[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004119110A - Positive electrode active material for lithium-ion secondary battery, and its process of manufacture - Google Patents

Positive electrode active material for lithium-ion secondary battery, and its process of manufacture Download PDF

Info

Publication number
JP2004119110A
JP2004119110A JP2002278849A JP2002278849A JP2004119110A JP 2004119110 A JP2004119110 A JP 2004119110A JP 2002278849 A JP2002278849 A JP 2002278849A JP 2002278849 A JP2002278849 A JP 2002278849A JP 2004119110 A JP2004119110 A JP 2004119110A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
active material
positive electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002278849A
Other languages
Japanese (ja)
Other versions
JP4050123B2 (en
Inventor
Hirofumi Iizaka
飯坂 浩文
Katsuya Kase
加瀬 克也
Manabu Yamada
山田 学
Satoru Suzuki
鈴木 覚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Denso Corp
Toyota Motor Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Denso Corp, Toyota Motor Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002278849A priority Critical patent/JP4050123B2/en
Publication of JP2004119110A publication Critical patent/JP2004119110A/en
Application granted granted Critical
Publication of JP4050123B2 publication Critical patent/JP4050123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode active material for a lithium ion secondary battery containing a compound nickel acid lithium particulate wherein low temperature output of the lithium ion secondary battery can be improved. <P>SOLUTION: A covering layer 12 of lithium carbonate is formed on the surrounding of a compound nickel acid lithium particulate 10 and the carbonate ion richness on the surface of the composite nickel acid lithium particulate is made 0.012-0.018 g<SP>2</SP>/Lm<SP>2</SP>. Then, by modulating the blowing in quantity of the oxygen gas at the manufacturing of the active material, the carbonate ion concentration is made into the above range. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池用正極活物質及びその製造方法の改良に関する。
【0002】
【従来の技術】
近年、携帯電話やノート型パソコンなどの携帯情報端末の普及に伴い、高エネルギー密度を有し、小型軽量な二次電池の開発が強く要請されている。特に、リチウムなどの軽金属を可動イオン種として含む炭素材料を負極として用いたリチウムイオン二次電池は最も広く研究開発が行われている。
【0003】
リチウムイオン二次電池は、高電圧かつ高エネルギー密度を実現することが可能であるが、正極材料として最も広く用いられているのはリチウムコバルト複合酸化物である。しかし、複合コバルト酸リチウムは、原料に高価なコバルト化合物を用い、正極材料のコスト、ひいては二次電池のコストアップの原因となるため、より安価な活物質への要求が高い。複合コバルト酸リチウムに変わる正極物質としては、マンガンやニッケルを用いたリチウム金属複合酸化物の研究が行われているが、特に、複合ニッケル酸リチウムは複合コバルト酸リチウムと同様に高い電池電圧を示し、かつ複合コバルト酸リチウムよりも理論容量が大きいため、広く研究開発が行われている。
【0004】
但し、純粋にニッケルのみで合成したニッケル酸リチウムを正極活物質として利用すると、複合コバルト酸リチウムに比べてサイクル特性が劣り、高温、低温環境下で使用した場合に比較的電池性能を損ないやすいという欠点を有している。この欠点を改善するためには、ニッケルの一部をCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaから選ばれた少なくとも1種の金属元素で置換したリチウム金属複合酸化物を用いたり、複合ニッケル酸リチウムの表面装飾などが検討されている。
【0005】
例えば、特開平11−167919号公報には、短絡時の発熱量を抑制し、耐湿性を向上させるために、複合ニッケル酸リチウム微粒子の表面に炭酸リチウムを被覆した例が開示されている。
【0006】
【特許文献1】
特開平11−167919号公報
【0007】
【発明が解決しようとする課題】
しかし、上記従来のリチウムイオン二次電池用正極材においては、必ずしもリチウムイオン二次電池の低温出力を向上させることができないという問題があった。
【0008】
本発明は、上記従来の課題に鑑みなされたものであり、その目的は、リチウムイオン二次電池の低温出力を向上させることができる、複合ニッケル酸リチウム微粒子を含むリチウムイオン二次電池用正極活物質及びその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は、複合ニッケル酸リチウム微粒子を含むリチウムイオン二次電池用正極活物質であって、複合ニッケル酸リチウム微粒子の表面の少なくとも一部がリチウムの弱酸塩で被覆されており、複合ニッケル酸リチウム微粒子の表面における弱酸のイオン濃度である表面イオン濃度が0.012〜0.018g/Lmの範囲であることを特徴とする。
【0010】
上記構成によれば、複合ニッケル酸リチウム微粒子の表面における表面イオン濃度を上記範囲とすることにより、低温領域でのリチウムイオンの放出を容易に行わせることができ、電池の低温出力を向上させることができる。
【0011】
また、水酸化ニッケルあるいはニッケル以外の金属元素を含有する水酸化ニッケルに、水酸化アルミニウムおよび水酸化リチウムを添加して混合し、前記混合物を造粒し、前記造粒物を、炭酸ガスを含む酸素ガスを吹き込みつつ焼成し、前記焼成物を粉砕して脱水する、複合ニッケル酸リチウム微粒子を含むリチウムイオン二次電池用正極活物質の製造方法であって、前記焼成工程では、複合ニッケル酸リチウムの微粒子表面における炭酸イオン濃度が0.012〜0.018g/Lmの範囲となるように前記酸素ガスの吹き込み量を調節することを特徴とする。
【0012】
上記構成によれば、リチウムイオン二次電池の低温出力を向上させることができる複合ニッケル酸リチウム微粒子を含む正極活物質を容易に製造することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)を、図面に従って説明する。
【0014】
図1には、本発明に係るリチウムイオン二次電池用正極活物質の構成例が示される。図1において、リチウムとニッケルその他の金属元素とを含む複合ニッケル酸リチウム微粒子10の表面の少なくとも一部には、リチウムの弱酸塩、例えば炭酸リチウムで構成された被覆層12が形成されている。この複合ニッケル酸リチウム微粒子10の表面の被覆層12における炭酸イオンの濃度である表面イオン濃度としては、0.012〜0.018g/Lmの範囲であることが好適である。
【0015】
表面イオン濃度の単位がg/Lmとなっているのは、以下に述べるように、被覆層12から純水で炭酸イオンを抽出して濃度測定を行ったことを表している。すなわち、被覆層12を有する複合ニッケル酸リチウム微粒子10のサンプル0.1gを100mLのメスフラスコに入れ、純水で100mLとしたのち、30秒間振って撹拌し、孔径0.22μmのメンブランフィルタで濾過する。この濾液をイオンクロマトグラフィーに注入し、炭酸イオン濃度をCO 2−として測定する。このようにしてサンプル0.1g中の炭酸イオン濃度(g)を求めるが、この値は水100mLに抽出された炭酸イオン濃度(g/L)である。したがって、この抽出された炭酸イオン濃度(g/L)を10倍したものがサンプル1g中の炭酸イオン濃度(g/L)となる。次に、この炭酸イオン濃度を複合ニッケル酸リチウム微粒子10の比表面積で割れば、各複合ニッケル酸リチウム微粒子10の表面における炭酸イオンの濃度すなわち表面イオン濃度を求めることができる。比表面積の単位はm/gであるので、上述した炭酸イオン濃度を比表面積で割れば、表面イオン濃度の単位がg/Lmとなる。この場合のLが純水による抽出結果であることを表している。
【0016】
以上のようにして測定した複合ニッケル酸リチウム微粒子10の表面イオン濃度を、上述した0.012〜0.018g/Lmの範囲とすることにより、これを正極活物質として使用したリチウムイオン二次電池の低温出力を向上させることができる。これは、複合ニッケル酸リチウム微粒子10の表面の被覆層12を構成する炭酸リチウムから低温でリチウムイオンが放出されやすいためである。
【0017】
図2には、複合ニッケル酸リチウム微粒子10の表面イオン濃度とこれを正極活物質として使用したリチウムイオン二次電池の低温出力との関係が示される。図2に示されるように、表面イオン濃度が上記0.012〜0.018g/Lmの範囲でリチウムイオン二次電池の低温出力が向上している。この理由は、被覆層12を構成する炭酸リチウムが低温でリチウムの溶解平衡が成り立つ性質の塩であり、上述のように低温でリチウムイオンを放出しやすいためである。
【0018】
図3には、本発明に係るリチウムイオン二次電池用正極活物質の製造方法の工程図が示される。図3において、従来公知の方法により、水酸化ニッケル(Ni(OH))を合成し(S1)、この水酸化ニッケルに水酸化アルミニウムを添加し(S2)、さらに水酸化リチウムを添加して混合し(S3)、これを造粒する(S4)。この造粒品が一次粒子となり、以下の焼成工程により図1に示された被覆層12を有する複合ニッケル酸リチウム微粒子10となる。
【0019】
上記造粒品は以下の手順により焼成される(S5)。まず室温から300℃まで加熱されて脱水される。次に、400〜550℃または400℃以下の温度で初期合成を行い、次に650〜800℃の温度で均質化を行う。このような焼成工程において、複合ニッケル酸リチウム(LiNiMO;Mはニッケル以外の金属)の粒子が成長する。なお、この複合ニッケル酸リチウム粒子中には、上記Mで示されるアルミニウム等のニッケル以外の金属元素が含まれており、複合ニッケル酸リチウム微粒子10となる。ここで複合ニッケル酸リチウムを製造する際にS1工程において、コバルト、鉄、マンガン、マグネシウム等の金属元素を水酸化コバルト等の水酸化物として共沈させて添加することができる。また、S2工程において、アルミニウムと同様に他の金属を、金属、金属酸化物、金属水酸化物、硫酸塩、硝酸塩等として添加することができる。
【0020】
さらに、上記焼成工程中には、炭酸ガス(二酸化炭素)を含む酸素ガスが供給される。これにより、複合ニッケル酸リチウム微粒子の表面の少なくとも一部が炭酸リチウムで被覆され、本発明に係る被覆層12を形成する。なお、この場合の被覆層12の成分としては、必ずしも炭酸リチウムに限られるものではなく、リチウムの弱酸塩であればよい。
【0021】
上記焼成工程の後においては、一次粒子が互いに接着した状態にあるので、これを粉砕し、平均粒径5〜15μmの二次粒子に単分散化する(S6)。この粉砕工程の後篩別を行い、粒径30μ以下の二次粒子径に揃える(S7)。さらにこれを分級し、微粉をカットする(S8)。以上に述べた二次粒子は、図1に示されるように、一次粒子である被覆層12を有する複合ニッケル酸リチウム微粒子10が複数固まった状態となっている。
【0022】
以上のようにして製造された粒子状の正極活物質は、脱水工程で吸着した水分が除去され(S9)、リチウムイオン二次電池用正極活物質となる。
【0023】
以上の製造工程で特徴的な点は、焼成工程S5において、炭酸ガスを含む酸素ガスを供給する際に、複合ニッケル酸リチウム微粒子10の周囲に形成される被覆層12の膜厚を制御し、複合ニッケル酸リチウム微粒子10の表面における炭酸イオンの濃度である表面イオン濃度が上述した0.012〜0.018g/Lmの範囲となるように酸素ガスの吹き込み量を調節する点にある。
【0024】
【発明の効果】
以上説明したように、本発明によれば、複合ニッケル酸リチウム微粒子の表面における炭酸イオン濃度である表面イオン濃度を0.012〜0.018g/Lmの範囲とすることにより、これを正極材として使用したリチウムイオン二次電池の低温出力を向上させることができる。
【0025】
また上記複合ニッケル酸リチウム微粒子を容易に製造することができる。
【図面の簡単な説明】
【図1】本発明に係るリチウムイオン二次電池用正極活物質の構成例を示す図である。
【図2】本発明に係るリチウムイオン二次電池用正極活物質を使用したリチウムイオン二次電池の低温出力と活物質表面のイオン濃度との関係を示す図である。
【図3】本発明に係るリチウムイオン二次電池用正極活物質の製造方法を示す工程図である。
【符号の説明】
10 複合ニッケル酸リチウム微粒子、12 被覆層。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a positive electrode active material for a lithium ion secondary battery and a method for producing the same.
[0002]
[Prior art]
In recent years, with the widespread use of portable information terminals such as mobile phones and notebook computers, there is a strong demand for the development of secondary batteries that have a high energy density and are small and light. In particular, lithium ion secondary batteries using a carbon material containing a light metal such as lithium as a mobile ion species as a negative electrode are most widely researched and developed.
[0003]
A lithium ion secondary battery can realize a high voltage and a high energy density, but the lithium cobalt composite oxide is most widely used as a positive electrode material. However, the composite lithium cobaltate uses an expensive cobalt compound as a raw material, and causes an increase in the cost of the positive electrode material, and hence the cost of the secondary battery, so that there is a high demand for a cheaper active material. Research has been conducted on lithium metal composite oxides using manganese or nickel as cathode materials that can be replaced by composite lithium cobaltate. In particular, composite lithium nickelate exhibits a high battery voltage as well as composite lithium cobaltate. In addition, since the theoretical capacity is larger than that of the composite lithium cobaltate, research and development have been widely conducted.
[0004]
However, when lithium nickelate synthesized purely with nickel is used as the positive electrode active material, the cycle characteristics are inferior to those of composite lithium cobaltate, and battery performance is relatively easily lost when used in high and low temperature environments. Has drawbacks. In order to improve this drawback, a lithium metal composite oxide in which a part of nickel is substituted with at least one metal element selected from Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga is used. The surface decoration of composite lithium nickelate has been studied.
[0005]
For example, Japanese Patent Application Laid-Open No. 11-167919 discloses an example in which lithium carbonate is coated on the surface of composite lithium nickelate fine particles in order to suppress heat generation at the time of a short circuit and improve moisture resistance.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-167919 [0007]
[Problems to be solved by the invention]
However, the conventional positive electrode material for a lithium ion secondary battery has a problem that the low-temperature output of the lithium ion secondary battery cannot always be improved.
[0008]
The present invention has been made in view of the above-described conventional problems, and its object is to improve the low-temperature output of a lithium ion secondary battery, and to provide a positive electrode active for lithium ion secondary batteries containing composite lithium nickelate fine particles. It is to provide a substance and a manufacturing method thereof.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a positive electrode active material for a lithium ion secondary battery containing composite lithium nickelate fine particles, wherein at least a part of the surface of the composite lithium nickelate fine particles is coated with a weak lithium salt. The surface ion concentration which is the ion concentration of the weak acid on the surface of the composite lithium nickelate fine particles is in the range of 0.012 to 0.018 g 2 / Lm 2 .
[0010]
According to the above configuration, by setting the surface ion concentration on the surface of the composite lithium nickelate fine particles in the above range, lithium ions can be easily released in a low temperature region, and the low temperature output of the battery can be improved. Can do.
[0011]
Further, nickel hydroxide or nickel hydroxide containing a metal element other than nickel is added and mixed with aluminum hydroxide and lithium hydroxide, the mixture is granulated, and the granulated product contains carbon dioxide gas. A method for producing a positive electrode active material for lithium ion secondary battery containing composite lithium nickelate fine particles, which is fired while blowing oxygen gas, and pulverizes and dehydrates the fired product, wherein in the firing step, composite lithium nickelate The oxygen gas blowing amount is adjusted so that the carbonate ion concentration on the surface of the fine particles is in the range of 0.012 to 0.018 g 2 / Lm 2 .
[0012]
According to the said structure, the positive electrode active material containing the composite lithium nickelate microparticles | fine-particles which can improve the low temperature output of a lithium ion secondary battery can be manufactured easily.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
[0014]
FIG. 1 shows a configuration example of a positive electrode active material for a lithium ion secondary battery according to the present invention. In FIG. 1, a coating layer 12 made of a weak lithium salt, such as lithium carbonate, is formed on at least a part of the surface of a composite lithium nickelate fine particle 10 containing lithium and nickel or other metal element. The surface ion concentration that is the concentration of carbonate ions in the coating layer 12 on the surface of the composite lithium nickelate fine particles 10 is preferably in the range of 0.012 to 0.018 g 2 / Lm 2 .
[0015]
The unit of the surface ion concentration is g 2 / Lm 2 indicates that the concentration measurement was performed by extracting carbonate ions from the coating layer 12 with pure water as described below. That is, 0.1 g of a sample of composite lithium nickelate fine particles 10 having a coating layer 12 was put into a 100 mL volumetric flask, made 100 mL with pure water, shaken for 30 seconds, and filtered with a membrane filter having a pore size of 0.22 μm. To do. The filtrate is injected into ion chromatography, and the carbonate ion concentration is measured as CO 3 2- . In this way, the carbonate ion concentration (g) in the sample 0.1 g is obtained, and this value is the carbonate ion concentration (g / L) extracted in 100 mL of water. Accordingly, a value obtained by multiplying the extracted carbonate ion concentration (g / L) by 10 becomes the carbonate ion concentration (g / L) in 1 g of the sample. Next, by dividing this carbonate ion concentration by the specific surface area of the composite lithium nickelate fine particles 10, the concentration of carbonate ions on the surface of each composite lithium nickelate fine particle 10, that is, the surface ion concentration can be obtained. Since the unit of the specific surface area is m 2 / g, the unit of the surface ion concentration is g 2 / Lm 2 when the carbonate ion concentration is divided by the specific surface area. In this case, L represents the extraction result with pure water.
[0016]
By setting the surface ion concentration of the composite lithium nickelate fine particles 10 measured as described above to the range of 0.012 to 0.018 g 2 / Lm 2 as described above, the lithium ion 2 used as the positive electrode active material was used. The low temperature output of the secondary battery can be improved. This is because lithium ions are easily released from the lithium carbonate constituting the coating layer 12 on the surface of the composite lithium nickelate fine particles 10 at a low temperature.
[0017]
FIG. 2 shows the relationship between the surface ion concentration of the composite lithium nickelate fine particles 10 and the low-temperature output of a lithium ion secondary battery using this as a positive electrode active material. As shown in FIG. 2, the low-temperature output of the lithium ion secondary battery is improved when the surface ion concentration is in the range of 0.012 to 0.018 g 2 / Lm 2 . The reason for this is that lithium carbonate constituting the coating layer 12 is a salt that has a lithium equilibrium at low temperatures, and easily releases lithium ions at low temperatures as described above.
[0018]
FIG. 3 shows a process diagram of a method for producing a positive electrode active material for a lithium ion secondary battery according to the present invention. In FIG. 3, nickel hydroxide (Ni (OH) 2 ) is synthesized by a conventionally known method (S1), aluminum hydroxide is added to the nickel hydroxide (S2), and lithium hydroxide is further added. Mix (S3) and granulate (S4). This granulated product becomes primary particles, and becomes the composite lithium nickelate fine particles 10 having the coating layer 12 shown in FIG. 1 by the following firing process.
[0019]
The granulated product is fired by the following procedure (S5). First, it is dehydrated by heating from room temperature to 300 ° C. Next, initial synthesis is performed at a temperature of 400 to 550 ° C. or 400 ° C. or lower, and then homogenization is performed at a temperature of 650 to 800 ° C. In such a firing step, particles of composite lithium nickelate (LiNiMO 2 ; M is a metal other than nickel) grow. The composite lithium nickelate particles contain metal elements other than nickel, such as aluminum, represented by M, and become composite lithium nickelate fine particles 10. Here, when producing the composite lithium nickelate, a metal element such as cobalt, iron, manganese, and magnesium can be coprecipitated and added as a hydroxide such as cobalt hydroxide in step S1. Further, in the step S2, other metals can be added as metals, metal oxides, metal hydroxides, sulfates, nitrates and the like in the same manner as aluminum.
[0020]
Furthermore, oxygen gas containing carbon dioxide (carbon dioxide) is supplied during the firing step. Thereby, at least a part of the surface of the composite lithium nickelate fine particles is coated with lithium carbonate, and the coating layer 12 according to the present invention is formed. In this case, the component of the coating layer 12 is not necessarily limited to lithium carbonate, and may be a weak acid salt of lithium.
[0021]
After the firing step, since the primary particles are in a state of being bonded to each other, they are pulverized and monodispersed into secondary particles having an average particle size of 5 to 15 μm (S6). After this pulverization step, sieving is performed to make the secondary particle size equal to or less than 30 μm (S7). Furthermore, this is classified and fine powder is cut (S8). As shown in FIG. 1, the secondary particles described above are in a state where a plurality of composite lithium nickelate fine particles 10 having a coating layer 12 which is a primary particle are solidified.
[0022]
The particulate positive electrode active material produced as described above is freed of moisture adsorbed in the dehydration step (S9), and becomes a positive electrode active material for a lithium ion secondary battery.
[0023]
The characteristic point in the above manufacturing process is that when supplying oxygen gas containing carbon dioxide gas in the firing step S5, the film thickness of the coating layer 12 formed around the composite lithium nickelate fine particles 10 is controlled, The oxygen gas blowing amount is adjusted so that the surface ion concentration, which is the concentration of carbonate ions on the surface of the composite lithium nickelate fine particles 10, is in the range of 0.012 to 0.018 g 2 / Lm 2 described above.
[0024]
【The invention's effect】
As described above, according to the present invention, the surface ion concentration, which is the carbonate ion concentration on the surface of the composite lithium nickelate fine particles, is set in the range of 0.012 to 0.018 g 2 / Lm 2 , thereby The low temperature output of the lithium ion secondary battery used as the material can be improved.
[0025]
Further, the composite lithium nickelate fine particles can be easily produced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration example of a positive electrode active material for a lithium ion secondary battery according to the present invention.
FIG. 2 is a graph showing the relationship between the low-temperature output of a lithium ion secondary battery using the positive electrode active material for a lithium ion secondary battery according to the present invention and the ion concentration on the surface of the active material.
FIG. 3 is a process diagram illustrating a method for producing a positive electrode active material for a lithium ion secondary battery according to the present invention.
[Explanation of symbols]
10 Composite lithium nickelate fine particles, 12 Coating layer.

Claims (2)

複合ニッケル酸リチウム微粒子を含むリチウムイオン二次電池用正極活物質であって、
前記複合ニッケル酸リチウム微粒子の表面の少なくとも一部がリチウムの弱酸塩で被覆されており、
前記複合ニッケル酸リチウム微粒子の表面における前記弱酸のイオン濃度である表面イオン濃度が0.012〜0.018g/Lmの範囲であることを特徴とするリチウムイオン二次電池用正極活物質。
A positive electrode active material for a lithium ion secondary battery comprising composite lithium nickelate fine particles,
At least a part of the surface of the composite lithium nickelate fine particles is coated with a weak acid salt of lithium,
A positive electrode active material for a lithium ion secondary battery, wherein a surface ion concentration, which is an ion concentration of the weak acid, on the surface of the composite lithium nickelate fine particles is in a range of 0.012 to 0.018 g 2 / Lm 2 .
水酸化ニッケルあるいはニッケル以外の金属元素を含有する水酸化ニッケルに、水酸化アルミニウムおよび水酸化リチウムを添加して混合し、
前記混合物を造粒し、
前記造粒物を、炭酸ガスを含む酸素ガスを吹き込みつつ焼成し、
前記焼成物を粉砕して脱水する、複合ニッケル酸リチウム微粒子を含むリチウムイオン二次電池用正極活物質の製造方法であって、
前記焼成工程では、複合ニッケル酸リチウムの微粒子表面における炭酸イオン濃度が0.012〜0.018g/Lmの範囲となるように前記酸素ガスの吹き込み量を調節することを特徴とするリチウムイオン二次電池用正極活物質の製造方法。
Aluminum hydroxide and lithium hydroxide are added and mixed with nickel hydroxide or nickel hydroxide containing a metal element other than nickel,
Granulate the mixture,
The granulated product is fired while blowing oxygen gas containing carbon dioxide gas,
A method for producing a positive electrode active material for a lithium ion secondary battery containing composite lithium nickelate fine particles, wherein the fired product is pulverized and dehydrated,
In the firing step, the amount of oxygen gas blown is adjusted so that the carbonate ion concentration on the surface of the composite lithium nickelate fine particles is in the range of 0.012 to 0.018 g 2 / Lm 2. A method for producing a positive electrode active material for a secondary battery.
JP2002278849A 2002-09-25 2002-09-25 Positive electrode active material for lithium ion secondary battery and method for producing the same Expired - Lifetime JP4050123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278849A JP4050123B2 (en) 2002-09-25 2002-09-25 Positive electrode active material for lithium ion secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278849A JP4050123B2 (en) 2002-09-25 2002-09-25 Positive electrode active material for lithium ion secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004119110A true JP2004119110A (en) 2004-04-15
JP4050123B2 JP4050123B2 (en) 2008-02-20

Family

ID=32274020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278849A Expired - Lifetime JP4050123B2 (en) 2002-09-25 2002-09-25 Positive electrode active material for lithium ion secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4050123B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241390A (en) * 2003-02-07 2004-08-26 Samsung Sdi Co Ltd Positive electrode activator with carbon compound adsorbed and lithium battery using the same
JP2006236886A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, and manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
WO2006101138A1 (en) * 2005-03-23 2006-09-28 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery and method for manufacturing same
JP2006302880A (en) * 2005-03-23 2006-11-02 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
JP2006318815A (en) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium ion battery, battery using same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery
WO2009051212A1 (en) 2007-10-18 2009-04-23 Toyota Jidosha Kabushiki Kaisha Coated positive electrode active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and their production methods
WO2012160698A1 (en) * 2011-05-26 2012-11-29 トヨタ自動車株式会社 Coated active material, and lithium solid-state battery
WO2013065918A1 (en) * 2011-11-04 2013-05-10 (주)제이에이치화학공업(주) Method for manufacturing a cathode active material for a lithium secondary battery
WO2013084352A1 (en) * 2011-12-09 2013-06-13 トヨタ自動車株式会社 Positive electrode active material, positive electrode active material layer, all-solid-state battery, and method for producing positive electrode active material
JP2013191579A (en) * 2013-05-27 2013-09-26 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium ion battery, battery using the same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery
WO2017099001A1 (en) * 2015-12-10 2017-06-15 日立オートモティブシステムズ株式会社 Secondary cell
KR101792316B1 (en) * 2013-11-29 2017-10-31 한양대학교 산학협력단 Active material for all-soild state lithium secondary battery, preparing method thereof and all-soild state lithium secondary battery employing the same
JP2017200875A (en) * 2008-12-04 2017-11-09 戸田工業株式会社 Powder of lithium composite compound particle and production method of the same, and non-aqueous electrolyte secondary cell
KR20180046689A (en) * 2016-10-28 2018-05-09 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN111509190A (en) * 2019-01-30 2020-08-07 丰田自动车株式会社 Positive electrode active material and nonaqueous electrolyte secondary battery provided with same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11621419B2 (en) 2020-11-24 2023-04-04 Samsung Sdi Co., Ltd. Composite positive electrode active material for lithium secondary battery, method of preparing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery including the positive electrode

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241390A (en) * 2003-02-07 2004-08-26 Samsung Sdi Co Ltd Positive electrode activator with carbon compound adsorbed and lithium battery using the same
JP2006236886A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, and manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
WO2006101138A1 (en) * 2005-03-23 2006-09-28 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery and method for manufacturing same
JP2006302880A (en) * 2005-03-23 2006-11-02 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
KR100911798B1 (en) 2005-03-23 2009-08-12 파나소닉 주식회사 Lithium ion secondary battery and manufacturing method therefor
US7879494B2 (en) 2005-03-23 2011-02-01 Panasonic Corporation Lithium ion secondary battery and manufacturing method therefor
JP2006318815A (en) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium ion battery, battery using same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery
WO2009051212A1 (en) 2007-10-18 2009-04-23 Toyota Jidosha Kabushiki Kaisha Coated positive electrode active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and their production methods
EP2209152A1 (en) * 2007-10-18 2010-07-21 Toyota Jidosha Kabushiki Kaisha Coated positive electrode active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and their production methods
EP2209152A4 (en) * 2007-10-18 2012-07-11 Toyota Motor Co Ltd Coated positive electrode active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and their production methods
US9023531B2 (en) 2007-10-18 2015-05-05 Toyota Jidosha Kabushiki Kaisha Coated positive electrode active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and their production methods
JP2017200875A (en) * 2008-12-04 2017-11-09 戸田工業株式会社 Powder of lithium composite compound particle and production method of the same, and non-aqueous electrolyte secondary cell
CN103534845A (en) * 2011-05-26 2014-01-22 丰田自动车株式会社 Coated active material, and lithium solid-state battery
WO2012160698A1 (en) * 2011-05-26 2012-11-29 トヨタ自動車株式会社 Coated active material, and lithium solid-state battery
JPWO2012160698A1 (en) * 2011-05-26 2014-07-31 トヨタ自動車株式会社 Coated active material and lithium solid state battery
JP5578280B2 (en) * 2011-05-26 2014-08-27 トヨタ自動車株式会社 Coated active material and lithium solid state battery
US9214674B2 (en) 2011-05-26 2015-12-15 Toyota Jidosha Kabushiki Kaisha Coated active material and lithium solid state battery
WO2013065918A1 (en) * 2011-11-04 2013-05-10 (주)제이에이치화학공업(주) Method for manufacturing a cathode active material for a lithium secondary battery
WO2013084352A1 (en) * 2011-12-09 2013-06-13 トヨタ自動車株式会社 Positive electrode active material, positive electrode active material layer, all-solid-state battery, and method for producing positive electrode active material
CN103975466A (en) * 2011-12-09 2014-08-06 丰田自动车株式会社 Positive electrode active material, positive electrode active material layer, all-solid-state battery, and method for producing positive electrode active material
US9537137B2 (en) 2011-12-09 2017-01-03 Toyota Jidosha Kabushiki Kaisha Cathode active material, cathode active material layer, all solid state battery and producing method for cathode active material
JP2013191579A (en) * 2013-05-27 2013-09-26 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium ion battery, battery using the same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery
US10050258B2 (en) 2013-11-29 2018-08-14 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Active material for all-solid lithium secondary battery, method for manufacturing same, and all-solid lithium secondary battery comprising same
KR101792316B1 (en) * 2013-11-29 2017-10-31 한양대학교 산학협력단 Active material for all-soild state lithium secondary battery, preparing method thereof and all-soild state lithium secondary battery employing the same
WO2017099001A1 (en) * 2015-12-10 2017-06-15 日立オートモティブシステムズ株式会社 Secondary cell
KR20180046689A (en) * 2016-10-28 2018-05-09 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US10665861B2 (en) * 2016-10-28 2020-05-26 Samsung Sdi Co., Ltd. Positive active material including lithium nickel-based metal oxide, method of preparing the same, and rechargeable lithium battery including the same
KR102332440B1 (en) * 2016-10-28 2021-11-26 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN111509190A (en) * 2019-01-30 2020-08-07 丰田自动车株式会社 Positive electrode active material and nonaqueous electrolyte secondary battery provided with same

Also Published As

Publication number Publication date
JP4050123B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP4050123B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP5204913B1 (en) Lithium metal composite oxide with layer structure
JP5883999B2 (en) Cathode material for lithium-ion batteries
JP6090085B2 (en) Positive electrode active material, method for producing positive electrode active material, and lithium battery
CN105514409B (en) A kind of preparation method of power NCM positive electrodes
JP2019021626A (en) Spherical or spheroidal lithium ion battery positive electrode material and lithium ion battery
JPH11273678A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
CN110808373B (en) Single crystal lithium cobalt oxide and preparation method thereof and application of single crystal lithium cobalt oxide as lithium battery anode material
JP2016103477A (en) Positive electrode material for sodium secondary battery
He et al. Preparation of spherical spinel LiMn2O4 cathode material for Li-ion batteries
Ghosh et al. Improved electrochemical performance of Li2MnSiO4/C composite synthesized by combustion technique
CN106129360A (en) A kind of high-tap density lithium-rich manganese-based anode material and preparation method thereof
KR20150030656A (en) Lithium metal complex oxide
JPH11167919A (en) Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usage
CN102709548A (en) Multi-element cathode material for lithium ion battery and preparation method for multi-element cathode material
CN115394985A (en) High-entropy cathode material and preparation method and application thereof
JP4798962B2 (en) Lithium manganese composite oxide and method for producing the same
JPH1072219A (en) Multiple oxide of lithium, its production and active material of positive electrode for lithium secondary battery
JPH10172567A (en) Manufacture of lithium manganate
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP2001202959A (en) Active material for positive electrode of nonaqueous electrolyte secondary battery and its producing method
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JPH1064516A (en) Lithium battery
CN111430701A (en) Lithium-rich carbonate precursor and preparation method and application thereof
CN107406273A (en) Lithium nickel manganese composite oxide and its manufacture method and use its positive pole and electrical storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R151 Written notification of patent or utility model registration

Ref document number: 4050123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term