[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004117319A - Method for measuring in-situ stress of base rock - Google Patents

Method for measuring in-situ stress of base rock Download PDF

Info

Publication number
JP2004117319A
JP2004117319A JP2002284980A JP2002284980A JP2004117319A JP 2004117319 A JP2004117319 A JP 2004117319A JP 2002284980 A JP2002284980 A JP 2002284980A JP 2002284980 A JP2002284980 A JP 2002284980A JP 2004117319 A JP2004117319 A JP 2004117319A
Authority
JP
Japan
Prior art keywords
stress
specimen
permeability
rock
original position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002284980A
Other languages
Japanese (ja)
Other versions
JP3893343B2 (en
Inventor
Yojiro Ikegawa
池川 洋二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2002284980A priority Critical patent/JP3893343B2/en
Publication of JP2004117319A publication Critical patent/JP2004117319A/en
Application granted granted Critical
Publication of JP3893343B2 publication Critical patent/JP3893343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate the behavior, stability, etc. of an underground base rock structure, in the construction of underground structures etc. <P>SOLUTION: A specimen 8, including a single base rock crack 4, is created from a borehole 3 bored in a base rock 2. The relation between the coefficient of permeability and the stress of the base rock crack 4 of a specimen 8 is determined by indoor testing. The coefficient of permeability of a single base rock crack 4 at an in-situ location 31 at which the specimen 8 is collected or in its vicinity is measured. The coefficient of permeability of the single base rock crack 4 of the in-situ location 31 is applied to the coefficient of permeability of the indoor testing, between the coefficient of permeability and stress of the base rock crack 4 of the specimen 8, to determine the stress at the in-situ location 31. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、地盤中に建設された地下空洞やトンネル、また、ダム,道路,宅地などに近接する斜面、更に、重要な構造物の基礎など、岩盤構造物の安定性評価において必要となる原位置応力の測定方法に関するものである。また、地震の予知に関しては、地殻の応力計測に利用されるものである。
【0002】
【従来の技術】
従来の岩盤内の応力測定法には、原位置で行う応力解放法,応力補償法,水圧破砕法などがあり、実績を上げている。また、室内では採取した岩石コアを用いて行うAE法などがある。
一方、岩盤の強度・変形性の分類に、地質学的な要素を用いる岩級分類と言われる方法が一般的に利用されている。この岩級では、割れ目の頻度,岩石の風化度(堅さ),割れ目の介在物(粘土類)の状態を細分指標として、健全な岩盤から風化の進行度が大きい岩盤を、B,CH ,CM ,CL ,D級などに分けている。従来の原位置応力の計測法は、岩級ではB級或いはB級に近いCH 級の岩盤を対象とする計測手法で、風化度が進み平行な割れ目間隔が10cm程度となるCH 級以下の岩盤には適さない。
【0003】
ここで、応力開放法は、岩盤中に計測器を設置した後、計測器を取り囲む周囲の岩盤をスリット状に切るなどし、外部から計測器の設置箇所に作用していた地圧を開放することにより得られる計測器の出力変化から地圧を求める方法である。
応力補償法は、先ず、岩盤表面から垂直に面状に切り込みを入れて応力開放させ、生じたスリット間の変位を計測する。次に、スリットにフラットジャッキを挿入して岩盤に作用していた応力を模擬させ、元の変位位置に戻し、応力を求める方法である。
【0004】
水圧破砕法は、自噴力の衰えた油井を刺激し、石油生産量の増加を狙う方法として始められ、地圧測定に利用されたものである。原理はボアホール内に内圧を加えて発生させた孔壁の亀裂(割れ目)の開口,閉合の条件から応力を求める方法である。
AE法は、一度、応力を受けた材料は、除荷後に再載荷しても受けた応力レベルまではAEの発生が少ないカイザー効果と呼ばれる現象を利用するものである。ここで、AE(acoustic emission )とは、材料が非可逆的な変形や破壊によって発生する弾性波を言うものである。
【0005】
【発明が解決しようとする課題】
岩盤は、工学的に割れ目の無い「岩石」と「割れ目」とで構成されると考えられる。従来の方法は、割れ目のない岩石部分を計測対象として、原位置や室内試験により求めるものである。従って、割れ目がある場合は割れ目を避けて測定を行うことになるため、割れ目が多く分布する岩盤では、割れ目の無い箇所を選択することが困難となり、計測が不可能となる。特に、原位置計測法である応力開放法,応力補償法などでは、割れ目の無い十分に広がる岩石部分を必要とする。このため、崩壊の危険があるような、風化が進み割れ目の分布が密になった斜面などでは計測が困難である。
【0006】
本発明による岩盤の原位置応力の計測方法は、従来の方法では計測対象とすることができなかった岩盤内の割れ目を対象とするものである。従って、従来の方法では不可能であった、風化が進み割れ目の頻度が大きい岩盤での応力計測が可能となる。
【0007】
【課題を解決するための手段】
本発明による岩盤の原位置応力の計測方法は、岩盤に削孔したポーリングコアから単一の岩盤割れ目を含む供試体を作成し、該供試体の前記岩盤割れ目の透水係数と応力との関係を室内試験により求め、前記供試体を採取した原位置又はその近傍の単一の岩盤割れ目の透水係数を計測し、該原位置の単一の岩盤割れ目の透水係数を前記供試体の岩盤割れ目の透水係数と応力との前記室内試験の透水係数に当てはめて、前記原位置の応力を求めるようにしたものである。
【0008】
【発明の実施の形態】
図1は本発明の一実施例における第1の工程を示すもので、図1(a)に示すようにトンネル1内から岩盤2に対し横方向にボーリング孔3を設けて、応力計測の対象となる原位置から単一の割れ目(開口)4を有するボーリングコア5を採取する。このボーリングコア5は、図1(b)に示すように所要の大きさに整形すると共に、底部6の中心から割れ目4に向けて垂直に透水孔7が設けられた供試体8として作成する。なお、供試体8の大きさは特に限定されるものではないが、通常の寸法としては直径は50mm程度、高さは100mm程度の円柱状のものが扱い易い。
【0009】
この供試体8を試験室内に持ち込み、上下方から垂直応力を加えた状態で透水性を測定し、垂直応力に対する透水係数を求める。
この垂直応力に対する透水係数を求める際の室内試験装置の模式図を図2に示す。図2(a)は室内試験装置11の斜視図であり、強固な枠体12の中空下面部13に下部台座14が設けられ、その上に供試体8が載置され、供試体8の上面には上部台座15を介して載荷手段16により加重するようになっている。また、下部台座14には送水管18を介してビュレット17が接続され、このビュレット17には図示していないエアコンプレッサーによる空気圧力が加えられるようになっている。なお、19は空気圧力の調整弁であり、20は供試体8の透水孔7へ送水される水圧を測定する圧力計である。
【0010】
図2(b)は図2(a)に示した供試体8とその上下部分の縦断面図であり、載荷手段16の載荷部21と上部台座15との間には球座22がもうけられ、供試体8への加重が均一になるようにしてある。また、下部台座14には送水管18から供試体8の透水孔7に送水をする送水孔23が設けられており、送水孔23の一方は下部台座14の中心部に位置するように設けられている。また、下部台座14の上面にはOリング24が設けられ、水密性が維持されるようになっている。
なお、ビュレット17からの供試体8への送水は、透水孔7を通して割れ目4内に放射状に透水することになる。
【0011】
この工程の室内試験装置11により測定した供試体8の応力に対する透水係数の関係の一例は、図3のグラフに示すように表される。供試体8は原位置の測定対象となる部分から採取したボーリングコア5を整形して作成し、この1つの供試体8を応力に対する透水係数の関係を表す基準値としてもよいし、測定対象となる原位置の近傍の複数箇所から供試体8となるボーリングコア5の採取を行い、その複数の供試体8の応力に対する透水係数の平均値を求めて基準値とするようにしてもよい。
【0012】
なお、供試体8の割れ目の透水の流れは、円の中心の透水孔7から外向きの放射流れとすると、理論的に次式(1)〜(6)からで透水係数kが求められる。各式の記号の一部については、図4に示した平行平板間の放射流を対象とした変水位透水試験の模式図を参照されたい。
【0013】
変水位透水試験として考えると連続式は、
【数1】

Figure 2004117319
となる。ここでAはビュレットの断面積、Qは流量、hは全出頭、tは時間、また、開口割れ目内の放射流が、平行平板間の電流と仮定すると、流量は(2)式で表される。
【数2】
Figure 2004117319
ここで、hは変数。次に、式(1)と(2)より、Qを消去すると、
【0014】
【数3】
Figure 2004117319
が得られる。積分すると次式(4)で表される。
【数4】
Figure 2004117319
水理学的開口幅a3 について解くと、
【0015】
【数5】
Figure 2004117319
が得られる。
さらに、透水係数は、平行平板間の層流の理論解である次式(6)で表される。
【数6】
Figure 2004117319
【0016】
上記において、πは円周率、aは開口割れ目の開口幅、ρは水の密度、gは重力加速度、νは水の動粘性係数、rは放射流れの中心からの距離、サフィックス(下付の数字)は図4に示す表示箇所を示す。時間t1 ,t2 はそれぞれ全出頭がh1 ,h2 のときの時間、また、3乗則は平行平板間の層流の理論解において、流量が開口幅の3乗に比例することにもとづく。
【0017】
次の第2の工程は、供試体8が採取された原位置の応力計測を行うものであり、図5にこの応力計測の状況を模式図として示す。図5は図1の一部を拡大して計測機器等を記載したものであり、同一部分は同一記号で表示してある。
図5において31は供試体8を採取したボーリング孔3の原位置であり、その周囲には割れ目4が形成されている。原位置31はその左右にパッカー32,33が設けられると共に、その両者間には間隔保持用のロッド34が設けられ、原位置31としての計測部分が確保されている。パッカー32,33とボーリング孔3との間の水密性を高めるために、両パッカー32,33にはトンネル1内に設置された水槽部35から、パッカー用ポンプ36により配管37を通して送水するようになっている。
【0018】
トンネル1側のパッカー33には、押出し用のロッド38が設けられ、パッカー32,33の押込み又は引出しが容易に行い得るようになっている。原位置31には3つのビュレット39,40,41が送水用の配管42を通して接続されており、測定対象の原位置31への送水の流量によりビュレット39,40,41を選択する。また、原位置31への送水は、図示していないエアコンプレッサーからの圧縮空気を圧力調整弁43で調整して行うものである。この送水圧力は圧力計44(小型の圧力センサー)により計測され、そのデータは図示していないパソコン等に通信ケーブルを介して入力し保存する。また、ビュレット39,40,41への空気圧力とその出力側の水圧との関係を示す差圧計45により水面位置を計測する。この差圧計45のデータも前記パソコンに保存する。46〜53はビュレット39,40,41及び差圧計45の入出力側に設けられた開閉バルブである。
【0019】
原位置31での応力の計測は、原位置31に圧力を掛けて送水して、その割れ目4部分の透水性を測定するものである。即ち、図6に示すグラフのように透水圧(ρ−u)と流量(Q)の関係から透水係数を求める。
例えば、図6に示すように、4段階の圧力(透水)で得られた流量を求めて4点の計測値をプロットし、原点を通る近似線として直線を引いた図になる。このグラフから、透水圧が変化しても透水係数は一定であることが分かる。
この図6に示された原位置31での透水圧(ρ−u)と流量(Q)とにより求められた透水係数を、図2に示した原位置31又はその近傍から採取した供試体8の応力と透水係数との関係グラフから、供試体8としてのボーリングコア5を採取した原位置31の応力を求めることができる。
【0020】
本発明の計測方法による原位置の応力の計測精度は、供試体8の単一の割れ目4における流量が、割れ目4の開口幅の3乗に比例するすることから、応力の変化に伴う微小な開口幅の変化を流量の変化に鋭敏に反映させることができるため、精度の高い原位置の応力の計測が可能である。
また、従来方法における岩盤の原位置応力の計測は、ひずみ,水圧,AEイベントなどの計測によるものであるため、原位置の間隙水圧と透水係数などの水理学的な物性の計測はできなかったが、本発明による計測方法は、前述したように原位置応力を透水係数から求める計測方法であるため、応力の計測と共に間隙水圧や透水係数などの水理学的な物性の計測も同時にできるという効果も奏するものである。
【0021】
前述した実施例は、トンネル1内から横(水平)方向にボーリングして、岩盤2の横方向のボーリングコア5を採取した後、整形等を行い供試体8を作成し、この供試体8の割れ目4の透水係数と応力との関係を測定すると共に、ボーリング孔3の原位置31における割れ目4の流量Qと透水圧(ρ−u)との関係から透水係数を求めて、この両者の関係から原位置31の応力を求める実施例で説明した。
【0022】
しかし、本発明は、図7に示すように垂直(縦)方向のボーリング孔3’ から図示していない供試体を採取して、応力と透水係数の関係を計測すると共に、原位置31’ の割れ目4’ に基づき縦方向の応力を計測したり、図8に示すように斜方向のボーリング孔3’’から図示していない供試体を採取して、同様の計測を行うと共に、原位置31’’の割れ目4’’に基づき斜方向の応力を計測することもできる。この場合でも供試体としてのボーリングコアの単一の割れ目は、当該ボーリングコアに加える垂直応力面に対してほぼ平行に形成されているものであることが望ましい。
【0023】
【発明の効果】
以上詳細に説明したように、本発明による地中岩盤の原位置応力の計測方法は、計測対象の原位置から供試体としてのボーリングコアを採取して、応力と透水係数との関係を計測して基準データとするものであるため、原位置を当初の状態に保存しておき、定期的に原位置の透水係数を計測することにより、原位置の応力の経時的変化も容易に計測することができるものである。従って、従来方法のように原位置の応力を計測する度毎に当該原位置を削孔する必要がない。また、高圧湧水下となる深部トンネル周辺の長期の透水性と応力の両方をモニタリングすることが可能である。更に、透水性と応力計測を個別に計測する従来方法に比較して、コスト的なメリットにおいても優れているなどの効果を有する。
【図面の簡単な説明】
【図1】本発明の一実施例を示すもので供試体としてのボーリングコアの採取の状態と、整形された供試体の模式図である。
【図2】本発明における供試体の室内試験装置の一実施例を示す模式図である。
【図3】本発明における供試体の垂直応力と透水係数との計測データの一例を示すグラフである。
【図4】本発明における平行平板間の放射流を対象とした変水位透水試験の模式図である。
【図5】本発明における供試体を採取したボーリング孔の原位置の透水係数を計測する工程の一例を示す模式図である。
【図6】本発明における原位置の透水係数を計測するための透水圧と流量との計測データの一例を示すグラフである。
【図7】本発明における垂直方向の供試体を採取したボーリング孔の原位置の透水係数を計測する工程の一例を示す模式図である。
【図8】本発明における斜め方向の供試体を採取したボーリング孔の原位置の透水係数を計測する工程の一例を示す模式図である。
【符号の説明】
1 トンネル
2 岩盤
3,3’ ,3’’ ボーリング孔
4,4’ ,4’’ 岩盤の割れ目
5,5’ ,5’’ ボーリングコア
6 底部
7 透水孔
8 供試体
11 供試体の室内試験装置
12 枠体
13 中空下面部
14 下部台座
15 上部台座
16 載荷手段
17 ビュレット
18 送水管
19 空気圧の調整弁
20 圧力計
21 載荷部
22 球座
23 送水孔
24 Oリング
31 原位置
32,33 パツカー
34 間隔保持用のロッド
35 水槽部
36 パッカー用ポンプ
37 配管
38 押出し用のロッド
39,40,41 ビュレット
42 送水用の配管
43 圧力調整弁
44 圧力計
45 差圧計
46〜53 開閉バルブ[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is an element required for stability evaluation of rock structures such as underground cavities and tunnels built in the ground, slopes near dams, roads, residential lands, and foundations of important structures. The present invention relates to a method for measuring a position stress. In addition, earthquake prediction is used for stress measurement of the crust.
[0002]
[Prior art]
Conventional methods for measuring stress in rock include the in-situ stress release method, stress compensation method, and hydraulic fracturing method, and have achieved good results. In addition, there is an AE method performed using a rock core collected indoors.
On the other hand, a method called rock classification using geological factors is generally used for classification of strength and deformability of rock mass. In this rock class, the rocks with a high degree of weathering from healthy rocks are classified into B, CH , C M , C L , D class, etc. The measurement method of the conventional situ stress, the measurement method in rock class that target a C H class rock near the class B or class B, the following C H grade parallel fracture interval degree of weathering progresses is about 10cm Not suitable for bedrock.
[0003]
Here, in the stress release method, after installing the measuring instrument in the rock, the surrounding rock surrounding the measuring instrument is cut into slits, etc., to release the earth pressure acting on the installation location of the measuring instrument from the outside This is a method of obtaining the ground pressure from the change in the output of the measuring instrument obtained as a result.
In the stress compensation method, first, a cut is made vertically in a plane from the rock surface to release the stress, and the generated displacement between the slits is measured. Then, a flat jack is inserted into the slit to simulate the stress acting on the rock and return to the original displacement position to obtain the stress.
[0004]
Hydraulic fracturing was started as a method to stimulate oil wells with reduced self-propelling power and increase oil production, and was used for measuring ground pressure. The principle is a method of obtaining stress from the conditions of opening and closing of a crack (crack) in the hole wall generated by applying internal pressure in the borehole.
The AE method utilizes a phenomenon called the Kaiser effect, in which once a material has been subjected to a stress, even if the material is reloaded after unloading, the AE does not easily occur until the level of the received stress. Here, AE (acoustic emission) refers to an elastic wave generated by irreversible deformation or destruction of a material.
[0005]
[Problems to be solved by the invention]
The bedrock is considered to be composed of “rocks” and “cracks” that are engineeringly free from cracks. In the conventional method, a rock portion having no crack is measured by an in-situ or laboratory test. Therefore, when there is a crack, the measurement is performed while avoiding the crack. Therefore, it is difficult to select a portion having no crack in a rock mass where many cracks are distributed, and the measurement becomes impossible. In particular, the in situ measurement methods such as the stress release method and the stress compensation method require a sufficiently wide rock portion without cracks. For this reason, it is difficult to measure on a slope or the like where the weathering has progressed and the distribution of cracks is dense, where there is a risk of collapse.
[0006]
The method of measuring the in-situ stress of a rock according to the present invention targets a crack in the rock which could not be measured by the conventional method. Therefore, it becomes possible to measure the stress on the bedrock where weathering progresses and the frequency of cracks is large, which is impossible with the conventional method.
[0007]
[Means for Solving the Problems]
The method for measuring the in-situ stress of a rock mass according to the present invention is to prepare a specimen including a single rock fracture from a poling core drilled in the rock, and to determine the relationship between the permeability and stress of the rock fracture of the specimen. Determined by a laboratory test, the permeability of a single rock fracture in or near the original position where the specimen was sampled was measured, and the permeability of a single rock fracture in the original position was measured for the permeability of the rock fracture of the specimen. The in-situ stress is determined by applying the coefficient and the stress to the permeability of the laboratory test.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a first step in one embodiment of the present invention. As shown in FIG. 1 (a), a borehole 3 is provided in a tunnel 1 in a lateral direction with respect to a bedrock 2 to measure a stress. A boring core 5 having a single crack (opening) 4 is collected from the original position. The boring core 5 is formed into a required size as shown in FIG. 1B, and is formed as a specimen 8 having a water permeable hole 7 provided vertically from the center of the bottom 6 toward the crack 4. The size of the specimen 8 is not particularly limited, but as a normal dimension, a columnar shape having a diameter of about 50 mm and a height of about 100 mm is easy to handle.
[0009]
The specimen 8 is brought into the test chamber, and the water permeability is measured in a state where a vertical stress is applied from above and below, and a water permeability coefficient with respect to the vertical stress is obtained.
FIG. 2 is a schematic diagram of a laboratory test apparatus for calculating the hydraulic conductivity with respect to the vertical stress. FIG. 2A is a perspective view of the indoor test apparatus 11, in which a lower base 14 is provided on a hollow lower surface portion 13 of a strong frame body 12, a specimen 8 is placed thereon, and an upper surface of the specimen 8 is provided. Is loaded by the loading means 16 via the upper pedestal 15. Further, a buret 17 is connected to the lower pedestal 14 via a water pipe 18, and air pressure by an air compressor (not shown) is applied to the buret 17. Reference numeral 19 denotes an air pressure adjusting valve, and reference numeral 20 denotes a pressure gauge for measuring the pressure of water sent to the water permeation hole 7 of the specimen 8.
[0010]
FIG. 2B is a longitudinal sectional view of the specimen 8 shown in FIG. 2A and upper and lower portions thereof. A ball seat 22 is provided between the loading portion 21 of the loading means 16 and the upper pedestal 15. The load on the specimen 8 is made uniform. The lower pedestal 14 is provided with a water supply hole 23 for transmitting water from the water supply pipe 18 to the water permeation hole 7 of the specimen 8, and one of the water supply holes 23 is provided so as to be located at the center of the lower pedestal 14. ing. An O-ring 24 is provided on the upper surface of the lower pedestal 14 so that watertightness is maintained.
In addition, the water is transmitted from the burette 17 to the specimen 8 radially through the water-permeable hole 7 into the fracture 4.
[0011]
An example of the relationship between the permeability of the specimen 8 and the stress measured by the laboratory test apparatus 11 in this step is shown in the graph of FIG. The specimen 8 is formed by shaping the boring core 5 collected from the part to be measured in situ, and this one specimen 8 may be used as a reference value indicating the relationship between the permeability and the stress, or The boring core 5 serving as the specimen 8 may be sampled from a plurality of locations near the original position, and the average value of the hydraulic conductivity with respect to the stress of the plurality of specimens 8 may be obtained as a reference value.
[0012]
Assuming that the flow of water permeation through the cracks in the specimen 8 is an outward radiation flow from the water permeation hole 7 at the center of the circle, the water permeation coefficient k is theoretically obtained from the following equations (1) to (6). For a part of the symbols of each formula, refer to the schematic diagram of the variable head permeability test for the radiation flow between the parallel plates shown in FIG.
[0013]
Assuming a variable head permeability test, the continuous equation is
(Equation 1)
Figure 2004117319
It becomes. Here, A is the cross-sectional area of the burette, Q is the flow rate, h is the total appearance, t is the time, and the radiation flow in the opening crack is the current between the parallel plates. You.
(Equation 2)
Figure 2004117319
Here, h is a variable. Next, when Q is eliminated from equations (1) and (2),
[0014]
[Equation 3]
Figure 2004117319
Is obtained. The integration is represented by the following equation (4).
(Equation 4)
Figure 2004117319
Solving for hydraulic opening width a 3,
[0015]
(Equation 5)
Figure 2004117319
Is obtained.
Further, the hydraulic conductivity is represented by the following equation (6), which is a theoretical solution of laminar flow between parallel flat plates.
(Equation 6)
Figure 2004117319
[0016]
In the above, π is the pi, a is the opening width of the opening crack, ρ is the density of water, g is the gravitational acceleration, ν is the kinematic viscosity coefficient of water, r is the distance from the center of the radiation flow, suffix (subscript) ) Indicates the display location shown in FIG. The times t 1 and t 2 are the times when the total appearance is h 1 and h 2 , respectively, and the cube law is that the flow rate is proportional to the cube of the opening width in the theoretical solution of laminar flow between parallel plates. Based on.
[0017]
The next second step is to measure the stress at the original position where the specimen 8 was sampled. FIG. 5 schematically shows the state of the stress measurement. FIG. 5 is an enlarged view of a part of FIG. 1 showing measuring instruments and the like, and the same parts are indicated by the same symbols.
In FIG. 5, reference numeral 31 denotes an original position of the boring hole 3 from which the specimen 8 was collected, and a crack 4 is formed around the hole. The original position 31 is provided with packers 32 and 33 on the left and right sides thereof, and a rod 34 for maintaining an interval is provided between the two, so that a measurement portion as the original position 31 is secured. In order to increase the watertightness between the packers 32 and 33 and the boring holes 3, water is supplied to both the packers 32 and 33 from a water tank 35 installed in the tunnel 1 through a pipe 37 by a packer pump 36. Has become.
[0018]
The packer 33 on the side of the tunnel 1 is provided with an extruding rod 38, so that the packers 32, 33 can be easily pushed or pulled out. Three burettes 39, 40, and 41 are connected to the original position 31 through a water supply pipe 42, and the burettes 39, 40, and 41 are selected according to the flow rate of water supplied to the original position 31 to be measured. The water supply to the original position 31 is performed by adjusting compressed air from an air compressor (not shown) by a pressure adjusting valve 43. The water supply pressure is measured by a pressure gauge 44 (small pressure sensor), and the data is input to a personal computer (not shown) or the like via a communication cable and stored. Further, the water surface position is measured by a differential pressure gauge 45 indicating the relationship between the air pressure to the burettes 39, 40, 41 and the water pressure on the output side. The data of the differential pressure gauge 45 is also stored in the personal computer. Reference numerals 46 to 53 denote on-off valves provided on the input and output sides of the burettes 39, 40, 41 and the differential pressure gauge 45, respectively.
[0019]
The measurement of the stress at the original position 31 is to apply pressure to the original position 31 to send water and measure the water permeability of the four fractures. That is, as shown in the graph of FIG. 6, the permeability coefficient is determined from the relationship between the permeability (ρ-u) and the flow rate (Q).
For example, as shown in FIG. 6, the flow rate obtained at four stages of pressure (permeability) is obtained, the measured values at four points are plotted, and a straight line is drawn as an approximate line passing through the origin. From this graph, it can be seen that the hydraulic conductivity is constant even when the hydraulic pressure changes.
The specimen 8 obtained from the original position 31 shown in FIG. 2 or its vicinity was used to determine the hydraulic conductivity obtained from the hydraulic pressure (ρ-u) and the flow rate (Q) at the original position 31 shown in FIG. From the relationship graph between the stress and the hydraulic conductivity, the stress at the original position 31 where the boring core 5 as the specimen 8 was sampled can be obtained.
[0020]
The accuracy of the in-situ stress measurement by the measurement method of the present invention is as follows. Since the flow rate in a single fracture 4 of the specimen 8 is proportional to the cube of the opening width of the fracture 4, the minute precision accompanying the change in the stress is small. Since the change in the opening width can be sharply reflected in the change in the flow rate, highly accurate in-situ stress measurement can be performed.
In addition, since the in-situ stress measurement of the rock mass in the conventional method is based on the measurement of strain, water pressure, AE event, etc., it was not possible to measure the in-situ pore water pressure and hydraulic properties such as hydraulic conductivity. However, since the measurement method according to the present invention is a measurement method in which the in-situ stress is determined from the permeability as described above, the effect that the hydraulic properties such as pore pressure and permeability can be measured simultaneously with the measurement of the stress. It also plays.
[0021]
In the above-described embodiment, the specimen 8 is formed by performing boring in the horizontal (horizontal) direction from the inside of the tunnel 1, collecting the boring core 5 in the lateral direction of the bedrock 2, and shaping the specimen. The relationship between the permeability and the stress of the fracture 4 is measured, and the permeability is determined from the relationship between the flow rate Q of the fracture 4 at the original position 31 of the boring hole 3 and the permeability (ρ-u). In the embodiment described above, the stress at the original position 31 is obtained from the above.
[0022]
However, according to the present invention, as shown in FIG. 7, a specimen (not shown) is sampled from a boring hole 3 'in the vertical (longitudinal) direction to measure the relationship between stress and hydraulic conductivity, and to measure the relationship between the original position 31'. The longitudinal stress is measured based on the crack 4 ', or a specimen (not shown) is taken from the diagonal boring hole 3''as shown in FIG. It is also possible to measure the stress in the oblique direction based on the "split 4". Even in this case, it is desirable that the single fracture of the boring core as the specimen is formed substantially parallel to the vertical stress plane applied to the boring core.
[0023]
【The invention's effect】
As described above in detail, the in-situ stress measurement method of the underground rock according to the present invention measures a relationship between stress and hydraulic conductivity by collecting a boring core as a specimen from an in-situ position to be measured. Since the original position is used as reference data, the original position should be preserved in the initial state and the permeability of the original position should be periodically measured to easily measure the temporal change in stress at the original position. Can be done. Therefore, unlike the conventional method, it is not necessary to drill the original position every time the stress at the original position is measured. It is also possible to monitor both long-term permeability and stress around the deep tunnel under high-pressure springs. Further, the present invention has an advantage that it is superior in cost merit as compared with the conventional method of individually measuring water permeability and stress measurement.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a state of a boring core as a specimen and a shaped specimen, showing an embodiment of the present invention.
FIG. 2 is a schematic view showing an embodiment of a laboratory test apparatus for a specimen according to the present invention.
FIG. 3 is a graph showing an example of measured data of a normal stress and a hydraulic conductivity of a specimen according to the present invention.
FIG. 4 is a schematic view of a variable water permeability test for a radiation flow between parallel flat plates according to the present invention.
FIG. 5 is a schematic view showing an example of a process of measuring the hydraulic conductivity at an original position of a boring hole from which a specimen is collected in the present invention.
FIG. 6 is a graph showing an example of measurement data of a hydraulic pressure and a flow rate for measuring an in-situ hydraulic conductivity according to the present invention.
FIG. 7 is a schematic view showing an example of a process of measuring a hydraulic conductivity at an original position of a boring hole from which a vertical specimen is collected according to the present invention.
FIG. 8 is a schematic diagram showing an example of a process of measuring a hydraulic conductivity at an original position of a boring hole from which a specimen in an oblique direction is collected according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tunnel 2 Rock 3, 3 ′, 3 ″ Boring hole 4, 4 ′, 4 ″ Rock crack 5, 5 ′, 5 ″ Boring core 6 Bottom 7 Water permeable hole 8 Specimen 11 Laboratory test equipment for specimen 12 Frame body 13 Hollow lower surface part 14 Lower pedestal 15 Upper pedestal 16 Loading means 17 Bullet 18 Water pipe 19 Pneumatic pressure regulating valve 20 Pressure gauge 21 Loading part 22 Ball seat 23 Water supply hole 24 O-ring 31 Original position 32, 33 Packer 34 Interval Holding rod 35 Water tank section 36 Packer pump 37 Pipe 38 Extrusion rod 39, 40, 41 Bullet 42 Water supply pipe 43 Pressure regulating valve 44 Pressure gauge 45 Differential pressure gauge 46-53 Open / close valve

Claims (1)

岩盤に削孔したポーリングコアから単一の岩盤割れ目を含む供試体を作成し、該供試体の前記岩盤割れ目の透水係数と応力との関係を室内試験により求め、前記供試体を採取した原位置又はその近傍の単一の岩盤割れ目の透水係数を計測し、該原位置の単一の岩盤割れ目の透水係数を前記供試体の岩盤割れ目の透水係数と応力との前記室内試験の透水係数に当てはめて、前記原位置の応力を求めるようにした岩盤の原位置応力の計測方法。A specimen containing a single rock fracture was created from a poling core drilled in the rock, the relationship between the permeability and stress of the rock fracture of the specimen was determined by a laboratory test, and the original position where the specimen was collected Or measuring the hydraulic conductivity of a single rock fracture in the vicinity thereof and applying the hydraulic conductivity of the single rock fracture at the original position to the hydraulic conductivity and stress of the rock fracture of the specimen in the laboratory test. And measuring the in-situ stress of the rock mass.
JP2002284980A 2002-09-30 2002-09-30 In-situ stress measurement method for rock mass Expired - Fee Related JP3893343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284980A JP3893343B2 (en) 2002-09-30 2002-09-30 In-situ stress measurement method for rock mass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284980A JP3893343B2 (en) 2002-09-30 2002-09-30 In-situ stress measurement method for rock mass

Publications (2)

Publication Number Publication Date
JP2004117319A true JP2004117319A (en) 2004-04-15
JP3893343B2 JP3893343B2 (en) 2007-03-14

Family

ID=32278395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284980A Expired - Fee Related JP3893343B2 (en) 2002-09-30 2002-09-30 In-situ stress measurement method for rock mass

Country Status (1)

Country Link
JP (1) JP3893343B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721033B1 (en) 2006-10-30 2007-05-23 주식회사 지오메카닉스 Jig for normal stiffness measurement for rock joint
JP2007309712A (en) * 2006-05-17 2007-11-29 Kajima Corp Method of evaluating ground water flow
CN108169027A (en) * 2017-12-18 2018-06-15 中国水利水电科学研究院 A kind of tunnel high pressure water-filling prototype loading test device and test method
CN108301828A (en) * 2018-04-02 2018-07-20 长江水利委员会长江科学院 A kind of detecting earth stress device and method based on the deformation measurement of gun drilling aperture
CN109238844A (en) * 2016-07-08 2019-01-18 长安大学 Tunnel lining structure crack treatment experimental method
CN109238879A (en) * 2018-09-28 2019-01-18 沈阳工业大学 Stress-seepage flow-creep acts on lower geomechanics model test system
CN109459313A (en) * 2018-12-29 2019-03-12 四川大学 The mechanical behavior and seepage characteristic home position testing method and system of coal and rock under the influence of true mining induced stress
CN110118713A (en) * 2019-05-16 2019-08-13 中国矿业大学(北京) Coal seam in-situ anisotropy principal permeability test method
JP2022020461A (en) * 2020-07-20 2022-02-01 石油資源開発株式会社 Crustal stress measurement method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405010B (en) * 2016-08-31 2019-01-04 东北石油大学 The displacement pressure of constant speed and constant pressure chemical flooding oil displacement experiment determines method and system
CN109932293A (en) * 2017-12-15 2019-06-25 核工业北京地质研究院 The normal stress of meter level scale fissuted medium-permeability test method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309712A (en) * 2006-05-17 2007-11-29 Kajima Corp Method of evaluating ground water flow
KR100721033B1 (en) 2006-10-30 2007-05-23 주식회사 지오메카닉스 Jig for normal stiffness measurement for rock joint
CN109238844B (en) * 2016-07-08 2020-12-01 长安大学 Tunnel lining structure crack treatment experimental method
CN109238844A (en) * 2016-07-08 2019-01-18 长安大学 Tunnel lining structure crack treatment experimental method
CN108169027A (en) * 2017-12-18 2018-06-15 中国水利水电科学研究院 A kind of tunnel high pressure water-filling prototype loading test device and test method
CN108301828A (en) * 2018-04-02 2018-07-20 长江水利委员会长江科学院 A kind of detecting earth stress device and method based on the deformation measurement of gun drilling aperture
CN108301828B (en) * 2018-04-02 2023-08-11 长江水利委员会长江科学院 Ground stress testing device and method based on deep drilling aperture deformation measurement
CN109238879A (en) * 2018-09-28 2019-01-18 沈阳工业大学 Stress-seepage flow-creep acts on lower geomechanics model test system
CN109459313A (en) * 2018-12-29 2019-03-12 四川大学 The mechanical behavior and seepage characteristic home position testing method and system of coal and rock under the influence of true mining induced stress
CN109459313B (en) * 2018-12-29 2023-09-01 四川大学 In-situ test method and system for mechanical behavior and seepage characteristics of coal rock mass
CN110118713B (en) * 2019-05-16 2022-10-25 中国矿业大学(北京) Method for testing in-situ anisotropy main permeability of coal bed
CN110118713A (en) * 2019-05-16 2019-08-13 中国矿业大学(北京) Coal seam in-situ anisotropy principal permeability test method
JP2022020461A (en) * 2020-07-20 2022-02-01 石油資源開発株式会社 Crustal stress measurement method

Also Published As

Publication number Publication date
JP3893343B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
RU2324813C2 (en) Method and device for determining shape of cracks in rocks
Ljunggren et al. An overview of rock stress measurement methods
Binda et al. Sonic tomography and flat-jack tests as complementary investigation procedures for the stone pillars of the temple of S. Nicolò l'Arena (Italy)
Too et al. Hydraulic fracturing in a penny-shaped crack. Part I: Methodology and testing of frozen sand
AU2010276161B2 (en) Method for evaluating shaped charge perforation test cores using computer tomographic images thereof
CN105675400B (en) Simulate the test method that roadway excavates off-load
Diaz et al. Effect of frequency during cyclic hydraulic fracturing and the process of fracture development in laboratory experiments
CN103257081A (en) Method and device for recovering oil and gas reservoir rock mechanics underground in-situ model
CN1019836B (en) Method and apparatus for obtaining formation properties
RU2649195C1 (en) Method of determining hydraulic fracture parameters
JP3893343B2 (en) In-situ stress measurement method for rock mass
RU2580316C1 (en) Method for determining the number of unfrozen water content in frozen soil
Massarsch New method for measurement of lateral earth pressure in cohesive soils
Di Buò Evaluation of the Preconsolidation Stress and Deformation Characteristics of Finnish Clays based on Piezocone Testing
Narimani et al. Simple and non-linear regression techniques used in sandy-clayey soils to predict the pressuremeter modulus and limit pressure: A case study of Tabriz subway
Chan A laboratory investigation of shear wave velocity in stabilised soft soils.
JPH0819663B2 (en) Apparatus and method for in-situ measurement of ground differential characteristics
CN112946778B (en) Method for early warning karst collapse based on underground water turbidity monitoring
Abdulhadi et al. Measurement of stiffness of rock from laboratory and field tests
CN108195669B (en) Method for correcting and predicting static mechanical parameters of rock under oil reservoir confining pressure condition
HASAN et al. Correlation of shear wave velocity with SPT-N for a Tower-Building Site at Erbil City
Unander et al. Flow geometry effects on sand production from an oil producing perforation cavity
Collins In Situ Testing and its Application to Foundation Analysis in Fine-Grained Unsaturated Soils
Abdullah et al. Characterizing P-wave velocity and elastic properties of sedimentary rocks for foundation of building
Fjær et al. Mechanical properties and stress data from laboratory analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060526

A977 Report on retrieval

Effective date: 20061110

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees