き過ぎると、剛性等に支障が生じる恐れがある。一方、内部発泡層の発泡倍率が小さ過ぎると、十分な断熱性能を確保できなくなる恐れがあり、大き過ぎると剛性等に支障が生じる恐れがある。
【0026】
【発明の実施の形態】
以下に、本発明を、その実施の形態をあらわす図面を参照しつつ詳しく説明する。
図1〜図8は、本発明にかかる断熱容器の1つの実施の形態をあらわしている。
【0027】
図1に示すように、この断熱容器1は、容器本体2aと蓋3とを備えている。容器本体2aは、金型内のキャビティ空間に炭酸ガス等の不活性ガスを含浸させた溶融状態のポリプロピレン系樹脂を射出した後、キャビティ空間の容器本体2aの周壁21および底22の断熱必要部を容器本体2aの厚み方向に拡大して樹脂を発泡させたのち、金型内で冷却固化させることによって形成されていて、上部に開口部25を有する横断面略長方形をしている。すなわち、周壁21の上端部21a以外および底22は、その表面がほとんど発泡のない強度的に優れたスキン層によって形成され、スキン層とスキン層との間に断熱効果を有する中間発泡層が形成された断熱構造になっている。
【0028】
また、容器本体2aは、図1,図2,図4に示すように、その周壁21の上端部21aが発泡していない樹脂で形成されるとともに、上部内縁側に上端面から下方に凹んだ段落部23が形成され、この段落部23に複数のリブ24が立設されている。
【0029】
リブ24は、その上端が、容器本体2aの開口部25より低い位置にあり、成型時に金型のキャビティ空間が射出後に拡大しないため、ほとんど発泡していない。
また、リブ24は、段落部23の長辺側にそれぞれ6個、短辺側にそれぞれ2個ずつ対称位置に設けられていて、長辺側のリブ24のうち、両側の2つのリブ24間および中央の2つのリブ24間のそれぞれのピッチが後述する保冷材4の両端に設けられた係止部41の幅と略同じか少し大きめになっている。
【0030】
また、容器本体2aは、底22が発泡状態に形成されていて、この底22の下面に未発泡状態の枠状部26が設けられている。
枠状部26は、底部分に当たるキャビティ空間を拡開させて発泡させる際に、底22の発泡形状を所定の形状になるように規制するために未発泡の状態で残るように設けられ、その一部が、容器本体2aを上下に垂直に積み上げたとき、下側の容器本体2aのリブ24に受けられるようになっている。また、このリブ24に受けられる部分が、枠状部26の他の部分に比べ、容器本体2aの外側に向かって幅が広くなった幅広部27になっている。
【0031】
すなわち、図1および図5に示すように、複数の容器本体2aが、上下に垂直に積み上げられたとき、上側の容器本体2aの幅広部27が、下側の容器本体2aの開口部25近傍の内壁面との間に小さい隙間が形成された状態で、下側の容器本体2aのリブ24によって下側から受けられる。したがって、上側の容器本体2aが水平方向に動こうとしても、幅広部27が、下側の容器本体2aの開口部25近傍の内壁面に当り、その動きが規制され、容器本体2aを安定した積み上げ状態にすることができる。そして、枠状部26の幅広部27以外の部分は、幅が狭いので、図5に示すように、上側の容器本体2aと下側の容器本体2aとの間に十分な隙間5が確保される。したがって、図5で矢印で示すように、この隙間5を介して常に下側の容器本体2a内と外部雰囲気とを行き来させることができる。
【0032】
また、容器本体2aの内底面には、図1に示すように、複数の突条28が平行に突設されている。
突条28は、容器本体2a内に収容された要冷食品を下方から受けて、要冷食品と底との間に常に隙間を生じさせるようになっている。
【0033】
保冷材4は、蓄冷剤が充填された矩形をした合成樹脂製の本体40と、本体40の両端から延出する係止部41とを備え、図6に実線で示すように、係止部41が長辺側の段落部23の中央部の2つのリブ24の間で段落部23に下側から受けられた状態、あるいは、図6に鎖線で示すように、両端の2つのリブ24の間で段落部23に下側から受けられた状態で容器本体2aに装着され、容器本体2a内を長時間保冷できるようになっている。
【0034】
蓋3は、図1,図7および図8に示すように、容器本体2aと同じ射出発泡成形方法を用いて、成形されていて、本体31と、この本体31から下方に向かって延出するスカート部32とを備えている。
本体31は、容器本体2aの周壁21および底22と同じ断熱構造になっていて、略コ字形をした2つの位置決めリブ38がそのコ字の開口側を対面させるように、本体31の端縁部に沿って突設され、両位置決めリブ38の上面の各コーナー部には位置決めリブ38の端縁に沿って略L字形の係止リブ34が突設されている。
すなわち、蓋3は、その上面に断熱容器1を垂直に積み重ねたとき、図1に示すように、上側の容器本体2aの底22のうち、枠状部26の内側での下方に膨出する膨出部22aが両位置決めリブ38間に形成される凹部33に嵌まり込み、上側の断熱容器1が水平方向に動こうとしても、膨出部22aの周壁が位置決めリブ38の内壁面38aにあたる。したがって、複数の断熱容器1を蓋3を閉じた状態で、上下方向に安定して積み上げることができるようになっている。また、係止リブ34は、図示していないが、その底がを2つの位置決めリブ38の上面で下方から受けられるような他の容器を蓋3の上に載置したとき、この別の容器が水平方向に動こうとしても、容器の下端部外壁面を係止リブ34の内壁面で係止し、蓋3の直上からずれ動かない安定した載置状態にすることができるようになっている。
【0035】
そして、この蓋3は、スカート部32が容器本体2aの周壁21の上端部21aを外側から囲繞し、本体31が容器本体2aの上部開口を閉鎖するようにして容器本体2aに装着されるようになっている。
【0036】
この断熱容器1は、以上のようになっており、以下のような優れた効果を備えている。
(1)容器本体2aを垂直方向に積み重ねた時、上側の容器本体2aの下端部が下側の容器本体2a内に入り込むので、安定した状態で高く積み上げることができるとともに、上側の容器本体2aと下側の容器本体2aとの間に常に下側の容器本体2a内と外部雰囲気とが図5で矢印で示すように連通する隙間5が形成されるようになっているので、容器本体2a内に充填された要冷食品の再冷凍や再冷却を冷凍庫内あるいは冷蔵庫内で効率よく行うことができる。
【0037】
(2)容器本体2aおよび蓋3が金型内のキャビティ空間に炭酸ガス等の不活性ガスを高圧で含浸させた溶融状態のポリプロピレン系樹脂を射出した後、断熱必要部のキャビティ空間を容器本体あるいは蓋の厚み方向に拡大して樹脂を発泡させたのち、金型内で冷却固化させることによって形成されているので、生産性がよく、しかも、発泡スチレン製の容器などに比べ表面が高強度で耐久性に優れている。
(3)容器本体2aおよび蓋4は、いずれもスキン層および中間発泡層がポリプロピレン系樹脂のみで形成されているので、リサイクル性に優れている。
【0038】
(4)保冷材4が、その係止部41を段落部23に下側から受けられるとともに、リブ24によって位置決めされた状態で容器本体2aに装着されるようになっているので、容器本体2a内に充填されている要冷食品を効率よく保冷できるとともに、搬送中の振動等によって保冷材4が容器本体2a内の要冷食品上に落ちて要冷食品を傷めたりすることがない。
(5)容器本体2aの内底面に突条28が設けられているので、要冷食品がこの突条28に受けられて、要冷食品と容器本体2aの内底面との間に必ず隙間が生じる。したがって、保冷材4等の冷気が容器本体2a内の要冷食品の下側にも行き渡り、要冷食品を効率よく冷却することができる。
【0039】
(6)容器本体2aの枠状部26は、リブ24に受けられる部分のみに幅広部27が設けられ、他の部分が狭くなっているので、枠状部26全体をひずみなく成形することができるとともに、容器本体2aを上下に垂直に積み上げた時、枠状部26の幅広部27以外の幅が狭くなった部分によって、上側の容器本体2aと、下側の容器本体2aとの間に通気に十分な隙間5を確保できる。また、幅広部27が下側の容器本体2aの内壁面にあたり、上側の容器本体2aの水平方向の動きが規制され、容器本体2aを安定した積み上げ状態にすることができる。
【0040】
図9は、本発明にかかる断熱容器の他の実施の形態をあらわしている。
図9に示すように、この断熱容器10は、容器本体2bの底面の四隅から下方に4本の脚29が延出しているとともに、段落部23にリブ24が設けられておらず、容器本体2を積み重ねたとき、4本の脚29が下側の容器本体2bの段落部23で受けられ、上側の容器本体2bと下側の容器本体2bの上端面との間に通気用の隙間が生じるようになっている以外は、上記の断熱容器1と同様になっている。
【0041】
本発明にかかる断熱容器は、上記の実施の形態に限定されない。たとえば、上記の実施の形態では、容器本体及び蓋が射出発泡成形法を用いて形成されていたが、容器本体および蓋形状をした中空成形体内に発泡ポリスチレンを射出充填するような方法で製造するようにしても構わない。
【0042】
【発明の効果】
本発明にかかる断熱容器は、以上のように構成されているので、容器本体を垂直に積み上げたとしても、上側容器本体の下端部が、下側の容器本体の上部開口部を完全には閉鎖することがなく、下側の容器本体の内部を冷凍庫あるいは冷蔵庫内の雰囲気に曝すことができる。すなわち、容器本体内に充填された要冷食品の再冷却を小さなスペースで効率よく行うことができる。また、安定した状態で容器本体を高く積み上げることができる。
特に、請求項2の断熱容器のようにすれば、容器本体内に充填されている要冷食品を効率よく保冷できるとともに、搬送中の振動等によって保冷材が容器本体内の要冷食品上に落ちて要冷食品を傷めたりすることがない。
また、請求項4の断熱容器のようにすれば、製造が容易で、しかも耐久性に優れたものとすることができる。
請求項5の断熱容器のようにすれば、通気用の隙間を大きく確保できるとともに、幅広部によって上側の容器本体の安定した積み上げ状態を確保することができる。
【図面の簡単な説明】
【図1】本発明にかかる断熱容器の1つの実施の形態をあらわし、その容器本体を蓋で閉じた状態で、積み上げた場合の断面図である。
【図2】図1の断熱容器の容器本体の平面図である。
【図3】図2の容器本体の底面図である。
【図4】図2の容器本体のX−X線断面図である。
【図5】図2の容器本体を垂直方向に積み上げた時の断面図である。
【図6】図2の容器本体に保冷材を装着する状態を説明する容器本体の平面図である。
【図7】図1の断熱容器の蓋の平面図である。
【図8】図7の蓋のY−Y線断面図である。
【図9】本発明にかかる断熱容器の他の実施の形態をあらわし、その容器本体を垂直方向に積み上げた時の断面図である。
【符号の説明】
1,10 断熱容器
2a,2b 容器本体
21 周壁
22 底
23 段落部
24 リブ
25 開口部
26 枠状部
27 幅広部
29 脚
3 蓋
4 保冷材
40 本体
41 係止部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insulated container used to transport frozen food, refrigerated food, and the like.
[0002]
[Prior art]
A cold food such as a frozen food or a refrigerated food is contained in an insulated container including a container body having a heat insulating structure at a peripheral wall and a bottom and an upper opening, and a lid having a heat insulating structure capable of opening and closing the opening of the container body. It is placed on a truck or the like and transported while being filled and kept cool.
As such a heat-insulating container, a heat-insulating container made of expanded polystyrene has been conventionally used, but recently, a foamed polystyrene having a foam layer formed on the inside and having a hard skin layer excellent in strength on the surface is formed. After injection of a polyolefin resin containing a foaming agent into the cavity space in the mold disclosed in Japanese Patent Application Laid-Open No. 8-90620, the cavity space is enlarged because the strength is superior to that of the mold made from the resin. Insulated containers and the like manufactured by a method of foaming a resin by use of a resin are also used.
[0003]
By the way, the operation of filling such an insulated container with frozen food or refrigerated food is often performed manually, but a worker cannot work for a long time in a freezer or a refrigerator. Therefore, the cold food to be filled is transported from the freezer or refrigerator to the workplace where the temperature is higher than that of the freezer or refrigerator, and the cold food is filled into the insulated container at the workplace, and then the filled freezer is opened and the freezer is opened. The refrigerator is transported to a refrigerator or a refrigerator where the temperature of the cold food which has been raised during the filling operation is re-cooled to a predetermined temperature, and then stored and shipped.
[0004]
In addition, the re-cooling as described above is performed by stacking a plurality of container bodies vertically so that a large amount of re-cooling can be performed in as little space as possible.In the case of a conventional insulated container, when the container bodies are stacked vertically, The upper opening of the lower container body is completely closed at the bottom of the upper container body, and the cold food in the lower container body hardly touches the freezer or the cool air of the refrigerator, and sufficient cooling is performed. Absent. Therefore, the container main bodies are stacked so that their axes are vertically displaced so that the upper opening of the lower container main body is not completely closed.
[0005]
However, the above stacking method lacks stability and cannot be stacked so high. Therefore, there is still a problem in terms of space.
[0006]
[Problems to be solved by the invention]
In view of the above circumstances, the present invention stacks container bodies vertically, exposing the inside of the lower container body to the atmosphere in the freezer or refrigerator without closing the upper opening of the lower container body. It is intended to provide an insulated container that can be used.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a heat insulating container according to claim 1 of the present invention (hereinafter referred to as “a heat insulating container of claim 1”) has a container body having an upper opening having a peripheral wall and a bottom having a heat insulating structure. In a heat insulating container comprising a lid having an insulating structure capable of opening and closing the opening of the container main body, the container main body has a paragraph portion whose peripheral wall is recessed downward from the upper end surface on the upper end inner edge side. The lower end portion is formed to be large enough to enter the inside of the container main body from the upper opening, and when a plurality of container main bodies are stacked in the paragraph section, the lower end portion receives a part of the lower end surface of the upper container main body and receives the upper container. It is characterized in that a plurality of ribs are provided upright to create a ventilation gap between the main body and the lower container main body.
[0008]
The heat insulating container according to claim 2 of the present invention (hereinafter, referred to as “heat insulating container according to claim 2”) is the heat insulating container according to claim 1, in which both ends are received by the facing paragraphs of the container body, It is characterized in that the container body is provided with a detachable cold insulator while being fitted and positioned between adjacent ribs.
[0009]
The heat insulating container according to claim 3 of the present invention (hereinafter referred to as “heat insulating container of claim 3”) includes a container body having an upper opening having a peripheral wall and a bottom having a heat insulating structure, and an opening of the container body. In a heat-insulating container having a lid having a heat-insulating structure that is freely openable and closable, the container body has legs projecting from the lower surface thereof, and when a plurality of container bodies are stacked vertically, the legs of the upper container body enter. The upper container body is positioned, and a recess for receiving a leg is formed on the upper surface of the container body so as to create a ventilation gap between the upper container body and the lower container body. It is characterized by:
[0010]
An insulated container according to claim 4 of the present invention (hereinafter referred to as "insulated container of claim 4") is a heat insulating container according to any one of claims 1 to 4, wherein the container body and the lid are formed by a mold. After injecting molten thermoplastic resin impregnated with an inert gas at high pressure into the cavity space inside, the injection molding method is used to expand the cavity space of the container body and the part corresponding to the heat insulation required part of the lid and foam the resin. It is characterized by being formed.
The heat insulating container according to claim 5 of the present invention (hereinafter referred to as “the heat insulating container of claim 5”) is the heat insulating container of claim 1 or 2, wherein the container body is the injection container according to claim 4. Formed by a foam molding method, the bottom of the container body is foamed, and the bottom surface of the bottom is provided with an unfoamed frame portion, and a part of this frame portion is formed by vertically stacking the container body. It is characterized in that it is adapted to be received by a rib, and that a portion received by the rib is formed wider toward the outside of the container body than other portions of the frame-shaped portion.
[0011]
In the present invention, the production method and materials of the container body and the lid are not particularly limited, but a molten thermoplastic resin obtained by impregnating a cavity space in a mold with an inert gas at high pressure as in the heat insulating container of claim 4 is used. After the injection, the cavity space is preferably expanded by an injection foaming molding method in which the resin is foamed to improve the productivity and the surface strength.
According to the above injection foam molding method, a state in which the foamable thermoplastic resin impregnated with an inert gas is plasticized and measured by, for example, an injection molding device, and injected and filled in a mold, after which the resin is melted Thus, the container body and the lid can be obtained by moving the slide mold provided in the mold to expand at least a part of the mold cavity.
[0012]
That is, with the expansion of the mold cavity space, the inside of the mold cavity is rapidly depressurized to generate bubble nuclei and foam the resin, and while the mold is stopped, cooling is performed for a predetermined time, so that the mold is homogeneous. With a skin layer around an internal foam layer having fine bubbles, when viewed in the thickness direction, it has a three-layer structure of skin layer-internal foam layer (heat insulation layer) -skin layer, and is lightweight and rigid. A certain foam molded article can be obtained.
[0013]
As described above, the method for forming a molten thermoplastic resin that is impregnated with an inert gas at a high pressure is not particularly limited.For example, a resin in a solid state is impregnated with an inert gas under a high pressure, and And a method in which a molten resin is impregnated with an inert gas under high pressure.
[0014]
The inert gas can be used without particular limitation as long as it is an inert inorganic substance that is a gas at normal temperature and normal pressure and does not deteriorate the resin. For example, carbon dioxide (CO 2 ) gas, nitrogen, argon, neon, helium, oxygen and the like can be mentioned. These may be used alone or in combination of two or more. It is most preferable to use carbon dioxide because the melt viscosity of the resin is greatly reduced.
[0015]
Among the methods for forming a molten thermoplastic resin impregnated with an inert gas, as a method of impregnating a resin in a solid state with a gas under a high pressure, for example, the following method can be mentioned.
(1) A method of previously impregnating the resin in a pellet or powder state with a high-pressure container or the like with an inert gas, and (2) a method of supplying and impregnating the region from the hopper of the molding apparatus to the solid transporting section with the inert gas.
In the case of (2), it is preferable to incorporate a pressure-resistant seal structure of the screw drive shaft and the hopper so that gas does not volatilize from the kneading device.
[0016]
Further, as a method for impregnating the molten resin with an inert gas under high pressure, for example, the following method can be mentioned. In this case, it is preferable to perform pressure sealing with a resin in a molten state.
(1) a method of supplying an inert gas to a molten resin in a molten state in a cylinder of an injection machine from a vent portion in the middle of the cylinder using a vent type screw, and (2) an injection machine And supplying the molten resin in a molten state in the cylinder from an inlet provided in the rear of the screw through an supply path provided in the screw from an inert gas supply port in the screw in front of the tip.
[0017]
The amount of gas impregnated in the thermoplastic resin may be an amount capable of reducing the required melt viscosity of the resin, and may be appropriately selected depending on the type of the resin and the type of the gas. It is desirable to dissolve 50 to 50 parts by weight of gas, more desirably 0.1 to 5 parts by weight of gas. It is most preferable that the dissolution of the gas is in a saturated state, but this point does not necessarily have to be achieved.
[0018]
The pressure at the time of impregnation of the gas is preferably (gas critical pressure−5 MPa) or more and (gas critical pressure + 20 MPa) or less, more preferably (gas critical pressure−4 MPa) or more and (gas critical pressure + 5 MPa) or less. It is particularly preferable that the gas is in a supercritical state in order to uniformly impregnate the gas into the thermoplastic resin.
Note that the supercritical state refers to a state at a critical temperature and a critical pressure or higher. For example, when the gas is carbon dioxide, the critical temperature is 30.9 ° C. and the critical pressure is 7.4 MPa, and when the gas is nitrogen, the critical temperature is −146.9 ° C. and the critical pressure is 3.4 MPa.
[0019]
That is, if it is less than (critical pressure of gas-5 MPa), the impregnation amount will be small and the expansion ratio will be low, and if it exceeds (critical pressure of gas + 20 MPa), the pressure will be too high, and the equipment will be large, Not preferred.
After the gas is supplied to the thermoplastic resin, the temperature and pressure are preferably maintained for a certain period of time in order to impregnate a sufficient amount of gas.
[0020]
In any of the methods for impregnating a thermoplastic resin with an inert gas, the rate of impregnation of the resin changes depending on the pressure of the inert gas, the supply / injection position, the temperature of the resin, and the like. The form, expansion ratio, etc. also change, and the heat insulating effect changes. For example, if the pressure of the inert gas is high, the rate of impregnation with the resin increases, and the expansion ratio of the obtained foamed molded article increases.
[0021]
After injection filling of the mold with the inert gas impregnated resin, by controlling the production time such as the time until the mold cavity is expanded, the speed of expanding the cavity space, the resin temperature in the mold, etc. It is possible to adjust the thickness of the skin layer and the internal foam layer, the cell structure such as closed cells and open cells, the foam diameter, and the like of the obtained foam molded article.
Incidentally, the expansion speed in the thickness direction of the mold cavity is not particularly limited, but is preferably 0.5 mm / sec to 15 mm / sec. That is, if the speed is too high, the resin separates from the mold surface, and the transfer to the mold is deteriorated, which may cause poor appearance. In addition, even if it is too slow, the resin solidifies while the mold cavity is expanded, and the resin cannot follow the mold, resulting in poor appearance or a large foam diameter. There is a risk that the heat insulation effect of the body will be poor.
[0022]
The thermoplastic resin is not particularly limited, but preferably has a melt tension suitable for foaming (specifically, 0.069 N at 200 ° C. = 7 gf or more) and an extensional viscosity property, For example, in addition to polyolefin-based resins such as polyethylene-based resins and polypropylene-based resins, polystyrene-based resins, acrylonitrile-butadiene-styrene copolymer (ABS resin), polyvinyl chloride-based resins, and the like can be mentioned. Two or more of these resins can be used in combination. Among these resins, polyolefin resins are preferable, and polypropylene resins are particularly preferable in terms of recyclability and physical properties.
[0023]
The polypropylene resin referred to here is not limited to a homopolymer of polypropylene, but a general polypropylene such as a random copolymer or a block copolymer with another copolymerizable monomer, and a metallocene polypropylene obtained using a metallocene catalyst, or It also includes polypropylene having a long-chain branch and graft-polymerized other components. These may be used alone or in combination of two or more.
[0024]
The thickness of the inner foam layer and the skin layer depends on the material, shape and use of the foamed molded product, but generally the thickness of the inner foam layer is about 10 to 30 mm at the maximum thickness portion, The thickness is preferably about 0.4 to 1.2 mm.
Further, the foamed cell diameter of the internal foamed layer for maximizing the heat insulating performance is generally a fine foamed form of 10 to 800 μm, and the foaming ratio of the internal foamed layer is preferably 8 times or more and 50 times or less, more preferably 10 times or less. It is not less than twice and not more than 40 times.
[0025]
That is, if the diameter of the foamed cells is too small, sufficient heat insulating performance may not be ensured. If the diameter is too large, rigidity or the like may be impaired. On the other hand, if the expansion ratio of the internal foam layer is too small, sufficient heat insulating performance may not be secured, and if it is too large, the rigidity and the like may be affected.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings showing the embodiments.
1 to 8 show one embodiment of a heat insulating container according to the present invention.
[0027]
As shown in FIG. 1, the heat insulating container 1 includes a container main body 2a and a lid 3. The container main body 2a injects a molten polypropylene resin impregnated with an inert gas such as carbon dioxide into the cavity space in the mold, and then heat-insulates the peripheral wall 21 and the bottom 22 of the container main body 2a in the cavity space. Is formed by expanding the resin in the thickness direction of the container body 2a to foam the resin, and then cooling and solidifying the resin in a mold, and has a substantially rectangular cross section having an opening 25 at the top. That is, except for the upper end 21a and the bottom 22 of the peripheral wall 21, the surface is formed by a skin layer having excellent surface strength and almost no foaming, and an intermediate foam layer having a heat insulating effect is formed between the skin layers. It has a heat insulation structure.
[0028]
1, 2 and 4, the upper end 21a of the peripheral wall 21 is formed of non-foamed resin, and is recessed downward from the upper end surface toward the upper inner edge. A paragraph section 23 is formed, and a plurality of ribs 24 are erected on the paragraph section 23.
[0029]
The upper end of the rib 24 is located at a position lower than the opening 25 of the container body 2a, and the cavity space of the mold does not expand after injection during molding, so that the rib 24 is hardly foamed.
The ribs 24 are provided symmetrically at six positions on the long side of the paragraph section 23 and at two positions on the short side, respectively, and between the two ribs 24 on both sides of the rib 24 on the long side. The respective pitches between the two central ribs 24 are substantially the same as or slightly larger than the widths of the locking portions 41 provided at both ends of the cold insulator 4 described later.
[0030]
Further, the container body 2a has a bottom 22 formed in a foamed state, and an unfoamed frame-like portion 26 is provided on a lower surface of the bottom 22.
The frame-shaped portion 26 is provided so as to remain in an unfoamed state in order to regulate the foamed shape of the bottom 22 to a predetermined shape when expanding and expanding the cavity space corresponding to the bottom portion. When the container main body 2a is vertically stacked vertically, a part thereof is received by the rib 24 of the lower container main body 2a. The portion received by the rib 24 is a wide portion 27 that is wider toward the outside of the container body 2a than other portions of the frame portion 26.
[0031]
That is, as shown in FIGS. 1 and 5, when the plurality of container bodies 2a are vertically stacked, the wide portion 27 of the upper container body 2a is close to the opening 25 of the lower container body 2a. In a state where a small gap is formed between the inner container and the inner wall surface, the lower container body 2a is received from below by the rib 24. Therefore, even if the upper container body 2a attempts to move in the horizontal direction, the wide portion 27 hits the inner wall surface near the opening 25 of the lower container body 2a, and the movement is regulated, and the container body 2a is stabilized. Can be stacked. Since the portion other than the wide portion 27 of the frame portion 26 has a small width, a sufficient gap 5 is secured between the upper container main body 2a and the lower container main body 2a as shown in FIG. You. Therefore, as shown by an arrow in FIG. 5, the inside of the lower container body 2a and the external atmosphere can always be moved back and forth through the gap 5.
[0032]
As shown in FIG. 1, a plurality of ridges 28 project in parallel from the inner bottom surface of the container body 2a.
The ridge 28 receives cold food stored in the container body 2a from below, and always creates a gap between the cold food and the bottom.
[0033]
The cold insulator 4 includes a rectangular synthetic resin main body 40 filled with a regenerator and locking portions 41 extending from both ends of the main body 40. As shown by a solid line in FIG. 41 is received from below on the paragraph 23 between the two ribs 24 at the center of the paragraph 23 on the long side, or as shown by the chain line in FIG. The container body 2a is attached to the container body 2a while being received by the paragraph section 23 from below, so that the inside of the container body 2a can be kept cool for a long time.
[0034]
As shown in FIGS. 1, 7 and 8, the lid 3 is molded using the same injection foam molding method as the container main body 2a, and extends downward from the main body 31. And a skirt portion 32.
The main body 31 has the same heat insulating structure as the peripheral wall 21 and the bottom 22 of the container main body 2a, and the edge of the main body 31 is positioned so that the two substantially U-shaped positioning ribs 38 face the opening side of the U shape. A substantially L-shaped locking rib 34 is protruded from each corner of the upper surface of both positioning ribs 38 along the edge of the positioning rib 38.
That is, when the heat insulating containers 1 are vertically stacked on the upper surface thereof, the lid 3 swells downward on the inner side of the frame portion 26 of the bottom 22 of the upper container body 2a as shown in FIG. The bulging portion 22a fits into the concave portion 33 formed between the positioning ribs 38, and the peripheral wall of the bulging portion 22a hits the inner wall surface 38a of the positioning rib 38 even if the upper heat insulating container 1 attempts to move in the horizontal direction. . Therefore, the plurality of heat insulating containers 1 can be stably stacked in the vertical direction with the lid 3 closed. Further, the locking rib 34 is not shown, but when another container is placed on the lid 3 whose bottom can be received from below on the upper surface of the two positioning ribs 38, this other container Even if the container attempts to move in the horizontal direction, the outer wall surface of the lower end of the container is locked by the inner wall surface of the locking rib 34, so that the container can be stably placed so as not to move from directly above the lid 3. I have.
[0035]
The lid 3 is attached to the container main body 2a such that the skirt portion 32 surrounds the upper end 21a of the peripheral wall 21 of the container main body 2a from outside, and the main body 31 closes the upper opening of the container main body 2a. It has become.
[0036]
The heat insulating container 1 is configured as described above, and has the following excellent effects.
(1) When the container main bodies 2a are vertically stacked, the lower end of the upper container main body 2a enters the lower container main body 2a, so that the container main body 2a can be stably stacked high and the upper container main body 2a can be stacked. A gap 5 is always formed between the container body 2a and the lower container body 2a so that the inside of the lower container body 2a and the external atmosphere communicate with each other as shown by arrows in FIG. The re-freezing or re-cooling of the cold-required food filled therein can be efficiently performed in a freezer or a refrigerator.
[0037]
(2) After the container main body 2a and the lid 3 inject a molten polypropylene resin impregnated with an inert gas such as carbon dioxide at a high pressure into the cavity space in the mold, the cavity space of the part requiring heat insulation is removed from the container main body. Alternatively, it is formed by expanding the resin in the thickness direction of the lid and foaming the resin, and then cooling and solidifying it in a mold, so that productivity is good and the surface is stronger than foamed styrene containers. And has excellent durability.
(3) Both the container body 2a and the lid 4 are excellent in recyclability because the skin layer and the intermediate foam layer are formed only of the polypropylene resin.
[0038]
(4) Since the cold insulator 4 is configured such that the retaining portion 41 is received by the paragraph portion 23 from below and is positioned on the container body 2a while being positioned by the ribs 24, the container body 2a is provided. In addition to efficiently keeping the cold food filled therein, the cold insulator 4 does not fall on the cold food in the container body 2a due to vibrations during transportation, and the cold food is not damaged.
(5) Since the ridges 28 are provided on the inner bottom surface of the container body 2a, cold food is received by the ridges 28, and a gap is always formed between the cold food and the inner bottom surface of the container body 2a. Occurs. Therefore, cold air such as the cold insulator 4 spreads below the cold food in the container body 2a, and the cold food can be efficiently cooled.
[0039]
(6) The frame portion 26 of the container body 2a is provided with the wide portion 27 only in the portion that can be received by the rib 24, and the other portions are narrow, so that the entire frame portion 26 can be formed without distortion. When the container main body 2a is vertically stacked vertically, the narrowed portion other than the wide portion 27 of the frame-shaped portion 26 causes a narrow portion between the upper container main body 2a and the lower container main body 2a. A gap 5 sufficient for ventilation can be secured. Further, the wide portion 27 hits the inner wall surface of the lower container body 2a, and the horizontal movement of the upper container body 2a is regulated, so that the container body 2a can be stably stacked.
[0040]
FIG. 9 shows another embodiment of the heat insulating container according to the present invention.
As shown in FIG. 9, the heat insulating container 10 has four legs 29 extending downward from four corners of the bottom surface of the container main body 2b, and the ribs 24 are not provided in the paragraph portion 23. When two are stacked, the four legs 29 are received by the paragraph section 23 of the lower container body 2b, and a ventilation gap is formed between the upper container body 2b and the upper end surface of the lower container body 2b. It is the same as the above-mentioned heat-insulating container 1 except that it occurs.
[0041]
The heat insulating container according to the present invention is not limited to the above embodiment. For example, in the above-described embodiment, the container body and the lid are formed using the injection foaming molding method. However, the container body and the lid are manufactured by a method of injection-filling expanded polystyrene into a hollow molded body having a lid shape. It does not matter.
[0042]
【The invention's effect】
Since the heat-insulating container according to the present invention is configured as described above, even if the container main bodies are vertically stacked, the lower end portion of the upper container main body completely closes the upper opening of the lower container main body. Without exposing the interior of the lower container body to the atmosphere in the freezer or refrigerator. That is, the re-cooling of the cold-required food filled in the container body can be efficiently performed in a small space. Further, the container main body can be stacked high in a stable state.
In particular, according to the insulated container of the second aspect, it is possible to efficiently keep the cold food filled in the container body cool, and the cold insulator is placed on the cold food inside the container body due to vibration during transportation. It does not fall and damage cold foods.
Further, according to the heat insulating container of the fourth aspect, it is possible to easily manufacture and to have excellent durability.
According to the heat insulating container of the fifth aspect, a large gap for ventilation can be ensured, and a stable stacked state of the upper container body can be ensured by the wide portion.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating one embodiment of a heat insulating container according to the present invention, in which the container body is stacked with a container body closed with a lid.
FIG. 2 is a plan view of a container body of the heat insulating container of FIG.
FIG. 3 is a bottom view of the container main body of FIG. 2;
FIG. 4 is a sectional view taken along line XX of the container main body of FIG. 2;
FIG. 5 is a cross-sectional view when the container bodies of FIG. 2 are vertically stacked.
6 is a plan view of the container main body for explaining a state in which a cooling material is attached to the container main body of FIG. 2;
FIG. 7 is a plan view of a lid of the heat insulating container of FIG. 1;
FIG. 8 is a sectional view taken along line YY of the lid of FIG. 7;
FIG. 9 is a cross-sectional view showing another embodiment of the heat insulating container according to the present invention, in which the container main bodies are vertically stacked.
[Explanation of symbols]
1, 10 Insulated containers 2a, 2b Container main body 21 Peripheral wall 22 Bottom 23 Paragraph section 24 Rib 25 Opening section 26 Frame section 27 Wide section 29 Leg 3 Lid 4 Cold insulator 40 Main body 41 Lock section

Claims (5)

周壁および底が断熱構造を有し上部開口の容器本体と、この容器本体の開口部を開閉自在で断熱構造を有する蓋とを備える断熱容器において、
容器本体は、その周壁が上端内縁側に上端面から下方に凹んだ段落部を有し、容器本体の下端部が上部開口から容器本体内部に入り込む大きさに形成されているとともに、段落部に、複数の容器本体を積み上げた時、上側の容器本体の下端面の一部を受けて、上側の容器本体と、下側の容器本体との間に通気用の隙間を生じさせる複数のリブが立設されていることを特徴とする断熱容器。
In a heat-insulating container, the peripheral wall and the bottom of which have a heat-insulating structure, a container body having an upper opening, and a lid having a heat-insulating structure capable of opening and closing the opening of the container body.
The container main body has a paragraph portion whose peripheral wall is recessed downward from the upper end surface on the upper end inner edge side, and the lower end portion of the container main body is formed to be large enough to enter the inside of the container main body from the upper opening, and the paragraph portion When a plurality of container bodies are stacked, a plurality of ribs for receiving a part of the lower end surface of the upper container body and forming a ventilation gap between the upper container body and the lower container body are formed. An insulated container characterized by being erected.
両端部が容器本体の対面する段落部に受けられるとともに、隣接するリブ間に嵌まり込んで位置決めされた状態で容器本体に着脱自在な保冷材を備えている請求項1に記載の断熱容器。The heat insulating container according to claim 1, wherein both ends are received by the facing paragraphs of the container body, and the heat insulating material is provided with a refrigerating material detachable from the container body in a state of being fitted and positioned between adjacent ribs. 周壁および底が断熱構造を有し上部開口の容器本体と、この容器本体の開口部を開閉自在で断熱構造を有する蓋とを備える断熱容器において、
容器本体は、その下面に脚が突設されているとともに、複数の容器本体を垂直に積み上げた時、上側の容器本体の脚が入り込んで、上側の容器本体の位置決めを行うとともに、上側の容器本体と、下側の容器本体との間に通気用の隙間を生させるように脚を受ける凹部が容器本体の上面に形成されていることを特徴とする断熱容器。
In a heat-insulating container, the peripheral wall and the bottom of which have a heat-insulating structure, a container body having an upper opening, and a lid having a heat-insulating structure capable of opening and closing the opening of the container body.
The container body has legs protruding from the lower surface thereof, and when a plurality of container bodies are stacked vertically, the legs of the upper container body enter to position the upper container body and to position the upper container body. A heat-insulating container, wherein a concave portion for receiving a leg is formed on an upper surface of the container main body so as to create a ventilation gap between the main body and the lower container main body.
容器本体および蓋が、金型内のキャビティ空間に不活性ガスが高圧で含浸されてなる溶融熱可塑性樹脂を射出した後、容器本体および蓋の断熱必要部に当たる部分のキャビティ空間を拡大して樹脂を発泡させる射出発泡成形法で形成されている請求項1〜請求項3のいずれかに記載の断熱容器。After injecting the molten thermoplastic resin in which the inert gas is impregnated with high pressure into the cavity space in the mold, the container body and the lid expand the cavity space of the container body and the portion corresponding to the heat-insulating required portion of the lid to expand the resin. The heat-insulating container according to any one of claims 1 to 3, wherein the heat-insulating container is formed by an injection foam molding method for foaming. 容器本体が、請求項4に記載の射出発泡成形方法で形成され、容器本体の底が発泡させられていて、底の下面には未発泡状態の枠状部が備えられ、この枠状部の一部が、容器本体を上下方向に積み上げたとき、リブに受けられるようになっているとともに、このリブに受けられる部分が、枠状部の他の部分に比べ、容器本体の外側に向かって幅広に形成されている請求項1または請求項2に記載の断熱容器。The container body is formed by the injection foam molding method according to claim 4, wherein the bottom of the container body is foamed, and the bottom surface of the bottom is provided with an unfoamed frame-like portion. When a part of the container body is stacked in the vertical direction, the rib is received by the rib, and the part received by the rib is directed toward the outside of the container body as compared with the other part of the frame portion. The heat insulating container according to claim 1, wherein the heat insulating container is formed wide.
JP2002292741A 2002-10-04 2002-10-04 Thermally insulated container Pending JP2004123210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292741A JP2004123210A (en) 2002-10-04 2002-10-04 Thermally insulated container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292741A JP2004123210A (en) 2002-10-04 2002-10-04 Thermally insulated container

Publications (1)

Publication Number Publication Date
JP2004123210A true JP2004123210A (en) 2004-04-22

Family

ID=32283905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292741A Pending JP2004123210A (en) 2002-10-04 2002-10-04 Thermally insulated container

Country Status (1)

Country Link
JP (1) JP2004123210A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213344A (en) * 2005-02-02 2006-08-17 Sanko Co Ltd Box container
JP2010126234A (en) * 2008-11-28 2010-06-10 Gifu Plast Ind Co Ltd Receptacle for carrying
JP2012025417A (en) * 2010-07-22 2012-02-09 Suzumo Machinery Co Ltd Food material storage container
JP2015003014A (en) * 2014-06-16 2015-01-08 有限会社エコー商事 Lunch box
KR101749136B1 (en) 2015-10-05 2017-06-20 (주)지아이엠텍 Food storage container maintaining freshness

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213344A (en) * 2005-02-02 2006-08-17 Sanko Co Ltd Box container
JP2010126234A (en) * 2008-11-28 2010-06-10 Gifu Plast Ind Co Ltd Receptacle for carrying
JP2012025417A (en) * 2010-07-22 2012-02-09 Suzumo Machinery Co Ltd Food material storage container
JP2015003014A (en) * 2014-06-16 2015-01-08 有限会社エコー商事 Lunch box
KR101749136B1 (en) 2015-10-05 2017-06-20 (주)지아이엠텍 Food storage container maintaining freshness

Similar Documents

Publication Publication Date Title
JP6843919B2 (en) Screw of injection molding equipment and injection molding equipment
US20070132131A1 (en) Resin-molded component and method for manufacturing thereof as well as diaphragm for loudspeaker
US4255368A (en) Structural foam molding process
US3613605A (en) Four-way, double-face general purpose pallet
JP2016087887A (en) Manufacturing method and manufacturing device for foam molded body
JP2019073337A (en) Foldable container
JP2004123210A (en) Thermally insulated container
JP2004136897A (en) Cold retaining carry container
JP2001105447A (en) Method for producing foamed molded object
JP2011025450A (en) Method for producing foamed molded article and foamed molded article
US20040188893A1 (en) Open mold molding
JP2002307482A (en) Method for producing skin material laminated thermoplastic resin foam molded article
US20250100192A1 (en) Moulded Polymer Article and Manufacture Thereof
JP2000280332A (en) Method for foaming blow molding
JP2003072758A (en) Hot-insulating and cold-insulating conveyance container
JP2007130826A (en) Method for producing injection-foamed molded article
JPH08300392A (en) Injection molding of foamable plastic composition
JPH08300391A (en) Injection molding of foamable plastic composition
JP5258028B2 (en) Injection molded resin molded products
JP4410611B2 (en) Foam cap for polyethylene terephthalate bottle-type container and method for producing the same
JPH08174592A (en) Expansion injection molding method
JP2004017424A (en) Manufacturing method of composite insulating panel
JP2004196410A (en) How to transport food
JP2002331542A (en) Foam molding method
JP2007015231A (en) Thermoplastic resin foamed molding and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080625