JP2004119110A - Positive electrode active material for lithium-ion secondary battery, and its process of manufacture - Google Patents
Positive electrode active material for lithium-ion secondary battery, and its process of manufacture Download PDFInfo
- Publication number
- JP2004119110A JP2004119110A JP2002278849A JP2002278849A JP2004119110A JP 2004119110 A JP2004119110 A JP 2004119110A JP 2002278849 A JP2002278849 A JP 2002278849A JP 2002278849 A JP2002278849 A JP 2002278849A JP 2004119110 A JP2004119110 A JP 2004119110A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- secondary battery
- active material
- positive electrode
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池用正極活物質及びその製造方法の改良に関する。
【0002】
【従来の技術】
近年、携帯電話やノート型パソコンなどの携帯情報端末の普及に伴い、高エネルギー密度を有し、小型軽量な二次電池の開発が強く要請されている。特に、リチウムなどの軽金属を可動イオン種として含む炭素材料を負極として用いたリチウムイオン二次電池は最も広く研究開発が行われている。
【0003】
リチウムイオン二次電池は、高電圧かつ高エネルギー密度を実現することが可能であるが、正極材料として最も広く用いられているのはリチウムコバルト複合酸化物である。しかし、複合コバルト酸リチウムは、原料に高価なコバルト化合物を用い、正極材料のコスト、ひいては二次電池のコストアップの原因となるため、より安価な活物質への要求が高い。複合コバルト酸リチウムに変わる正極物質としては、マンガンやニッケルを用いたリチウム金属複合酸化物の研究が行われているが、特に、複合ニッケル酸リチウムは複合コバルト酸リチウムと同様に高い電池電圧を示し、かつ複合コバルト酸リチウムよりも理論容量が大きいため、広く研究開発が行われている。
【0004】
但し、純粋にニッケルのみで合成したニッケル酸リチウムを正極活物質として利用すると、複合コバルト酸リチウムに比べてサイクル特性が劣り、高温、低温環境下で使用した場合に比較的電池性能を損ないやすいという欠点を有している。この欠点を改善するためには、ニッケルの一部をCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaから選ばれた少なくとも1種の金属元素で置換したリチウム金属複合酸化物を用いたり、複合ニッケル酸リチウムの表面装飾などが検討されている。
【0005】
例えば、特開平11−167919号公報には、短絡時の発熱量を抑制し、耐湿性を向上させるために、複合ニッケル酸リチウム微粒子の表面に炭酸リチウムを被覆した例が開示されている。
【0006】
【特許文献1】
特開平11−167919号公報
【0007】
【発明が解決しようとする課題】
しかし、上記従来のリチウムイオン二次電池用正極材においては、必ずしもリチウムイオン二次電池の低温出力を向上させることができないという問題があった。
【0008】
本発明は、上記従来の課題に鑑みなされたものであり、その目的は、リチウムイオン二次電池の低温出力を向上させることができる、複合ニッケル酸リチウム微粒子を含むリチウムイオン二次電池用正極活物質及びその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は、複合ニッケル酸リチウム微粒子を含むリチウムイオン二次電池用正極活物質であって、複合ニッケル酸リチウム微粒子の表面の少なくとも一部がリチウムの弱酸塩で被覆されており、複合ニッケル酸リチウム微粒子の表面における弱酸のイオン濃度である表面イオン濃度が0.012〜0.018g2/Lm2の範囲であることを特徴とする。
【0010】
上記構成によれば、複合ニッケル酸リチウム微粒子の表面における表面イオン濃度を上記範囲とすることにより、低温領域でのリチウムイオンの放出を容易に行わせることができ、電池の低温出力を向上させることができる。
【0011】
また、水酸化ニッケルあるいはニッケル以外の金属元素を含有する水酸化ニッケルに、水酸化アルミニウムおよび水酸化リチウムを添加して混合し、前記混合物を造粒し、前記造粒物を、炭酸ガスを含む酸素ガスを吹き込みつつ焼成し、前記焼成物を粉砕して脱水する、複合ニッケル酸リチウム微粒子を含むリチウムイオン二次電池用正極活物質の製造方法であって、前記焼成工程では、複合ニッケル酸リチウムの微粒子表面における炭酸イオン濃度が0.012〜0.018g2/Lm2の範囲となるように前記酸素ガスの吹き込み量を調節することを特徴とする。
【0012】
上記構成によれば、リチウムイオン二次電池の低温出力を向上させることができる複合ニッケル酸リチウム微粒子を含む正極活物質を容易に製造することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)を、図面に従って説明する。
【0014】
図1には、本発明に係るリチウムイオン二次電池用正極活物質の構成例が示される。図1において、リチウムとニッケルその他の金属元素とを含む複合ニッケル酸リチウム微粒子10の表面の少なくとも一部には、リチウムの弱酸塩、例えば炭酸リチウムで構成された被覆層12が形成されている。この複合ニッケル酸リチウム微粒子10の表面の被覆層12における炭酸イオンの濃度である表面イオン濃度としては、0.012〜0.018g2/Lm2の範囲であることが好適である。
【0015】
表面イオン濃度の単位がg2/Lm2となっているのは、以下に述べるように、被覆層12から純水で炭酸イオンを抽出して濃度測定を行ったことを表している。すなわち、被覆層12を有する複合ニッケル酸リチウム微粒子10のサンプル0.1gを100mLのメスフラスコに入れ、純水で100mLとしたのち、30秒間振って撹拌し、孔径0.22μmのメンブランフィルタで濾過する。この濾液をイオンクロマトグラフィーに注入し、炭酸イオン濃度をCO3 2−として測定する。このようにしてサンプル0.1g中の炭酸イオン濃度(g)を求めるが、この値は水100mLに抽出された炭酸イオン濃度(g/L)である。したがって、この抽出された炭酸イオン濃度(g/L)を10倍したものがサンプル1g中の炭酸イオン濃度(g/L)となる。次に、この炭酸イオン濃度を複合ニッケル酸リチウム微粒子10の比表面積で割れば、各複合ニッケル酸リチウム微粒子10の表面における炭酸イオンの濃度すなわち表面イオン濃度を求めることができる。比表面積の単位はm2/gであるので、上述した炭酸イオン濃度を比表面積で割れば、表面イオン濃度の単位がg2/Lm2となる。この場合のLが純水による抽出結果であることを表している。
【0016】
以上のようにして測定した複合ニッケル酸リチウム微粒子10の表面イオン濃度を、上述した0.012〜0.018g2/Lm2の範囲とすることにより、これを正極活物質として使用したリチウムイオン二次電池の低温出力を向上させることができる。これは、複合ニッケル酸リチウム微粒子10の表面の被覆層12を構成する炭酸リチウムから低温でリチウムイオンが放出されやすいためである。
【0017】
図2には、複合ニッケル酸リチウム微粒子10の表面イオン濃度とこれを正極活物質として使用したリチウムイオン二次電池の低温出力との関係が示される。図2に示されるように、表面イオン濃度が上記0.012〜0.018g2/Lm2の範囲でリチウムイオン二次電池の低温出力が向上している。この理由は、被覆層12を構成する炭酸リチウムが低温でリチウムの溶解平衡が成り立つ性質の塩であり、上述のように低温でリチウムイオンを放出しやすいためである。
【0018】
図3には、本発明に係るリチウムイオン二次電池用正極活物質の製造方法の工程図が示される。図3において、従来公知の方法により、水酸化ニッケル(Ni(OH)2)を合成し(S1)、この水酸化ニッケルに水酸化アルミニウムを添加し(S2)、さらに水酸化リチウムを添加して混合し(S3)、これを造粒する(S4)。この造粒品が一次粒子となり、以下の焼成工程により図1に示された被覆層12を有する複合ニッケル酸リチウム微粒子10となる。
【0019】
上記造粒品は以下の手順により焼成される(S5)。まず室温から300℃まで加熱されて脱水される。次に、400〜550℃または400℃以下の温度で初期合成を行い、次に650〜800℃の温度で均質化を行う。このような焼成工程において、複合ニッケル酸リチウム(LiNiMO2;Mはニッケル以外の金属)の粒子が成長する。なお、この複合ニッケル酸リチウム粒子中には、上記Mで示されるアルミニウム等のニッケル以外の金属元素が含まれており、複合ニッケル酸リチウム微粒子10となる。ここで複合ニッケル酸リチウムを製造する際にS1工程において、コバルト、鉄、マンガン、マグネシウム等の金属元素を水酸化コバルト等の水酸化物として共沈させて添加することができる。また、S2工程において、アルミニウムと同様に他の金属を、金属、金属酸化物、金属水酸化物、硫酸塩、硝酸塩等として添加することができる。
【0020】
さらに、上記焼成工程中には、炭酸ガス(二酸化炭素)を含む酸素ガスが供給される。これにより、複合ニッケル酸リチウム微粒子の表面の少なくとも一部が炭酸リチウムで被覆され、本発明に係る被覆層12を形成する。なお、この場合の被覆層12の成分としては、必ずしも炭酸リチウムに限られるものではなく、リチウムの弱酸塩であればよい。
【0021】
上記焼成工程の後においては、一次粒子が互いに接着した状態にあるので、これを粉砕し、平均粒径5〜15μmの二次粒子に単分散化する(S6)。この粉砕工程の後篩別を行い、粒径30μ以下の二次粒子径に揃える(S7)。さらにこれを分級し、微粉をカットする(S8)。以上に述べた二次粒子は、図1に示されるように、一次粒子である被覆層12を有する複合ニッケル酸リチウム微粒子10が複数固まった状態となっている。
【0022】
以上のようにして製造された粒子状の正極活物質は、脱水工程で吸着した水分が除去され(S9)、リチウムイオン二次電池用正極活物質となる。
【0023】
以上の製造工程で特徴的な点は、焼成工程S5において、炭酸ガスを含む酸素ガスを供給する際に、複合ニッケル酸リチウム微粒子10の周囲に形成される被覆層12の膜厚を制御し、複合ニッケル酸リチウム微粒子10の表面における炭酸イオンの濃度である表面イオン濃度が上述した0.012〜0.018g2/Lm2の範囲となるように酸素ガスの吹き込み量を調節する点にある。
【0024】
【発明の効果】
以上説明したように、本発明によれば、複合ニッケル酸リチウム微粒子の表面における炭酸イオン濃度である表面イオン濃度を0.012〜0.018g2/Lm2の範囲とすることにより、これを正極材として使用したリチウムイオン二次電池の低温出力を向上させることができる。
【0025】
また上記複合ニッケル酸リチウム微粒子を容易に製造することができる。
【図面の簡単な説明】
【図1】本発明に係るリチウムイオン二次電池用正極活物質の構成例を示す図である。
【図2】本発明に係るリチウムイオン二次電池用正極活物質を使用したリチウムイオン二次電池の低温出力と活物質表面のイオン濃度との関係を示す図である。
【図3】本発明に係るリチウムイオン二次電池用正極活物質の製造方法を示す工程図である。
【符号の説明】
10 複合ニッケル酸リチウム微粒子、12 被覆層。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a positive electrode active material for a lithium ion secondary battery and a method for producing the same.
[0002]
[Prior art]
In recent years, with the widespread use of portable information terminals such as mobile phones and notebook computers, there is a strong demand for the development of secondary batteries that have a high energy density and are small and light. In particular, lithium ion secondary batteries using a carbon material containing a light metal such as lithium as a mobile ion species as a negative electrode are most widely researched and developed.
[0003]
A lithium ion secondary battery can realize a high voltage and a high energy density, but the lithium cobalt composite oxide is most widely used as a positive electrode material. However, the composite lithium cobaltate uses an expensive cobalt compound as a raw material, and causes an increase in the cost of the positive electrode material, and hence the cost of the secondary battery, so that there is a high demand for a cheaper active material. Research has been conducted on lithium metal composite oxides using manganese or nickel as cathode materials that can be replaced by composite lithium cobaltate. In particular, composite lithium nickelate exhibits a high battery voltage as well as composite lithium cobaltate. In addition, since the theoretical capacity is larger than that of the composite lithium cobaltate, research and development have been widely conducted.
[0004]
However, when lithium nickelate synthesized purely with nickel is used as the positive electrode active material, the cycle characteristics are inferior to those of composite lithium cobaltate, and battery performance is relatively easily lost when used in high and low temperature environments. Has drawbacks. In order to improve this drawback, a lithium metal composite oxide in which a part of nickel is substituted with at least one metal element selected from Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga is used. The surface decoration of composite lithium nickelate has been studied.
[0005]
For example, Japanese Patent Application Laid-Open No. 11-167919 discloses an example in which lithium carbonate is coated on the surface of composite lithium nickelate fine particles in order to suppress heat generation at the time of a short circuit and improve moisture resistance.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-167919 [0007]
[Problems to be solved by the invention]
However, the conventional positive electrode material for a lithium ion secondary battery has a problem that the low-temperature output of the lithium ion secondary battery cannot always be improved.
[0008]
The present invention has been made in view of the above-described conventional problems, and its object is to improve the low-temperature output of a lithium ion secondary battery, and to provide a positive electrode active for lithium ion secondary batteries containing composite lithium nickelate fine particles. It is to provide a substance and a manufacturing method thereof.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a positive electrode active material for a lithium ion secondary battery containing composite lithium nickelate fine particles, wherein at least a part of the surface of the composite lithium nickelate fine particles is coated with a weak lithium salt. The surface ion concentration which is the ion concentration of the weak acid on the surface of the composite lithium nickelate fine particles is in the range of 0.012 to 0.018 g 2 / Lm 2 .
[0010]
According to the above configuration, by setting the surface ion concentration on the surface of the composite lithium nickelate fine particles in the above range, lithium ions can be easily released in a low temperature region, and the low temperature output of the battery can be improved. Can do.
[0011]
Further, nickel hydroxide or nickel hydroxide containing a metal element other than nickel is added and mixed with aluminum hydroxide and lithium hydroxide, the mixture is granulated, and the granulated product contains carbon dioxide gas. A method for producing a positive electrode active material for lithium ion secondary battery containing composite lithium nickelate fine particles, which is fired while blowing oxygen gas, and pulverizes and dehydrates the fired product, wherein in the firing step, composite lithium nickelate The oxygen gas blowing amount is adjusted so that the carbonate ion concentration on the surface of the fine particles is in the range of 0.012 to 0.018 g 2 / Lm 2 .
[0012]
According to the said structure, the positive electrode active material containing the composite lithium nickelate microparticles | fine-particles which can improve the low temperature output of a lithium ion secondary battery can be manufactured easily.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
[0014]
FIG. 1 shows a configuration example of a positive electrode active material for a lithium ion secondary battery according to the present invention. In FIG. 1, a coating layer 12 made of a weak lithium salt, such as lithium carbonate, is formed on at least a part of the surface of a composite lithium nickelate
[0015]
The unit of the surface ion concentration is g 2 / Lm 2 indicates that the concentration measurement was performed by extracting carbonate ions from the coating layer 12 with pure water as described below. That is, 0.1 g of a sample of composite lithium nickelate
[0016]
By setting the surface ion concentration of the composite lithium nickelate
[0017]
FIG. 2 shows the relationship between the surface ion concentration of the composite lithium nickelate
[0018]
FIG. 3 shows a process diagram of a method for producing a positive electrode active material for a lithium ion secondary battery according to the present invention. In FIG. 3, nickel hydroxide (Ni (OH) 2 ) is synthesized by a conventionally known method (S1), aluminum hydroxide is added to the nickel hydroxide (S2), and lithium hydroxide is further added. Mix (S3) and granulate (S4). This granulated product becomes primary particles, and becomes the composite lithium nickelate
[0019]
The granulated product is fired by the following procedure (S5). First, it is dehydrated by heating from room temperature to 300 ° C. Next, initial synthesis is performed at a temperature of 400 to 550 ° C. or 400 ° C. or lower, and then homogenization is performed at a temperature of 650 to 800 ° C. In such a firing step, particles of composite lithium nickelate (LiNiMO 2 ; M is a metal other than nickel) grow. The composite lithium nickelate particles contain metal elements other than nickel, such as aluminum, represented by M, and become composite lithium nickelate
[0020]
Furthermore, oxygen gas containing carbon dioxide (carbon dioxide) is supplied during the firing step. Thereby, at least a part of the surface of the composite lithium nickelate fine particles is coated with lithium carbonate, and the coating layer 12 according to the present invention is formed. In this case, the component of the coating layer 12 is not necessarily limited to lithium carbonate, and may be a weak acid salt of lithium.
[0021]
After the firing step, since the primary particles are in a state of being bonded to each other, they are pulverized and monodispersed into secondary particles having an average particle size of 5 to 15 μm (S6). After this pulverization step, sieving is performed to make the secondary particle size equal to or less than 30 μm (S7). Furthermore, this is classified and fine powder is cut (S8). As shown in FIG. 1, the secondary particles described above are in a state where a plurality of composite lithium nickelate
[0022]
The particulate positive electrode active material produced as described above is freed of moisture adsorbed in the dehydration step (S9), and becomes a positive electrode active material for a lithium ion secondary battery.
[0023]
The characteristic point in the above manufacturing process is that when supplying oxygen gas containing carbon dioxide gas in the firing step S5, the film thickness of the coating layer 12 formed around the composite lithium nickelate
[0024]
【The invention's effect】
As described above, according to the present invention, the surface ion concentration, which is the carbonate ion concentration on the surface of the composite lithium nickelate fine particles, is set in the range of 0.012 to 0.018 g 2 / Lm 2 , thereby The low temperature output of the lithium ion secondary battery used as the material can be improved.
[0025]
Further, the composite lithium nickelate fine particles can be easily produced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration example of a positive electrode active material for a lithium ion secondary battery according to the present invention.
FIG. 2 is a graph showing the relationship between the low-temperature output of a lithium ion secondary battery using the positive electrode active material for a lithium ion secondary battery according to the present invention and the ion concentration on the surface of the active material.
FIG. 3 is a process diagram illustrating a method for producing a positive electrode active material for a lithium ion secondary battery according to the present invention.
[Explanation of symbols]
10 Composite lithium nickelate fine particles, 12 Coating layer.
Claims (2)
前記複合ニッケル酸リチウム微粒子の表面の少なくとも一部がリチウムの弱酸塩で被覆されており、
前記複合ニッケル酸リチウム微粒子の表面における前記弱酸のイオン濃度である表面イオン濃度が0.012〜0.018g2/Lm2の範囲であることを特徴とするリチウムイオン二次電池用正極活物質。A positive electrode active material for a lithium ion secondary battery comprising composite lithium nickelate fine particles,
At least a part of the surface of the composite lithium nickelate fine particles is coated with a weak acid salt of lithium,
A positive electrode active material for a lithium ion secondary battery, wherein a surface ion concentration, which is an ion concentration of the weak acid, on the surface of the composite lithium nickelate fine particles is in a range of 0.012 to 0.018 g 2 / Lm 2 .
前記混合物を造粒し、
前記造粒物を、炭酸ガスを含む酸素ガスを吹き込みつつ焼成し、
前記焼成物を粉砕して脱水する、複合ニッケル酸リチウム微粒子を含むリチウムイオン二次電池用正極活物質の製造方法であって、
前記焼成工程では、複合ニッケル酸リチウムの微粒子表面における炭酸イオン濃度が0.012〜0.018g2/Lm2の範囲となるように前記酸素ガスの吹き込み量を調節することを特徴とするリチウムイオン二次電池用正極活物質の製造方法。Aluminum hydroxide and lithium hydroxide are added and mixed with nickel hydroxide or nickel hydroxide containing a metal element other than nickel,
Granulate the mixture,
The granulated product is fired while blowing oxygen gas containing carbon dioxide gas,
A method for producing a positive electrode active material for a lithium ion secondary battery containing composite lithium nickelate fine particles, wherein the fired product is pulverized and dehydrated,
In the firing step, the amount of oxygen gas blown is adjusted so that the carbonate ion concentration on the surface of the composite lithium nickelate fine particles is in the range of 0.012 to 0.018 g 2 / Lm 2. A method for producing a positive electrode active material for a secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002278849A JP4050123B2 (en) | 2002-09-25 | 2002-09-25 | Positive electrode active material for lithium ion secondary battery and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002278849A JP4050123B2 (en) | 2002-09-25 | 2002-09-25 | Positive electrode active material for lithium ion secondary battery and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004119110A true JP2004119110A (en) | 2004-04-15 |
JP4050123B2 JP4050123B2 (en) | 2008-02-20 |
Family
ID=32274020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002278849A Expired - Lifetime JP4050123B2 (en) | 2002-09-25 | 2002-09-25 | Positive electrode active material for lithium ion secondary battery and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4050123B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004241390A (en) * | 2003-02-07 | 2004-08-26 | Samsung Sdi Co Ltd | Positive electrode activator with carbon compound adsorbed and lithium battery using the same |
JP2006236886A (en) * | 2005-02-28 | 2006-09-07 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery, and manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery |
WO2006101138A1 (en) * | 2005-03-23 | 2006-09-28 | Matsushita Electric Industrial Co., Ltd. | Lithium ion secondary battery and method for manufacturing same |
JP2006302880A (en) * | 2005-03-23 | 2006-11-02 | Matsushita Electric Ind Co Ltd | Lithium ion secondary battery and its manufacturing method |
JP2006318815A (en) * | 2005-05-13 | 2006-11-24 | Nissan Motor Co Ltd | Cathode material for nonaqueous electrolyte lithium ion battery, battery using same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery |
WO2009051212A1 (en) | 2007-10-18 | 2009-04-23 | Toyota Jidosha Kabushiki Kaisha | Coated positive electrode active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and their production methods |
WO2012160698A1 (en) * | 2011-05-26 | 2012-11-29 | トヨタ自動車株式会社 | Coated active material, and lithium solid-state battery |
WO2013065918A1 (en) * | 2011-11-04 | 2013-05-10 | (주)제이에이치화학공업(주) | Method for manufacturing a cathode active material for a lithium secondary battery |
WO2013084352A1 (en) * | 2011-12-09 | 2013-06-13 | トヨタ自動車株式会社 | Positive electrode active material, positive electrode active material layer, all-solid-state battery, and method for producing positive electrode active material |
JP2013191579A (en) * | 2013-05-27 | 2013-09-26 | Nissan Motor Co Ltd | Cathode material for nonaqueous electrolyte lithium ion battery, battery using the same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery |
WO2017099001A1 (en) * | 2015-12-10 | 2017-06-15 | 日立オートモティブシステムズ株式会社 | Secondary cell |
KR101792316B1 (en) * | 2013-11-29 | 2017-10-31 | 한양대학교 산학협력단 | Active material for all-soild state lithium secondary battery, preparing method thereof and all-soild state lithium secondary battery employing the same |
JP2017200875A (en) * | 2008-12-04 | 2017-11-09 | 戸田工業株式会社 | Powder of lithium composite compound particle and production method of the same, and non-aqueous electrolyte secondary cell |
KR20180046689A (en) * | 2016-10-28 | 2018-05-09 | 삼성에스디아이 주식회사 | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
CN111509190A (en) * | 2019-01-30 | 2020-08-07 | 丰田自动车株式会社 | Positive electrode active material and nonaqueous electrolyte secondary battery provided with same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11621419B2 (en) | 2020-11-24 | 2023-04-04 | Samsung Sdi Co., Ltd. | Composite positive electrode active material for lithium secondary battery, method of preparing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery including the positive electrode |
-
2002
- 2002-09-25 JP JP2002278849A patent/JP4050123B2/en not_active Expired - Lifetime
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004241390A (en) * | 2003-02-07 | 2004-08-26 | Samsung Sdi Co Ltd | Positive electrode activator with carbon compound adsorbed and lithium battery using the same |
JP2006236886A (en) * | 2005-02-28 | 2006-09-07 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery, and manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery |
WO2006101138A1 (en) * | 2005-03-23 | 2006-09-28 | Matsushita Electric Industrial Co., Ltd. | Lithium ion secondary battery and method for manufacturing same |
JP2006302880A (en) * | 2005-03-23 | 2006-11-02 | Matsushita Electric Ind Co Ltd | Lithium ion secondary battery and its manufacturing method |
KR100911798B1 (en) | 2005-03-23 | 2009-08-12 | 파나소닉 주식회사 | Lithium ion secondary battery and manufacturing method therefor |
US7879494B2 (en) | 2005-03-23 | 2011-02-01 | Panasonic Corporation | Lithium ion secondary battery and manufacturing method therefor |
JP2006318815A (en) * | 2005-05-13 | 2006-11-24 | Nissan Motor Co Ltd | Cathode material for nonaqueous electrolyte lithium ion battery, battery using same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery |
WO2009051212A1 (en) | 2007-10-18 | 2009-04-23 | Toyota Jidosha Kabushiki Kaisha | Coated positive electrode active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and their production methods |
EP2209152A1 (en) * | 2007-10-18 | 2010-07-21 | Toyota Jidosha Kabushiki Kaisha | Coated positive electrode active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and their production methods |
EP2209152A4 (en) * | 2007-10-18 | 2012-07-11 | Toyota Motor Co Ltd | Coated positive electrode active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and their production methods |
US9023531B2 (en) | 2007-10-18 | 2015-05-05 | Toyota Jidosha Kabushiki Kaisha | Coated positive electrode active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and their production methods |
JP2017200875A (en) * | 2008-12-04 | 2017-11-09 | 戸田工業株式会社 | Powder of lithium composite compound particle and production method of the same, and non-aqueous electrolyte secondary cell |
CN103534845A (en) * | 2011-05-26 | 2014-01-22 | 丰田自动车株式会社 | Coated active material, and lithium solid-state battery |
WO2012160698A1 (en) * | 2011-05-26 | 2012-11-29 | トヨタ自動車株式会社 | Coated active material, and lithium solid-state battery |
JPWO2012160698A1 (en) * | 2011-05-26 | 2014-07-31 | トヨタ自動車株式会社 | Coated active material and lithium solid state battery |
JP5578280B2 (en) * | 2011-05-26 | 2014-08-27 | トヨタ自動車株式会社 | Coated active material and lithium solid state battery |
US9214674B2 (en) | 2011-05-26 | 2015-12-15 | Toyota Jidosha Kabushiki Kaisha | Coated active material and lithium solid state battery |
WO2013065918A1 (en) * | 2011-11-04 | 2013-05-10 | (주)제이에이치화학공업(주) | Method for manufacturing a cathode active material for a lithium secondary battery |
WO2013084352A1 (en) * | 2011-12-09 | 2013-06-13 | トヨタ自動車株式会社 | Positive electrode active material, positive electrode active material layer, all-solid-state battery, and method for producing positive electrode active material |
CN103975466A (en) * | 2011-12-09 | 2014-08-06 | 丰田自动车株式会社 | Positive electrode active material, positive electrode active material layer, all-solid-state battery, and method for producing positive electrode active material |
US9537137B2 (en) | 2011-12-09 | 2017-01-03 | Toyota Jidosha Kabushiki Kaisha | Cathode active material, cathode active material layer, all solid state battery and producing method for cathode active material |
JP2013191579A (en) * | 2013-05-27 | 2013-09-26 | Nissan Motor Co Ltd | Cathode material for nonaqueous electrolyte lithium ion battery, battery using the same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery |
US10050258B2 (en) | 2013-11-29 | 2018-08-14 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Active material for all-solid lithium secondary battery, method for manufacturing same, and all-solid lithium secondary battery comprising same |
KR101792316B1 (en) * | 2013-11-29 | 2017-10-31 | 한양대학교 산학협력단 | Active material for all-soild state lithium secondary battery, preparing method thereof and all-soild state lithium secondary battery employing the same |
WO2017099001A1 (en) * | 2015-12-10 | 2017-06-15 | 日立オートモティブシステムズ株式会社 | Secondary cell |
KR20180046689A (en) * | 2016-10-28 | 2018-05-09 | 삼성에스디아이 주식회사 | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
US10665861B2 (en) * | 2016-10-28 | 2020-05-26 | Samsung Sdi Co., Ltd. | Positive active material including lithium nickel-based metal oxide, method of preparing the same, and rechargeable lithium battery including the same |
KR102332440B1 (en) * | 2016-10-28 | 2021-11-26 | 삼성에스디아이 주식회사 | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
CN111509190A (en) * | 2019-01-30 | 2020-08-07 | 丰田自动车株式会社 | Positive electrode active material and nonaqueous electrolyte secondary battery provided with same |
Also Published As
Publication number | Publication date |
---|---|
JP4050123B2 (en) | 2008-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4050123B2 (en) | Positive electrode active material for lithium ion secondary battery and method for producing the same | |
JP5204913B1 (en) | Lithium metal composite oxide with layer structure | |
JP5883999B2 (en) | Cathode material for lithium-ion batteries | |
JP6090085B2 (en) | Positive electrode active material, method for producing positive electrode active material, and lithium battery | |
CN105514409B (en) | A kind of preparation method of power NCM positive electrodes | |
JP2019021626A (en) | Spherical or spheroidal lithium ion battery positive electrode material and lithium ion battery | |
JPH11273678A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material | |
CN110808373B (en) | Single crystal lithium cobalt oxide and preparation method thereof and application of single crystal lithium cobalt oxide as lithium battery anode material | |
JP2016103477A (en) | Positive electrode material for sodium secondary battery | |
He et al. | Preparation of spherical spinel LiMn2O4 cathode material for Li-ion batteries | |
Ghosh et al. | Improved electrochemical performance of Li2MnSiO4/C composite synthesized by combustion technique | |
CN106129360A (en) | A kind of high-tap density lithium-rich manganese-based anode material and preparation method thereof | |
KR20150030656A (en) | Lithium metal complex oxide | |
JPH11167919A (en) | Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usage | |
CN102709548A (en) | Multi-element cathode material for lithium ion battery and preparation method for multi-element cathode material | |
CN115394985A (en) | High-entropy cathode material and preparation method and application thereof | |
JP4798962B2 (en) | Lithium manganese composite oxide and method for producing the same | |
JPH1072219A (en) | Multiple oxide of lithium, its production and active material of positive electrode for lithium secondary battery | |
JPH10172567A (en) | Manufacture of lithium manganate | |
JP2001243949A (en) | Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it | |
JP2001202959A (en) | Active material for positive electrode of nonaqueous electrolyte secondary battery and its producing method | |
JP5176317B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JPH1064516A (en) | Lithium battery | |
CN111430701A (en) | Lithium-rich carbonate precursor and preparation method and application thereof | |
CN107406273A (en) | Lithium nickel manganese composite oxide and its manufacture method and use its positive pole and electrical storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070417 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071128 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4050123 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131207 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |