【0001】
【発明の属する技術分野】
本発明は、衣類乾燥や浴室乾燥、あるいは室内除湿などに用いるヒートポンプ式乾燥機に関する。
【0002】
【従来の技術】
乾燥に必要な熱エネルギーを得る手段として、従来から一般的に用いられてきたのは電気ヒータであって、衣類乾燥機に適用されたものが知られている。しかし、電気ヒータによる加熱はエネルギー効率に劣ることは周知のところで、エネルギー利用の面で最も優れた手段としてヒートポンプを用いた乾燥機が望まれており、ヒートポンプ式乾燥機の家庭用衣類乾燥機への適用が提案されている(例えば、特許文献1参照)。
【0003】
ヒートポンプ式の家庭用衣類乾燥機の構成を、図1を用いて説明する。1は衣類乾燥機本体、2は本体1内にて回転自在に設けられた乾燥室として使用される回転ドラムで、モータ3によってドラムベルト4を介して駆動される。22は乾燥用空気を回転ドラム2からフィルタ11、回転ドラム側吸気口10を通って循環ダクト18へ送るための送風機でありモータ3によってファンベルト8を介して駆動される。23は冷媒を蒸発させ乾燥用空気を冷却除湿する蒸発器で、24は冷媒を凝縮させ乾燥用空気を加熱する凝縮器、25は冷媒に圧力差を生じさせる圧縮機、26は冷媒の圧力差を維持するためのキャピラリチューブ等の膨張機構、27は冷媒が通る配管であり、23〜27でヒートポンプ装置を構成している。28は凝縮器で加熱された乾燥用空気の一部を本体1外へ排出するための排気口である。尚、矢印Bは乾燥用空気の流れを示している。
【0004】
次にその動作を説明する。まず乾燥すべき衣類21を回転ドラム2内に置く。次にモータ3を回転させると回転ドラム2及び送風機22が回転し乾燥用空気の流れBが生じる。乾燥用空気は回転ドラム2内の衣類21から水分を奪った結果、多湿となった後、送風機22により循環ダクト18内を通ってヒートポンプ装置の蒸発器23へ運ばれる。蒸発器23に熱を奪われた乾燥用空気は除湿され、更に凝縮器24へ運ばれ加熱された後、再び回転ドラム2内へ循環される。19は循環ダクト18の途中に設けた排水口であり、蒸発器23で除湿されて生じたドレン水を排出する。以上の結果、衣類21は乾燥していくしくみである。
【0005】
ここでヒートポンプ装置における冷媒の冷凍サイクルを考えると、凝縮器24から乾燥用空気へ放出する熱量は、蒸発器23にて乾燥用空気から吸上げる熱量に、圧縮機25の消費電気エネルギーに相当する熱量を加えた熱量であるため、一般的に凝縮器24のサイズは蒸発器23のサイズより大きく構成していた。
【0006】
【特許文献1】
特開平7−178289号公報(第5頁、第1図)
【0007】
【発明が解決しようとする課題】
上記従来例のヒートポンプ方式の乾燥機では、電気ヒータによる加熱をヒートポンプによる加熱とすることで、必要な電気エネルギーを削減できるが、少なくとも冷凍サイクルを構成する圧縮機、放熱器、膨張機構、蒸発器を設けることが必須要件であり、電気ヒータを用いた乾燥機に比して構成要素が多く、装置が大型化する課題があった。特に、凝縮機のサイズを蒸発器よりも著しく大きくする必要があり、ヒートポンプ式乾燥機の大きさが増大する要因になっていた。
【0008】
また、ヒートポンプ装置の冷媒として従来使われてきたHCFC冷媒(分子中に塩素、水素、フッ素、炭素の各原子を含む)や、HFC冷媒(分子中に水素、フッ素、炭素の各原子を含む)が、オゾン層破壊あるいは地球温暖化に直接的に影響するとして、これらの代替として自然界に存在する炭化水素や二酸化炭素(以下CO2と記す)などの自然冷媒への転換が提案されている。
【0009】
したがって、オゾン層破壊あるいは地球温暖化に直接的に影響しないCO2などの自然冷媒を用いて、さらに地球温暖化への間接的な影響を小さくするための省エネルギー化を実現しなければならない。
【0010】
本発明は、上記従来の問題点に鑑みて成されたものであり、冷媒としてCO2等の冷凍サイクルの放熱側で超臨界状態となりうる冷媒を用いた場合に、装置の大型化を抑制し、さらなる高効率化を実現するヒートポンプ方式の乾燥機を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本発明は、冷媒が、圧縮機、放熱器、膨張機構、蒸発器の順に循環する構成のヒートポンプ装置を備え、放熱器で加熱された乾燥用空気を乾燥対象に導き、乾燥対象から水分を奪った乾燥用空気を蒸発器で冷却除湿した後、再び放熱器で加熱して乾燥用空気として再利用する構成を有し、蒸発器で乾燥用空気が除湿されて発生するドレン水を、放熱器に滴下あるいは噴霧する構成を有することを特徴とするヒートポンプ式乾燥機である。
【0012】
また、本発明は、蒸発器および放熱器は伝熱管とフィンから構成され、蒸発器を上部に、放熱器を下部に設置し、蒸発器で乾燥用空気が除湿されて発生するドレン水を重力および風力などにより、放熱器に滴下することを特徴とするヒートポンプ式乾燥機である。
【0013】
また、本発明は、蒸発器を構成するフィンの重力方向下端面に凹凸を設けたことを特徴とするヒートポンプ式乾燥機である。
【0014】
また、本発明は、蒸発器を構成するフィンが、フィン基材を折り曲げたコルゲート状フィンであることを特徴とするヒートポンプ式乾燥機である。
【0015】
また、本発明は、蒸発器および放熱器は伝熱管とフィンから構成され、蒸発器で乾燥用空気が除湿されて発生するドレン水を、ポンプで汲み上げ放熱器に噴霧する機構を備えたことを特徴とするヒートポンプ式乾燥機である。
【0016】
また、本発明は、冷媒として、ヒートポンプ装置の高圧側で超臨界状態となりうる二酸化炭素などの冷媒を用いることを特徴とするヒートポンプ式乾燥機である。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0018】
(実施の形態1)
図1は、本発明の第1の実施の形態であるヒートポンプ式乾燥機の構成図である。図1において、31は圧縮機、32は放熱器、33は膨張弁(膨張機構)、34は蒸発器であり、これらを順に配管接続し、冷媒を封入することにより、ヒートポンプ装置を構成し、冷媒として放熱側(圧縮機31吐出部〜放熱器32〜減圧器33入口部)で超臨界状態となりうる冷媒、例えばCO2冷媒が封入されている。また、36は乾燥対象(例えば衣類、浴室空間など)、37は送風ファン、38は乾燥用空気の粗熱取り熱交換器、39は粗熱取り熱交換器用の送風ファン、40はドレン水受けである。そして、蒸発器34を放熱器32の風上側で、しかも重力方向に上部に設置している。図1中の実線矢印は冷媒の流れを、白抜き矢印は乾燥用空気の流れを、また斜線矢印は外気の流れを表す。
【0019】
次にその動作について説明する。冷媒は圧縮機31で圧縮されて高温高圧の状態となり、放熱器32で蒸発器34を出た乾燥用空気と熱交換して、乾燥用空気を加熱することにより冷媒は冷却されて、膨張機構3で減圧されて、低温低圧の状態となり、蒸発器34で乾燥対象36を経た乾燥用空気と熱交換して、乾燥用空気を冷却して乾燥用空気に含まれた水分を凝縮、除湿することにより冷媒は加熱されて、再び圧縮機31に吸入される。したがって、乾燥用空気は蒸発器34で冷却除湿された後に放熱器32で加熱されて高温低湿となり、送風ファン37によって乾燥対象36に強制的に接触させられた際に、乾燥対象36から水分を奪って多湿状態となり、粗熱取り熱交換器38で外気と熱交換して温度を低下させた後、さらに蒸発器34で再び冷却除湿される。
【0020】
以上のような動作を繰り返すことにより、乾燥対象36から水分を奪う乾燥動作を行うことができる。
【0021】
本実施の形態では、蒸発器34で乾燥対象36を経た多湿の乾燥用空気と熱交換して、乾燥用空気を冷却し、乾燥用空気に含まれた水分を蒸発器34のフィン表面に凝縮させ、その結果生じるドレン水を、重力および送風によるせん断力を利用して、放熱器32に滴下する構成としたことにより、放熱器32では乾燥用空気との顕熱交換およびドレン水との潜熱交換が行われることになり、伝熱が促進される。その結果、放熱器32での熱交換量が増大し、放熱器32内を流れる冷媒との熱伝達が促進されることから、放熱器32の大きさを蒸発器34と同等に小型化することが可能となる。したがって、ヒートポンプ装置を小型化を図ることができる。
【0022】
また、放熱器32での熱伝達が促進されることから、放熱器32出口での冷媒温度が低下して蒸発器34での冷却能力が増大し、さらに省エネルギーとなる。
【0023】
また、冷媒として地球環境への悪影響が少ない自然冷媒の中から、ヒートポンプ装置の放熱側で超臨界状態となるCO2冷媒を用いた場合には、遷臨界冷凍サイクルとなるため、放熱器32出口での冷媒温度が低下することにより、冷凍サイクルCOPを大きく向上できる効果も生じ、さらに省エネルギー化を図ることが可能となる。
【0024】
さらに、CO2冷媒を用いた遷臨界冷凍サイクルとしたため、従来のHFC冷媒を用いた亜臨界冷凍サイクルの場合と比較して、放熱器32で高温のCO2冷媒と乾燥用空気が熱交換する熱交換効率を高くすることができ、乾燥用空気を高温に昇温することが可能となる。したがって、乾燥対象36から水分を奪う能力が増大し、短時間で乾燥を行うことが可能となる。
【0025】
なお、本実施の形態では、膨張弁を膨張機構に用いたが、キャピラリチューブを用いても同様の効果が得られることは言うまでも無い。
【0026】
また、本実施の形態では、放熱側で超臨界状態となるCO2冷媒を用いたが、従来のHFC冷媒を用いた場合にも、蒸発器で生じるドレン水を放熱器に滴下させることにより、同様に放熱器での熱交換量が増大し、放熱器の大きさを小型化することが可能となり、ヒートポンプ装置の小型化を図ることができる。
【0027】
(実施の形態2)
以下、本発明の第2の実施の形態について、図面を参照しながら説明する。
【0028】
図2は、本発明の第2の実施の形態であるヒートポンプ式乾燥機の構成図、図3は本発明の第2の実施の形態であるヒートポンプ式乾燥機の蒸発器を構成するフィンの要部拡大図である。図2において、図1と共通の構成要素については同一の符号を付し、説明を省略する。31は圧縮機、42は放熱器、33は膨張弁(膨張機構)、44は蒸発器であり、これらを順に配管接続し、冷媒を封入することにより、ヒートポンプ装置を構成し、冷媒として放熱側で超臨界状態となりうるCO2冷媒が封入されている。第1の実施の形態と異なるのは、蒸発器44および放熱器42を傾斜して設置し、かつ蒸発器44を構成するフィン45の重力方向下端面に凹凸46を形成した点である。蒸発器44を放熱器42の風上側で、しかも重力方向に上部に設置している点は同様である。また、図2中の実線矢印は冷媒の流れを、白抜き矢印は乾燥用空気の流れを、また斜線矢印は外気の流れを表す。
【0029】
次にその動作について説明する。冷媒は圧縮機31で圧縮されて高温高圧の状態となり、放熱器42で蒸発器44を出た乾燥用空気と熱交換して、乾燥用空気を加熱することにより冷媒は冷却されて、膨張機構3で減圧されて、低温低圧の状態となり、蒸発器44で乾燥対象36を経た乾燥用空気と熱交換して、乾燥用空気を冷却して乾燥用空気に含まれた水分を凝縮、除湿することにより冷媒は加熱されて、再び圧縮機31に吸入される。したがって、乾燥用空気は蒸発器44で冷却除湿された後に放熱器42で加熱されて高温低湿となり、送風ファン37によって乾燥対象36に強制的に接触させられた際に、乾燥対象36から水分を奪って多湿状態となり、粗熱取り熱交換器38で外気と熱交換して温度を低下させた後、さらに蒸発器44で再び冷却除湿される。
【0030】
以上のような動作を繰り返すことにより、乾燥対象36から水分を奪う乾燥動作を行うことができる。
【0031】
本実施の形態では、蒸発器44および放熱器42を傾斜して設置しているため、熱交換器の設置スペースを削減し、ヒートポンプ式乾燥機の小型化が可能となる。また、フィン45の重力方向下端面に凹凸46(凸部46a)を形成しているため、蒸発器34のフィン45表面で乾燥用空気が除湿されて凝縮生成したドレン水が凸部46aに集約し、液滴47を形成する。その液滴47は成長して、重力および送風によるせん断力を利用して、放熱器42に滴下する。このように、ドレン水が凸部46aに集約し、液滴を形成するため、液滴47の形成場所の不安定性がなくなる。この液滴47が形成される凸部46aを蒸発器34全面にわたって均一に形成すれば、液滴47は放熱器42に均一に滴下するため、放熱器42全面で均一にドレン水の液膜が形成される。そして、放熱器32では乾燥用空気との顕熱交換およびドレン水との潜熱交換が行われ伝熱が促進されることになる。その結果、放熱器42での熱交換量が増大し、放熱器42内を流れる冷媒との熱伝達が促進されることから、放熱器42の大きさを一層小型化することが可能となる。したがって、ヒートポンプ装置を小型化を図ることができる。
【0032】
また、放熱器42での熱伝達が促進されることから、放熱器42出口での冷媒温度が低下して蒸発器44での冷却能力が増大し、省エネルギーとなる。さらに、放熱側が超臨界状態となる遷臨界冷凍サイクルとなるため、放熱器42出口での冷媒温度が低下することから、冷凍サイクルCOPを大きく向上できる効果も生じ、さらに省エネルギー化を図ることが可能となる。
【0033】
次に、他の実施形態におけるヒートポンプ式乾燥機の蒸発器を構成するフィンの断面図および平面図を図4(a)および図4(b)に示す。図4に示すように、蒸発器を構成するフィン55に、折り曲げ部56を設けたコルゲート状フィンを用いている。折り曲げ部55の稜線方向は、概略重力方向である。このように、フィン55の重力方向に折り曲げ部56を形成しているため、蒸発器44のフィン55表面で乾燥用空気が除湿されて凝縮生成したドレン水が折り曲げ部56の谷部57に集約し、液滴47を形成する。その液滴47は成長して、重力および送風によるせん断力を利用して、放熱器42に滴下する。このように、ドレン水が谷部57に集約し液滴47を形成するため、液滴47の形成場所の不安定性がなくなる。この液滴47が形成される谷部57を蒸発器44全面にわたって均一に形成すれば、液滴47は放熱器42に均一に滴下するため、放熱器42全面で均一にドレン水の液膜が形成される。そして、放熱器32では乾燥用空気との顕熱交換およびドレン水との潜熱交換が行われ伝熱が促進されることになる。その結果、放熱器42での熱交換量が増大し、放熱器42内を流れる冷媒との熱伝達が促進されることから、放熱器42の大きさを一層小型化することが可能となる。したがって、ヒートポンプ装置を小型化を図ることができる。
【0034】
また本実施の形態では、フィンの重力方向下端面に凹凸を形成する場合に比べて、フィンの伝熱面積を著しく拡大することが可能であるため、蒸発器44の伝熱性能を著しく向上させることが可能となる。この結果、乾燥用空気の除湿能力が向上するとともに、冷凍サイクルCOPを大きく向上できる効果も有しているので、さらに省エネルギー化を図ることが可能となる。
【0035】
(実施の形態3)
以下、本発明の第3の実施の形態について、図面を参照しながら説明する。
【0036】
図5は、本発明の第3の実施の形態であるヒートポンプ式乾燥機の構成図である。図5において、図1と共通の構成要素については同一の符号を付し、説明を省略する。31は圧縮機、62は放熱器、33は膨張弁(膨張機構)、64は蒸発器であり、これらを順に配管接続し、冷媒を封入することにより、ヒートポンプ装置を構成し、冷媒として放熱側で超臨界状態となりうるCO2冷媒が封入されている。第1の実施の形態と異なるのは、蒸発器64で乾燥用空気が除湿されて凝縮生成したドレン水をドレン水受け65で受け、ドレン水受け65に貯められたドレン水をポンプ66で汲み上げ、噴霧機構67を設けて放熱器62にドレン水を噴霧する点である。
【0037】
図5中の実線矢印は冷媒の流れを、白抜き矢印は乾燥用空気の流れを、また斜線矢印は外気の流れを表す。乾燥用空気は、乾燥対象36の下方から蒸発器64、放熱器62の順に流れる構成とした。すなわち、蒸発器64を放熱器62の風上側で、放熱器62の下方に設置した。
【0038】
次にその動作について説明する。冷媒は圧縮機31で圧縮されて高温高圧の状態となり、放熱器62で蒸発器64を出た乾燥用空気と熱交換して、乾燥用空気を加熱することにより冷媒は冷却されて、膨張機構33で減圧されて、低温低圧の状態となり、蒸発器64で乾燥対象36を経た乾燥用空気と熱交換して、乾燥用空気を冷却して乾燥用空気に含まれた水分を凝縮、除湿することにより冷媒は加熱されて、再び圧縮機31に吸入される。したがって、乾燥用空気は蒸発器64で冷却除湿された後に放熱器42で加熱されて高温低湿となり、送風ファン37によって乾燥対象36に強制的に接触させられた際に、乾燥対象36から水分を奪って多湿状態となり、粗熱取り熱交換器38で外気と熱交換して温度を低下させた後、さらに蒸発器64で再び冷却除湿される。
【0039】
以上のような動作を繰り返すことにより、乾燥対象36から水分を奪う乾燥動作を行うことができる。
【0040】
本実施の形態では、蒸発器64で乾燥用空気が除湿されて凝縮生成したドレン水をドレン水受け65で受け、ドレン水受け65に貯められたドレン水をポンプ66で汲み上げ、噴霧機構67を用いて放熱器62に噴霧する構成であるため、安定して一定量のドレン水を放熱器62全面にわたり均一に噴霧することが可能となる。このため、放熱器62全面で均一にドレン水の液膜が形成される。そして、放熱器62では乾燥用空気との顕熱交換およびドレン水との潜熱交換が行なわれ、伝熱が促進されることになる。その結果、放熱器62での熱交換量が増大し、放熱器62内を流れる冷媒との熱伝達が促進されることから、放熱器62の大きさを一層小型化することが可能となる。したがって、ヒートポンプ装置を小型化を図ることができる。
【0041】
また、放熱器62での熱伝達が促進されることから、放熱器62出口での冷媒温度が低下して蒸発器64での冷却能力が増大し、省エネルギーとなる。さらに、放熱側で超臨界状態となる遷臨界冷凍サイクルとなるため、放熱器62出口での冷媒温度が低下することから、冷凍サイクルCOPを大きく向上できる効果も有しているので、さらに省エネルギー化を図ることが可能となる。
【0042】
なお、本実施の形態では、蒸発器64で乾燥用空気が除湿されて凝縮生成したドレン水をポンプ66で放熱器62に供給したが、ドレン水でなく外部からの供給水を用いても同様な効果が得られることは言うまでもない。
【0043】
また、乾燥用空気を乾燥対象36に対して強制的に上方から下方に流し両者を接触させ、乾燥対象36から水分を奪って乾燥させ、乾燥対象36の下方からヒートポンプ乾燥機に流す構成であるため、縦型の乾燥機付き洗濯機にヒートポンプ乾燥機を適応しやすいという特徴も有する。
【0044】
なお、本実施例では、乾燥用空気を乾燥対象36に対して強制的に上方から下方に流す構成を説明したが、この構成に限るものではなく、第1の実施例および第2の実施例と同様に乾燥用空気を乾燥対象36に対して強制的に下方から上方に流す構成であっても、蒸発器64で凝縮生成したドレン水をポンプ66で放熱器62に供給した場合、同じ効果を有することは言うまでもない。
【0045】
【発明の効果】
以上述べたところから明らかなように本発明によれば、蒸発器で乾燥用空気が除湿されて発生するドレン水を、放熱器に滴下あるいは噴霧する構成としたため、放熱器では乾燥用空気との顕熱交換およびドレン水との潜熱交換が行われることになり、その結果、放熱器での熱交換量が増大し、放熱器内を流れる冷媒との熱伝達が促進されることから、放熱器を小型化し、ヒートポンプ乾燥機の小型化を図ることができる。また、放熱器での熱伝達が促進されることから、冷媒としてCO2等の冷凍サイクルの放熱側で超臨界状態となりうる冷媒を用いた場合に、放熱器出口での冷媒温度が低下すること、および蒸発器の冷却能力が増大することから、さらに高効率なヒートポンプ方式の乾燥機を実現することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるヒートポンプ式乾燥機の構成図
【図2】本発明の実施の形態2におけるヒートポンプ式乾燥機の構成図
【図3】本発明の実施の形態2におけるヒートポンプ式乾燥機の構成図の蒸発器を構成するフィンの要部拡大図
【図4】(a)は本発明の実施の形態2におけるヒートポンプ式乾燥機の構成図の蒸発器を構成する他のフィンの要部断面図
(b)は本発明の実施の形態2におけるヒートポンプ式乾燥機の構成図の蒸発器を構成する他のフィンの要部拡大図
【図5】本発明の実施の形態3におけるヒートポンプ式乾燥機の構成図
【図6】従来のヒートポンプ式乾燥機の構成図
【符号の説明】
31 圧縮機
32,42,62 放熱器
33 膨張弁
34,44,64 蒸発器
36 乾燥対象
37 送風ファン
38 乾燥用空気の粗熱取り熱交換器
39 粗熱取り熱交換器用の送風ファン
40,65 ドレン水受け
45,55 フィン
46 凹凸
46a 凸部
47 液滴
56 折り曲げ部
57 谷部
66 ポンプ
67 噴霧機構[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat pump dryer used for clothes drying, bathroom drying, indoor dehumidification, and the like.
[0002]
[Prior art]
As a means for obtaining the thermal energy required for drying, an electric heater that has been generally used in the past is known, which is applied to a clothes dryer. However, it is well known that heating by an electric heater is inferior in energy efficiency, and a dryer using a heat pump is desired as the most excellent means in terms of energy utilization. Has been proposed (see, for example, Patent Document 1).
[0003]
The configuration of a heat pump type household clothes dryer will be described with reference to FIG. 1 is a clothes dryer main body, and 2 is a rotating drum used as a drying chamber rotatably provided in the main body 1, and is driven by a motor 3 via a drum belt 4. Reference numeral 22 denotes a blower for sending drying air from the rotary drum 2 through the filter 11 and the rotary drum side air inlet 10 to the circulation duct 18, and is driven by the motor 3 via the fan belt 8. Reference numeral 23 denotes an evaporator that evaporates the refrigerant and cools and dehumidifies the drying air, 24 denotes a condenser that condenses the refrigerant and heats the drying air, 25 denotes a compressor that generates a pressure difference in the refrigerant, and 26 denotes a pressure difference of the refrigerant. Is an expansion mechanism such as a capillary tube for maintaining the temperature, and 27 is a pipe through which the refrigerant passes, and 23 to 27 constitute a heat pump device. Reference numeral 28 denotes an exhaust port for discharging a part of the drying air heated by the condenser to the outside of the main body 1. Arrow B indicates the flow of the drying air.
[0004]
Next, the operation will be described. First, the clothes 21 to be dried are placed in the rotating drum 2. Next, when the motor 3 is rotated, the rotating drum 2 and the blower 22 are rotated, and a flow B of drying air is generated. The drying air becomes humid as a result of removing moisture from the clothes 21 in the rotating drum 2, and then is carried by the blower 22 to the evaporator 23 of the heat pump device through the circulation duct 18. The drying air deprived of heat by the evaporator 23 is dehumidified, further conveyed to the condenser 24 and heated, and circulated again into the rotating drum 2. Reference numeral 19 denotes a drain port provided in the middle of the circulation duct 18 for discharging drain water generated by dehumidification in the evaporator 23. As a result, the clothing 21 dries.
[0005]
Here, considering the refrigeration cycle of the refrigerant in the heat pump device, the amount of heat released from the condenser 24 to the drying air corresponds to the amount of heat absorbed from the drying air in the evaporator 23 and the consumed electric energy of the compressor 25. In general, the size of the condenser 24 is larger than the size of the evaporator 23 because the amount of heat is the sum of the amounts of heat.
[0006]
[Patent Document 1]
JP-A-7-178289 (page 5, FIG. 1)
[0007]
[Problems to be solved by the invention]
In the heat pump type dryer of the above-described conventional example, the required electric energy can be reduced by heating the electric heater with the heat pump. However, at least the compressor, the radiator, the expansion mechanism, and the evaporator which constitute the refrigeration cycle are used. Is an essential requirement, and there are many components compared to a dryer using an electric heater. In particular, the size of the condenser must be significantly larger than that of the evaporator, which has been a factor in increasing the size of the heat pump dryer.
[0008]
In addition, HCFC refrigerants (containing chlorine, hydrogen, fluorine, and carbon atoms in the molecule) and HFC refrigerants (containing hydrogen, fluorine, and carbon atoms in the molecule) which have been conventionally used as heat pump device refrigerants. However, as it directly affects ozone depletion or global warming, conversion to natural refrigerants such as hydrocarbons and carbon dioxide (hereinafter referred to as CO2) existing in nature has been proposed as an alternative.
[0009]
Therefore, it is necessary to use a natural refrigerant such as CO2 which does not directly affect ozone layer depletion or global warming, and to realize energy saving for further reducing the indirect impact on global warming.
[0010]
The present invention has been made in view of the above-described conventional problems, and when a refrigerant that can be in a supercritical state on the heat radiation side of a refrigeration cycle such as CO2 is used as a refrigerant, suppressing an increase in the size of the device, An object of the present invention is to provide a heat pump type dryer that achieves higher efficiency.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention includes a heat pump device configured to circulate a refrigerant in the order of a compressor, a radiator, an expansion mechanism, and an evaporator, and guides drying air heated by the radiator to a drying target. The drying air deprived of moisture from the object to be dried is cooled and dehumidified by the evaporator, then heated again by the radiator and reused as the drying air, and the drying air is dehumidified by the evaporator and generated. A heat pump dryer having a configuration in which drain water is dropped or sprayed onto a radiator.
[0012]
Also, in the present invention, the evaporator and the radiator are composed of heat transfer tubes and fins, and the evaporator is installed at the upper part and the radiator is installed at the lower part. A heat pump type dryer characterized by being dropped on a radiator by wind and wind.
[0013]
Further, the present invention is a heat pump type dryer characterized in that fins constituting an evaporator are provided with irregularities on the lower end surface in the direction of gravity.
[0014]
Further, the present invention is the heat pump type dryer, wherein the fins constituting the evaporator are corrugated fins obtained by bending a fin base material.
[0015]
Further, the present invention provides that the evaporator and the radiator include a heat transfer tube and fins, and a mechanism is provided for pumping drain water generated by dehumidifying drying air by the evaporator and spraying the drain water on the radiator. It is a characteristic heat pump dryer.
[0016]
Further, the present invention is a heat pump dryer characterized in that a refrigerant such as carbon dioxide which can be in a supercritical state on the high pressure side of the heat pump device is used as the refrigerant.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat pump dryer according to a first embodiment of the present invention. In FIG. 1, reference numeral 31 denotes a compressor, 32 denotes a radiator, 33 denotes an expansion valve (expansion mechanism), and 34 denotes an evaporator. These are connected in order by piping, and a refrigerant is sealed therein to constitute a heat pump device. As a refrigerant, a refrigerant, for example, a CO2 refrigerant, which can be in a supercritical state on the heat radiation side (compressor 31 discharge portion to radiator 32 to pressure reducer 33 inlet) is sealed. Reference numeral 36 denotes an object to be dried (eg, clothes, bathroom space, etc.); 37, a blower fan; 38, a heat exchanger for removing coarse heat of drying air; 39, a blower fan for the heat exchanger for removing coarse heat; It is. Then, the evaporator 34 is installed on the windward side of the radiator 32 and at the top in the direction of gravity. The solid arrows in FIG. 1 indicate the flow of the refrigerant, the white arrows indicate the flow of the drying air, and the hatched arrows indicate the flow of the outside air.
[0019]
Next, the operation will be described. The refrigerant is compressed by the compressor 31 to be in a state of high temperature and high pressure. The radiator 32 exchanges heat with the drying air that has exited the evaporator 34, and heats the drying air to cool the refrigerant and expand the expansion mechanism. 3, the pressure is reduced to a low-temperature and low-pressure state, and the evaporator 34 exchanges heat with the drying air passing through the drying target 36 to cool the drying air to condense and dehumidify the moisture contained in the drying air. As a result, the refrigerant is heated and sucked into the compressor 31 again. Therefore, the drying air is cooled and dehumidified by the evaporator 34 and then heated by the radiator 32 to become high temperature and low humidity. When the drying air is forcibly brought into contact with the drying target 36 by the blower fan 37, moisture is removed from the drying target 36. After being deprived of moisture, the crude heat removal heat exchanger 38 exchanges heat with the outside air to lower the temperature, and is then cooled and dehumidified again by the evaporator 34.
[0020]
By repeating the above operations, a drying operation for removing moisture from the drying target 36 can be performed.
[0021]
In this embodiment, the evaporator 34 exchanges heat with the humid drying air passing through the drying target 36 to cool the drying air and condense the moisture contained in the drying air on the fin surface of the evaporator 34. The resulting drain water is dropped onto the radiator 32 by utilizing the shear force generated by gravity and blast, so that the radiator 32 exchanges sensible heat with drying air and latent heat with the drain water. The exchange will take place and the heat transfer will be promoted. As a result, the amount of heat exchange in the radiator 32 increases, and heat transfer with the refrigerant flowing in the radiator 32 is promoted. Therefore, the size of the radiator 32 can be reduced to the same size as the evaporator 34. Becomes possible. Therefore, the heat pump device can be downsized.
[0022]
Further, since the heat transfer in the radiator 32 is promoted, the temperature of the refrigerant at the outlet of the radiator 32 decreases, the cooling capacity in the evaporator 34 increases, and the energy is further saved.
[0023]
In addition, when a CO2 refrigerant which is in a supercritical state on the heat radiation side of the heat pump device is used as a refrigerant from natural refrigerants having little adverse effect on the global environment, a transcritical refrigeration cycle is performed. As a result, the refrigeration cycle COP can be greatly improved, and further energy saving can be achieved.
[0024]
Further, since the transcritical refrigeration cycle using the CO2 refrigerant is used, the heat exchange in which the high-temperature CO2 refrigerant exchanges heat with the drying air in the radiator 32 as compared with the subcritical refrigeration cycle using the conventional HFC refrigerant. The efficiency can be increased, and the temperature of the drying air can be raised to a high temperature. Therefore, the ability to remove moisture from the drying target 36 is increased, and drying can be performed in a short time.
[0025]
In the present embodiment, the expansion valve is used for the expansion mechanism. However, it goes without saying that the same effect can be obtained by using a capillary tube.
[0026]
Further, in the present embodiment, the CO2 refrigerant which is in a supercritical state on the heat radiation side is used. However, even when a conventional HFC refrigerant is used, the same applies to the case where the drain water generated in the evaporator is dropped on the heat radiator. In addition, the amount of heat exchange in the radiator increases, and the size of the radiator can be reduced, so that the heat pump device can be reduced in size.
[0027]
(Embodiment 2)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
[0028]
FIG. 2 is a configuration diagram of a heat pump drier according to a second embodiment of the present invention, and FIG. 3 is a schematic view of a fin constituting an evaporator of the heat pump drier according to the second embodiment of the present invention. It is a part enlarged view. 2, the same reference numerals are given to the same components as those in FIG. 1, and the description will be omitted. Reference numeral 31 denotes a compressor, 42 denotes a radiator, 33 denotes an expansion valve (expansion mechanism), and 44 denotes an evaporator. These are sequentially connected to a pipe, and a refrigerant is sealed therein to constitute a heat pump device. And a CO2 refrigerant that can be brought into a supercritical state. The difference from the first embodiment is that the evaporator 44 and the radiator 42 are installed at an angle, and the fins 45 constituting the evaporator 44 are formed with irregularities 46 on the lower end surface in the direction of gravity. It is the same that the evaporator 44 is installed on the windward side of the radiator 42 and at the top in the direction of gravity. In FIG. 2, the solid arrows indicate the flow of the refrigerant, the white arrows indicate the flow of the drying air, and the hatched arrows indicate the flow of the outside air.
[0029]
Next, the operation will be described. The refrigerant is compressed by the compressor 31 into a state of high temperature and high pressure, exchanges heat with the drying air exiting the evaporator 44 by the radiator 42 and heats the drying air, whereby the refrigerant is cooled, and the expansion mechanism is increased. 3, the pressure is reduced to a low temperature and low pressure state, and the evaporator 44 exchanges heat with the drying air passing through the drying target 36 to cool the drying air to condense and dehumidify the moisture contained in the drying air. As a result, the refrigerant is heated and sucked into the compressor 31 again. Therefore, the drying air is cooled and dehumidified by the evaporator 44 and then heated by the radiator 42 to have a high temperature and low humidity. When the drying air is forcibly brought into contact with the drying target 36 by the blower fan 37, moisture is removed from the drying target 36. After being deprived of moisture, the heat is exchanged with the outside air in the rough heat removal heat exchanger 38 to lower the temperature, and then cooled and dehumidified by the evaporator 44 again.
[0030]
By repeating the above operations, a drying operation for removing moisture from the drying target 36 can be performed.
[0031]
In the present embodiment, since the evaporator 44 and the radiator 42 are installed obliquely, the installation space for the heat exchanger can be reduced, and the heat pump dryer can be downsized. In addition, since the unevenness 46 (convex portion 46a) is formed on the lower end surface in the gravity direction of the fin 45, the drain water generated by dehumidifying the drying air on the surface of the fin 45 of the evaporator 34 and condensing is collected on the convex portion 46a. Then, a droplet 47 is formed. The droplet 47 grows and drops on the radiator 42 by utilizing the shear force generated by gravity and blowing. As described above, since the drain water concentrates on the convex portion 46a to form a droplet, the instability of the place where the droplet 47 is formed is eliminated. If the projections 46a on which the droplets 47 are formed are formed uniformly over the entire surface of the evaporator 34, the droplets 47 are uniformly dropped on the radiator 42, so that the liquid film of the drain water is uniformly formed over the entire surface of the radiator 42. It is formed. In the radiator 32, sensible heat exchange with the drying air and latent heat exchange with the drain water are performed, and heat transfer is promoted. As a result, the amount of heat exchange in the radiator 42 increases, and heat transfer with the refrigerant flowing in the radiator 42 is promoted, so that the size of the radiator 42 can be further reduced. Therefore, the heat pump device can be downsized.
[0032]
Further, since the heat transfer in the radiator 42 is promoted, the temperature of the refrigerant at the outlet of the radiator 42 is reduced, and the cooling capacity in the evaporator 44 is increased, thereby saving energy. Further, since the transcritical refrigeration cycle in which the heat radiation side is in a supercritical state is performed, the temperature of the refrigerant at the outlet of the radiator 42 is reduced, so that an effect that the refrigeration cycle COP can be greatly improved is produced, and further energy saving can be achieved. It becomes.
[0033]
Next, FIGS. 4A and 4B are a cross-sectional view and a plan view of a fin constituting an evaporator of a heat pump dryer according to another embodiment. As shown in FIG. 4, a corrugated fin provided with a bent portion 56 is used for the fin 55 constituting the evaporator. The ridge direction of the bent portion 55 is substantially the direction of gravity. As described above, since the bent portion 56 is formed in the direction of gravity of the fin 55, the drain water generated by dehumidifying the drying air on the surface of the fin 55 of the evaporator 44 and condensing and generating is collected in the valley portion 57 of the bent portion 56. Then, a droplet 47 is formed. The droplet 47 grows and drops on the radiator 42 by utilizing the shear force generated by gravity and blowing. As described above, since the drain water concentrates on the valleys 57 and forms the droplets 47, the instability of the formation location of the droplets 47 is eliminated. If the valleys 57 where the droplets 47 are formed are formed uniformly over the entire surface of the evaporator 44, the droplets 47 are uniformly dropped on the radiator 42. It is formed. In the radiator 32, sensible heat exchange with the drying air and latent heat exchange with the drain water are performed, and heat transfer is promoted. As a result, the amount of heat exchange in the radiator 42 increases, and heat transfer with the refrigerant flowing in the radiator 42 is promoted, so that the size of the radiator 42 can be further reduced. Therefore, the heat pump device can be downsized.
[0034]
Further, in the present embodiment, the heat transfer area of the fins can be remarkably increased as compared with the case where the fins have irregularities on the lower surface in the gravity direction, so that the heat transfer performance of the evaporator 44 is significantly improved. It becomes possible. As a result, the dehumidifying ability of the drying air is improved, and the refrigeration cycle COP is also significantly improved, so that it is possible to further save energy.
[0035]
(Embodiment 3)
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings.
[0036]
FIG. 5 is a configuration diagram of a heat pump dryer according to a third embodiment of the present invention. 5, the same reference numerals are given to the same components as those in FIG. 1, and the description will be omitted. 31 is a compressor, 62 is a radiator, 33 is an expansion valve (expansion mechanism), and 64 is an evaporator. These are connected in order by piping, and a refrigerant is sealed to constitute a heat pump device. And a CO2 refrigerant that can be brought into a supercritical state. The difference from the first embodiment is that the drain air received by the dehumidification of the drying air in the evaporator 64 and condensed is received by the drain water receiver 65, and the drain water stored in the drain water receiver 65 is pumped by the pump 66. The spraying mechanism 67 is provided to spray the drain water to the radiator 62.
[0037]
The solid arrows in FIG. 5 indicate the flow of the refrigerant, the white arrows indicate the flow of the drying air, and the hatched arrows indicate the flow of the outside air. The drying air was configured to flow in the order of the evaporator 64 and the radiator 62 from below the drying target 36. That is, the evaporator 64 was installed on the windward side of the radiator 62 and below the radiator 62.
[0038]
Next, the operation will be described. The refrigerant is compressed by the compressor 31 to be in a state of high temperature and high pressure. The radiator 62 exchanges heat with the drying air exiting the evaporator 64 and heats the drying air. The air is decompressed at 33 to be in a low-temperature and low-pressure state. The evaporator 64 exchanges heat with the drying air passing through the drying target 36 to cool the drying air and condense and dehumidify the moisture contained in the drying air. As a result, the refrigerant is heated and sucked into the compressor 31 again. Therefore, the drying air is cooled and dehumidified by the evaporator 64 and then heated by the radiator 42 to become high temperature and low humidity. When the air is forced into contact with the drying target 36 by the blower fan 37, the drying air removes moisture from the drying target 36. After being deprived of moisture, the heat is exchanged with the outside air in the rough heat removal heat exchanger 38 to lower the temperature, and then cooled and dehumidified again in the evaporator 64.
[0039]
By repeating the above operations, a drying operation for removing moisture from the drying target 36 can be performed.
[0040]
In the present embodiment, the drain water that has been condensed and produced by dehumidifying the drying air in the evaporator 64 is received by the drain water receiver 65, the drain water stored in the drain water receiver 65 is pumped up by the pump 66, and the spray mechanism 67 is operated. Since the radiator 62 is used to spray the radiator 62, a constant amount of drain water can be stably sprayed uniformly over the entire surface of the radiator 62. Therefore, a liquid film of the drain water is uniformly formed on the entire surface of the radiator 62. In the radiator 62, sensible heat exchange with the drying air and latent heat exchange with the drain water are performed, and heat transfer is promoted. As a result, the amount of heat exchange in the radiator 62 increases, and heat transfer with the refrigerant flowing in the radiator 62 is promoted, so that the size of the radiator 62 can be further reduced. Therefore, the heat pump device can be downsized.
[0041]
Further, since the heat transfer in the radiator 62 is promoted, the temperature of the refrigerant at the outlet of the radiator 62 decreases, the cooling capacity in the evaporator 64 increases, and energy is saved. Further, since the transcritical refrigeration cycle is in a supercritical state on the heat radiation side, the refrigerant temperature at the outlet of the radiator 62 is reduced, so that the refrigeration cycle COP can be greatly improved. Can be achieved.
[0042]
In the present embodiment, the drain water produced by dehumidifying the drying air in the evaporator 64 and being condensed and produced is supplied to the radiator 62 by the pump 66. However, the same applies even if external water is used instead of the drain water. It goes without saying that a special effect can be obtained.
[0043]
In addition, the drying air is forcibly flowed from above to below the drying target 36 so that the drying air is brought into contact with the drying target 36, moisture is removed from the drying target 36 and dried, and the drying air is passed from below the drying target 36 to the heat pump dryer. Therefore, it also has a feature that a heat pump dryer can be easily applied to a washing machine with a vertical dryer.
[0044]
In this embodiment, the configuration in which the drying air is forced to flow from above to below the drying object 36 has been described. However, the present invention is not limited to this configuration, and the first and second embodiments are not limited to this configuration. Even when the drying air is forced to flow upward from below with respect to the drying target 36 in the same manner as described above, the same effect is obtained when the drain water condensed and generated in the evaporator 64 is supplied to the radiator 62 by the pump 66. Needless to say,
[0045]
【The invention's effect】
As is apparent from the above description, according to the present invention, since the drain water generated by dehumidifying the drying air in the evaporator is configured to be dropped or sprayed on the radiator, the radiator is in contact with the drying air. Sensible heat exchange and latent heat exchange with drain water are performed, and as a result, the amount of heat exchange in the radiator increases, and heat transfer with the refrigerant flowing in the radiator is promoted. And the heat pump dryer can be downsized. In addition, since heat transfer in the radiator is promoted, when a refrigerant such as CO2 that can be in a supercritical state on the radiation side of the refrigeration cycle is used as the refrigerant, the refrigerant temperature at the radiator outlet decreases, In addition, since the cooling capacity of the evaporator is increased, it is possible to realize a more efficient heat pump dryer.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a heat pump drier according to a first embodiment of the present invention. FIG. 2 is a configuration diagram of a heat pump drier according to a second embodiment of the present invention. FIG. FIG. 4A is an enlarged view of a main part of a fin constituting an evaporator in a configuration diagram of a heat pump dryer. FIG. 4A is another configuration of an evaporator in a configuration diagram of a heat pump dryer according to a second embodiment of the present invention. Sectional view (b) of a main part of a fin is an enlarged view of a main part of another fin constituting an evaporator in a configuration diagram of a heat pump dryer according to a second embodiment of the present invention. FIG. 5 is a third embodiment of the present invention. Diagram of heat pump dryer in Japan [Figure 6] Diagram of conventional heat pump dryer [Description of symbols]
31 Compressor 32,42,62 Radiator 33 Expansion valve 34,44,64 Evaporator 36 Drying target 37 Blow fan 38 Rough heat removal heat exchanger 39 for drying air Blow fans 40,65 for rough heat removal heat exchanger Drain water receivers 45, 55 Fins 46 Unevenness 46a Convex part 47 Droplet 56 Bend part 57 Valley part 66 Pump 67 Spray mechanism