[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004119052A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2004119052A
JP2004119052A JP2002277336A JP2002277336A JP2004119052A JP 2004119052 A JP2004119052 A JP 2004119052A JP 2002277336 A JP2002277336 A JP 2002277336A JP 2002277336 A JP2002277336 A JP 2002277336A JP 2004119052 A JP2004119052 A JP 2004119052A
Authority
JP
Japan
Prior art keywords
fuel cell
amount
gas
oxidizing gas
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002277336A
Other languages
Japanese (ja)
Other versions
JP4744058B2 (en
Inventor
Koichiro Hara
原 浩一郎
Kenji Kunieda
國枝 健司
Hiroshi Okazaki
岡崎 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2002277336A priority Critical patent/JP4744058B2/en
Publication of JP2004119052A publication Critical patent/JP2004119052A/en
Application granted granted Critical
Publication of JP4744058B2 publication Critical patent/JP4744058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To operate a fuel cell efficiently by maintaining moisture condition inside the fuel cell in superior condition. <P>SOLUTION: The incoming and outgoing water quantity Wb is calculated (S100-S130 ) by subtracting the outflow water quantity Wout brought out of the fuel cell by the off-gas of the air system of the fuel cell from the value of inflow water quantity Win brought into the fuel cell by the air supplied to the fuel cell as an oxidation gas added with the generated water quantity Wfc generated in connection with power generation of the fuel cell; and when the absolute value of the incoming and outgoing water quantity is larger than the threshold value Wref, the air flow rate Q is corrected by increasing and decreasing (S140-S150) using a value obtained by multiplying the incoming and outgoing water quantity Wb by a proportional constant k3. Since the increase and decrease of the air inflow rate Q have a larger increase and decrease of the outflow water quantity Wout compared with that of the inflow water quantity Win, the incoming and outgoing water quantity Wb is moved toward the value 0, thus, its absolute value is made to be the threshold value Wref or less. By this control, the moisture condition inside the fuel cell can be maintained in the superior condition. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池システムに関し、詳しくは、燃料ガスと酸化ガスの供給を受けて発電する燃料電池を備える燃料電池システムに関する。
【0002】
【従来の技術】
従来、この種の燃料電池システムとしては、燃料電池に供給される空気と燃料電池から排出される空気極系の排ガスとの水分授受により燃料電池に供給される空気を加湿する加湿装置を備えるものが提案されている(例えば、特許文献1参照)。このシステムでは、更に加湿装置をバイパスして空気を燃料電池に供給するバイパスラインも設けられており、バイパスラインを介して空気を燃料電池に供給することにより、圧力損失を低減すると共に燃料電池内の生成水を押し流すものとしている。
【0003】
【特許文献1】
特開2000−306595号公報(図1)
【0004】
【発明が解決しようとする課題】
しかしながら、こうした燃料電池システムでは、燃料電池内に溜まった生成水をバイパスラインを介して燃料電池に供給される空気で押し流すことはできるが、燃料電池内に生成水が溜まらないようにすることについては考慮されていない。また、燃料電池内に生成水が溜まらないようにするためにバイパスラインを介して燃料電池に空気を供給することも考えられるが、この空気量が過剰となると、固体高分子型の燃料電池では電解質膜の湿潤性が損なわれ、電池性能の低下を招いてしまう。
【0005】
本発明の燃料電池システムは、燃料電池内の水分状態を良好なものにすることを目的の一つとする。また、本発明の燃料電池システムは、燃料電池を効率よく運転することを目的の一つとする。
【0006】
【課題を解決するための手段およびその作用・効果】
本発明の燃料電池システムは、上述の目的の少なくとも一部を達成するために以下の手段を採った。
【0007】
本発明の燃料電池システムは、
燃料ガスと酸化ガスの供給を受けて発電する燃料電池を備える燃料電池システムであって、
前記燃料電池に酸化ガスを供給する酸化ガス供給手段と、
該酸化ガス供給手段により前記燃料電池に供給される酸化ガスと該燃料電池から排出される酸化ガス系の排出ガスとの水分授受により酸化ガスを加湿可能な加湿手段と、
前記酸化ガスにより前記燃料電池に供給が見込まれる酸化ガス含有水量に該燃料電池の発電に伴って生成が見込まれる生成水量を加えて計算される入力水量から前記酸化ガス系の排出ガスにより該燃料電池から持ち出しが見込まれる出力水量を減じて得られる収支水量に基づいて前記燃料電池へのガスまたは冷媒の供給を制御する制御手段と、
を備えることを要旨とする。
【0008】
この本発明の燃料電池システムでは、酸化ガスにより燃料電池に供給が見込まれる酸化ガス含有水量に燃料電池の発電に伴って生成が見込まれる生成水量を加えて計算される入力水量から酸化ガス系の排出ガスにより燃料電池から持ち出しが見込まれる出力水量を減じて得られる収支水量に基づいて燃料電池へのガスまたは冷媒の供給を制御する。即ち収支水量を制御量として燃料電池内の水分状態を良好なものに制御することができる。この結果、燃料電池をより効率よく運転することができる。ここで、酸化ガス含有水量および出力水量としては、酸化ガスおよび排ガスが飽和水蒸気圧であるとして演算されるものを用いることができる。また、生成水量としては、燃料電池から取り出される電流に基づいて演算されるものを用いることができる。なお、酸化ガスとしては空気を用いることができる。
【0009】
こうした本発明の燃料電池システムにおいて、前記制御手段は、前記収支水量が値0となるよう制御する手段であるものとすることもできる。こうすれば、燃料電池内の水分量の過剰な増加や過剰な減少を抑止することができると共に燃料電池をより効率よく良好に運転することができる。この態様の本発明の燃料電池システムにおいて、前記制御手段は、前記収支水量が正の値のときには前記燃料電池へのガスの供給量が多くなる傾向に制御すると共に前記収支水量が負の値のときには前記燃料電池へのガスの供給量が少なくなる傾向に制御する手段であるものとすることもできる。収支水量が正の値のときに燃料電池へのガスの供給量を多くするのは、酸化ガス含有水量が多くなることによって入力水量も出力水量も多くなるが、入力水量の増加に比して出力水量の増加の方が大きくなることから、収支水量を小さくすることができることに基づく。収支水量が負の値のときも同様な理由に基づく。
【0010】
また、本発明の燃料電池システムにおいて、前記制御手段は、前記収支水量が値0を含む所定範囲内となるよう制御する手段であるものとすることもできる。こうすれば、燃料電池内の水分量の過剰な増加や過剰な減少を抑止することができると共に燃料電池をより効率よく良好に運転することができる。この態様の本発明の燃料電池システムにおいて、前記制御手段は、前記収支水量が前記所定範囲を上回るときには前記燃料電池へのガスの供給量が多くなり前記収支水量が前記所定範囲を下回るときには前記燃料電池へのガスの供給量が少なくなる傾向に制御する手段であるものとすることもできる。収支水量が所定範囲を上回るときに酸化ガスの供給量を多くするのは、酸化ガス含有水量が多くなることによって入力水量も出力水量も多くなるが、入力水量の増加に比して出力水量の増加の方が大きくなることから、収支水量を小さくすることができることに基づく。収支水量が所定範囲を下回るときも同様な理由に基づく。
【0011】
【発明の実施の形態】
次に、本発明の実施の形態を実施例を用いて説明する。図1は、本発明の一実施例である燃料電池システム20の一部の構成の概略を示す構成図である。実施例の燃料電池システム20は、図示するように、水素リッチな燃料ガスと酸素を含有する酸化ガスとしての空気との供給を受けて発電する燃料電池22と、エアポンプ24によって燃料電池22に供給される空気の供給管路26および燃料電池22から排出される空気系の排出ガス(以下、空気系オフガスという)の排出管路27に取り付けられて空気を加湿する加湿器28と、システム全体をコントロールする電子制御ユニット30とを備える。
【0012】
燃料電池22は、例えば電解質膜とこの電解質膜を狭持するカソードおよびアノード側の電極とからなる単電池を複数積層した燃料電池スタックとして構成されており、カソード側の電極に供給される空気とアノード側に供給される水素との反応により水の生成を伴って発電する。燃料電池22の出力端子からの電力ラインには、通常、図示しないDC/DCコンバータやインバータなどが取り付けられており、燃料電池22から取り出す電力(発電電力)が調整できるようになっている。また、燃料電池22には、発電に伴って生じる熱を排出するために冷却媒体(例えば冷却水)の循環流路が形成されており、その温度が発電に適した温度になるよう電子制御ユニット30により調節されている。
【0013】
加湿器28は、水蒸気選択透過性の高い中空糸膜により分けられた供給ガス通路28aと排出ガス通路28bとにそれぞれ供給管路26と排出管路27とが取り付けられており、燃料電池22のカソードから排出された水蒸気を含んだ高温の空気系オフガスとエアポンプ24によって燃料電池22に供給される空気とを向流接触させることにより、空気系オフガスの水蒸気と熱を燃料電池22に供給される空気に移す。具体的には、水蒸気を含む空気系オフガスと水蒸気をあまり含まない空気との間に発生する水蒸気分圧の差によって空気系オフガスの水蒸気が中空糸膜を透過して空気へ移ると共に高温の空気系オフガスの熱が常温の空気に中空糸膜を介して伝達されることにより行なわれるのである。
【0014】
電子制御ユニット30は、CPU32を中心とするマイクロプロセッサとして構成されており、CPU32の他に処理プログラムを記憶するROM34と、データを一時的に記憶するRAM36と、図示しない入出力ポートを備える。電子制御ユニット30には、供給管路26に取り付けられた流量計40により検出されるエアポンプ24によって燃料電池22に供給される空気の流量であるエア流量Qや供給管路26の燃料電池22への入口近傍に取り付けられた温度センサ42により検出される空気の温度としての入口温度Tin,排出管路27の燃料電池22の出口近傍に取り付けられた温度センサ44により検出される空気系オフガスの温度としての出口温度Tout,燃料電池22からの電力ラインに取り付けられた電流センサ46からの発電電流iなどが入力ポートを介して入力されている。また、電子制御ユニット30からは、エアポンプ24への駆動信号や燃料ガスを燃料電池22に供給する図示しない燃料ガス供給部に燃料ガスの供給量を調節するための駆動信号などが出力ポートを介して出力されている。
【0015】
次に、こうして構成された実施例の燃料電池システム20の動作、特に燃料電池22への空気の供給量と空気の加湿の調整における動作について説明する。図2は、電子制御ユニット30により実行される加湿処理ルーチンに一例を示すフローチャートである。このルーチンは、所定時間毎(例えば、0.1秒毎や1秒毎など)に繰り返し実行される。加湿処理ルーチンが実行されると、電子制御ユニット30のCPU32は、まず、温度センサ42により検出される燃料電池22に供給される空気の入口温度Tinや温度センサ44により検出される空気系オフガスの燃料電池22からの出口温度Tout,流量計40により検出される燃料電池22に供給される空気の流量としてのエア流量Q,電流センサ46により検出される燃料電池22の発電電流iなどを読み込む処理を実行する(ステップS100)。
【0016】
続いて、読み込んだ入口温度Tinとエア流量Qとに基づいて次式(1)により燃料電池22に供給される空気により単位時間当たりに燃料電池22に持ち込まれる水量である流入水量Winを計算すると共に出口温度Toutとエア流量Qとに基づいて式(2)により空気系オフガスにより単位時間当たりに燃料電池22から待ち出される水量である流出水量Woutを計算し(ステップS110)、更に、発電電流iに基づいて燃料電池22の発電に伴って生成される生成水量Wfcを計算する(ステップS120)。流入水量Winは、実施例では、燃料電池22に供給される空気が入口温度Tinにおける飽和水蒸気を含むものとして計算される。即ち、入口温度Tinにおける飽和水蒸気圧から燃料電池22に供給される空気の単位体積当たりの水量を求め(式(1)中の関数f1)、これにエア流量Qと換算係数k1を乗じて求めるのである。ここで、換算係数k1は、加湿器28による加湿により増加する流量を反映するものとして設定されている。実施例では、流出水量Woutも燃料電池22からの空気系オフガスが出口温度Toutにおける飽和水蒸気を含むものとして計算される。即ち、流入水量Winと同様に出口温度Toutにおける飽和水蒸気圧から空気系オフガスの単位体積当たりの水量を求め、これにエア流量Qと換算係数k2を乗じて求めるのである。ここで、換算係数k2は、燃料電池22の発電に伴って消費される空気中の酸素の消費量と燃料電池22の発電に伴って生成される生成水が気化した際の水蒸気による増加分とを反映するものとして設定されている。
【0017】
【数1】
Win=k1・Q・f1(Tin)   (1)
Wout=k2・Q・f1(Tout) (2)
【0018】
こうして流入水量Winと流出水量Woutと生成水量Wfcとを計算すると、次式(3)に示すように、流入水量Winと生成水量Wfcとの和から流出水量Woutを減じて収支水量Wbを計算する(ステップS130)。収支水量Wbは、式(1)の計算式から解るように、その値が正のときには燃料電池22内で水が溜まりがちな状態である程度を示し、その値が負のときには燃料電池22内が乾きがちな状態である程度を示す。
【0019】
【数2】
Wb=Win+Wfc−Wout    (3)
【0020】
そして、収支水量Wbの絶対値が閾値Wrefより大きいか否か、即ち収支水量Wbが値0を含む正負の閾値Wrefにより設定される所定範囲内にあるか否かを判定する(ステップS140)。ここで、閾値Wrefは、燃料電池22内に水が溜まったり燃料電池22内が乾きすぎたりしていない良好な状態、即ち燃料電池22が良好に発電を継続することができる状態の範囲を設定するものであり、燃料電池22の規模などによって定められる。収支水量Wbが閾値Wref以下のときには、燃料電池22内の水の状態が良好で供給される空気の加湿状態も良好と判断して本ルーチンを終了し、収支水量Wbが閾値Wrefより大きいときには、収支水量Wbに比例定数k3を乗じたものをエア流量Qに加えて新たなエア流量Qを設定して(ステップS150)、本ルーチンを終了する。ここで、エア流量Qは、収支水量Wbが正の値のときにはエア流量Qが増加されるよう設定され、収支水量Wbが負の値のときにはエア流量Qが減少されるよう設定される。これは、通常、燃料電池22に供給される空気の温度(入口温度Tin)より空気系オフガスの温度(出口温度Tout)の方が高いことと上述した式(1)および式(2)の関数f1により得られる単位体積当たりの水量が温度を変数として飽和水蒸気圧に基づいて計算されることにと基づく。即ち、式(1)中のf1(Tin)よりf1(Tout)の方が大きいから、収支水量Wbが正の値で閾値Wrefより大きいときにエア流量Qを増加すれば、エア流量Qの増加に基づく流入水量Winの増加に比して流出水量Woutの増加の方が大きくなり、生成水量Wfcが同一であれば、式(3)から収支水量Wbは小さくなってその値は閾値Wref以下となる。収支水量Wbが負の値で閾値Wrefより小さいときにエア流量Qを減少すれば、エア流量Qの減少に基づく流入水量Winの減少に比して流出水量Woutの減少の方が大きくなるから、生成水量Wfcが同一であれば、式(3)から収支水量Wbは大きくなってその値は閾値Wref以上(その値の絶対値は閾値Wref以下)となる。
【0021】
以上説明した実施例の燃料電池システム20によれば、収支水量Wbの絶対値を閾値Wref以下となるようエア流量Qを調節することにより、燃料電池22内の水分状態を良好な状態に保つことができる。この結果、燃料電池を効率よく運転することができる。
【0022】
実施例の燃料電池システム20では、収支水量Wbが閾値Wrefにより設定される所定範囲内にないときにエア流量Qを調節するものとしたが、収支水量Wbが閾値Wrefにより設定される所定範囲内にあるか否かに拘わらずにエア流量Qを調節するものとしてもよい。
【0023】
実施例の燃料電池システム20では、収支水量Wbが閾値Wrefにより設定される所定範囲内になるようエア流量Qを調節するものとしたが、燃料電池22への燃料ガスの供給量を調節したり、燃料電池22への冷媒の供給量を調節することにより、収支水量Wbが閾値Wrefにより設定される所定範囲内になるよう調節するものとしてもよい。また、燃料電池22への冷媒の熱を放熱する放熱器を設け、この放熱器による放熱量を調節(ファンのオンオフ制御など)して燃料電池22の温度を調節することにより収支水量Wbが閾値Wrefにより設定される所定範囲内となるようにしてもよい。
【0024】
実施例の燃料電池システム20では、空気系オフガスの全量を加湿器28に供給して空気系オフガスの水蒸気と熱とを供給管路26により燃料電池22に供給される空気に移すものとしたが、図3の変形例の燃料電池システム20Bに示すように、空気系オフガスの排出管路27に加湿器28をバイパスするバイパス管50を設けると共にこのバイパス管50に調節弁52を設け、調節弁52を開閉制御することにより、空気系オフガスの一部をバイパスさせることにより燃料電池22に供給される空気の加湿量を調節するものとしてもよい。
【0025】
実施例の燃料電池システム20では、流入水量Winや流出水量Woutの計算については燃料電池22に供給される空気と燃料電池22からの空気系オフガスとが飽和水蒸気を含むものとして計算したが、供給管路26の燃料電池22への入口近傍の空気の湿度と排出管路27の燃料電池22からの出口近傍の空気系オフガスの湿度を検出して流入水量Winや流出水量Woutを計算するものとしてもよい。
【0026】
実施例の燃料電池システム20では、エアポンプ24と加湿器28との間の供給管路26に設けられた流量計40により検出されたエア流量Qに基づいて流入水量Winや流出水量Woutを計算したが、供給管路26の燃料電池22への入口近傍と排出管路27の燃料電池22からの出口近傍に流量計を取り付け、この流量計からの値を用いて流入水量Winや流出水量Woutを計算するものとしてもよい。
【0027】
以上、本発明の実施の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】本発明の一実施例である燃料電池システム20の一部の構成の概略を示す構成図である。
【図2】実施例の電子制御ユニット30により実行される加湿処理ルーチンに一例を示すフローチャートである。
【図3】変形例の燃料電池システム20Bの一部の構成の概略を示す構成図である。
【符号の説明】
20 燃料電池システム、22 燃料電池、24 エアポンプ、26 供給管路、27 排出管路、28 加湿器、30 電子制御ユニット、32 CPU、34 ROM、36 RAM、40 流量計、42,44 温度センサ、46 電流センサ、50 バイパス管、52 調節弁。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell system, and more particularly, to a fuel cell system including a fuel cell that receives power of a fuel gas and an oxidizing gas to generate power.
[0002]
[Prior art]
Conventionally, this type of fuel cell system includes a humidifier that humidifies the air supplied to the fuel cell by transferring moisture between air supplied to the fuel cell and exhaust gas of an air electrode system discharged from the fuel cell. Has been proposed (for example, see Patent Document 1). In this system, a bypass line for supplying air to the fuel cell by bypassing the humidifier is also provided. By supplying air to the fuel cell via the bypass line, pressure loss is reduced and the fuel cell is provided with a bypass line. The generated water is washed away.
[0003]
[Patent Document 1]
JP-A-2000-306595 (FIG. 1)
[0004]
[Problems to be solved by the invention]
However, in such a fuel cell system, although the generated water accumulated in the fuel cell can be flushed with the air supplied to the fuel cell via the bypass line, it is necessary to prevent the generated water from accumulating in the fuel cell. Is not taken into account. It is also conceivable to supply air to the fuel cell through a bypass line in order to prevent generated water from accumulating in the fuel cell.However, when the amount of air is excessive, in a polymer electrolyte fuel cell, The wettability of the electrolyte membrane is impaired, leading to a decrease in battery performance.
[0005]
An object of the fuel cell system of the present invention is to improve the moisture condition in the fuel cell. Another object of the fuel cell system of the present invention is to operate a fuel cell efficiently.
[0006]
[Means for Solving the Problems and Their Functions and Effects]
The fuel cell system of the present invention employs the following means in order to achieve at least a part of the above objects.
[0007]
The fuel cell system of the present invention comprises:
A fuel cell system including a fuel cell that receives power of a fuel gas and an oxidizing gas and generates power,
Oxidizing gas supply means for supplying oxidizing gas to the fuel cell,
Humidifying means capable of humidifying the oxidizing gas by transferring water between the oxidizing gas supplied to the fuel cell by the oxidizing gas supplying means and an oxidizing gas-based exhaust gas discharged from the fuel cell;
From the input water amount calculated by adding the amount of oxidizing gas-containing water expected to be supplied to the fuel cell by the oxidizing gas and the amount of generated water expected to be generated with the power generation of the fuel cell, the fuel is discharged by the oxidizing gas-based exhaust gas. Control means for controlling the supply of gas or refrigerant to the fuel cell based on the balance water amount obtained by reducing the amount of output water expected to be taken out of the battery,
The gist is to provide
[0008]
In the fuel cell system of the present invention, the oxidizing gas-based water is calculated from the input water amount calculated by adding the oxidizing gas-containing water amount expected to be supplied to the fuel cell by the oxidizing gas to the generated water amount expected to be generated by the power generation of the fuel cell. The supply of gas or refrigerant to the fuel cell is controlled based on the amount of water that is obtained by reducing the amount of output water expected to be taken out of the fuel cell by the exhaust gas. That is, it is possible to control the water condition in the fuel cell to a favorable one by using the balance water amount as a control amount. As a result, the fuel cell can be operated more efficiently. Here, as the oxidizing gas-containing water amount and the output water amount, those calculated assuming that the oxidizing gas and the exhaust gas have a saturated steam pressure can be used. Further, as the amount of generated water, a value calculated based on the current taken out from the fuel cell can be used. Note that air can be used as the oxidizing gas.
[0009]
In such a fuel cell system according to the present invention, the control means may be means for controlling the amount of the balance water to be zero. By doing so, it is possible to suppress an excessive increase or an excessive decrease in the amount of water in the fuel cell, and it is possible to operate the fuel cell more efficiently and favorably. In the fuel cell system according to the aspect of the present invention, the control means controls the gas supply amount to the fuel cell to increase when the balance water amount is a positive value, and the balance water amount is a negative value. Sometimes, the control means may be a means for controlling the gas supply amount to the fuel cell so as to decrease. Increasing the amount of gas supply to the fuel cell when the balance water amount is a positive value is because the input water amount and the output water amount increase due to the increase in the oxidizing gas-containing water amount. This is based on the fact that the amount of output water increases, so that the amount of income and expenditure can be reduced. The same applies to the case where the balance is negative.
[0010]
Further, in the fuel cell system of the present invention, the control means may be means for controlling the amount of the balance water to fall within a predetermined range including a value of zero. By doing so, it is possible to suppress an excessive increase or an excessive decrease in the amount of water in the fuel cell, and it is possible to operate the fuel cell more efficiently and favorably. In the fuel cell system according to the aspect of the present invention, the control unit may control the fuel supply when the amount of water supplied to the fuel cell is larger than the predetermined range and the amount of gas supplied to the fuel cell is smaller than the predetermined range. It may be a means for controlling the supply amount of gas to the battery to be reduced. Increasing the supply amount of the oxidizing gas when the balance water amount exceeds the predetermined range is because the input water amount and the output water amount also increase due to the increase in the oxidizing gas-containing water amount, but the output water amount is larger than the input water amount. This is based on the fact that the larger the increase, the smaller the amount of water balance. The same reason is applied when the amount of income and expenditure falls below the predetermined range.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described using examples. FIG. 1 is a configuration diagram schematically showing a partial configuration of a fuel cell system 20 according to one embodiment of the present invention. As shown in the figure, a fuel cell system 20 of the embodiment receives a supply of a hydrogen-rich fuel gas and air as an oxidizing gas containing oxygen to generate electric power, and supplies the fuel cell 22 with an air pump 24 to the fuel cell 22. A humidifier 28 attached to a supply pipe 26 of air to be discharged and a discharge pipe 27 of an air-based exhaust gas (hereinafter referred to as an air-based off-gas) discharged from the fuel cell 22 to humidify the air, and a whole system And an electronic control unit 30 for controlling.
[0012]
The fuel cell 22 is configured as, for example, a fuel cell stack in which a plurality of unit cells each including an electrolyte membrane and a cathode and an anode side electrode sandwiching the electrolyte membrane are stacked, and the air supplied to the cathode side electrode and The reaction with hydrogen supplied to the anode side generates power with the generation of water. A DC / DC converter, an inverter, and the like (not shown) are usually attached to a power line from an output terminal of the fuel cell 22 so that power (generated power) extracted from the fuel cell 22 can be adjusted. Further, the fuel cell 22 is provided with a circulating flow path for a cooling medium (for example, cooling water) for discharging heat generated by the power generation, and an electronic control unit so that the temperature becomes a temperature suitable for the power generation. It is adjusted by 30.
[0013]
In the humidifier 28, a supply pipe 26 and a discharge pipe 27 are attached to a supply gas passage 28a and a discharge gas passage 28b separated by a hollow fiber membrane having high water vapor selective permeability. The steam and heat of the air-based off-gas are supplied to the fuel cell 22 by bringing the high-temperature air-based off-gas containing water vapor discharged from the cathode into countercurrent contact with the air supplied to the fuel cell 22 by the air pump 24. Remove to air. Specifically, due to the difference in the partial pressure of water vapor generated between the air-based off gas containing water vapor and the air containing little water vapor, the water vapor of the air-based off gas moves through the hollow fiber membrane to the air, This is carried out by transferring the heat of the system off-gas to the room temperature air via the hollow fiber membrane.
[0014]
The electronic control unit 30 is configured as a microprocessor mainly including a CPU 32, and includes, in addition to the CPU 32, a ROM 34 for storing a processing program, a RAM 36 for temporarily storing data, and an input / output port (not shown). The electronic control unit 30 has an air flow rate Q, which is a flow rate of air supplied to the fuel cell 22 by the air pump 24 detected by a flow meter 40 attached to the supply pipe 26, and a flow rate to the fuel cell 22 in the supply pipe 26. Temperature Tin as an air temperature detected by a temperature sensor 42 mounted near the inlet of the fuel cell, and a temperature of the air-based off-gas detected by a temperature sensor 44 mounted near the outlet of the fuel cell 22 in the discharge pipe 27. , An output temperature Tout, a generated current i from a current sensor 46 attached to a power line from the fuel cell 22, and the like are input via an input port. From the electronic control unit 30, a drive signal to the air pump 24 and a drive signal for adjusting a supply amount of the fuel gas to a fuel gas supply unit (not shown) for supplying the fuel gas to the fuel cell 22 are output through an output port. Output.
[0015]
Next, the operation of the fuel cell system 20 according to the embodiment configured as described above, particularly, the operation in adjusting the supply amount of air to the fuel cell 22 and the humidification of air will be described. FIG. 2 is a flowchart illustrating an example of the humidification processing routine executed by the electronic control unit 30. This routine is repeatedly executed at predetermined time intervals (for example, every 0.1 seconds, every 1 second, etc.). When the humidification processing routine is executed, the CPU 32 of the electronic control unit 30 first detects the inlet temperature Tin of the air supplied to the fuel cell 22 detected by the temperature sensor 42 and the air-based off-gas detected by the temperature sensor 44. Processing for reading the outlet temperature Tout from the fuel cell 22, the air flow rate Q as the flow rate of the air supplied to the fuel cell 22 detected by the flow meter 40, the generated current i of the fuel cell 22 detected by the current sensor 46, and the like. Is executed (step S100).
[0016]
Subsequently, based on the read inlet temperature Tin and the air flow rate Q, the inflow water amount Win, which is the amount of water brought into the fuel cell 22 per unit time by the air supplied to the fuel cell 22, is calculated by the following equation (1). At the same time, based on the outlet temperature Tout and the air flow rate Q, the outflow water amount Wout, which is the amount of water waiting from the fuel cell 22 per unit time by the air-based off-gas per unit time, is calculated by equation (2) (step S110). Based on i, the generated water amount Wfc generated with the power generation of the fuel cell 22 is calculated (step S120). In the embodiment, the inflow water amount Win is calculated assuming that the air supplied to the fuel cell 22 contains saturated steam at the inlet temperature Tin. That is, the amount of water per unit volume of air supplied to the fuel cell 22 is obtained from the saturated water vapor pressure at the inlet temperature Tin (function f1 in the equation (1)), and is multiplied by the air flow rate Q and the conversion coefficient k1. It is. Here, the conversion coefficient k1 is set to reflect the flow rate that increases due to humidification by the humidifier 28. In the embodiment, the outflow water amount Wout is also calculated assuming that the air-based off-gas from the fuel cell 22 contains saturated steam at the outlet temperature Tout. That is, similarly to the inflow water amount Win, the water amount per unit volume of the air-based off-gas is obtained from the saturated steam pressure at the outlet temperature Tout, and the water amount per unit volume of the air-based off-gas is multiplied by the air flow rate Q and the conversion coefficient k2. Here, the conversion coefficient k2 is calculated based on the amount of oxygen consumed in the air consumed by the power generation of the fuel cell 22 and the increase due to water vapor when the generated water generated by the power generation of the fuel cell 22 is vaporized. Is set to reflect the
[0017]
(Equation 1)
Win = k1 · Q · f1 (Tin) (1)
Wout = k2 · Q · f1 (Tout) (2)
[0018]
When the inflow water amount Win, the outflow water amount Wout, and the generated water amount Wfc are calculated, the outflow water amount Wout is calculated by subtracting the outflow water amount Wout from the sum of the inflow water amount Win and the generated water amount Wfc as shown in the following equation (3). (Step S130). As can be seen from the calculation formula (1), the balance water amount Wb indicates a certain state in which water tends to accumulate in the fuel cell 22 when its value is positive, and indicates the state where water in the fuel cell 22 tends to accumulate when the value is negative. Shows some degree in a state that tends to dry.
[0019]
(Equation 2)
Wb = Win + Wfc-Wout (3)
[0020]
Then, it is determined whether or not the absolute value of the balance water amount Wb is larger than the threshold value Wref, that is, whether or not the balance amount Wb is within a predetermined range set by the positive and negative threshold values Wref including the value 0 (step S140). Here, the threshold value Wref sets a range of a favorable state in which water does not accumulate in the fuel cell 22 or the inside of the fuel cell 22 is not too dry, that is, a state in which the fuel cell 22 can continue generating power satisfactorily. It is determined by the size of the fuel cell 22 and the like. When the balance water amount Wb is equal to or less than the threshold value Wref, the condition of the water in the fuel cell 22 is good and the humidification state of the supplied air is also determined to be good, and this routine is terminated. When the balance water amount Wb is greater than the threshold value Wref, A new air flow rate Q is set by adding a value obtained by multiplying the balance water amount Wb by the proportionality constant k3 to the air flow rate Q (step S150), and this routine ends. Here, the air flow rate Q is set so that the air flow rate Q is increased when the balance water amount Wb is a positive value, and is set so as to decrease when the balance water amount Wb is a negative value. This is because the temperature of the air-based off-gas (outlet temperature Tout) is usually higher than the temperature of the air supplied to the fuel cell 22 (inlet temperature Tin) and the function of the above-described equations (1) and (2). This is based on the fact that the amount of water per unit volume obtained by f1 is calculated based on the saturated steam pressure using temperature as a variable. That is, since f1 (Tout) is larger than f1 (Tin) in the equation (1), if the air flow rate Q is increased when the balance water amount Wb is a positive value and larger than the threshold value Wref, the air flow rate Q increases. If the amount of outflow water Wout is larger than the increase of the amount of inflow water Win based on the following formula, and the amount of generated water Wfc is the same, the amount Wb of income and expenditure becomes smaller from equation (3), and the value becomes less than or equal to the threshold value Wref. Become. If the air flow rate Q is reduced when the balance water amount Wb is a negative value and smaller than the threshold value Wref, the decrease in the outflow water amount Wout is larger than the decrease in the inflow water amount Win based on the decrease in the air flow amount Q. If the generated water amount Wfc is the same, the balance water amount Wb increases from the equation (3), and its value becomes equal to or larger than the threshold value Wref (the absolute value of the value is equal to or smaller than the threshold value Wref).
[0021]
According to the fuel cell system 20 of the embodiment described above, the water state in the fuel cell 22 is maintained in a good state by adjusting the air flow rate Q so that the absolute value of the water balance Wb is equal to or less than the threshold value Wref. Can be. As a result, the fuel cell can be operated efficiently.
[0022]
In the fuel cell system 20 of the embodiment, the air flow rate Q is adjusted when the balance water amount Wb is not within the predetermined range set by the threshold value Wref. However, the balance water amount Wb falls within the predetermined range set by the threshold value Wref. The air flow rate Q may be adjusted irrespective of whether the air flow rate is within the range.
[0023]
In the fuel cell system 20 of the embodiment, the air flow rate Q is adjusted so that the balance water amount Wb falls within a predetermined range set by the threshold value Wref. However, the fuel gas supply amount to the fuel cell 22 is adjusted. By adjusting the supply amount of the refrigerant to the fuel cell 22, the balance water amount Wb may be adjusted to be within a predetermined range set by the threshold value Wref. Further, a radiator for radiating heat of the refrigerant to the fuel cell 22 is provided, and the amount of heat radiated by the radiator is adjusted (for example, on / off control of a fan) to adjust the temperature of the fuel cell 22 so that the amount of water Wb is adjusted to a threshold value. The value may be within a predetermined range set by Wref.
[0024]
In the fuel cell system 20 of the embodiment, the entire amount of the air-based off-gas is supplied to the humidifier 28 to transfer the water vapor and heat of the air-based off-gas to the air supplied to the fuel cell 22 through the supply pipe 26. 3, a bypass pipe 50 for bypassing the humidifier 28 is provided in a discharge line 27 of the air-based off-gas, and a control valve 52 is provided in the bypass pipe 50. The humidification amount of the air supplied to the fuel cell 22 may be adjusted by controlling the opening / closing of the 52 to bypass a part of the air-based off-gas.
[0025]
In the fuel cell system 20 of the embodiment, the inflow water amount Win and the outflow water amount Wout were calculated on the assumption that the air supplied to the fuel cell 22 and the air-based off-gas from the fuel cell 22 contained saturated steam. Assuming that the humidity of the air near the inlet of the fuel cell 22 in the pipe 26 and the humidity of the air-based off-gas near the outlet of the fuel cell 22 in the discharge pipe 27 are detected, the inflow water amount Win and the outflow water amount Wout are calculated. Is also good.
[0026]
In the fuel cell system 20 of the embodiment, the inflow water amount Win and the outflow water amount Wout are calculated based on the air flow rate Q detected by the flow meter 40 provided in the supply pipe 26 between the air pump 24 and the humidifier 28. However, a flowmeter is attached near the inlet of the fuel cell 22 in the supply pipe 26 and near the outlet of the fuel cell 22 in the discharge pipe 27, and the inflow water amount Win and the outflow water amount Wout are determined using the values from the flowmeter. It may be calculated.
[0027]
As described above, the embodiments of the present invention have been described using the examples. However, the present invention is not limited to these examples, and may be implemented in various forms without departing from the gist of the present invention. Obviously you can get it.
[Brief description of the drawings]
FIG. 1 is a configuration diagram schematically showing a configuration of a part of a fuel cell system 20 according to an embodiment of the present invention.
FIG. 2 is a flowchart illustrating an example of a humidification process routine executed by an electronic control unit 30 of the embodiment.
FIG. 3 is a configuration diagram schematically showing a configuration of a part of a fuel cell system 20B according to a modification.
[Explanation of symbols]
Reference Signs List 20 fuel cell system, 22 fuel cell, 24 air pump, 26 supply line, 27 discharge line, 28 humidifier, 30 electronic control unit, 32 CPU, 34 ROM, 36 RAM, 40 flow meter, 42, 44 temperature sensor, 46 current sensor, 50 bypass pipe, 52 control valve.

Claims (8)

燃料ガスと酸化ガスの供給を受けて発電する燃料電池を備える燃料電池システムであって、
前記燃料電池に酸化ガスを供給する酸化ガス供給手段と、
該酸化ガス供給手段により前記燃料電池に供給される酸化ガスと該燃料電池から排出される酸化ガス系の排出ガスとの水分授受により酸化ガスを加湿可能な加湿手段と、
前記酸化ガスにより前記燃料電池に供給が見込まれる酸化ガス含有水量に該燃料電池の発電に伴って生成が見込まれる生成水量を加えて計算される入力水量から前記酸化ガス系の排出ガスにより該燃料電池から持ち出しが見込まれる出力水量を減じて得られる収支水量に基づいて前記燃料電池へのガスまたは冷媒の供給を制御する制御手段と、
を備える燃料電池システム。
A fuel cell system including a fuel cell that receives power of a fuel gas and an oxidizing gas and generates power,
Oxidizing gas supply means for supplying oxidizing gas to the fuel cell,
Humidifying means capable of humidifying the oxidizing gas by transferring water between the oxidizing gas supplied to the fuel cell by the oxidizing gas supplying means and an oxidizing gas-based exhaust gas discharged from the fuel cell;
From the input water amount calculated by adding the amount of oxidizing gas-containing water expected to be supplied to the fuel cell by the oxidizing gas and the amount of generated water expected to be generated with the power generation of the fuel cell, the fuel is discharged by the oxidizing gas-based exhaust gas. Control means for controlling the supply of gas or refrigerant to the fuel cell based on the balance water amount obtained by reducing the amount of output water expected to be taken out of the battery,
A fuel cell system comprising:
前記制御手段は、前記収支水量が値0となるよう制御する手段である請求項1記載の燃料電池システム。The fuel cell system according to claim 1, wherein the control unit is a unit that controls the amount of the balance water to be zero. 前記制御手段は、前記収支水量が正の値のときには前記燃料電池へのガスの供給量が多くなる傾向に制御すると共に前記収支水量が負の値のときには前記燃料電池へのガスの供給量が少なくなる傾向に制御する手段である請求項2記載の燃料電池システム。The control means controls the gas supply amount to the fuel cell to increase when the balance water amount is a positive value, and controls the gas supply amount to the fuel cell when the balance water amount is a negative value. 3. The fuel cell system according to claim 2, wherein the fuel cell system is means for controlling the fuel cell system to decrease. 前記制御手段は、前記収支水量が値0を含む所定範囲内となるよう制御する手段である請求項1記載の燃料電池システム。2. The fuel cell system according to claim 1, wherein the control unit is a unit that controls the balance water amount to be within a predetermined range including a value of zero. 前記制御手段は、前記収支水量が前記所定範囲を上回るときには前記燃料電池へのガスの供給量が多くなり前記収支水量が前記所定範囲を下回るときには前記燃料電池へのガスの供給量が少なくなる傾向に制御する手段である請求項4記載の燃料電池システム。The control means may be configured such that when the amount of the balance water exceeds the predetermined range, the amount of gas supply to the fuel cell increases, and when the amount of the balance water is less than the predetermined range, the amount of gas supply to the fuel cell decreases. 5. The fuel cell system according to claim 4, which is means for controlling the fuel cell system. 前記制御手段は、前記酸化ガスおよび前記排ガスは飽和水蒸気圧であるとして酸化ガス含有流量および出力水量を演算して用いる手段である請求項1ないし5いずれか記載の燃料電池システム。The fuel cell system according to any one of claims 1 to 5, wherein the control unit is a unit that calculates and uses an oxidizing gas content flow rate and an output water amount assuming that the oxidizing gas and the exhaust gas have a saturated steam pressure. 前記制御手段は、前記燃料電池から取り出される電流に基づいて前記生成水量を演算して用いる手段である請求項1ないし6いずれか記載の燃料電池システム。The fuel cell system according to any one of claims 1 to 6, wherein the control unit is a unit that calculates and uses the generated water amount based on a current drawn from the fuel cell. 前記酸化ガスは空気である請求項1ないし7いずれか記載の燃料電池システム。8. The fuel cell system according to claim 1, wherein said oxidizing gas is air.
JP2002277336A 2002-09-24 2002-09-24 Fuel cell system Expired - Fee Related JP4744058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277336A JP4744058B2 (en) 2002-09-24 2002-09-24 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277336A JP4744058B2 (en) 2002-09-24 2002-09-24 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2004119052A true JP2004119052A (en) 2004-04-15
JP4744058B2 JP4744058B2 (en) 2011-08-10

Family

ID=32272964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277336A Expired - Fee Related JP4744058B2 (en) 2002-09-24 2002-09-24 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4744058B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192973A (en) * 2002-12-12 2004-07-08 Sony Corp Fuel cell system and fuel cell operation method
JP2005285648A (en) * 2004-03-30 2005-10-13 Aisin Seiki Co Ltd Fuel cell system
WO2007020768A1 (en) * 2005-08-15 2007-02-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system and generation control device
JP2008130308A (en) * 2006-11-20 2008-06-05 Denso Corp Fuel cell system
DE112006003150T5 (en) 2005-12-19 2008-09-25 Toyota Jidosha Kabushiki Kaisha, Toyota Fuel cell system and mobile object
JP2011222176A (en) * 2010-04-06 2011-11-04 Honda Motor Co Ltd Fuel cell system
CN102569848A (en) * 2010-12-09 2012-07-11 现代自动车株式会社 Controller for estimating relative humidity and condensed water, and method for controlling condensed water drain using the same
US11472296B2 (en) * 2019-04-16 2022-10-18 Toyota Jidosha Kabushiki Kaisha Fuel cell vehicle and control method of fuel cell vehicle
US11479125B2 (en) 2019-04-03 2022-10-25 Toyota Jidosha Kabushiki Kaisha Fuel cell vehicle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235324A (en) * 1994-02-23 1995-09-05 Toyota Motor Corp Drive device of fuel cell
JP2000106206A (en) * 1998-09-30 2000-04-11 Mazda Motor Corp Fuel cell system
JP2000164232A (en) * 1998-11-26 2000-06-16 Toshiba Corp Solid high molecular fuel cell system
JP2000251913A (en) * 1999-02-25 2000-09-14 Toyota Central Res & Dev Lab Inc Operating method for layered fuel cell, layered fuel cell and layered fuel cell system
JP2000306595A (en) * 1999-04-21 2000-11-02 Matsushita Seiko Co Ltd Fuel cell system
JP2001202975A (en) * 2000-01-19 2001-07-27 Honda Motor Co Ltd Humidifier for fuel cell
JP2002042842A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Solid polymer electrolyte type fuel cell system
JP2002066265A (en) * 2000-08-31 2002-03-05 Honda Motor Co Ltd Moistening apparatus
JP2002075418A (en) * 2000-08-30 2002-03-15 Honda Motor Co Ltd Humidifying device for fuel cell
JP2002164065A (en) * 2000-11-27 2002-06-07 Nissan Motor Co Ltd Fuel cell and its operating method
JP2002526905A (en) * 1998-10-08 2002-08-20 インターナショナル フュエル セルズ,エルエルシー Mass transfer composite membrane for fuel cell power plant

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235324A (en) * 1994-02-23 1995-09-05 Toyota Motor Corp Drive device of fuel cell
JP2000106206A (en) * 1998-09-30 2000-04-11 Mazda Motor Corp Fuel cell system
JP2002526905A (en) * 1998-10-08 2002-08-20 インターナショナル フュエル セルズ,エルエルシー Mass transfer composite membrane for fuel cell power plant
JP2000164232A (en) * 1998-11-26 2000-06-16 Toshiba Corp Solid high molecular fuel cell system
JP2000251913A (en) * 1999-02-25 2000-09-14 Toyota Central Res & Dev Lab Inc Operating method for layered fuel cell, layered fuel cell and layered fuel cell system
JP2000306595A (en) * 1999-04-21 2000-11-02 Matsushita Seiko Co Ltd Fuel cell system
JP2001202975A (en) * 2000-01-19 2001-07-27 Honda Motor Co Ltd Humidifier for fuel cell
JP2002042842A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Solid polymer electrolyte type fuel cell system
JP2002075418A (en) * 2000-08-30 2002-03-15 Honda Motor Co Ltd Humidifying device for fuel cell
JP2002066265A (en) * 2000-08-31 2002-03-05 Honda Motor Co Ltd Moistening apparatus
JP2002164065A (en) * 2000-11-27 2002-06-07 Nissan Motor Co Ltd Fuel cell and its operating method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590819B2 (en) * 2002-12-12 2010-12-01 ソニー株式会社 Fuel cell system and fuel cell operating method
JP2004192973A (en) * 2002-12-12 2004-07-08 Sony Corp Fuel cell system and fuel cell operation method
JP2005285648A (en) * 2004-03-30 2005-10-13 Aisin Seiki Co Ltd Fuel cell system
WO2007020768A1 (en) * 2005-08-15 2007-02-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system and generation control device
JP2007052936A (en) * 2005-08-15 2007-03-01 Toyota Motor Corp Fuel cell system
US8431277B2 (en) 2005-08-15 2013-04-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system and generation control device
US10008728B2 (en) 2005-12-19 2018-06-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system and mobile article
DE112006003150T5 (en) 2005-12-19 2008-09-25 Toyota Jidosha Kabushiki Kaisha, Toyota Fuel cell system and mobile object
JP2008130308A (en) * 2006-11-20 2008-06-05 Denso Corp Fuel cell system
JP2011222176A (en) * 2010-04-06 2011-11-04 Honda Motor Co Ltd Fuel cell system
CN102569848A (en) * 2010-12-09 2012-07-11 现代自动车株式会社 Controller for estimating relative humidity and condensed water, and method for controlling condensed water drain using the same
US9343762B2 (en) 2010-12-09 2016-05-17 Hyundai Motor Company Controller for estimating relative humidity and condensed water, and method for controlling condensed water drain using the same
US10424798B2 (en) 2010-12-09 2019-09-24 Hyundai Motor Company Controller for estimating relative humidity and condensed water, and method for controlling condensed water drain using the same
US11245126B2 (en) 2010-12-09 2022-02-08 Hyundai Motor Company Controller for estimating relative humidity and condensed water, and method for controlling condensed water drain using the same
US11251451B2 (en) 2010-12-09 2022-02-15 Hyundai Motor Company Controller for estimating relative humidity and condensed water, and method for controlling condensed water drain using the same
US11264628B2 (en) 2010-12-09 2022-03-01 Hyundai Motor Company Controller for estimating relative humidity and condensed water, and method for controlling condensed water drain using the same
US11479125B2 (en) 2019-04-03 2022-10-25 Toyota Jidosha Kabushiki Kaisha Fuel cell vehicle
US11472296B2 (en) * 2019-04-16 2022-10-18 Toyota Jidosha Kabushiki Kaisha Fuel cell vehicle and control method of fuel cell vehicle

Also Published As

Publication number Publication date
JP4744058B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP3722019B2 (en) Fuel cell system
US6844094B2 (en) Gas-supplying apparatus for fuel cell
JP5160774B2 (en) Control method of fuel cell system and fuel cell system
KR101592709B1 (en) Fuel cell system for vehicle and method for controlling the same
JP4577313B2 (en) Fuel cell system and fuel cell operating method
JP2002352827A (en) Fuel cell system
JP2004119052A (en) Fuel cell system
JP3832271B2 (en) Fuel cell system
JP4946087B2 (en) Fuel cell system
JP2002280046A (en) Fuel cell system
JP2007048507A (en) Fuel cell system
JP2005321030A (en) Fuel gas storage and supply apparatus
JP2014127452A (en) Fuel cell system
JP2003223909A (en) Fuel cell system
JP2004165087A (en) Controlling device of fuel cell stack
JP2002280029A (en) Control device for fuel cell system
JP2003178778A (en) Fuel cell system
JP4346702B2 (en) Fuel cell system
KR20140129738A (en) Air supply device for fuel cell system and method for adjusting pressure of air blower
JP5411901B2 (en) Fuel cell system
JP2004158274A (en) Moisture state estimation apparatus of fuel cell and fuel cell system
JP4010217B2 (en) Fuel cell system
JP4908686B2 (en) Temperature control device for supply gas supplied to fuel cell
JP7137436B2 (en) fuel cell system
JP2002246048A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees